1
|
Chu CM, Sabbineni B, Cen HH, Hu X, Sun WG, Brownrigg GP, Xia YH, Rogalski J, Johnson JD. Signal transduction pathways controlling Ins2 gene activity and beta cell state transitions. iScience 2025; 28:112015. [PMID: 40144638 PMCID: PMC11938086 DOI: 10.1016/j.isci.2025.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic β cells exist in low and high insulin gene activity states that are dynamic on a scale of hours to days. Here, we used live 3D imaging, mass spectrometry proteomics, and targeted perturbations of β cell signaling to comprehensively investigate Ins2(GFP)HIGH and Ins2(GFP)LOW β cell states. We identified the two Ins2 gene activity states in intact isolated islets and showed that cells in the same state were more likely to be nearer to each other. We report the proteomes of pure β cells to a depth of 5555 proteins and show that β cells with high Ins2 gene activity had reduced β cell immaturity factors, as well as increased translation. We identified activators of cAMP signaling (GLP1, IBMX) as powerful drivers of Ins2(GFP)LOW to Ins2(GFP)HIGH transitions. Okadaic acid and cyclosporine A had the opposite effects. This study provides new insight into the proteomic profiles and regulation of β cell states.
Collapse
Affiliation(s)
- Chieh Min Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Bhavya Sabbineni
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Proteomics and Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Volik PI, Zamaraev AV, Egorshina AY, Pervushin NV, Kapusta AA, Tyurin-Kuzmin PA, Lipatova AV, Kaehne T, Lavrik IN, Zhivotovsky B, Kopeina GS. Ally or traitor: the dual role of p62 in caspase-2 regulation. Cell Death Dis 2024; 15:827. [PMID: 39543123 PMCID: PMC11564777 DOI: 10.1038/s41419-024-07230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Caspase-2 is a unique and conserved cysteine protease that is involved in several cellular processes, including different forms of cell death, maintenance of genomic stability, and the response to reactive oxygen species. Despite advances in caspase-2 research in recent years, the mechanisms underlying its activation remain largely unclear. Although caspase-2 is activated in the PIDDosome complex, its processing could occur even in the absence of PIDD1 and/or RAIDD, suggesting the existence of an alternative platform for caspase-2 activation. Here, we show that caspase-2 undergoes ubiquitination and interacts with scaffolding protein p62/sequestosome-1 (SQSTM1) under normal conditions and in response to DNA damage. p62 promotes proteasomal but not autophagic caspase-2 degradation as well as its dimerization and activation that triggers the caspase cascade and, subsequently, cell death. Inhibition of p62 expression attenuates cisplatin-induced caspase-2 processing and apoptosis. Notably, the ZZ domain of p62 is critical for caspase-2 binding, whereas the UBA domain is seemingly required to stabilize the p62-caspase-2 complex. Thus, we have uncovered the dual role of p62 in regulating caspase-2 activity: it can foster the degradation of caspase-2 in the proteasome or facilitate its activation by acting as a scaffold platform.
Collapse
Affiliation(s)
- Pavel I Volik
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Zamaraev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | - Nikolay V Pervushin
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Thilo Kaehne
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
Chen SY, Wu J, Chen Y, Wang YE, Setayeshpour Y, Federico C, Mestre AA, Lin CC, Chi JT. NINJ1 regulates ferroptosis via xCT antiporter interaction and CoA modulation. Cell Death Dis 2024; 15:755. [PMID: 39424803 PMCID: PMC11489787 DOI: 10.1038/s41419-024-07135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture (PMR) during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis is less well elucidated. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced only by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that the ferroptosis protective effect caused by NINJ1 knockdown can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhancing cystine uptake and thereby providing protection against ferroptosis. Conversely, NINJ1 overexpression reduced xCT levels and sensitized ferroptosis. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ya-En Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chiara Federico
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexander A Mestre
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Shi R, Xu M, Ye H, Gao S, Li J, Li H, Li C. Cycloheximide promotes type I collagen maturation mainly via collagen prolyl 4-hydroxylase subunit α2. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1832-1840. [PMID: 36789685 PMCID: PMC10157532 DOI: 10.3724/abbs.2022191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant deposition of collagen is associated with cancer development and tissue fibrosis. Proline hydroxylation, catalyzed by collagen prolyl 4-hydroxylases (C-P4Hs), is necessary for collagen maturation and secretion. Here, we try to evaluate the mechanism of the regulation of CHX on collagen maturation. Using pepsin digestion, liquid chromatograph mass spectrometry and gene knockout, we find that treatment of mouse embryonic fibroblasts with cycloheximide (CHX) increases type I collagen proline hydroxylation partially via P4HA1 and mainly via P4HA2. Western blot analysis results show that CHX treatment reduces type I collagen but does not obviously impact the level of P4HA1/2 protein in the endoplasmic reticulum, which enhances the molar ratio of P4HA1/2 to type I collagen, and coimmunoprecipitation results confirm that more P4HA1/2 can bind to each type I collagen. Since C-P4Hs possess the capability to hydroxylate proline independent of ascorbate for a few cycles, this enhanced binding between P4HA1/2 and type I collagen can partially explain how CHX stimulates type I collagen maturation.
Collapse
|
5
|
A Dual Role for FADD in Human Precursor T-Cell Neoplasms. Int J Mol Sci 2022; 23:ijms232315157. [PMID: 36499482 PMCID: PMC9738522 DOI: 10.3390/ijms232315157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
A reduction in FADD levels has been reported in precursor T-cell neoplasms and other tumor types. Such reduction would impact on the ability of tumor cells to undergo apoptosis and has been associated with poor clinical outcomes. However, FADD is also known to participate in non-apoptotic functions, but these mechanisms are not well-understood. Linking FADD expression to the severity of precursor T-cell neoplasms could indicate its use as a prognostic marker and may open new avenues for targeted therapeutic strategies. Using transcriptomic and clinical data from patients with precursor T-cell neoplasms, complemented by in vitro analysis of cellular functions and by high-throughput interactomics, our results allow us to propose a dual role for FADD in precursor T-cell neoplasms, whereby resisting cell death and chemotherapy would be a canonical consequence of FADD deficiency in these tumors, whereas deregulation of the cellular metabolism would be a relevant non-canonical function in patients expressing FADD. These results reveal that evaluation of FADD expression in precursor T-cell neoplasms may aid in the understanding of the biological processes that are affected in the tumor cells. The altered biological processes can be of different natures depending on the availability of FADD influencing its ability to exert its canonical or non-canonical functions. Accordingly, specific therapeutic interventions would be needed in each case.
Collapse
|
6
|
Hartnett EB, Zhou M, Gong YN, Chen YC. LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer Using Convolutional Neural Network Image Analysis. Anal Chem 2022; 94:14827-14834. [PMID: 36251981 PMCID: PMC10729583 DOI: 10.1021/acs.analchem.2c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying and quantifying cell death is the basis for all cell death research. Current methods for obtaining these quantitative measurements rely on established biomarkers, yet the marker-based approach suffers from limited marker specificity, high cost of reagents, lengthy sample preparation, and fluorescence imaging. Based on the morphological difference, we developed a Live, Apoptotic, and Necrotic Cell Explorer (LANCE) to categorize cell death status in a label-free manner, by incorporating machine learning and image processing. The LANCE workflow includes cropping individual cells from microscopic images having hundreds of cells, formation of an image database of around 5000 events, training and validation of the convolutional neural network models using multiple cell lines, and treatment conditions. With LANCE, we precisely categorized live, apoptotic, and necrotic cells with a high accuracy of 96.3 ± 0.5%. More importantly, the nondestructive label-free LANCE method allows for tracking time dynamics of the cell death process, which enhances the understanding of subtle cell death regulation at the molecular level. Hence, LANCE is a fast, low-cost, and nondestructive label-free method to distinguish cell status, which can be applied to cell death studies as well as many other biomedical applications.
Collapse
Affiliation(s)
- Emma B. Hartnett
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yu-Chih Chen
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
8
|
Vunnam N, Szymonski S, Hirsova P, Gores GJ, Sachs JN, Hackel BJ. Noncompetitive Allosteric Antagonism of Death Receptor 5 by a Synthetic Affibody Ligand. Biochemistry 2020; 59:3856-3868. [PMID: 32941010 PMCID: PMC7658720 DOI: 10.1021/acs.biochem.0c00529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fatty acid-induced upregulation of death receptor 5 (DR5) and its cognate ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), promotes hepatocyte lipoapoptosis, which is a key mechanism in the progression of fatty liver disease. Accordingly, inhibition of DR5 signaling represents an attractive strategy for treating fatty liver disease. Ligand competition strategies are prevalent in tumor necrosis factor receptor antagonism, but recent studies have suggested that noncompetitive inhibition through perturbation of the receptor conformation may be a compelling alternative. To this end, we used yeast display and a designed combinatorial library to identify a synthetic 58-amino acid affibody ligand that specifically binds DR5. Biophysical and biochemical studies show that the affibody neither blocks TRAIL binding nor prevents the receptor-receptor interaction. Live-cell fluorescence lifetime measurements indicate that the affibody induces a conformational change in transmembrane dimers of DR5 and favors an inactive state of the receptor. The affibody inhibits apoptosis in TRAIL-treated Huh-7 cells, an in vitro model of fatty liver disease. Thus, this lead affibody serves as a potential drug candidate, with a unique mechanism of action, for fatty liver disease.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Sophia Szymonski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
| |
Collapse
|
9
|
Apoptosis of vaginal epithelial cells in clinical samples from women with diagnosed bacterial vaginosis. Sci Rep 2020; 10:1978. [PMID: 32029862 PMCID: PMC7005030 DOI: 10.1038/s41598-020-58862-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 01/10/2023] Open
Abstract
Bacterial vaginosis (BV) is one of the most common vaginal infections among women of childbearing age. Gardnerella vaginalis (G. vaginalis) is a keystone microorganism present in more than 95% of all BV cases. The first step of the infection process in BV is mediated by interaction of microorganisms with epithelial cells (ECs). However, the role of these cells in BV pathogenesis is largely unknown. The present study aimed to investigate the vaginal EC response during BV. Twenty healthy women and 34 women with BV were enrolled in this study. The number of ECs in the vaginal swab was counted and analyzed for intracellular signals and apoptosis by flow cytometry. Cell damage was evaluated by lactate dehydrogenase assay. Compared to that in healthy donors, the percentage of exfoliated vaginal ECs was increased in women with BV, and an absence of neutrophils was observed in both groups. Activation signals, such as p-IκBα and c-Fos were unmodulated in the vaginal ECs of women with BV. Moreover, EC damage and apoptosis were significantly increased in patients with BV. Apoptosis was related to caspase-3 activation and the presence of G. vaginalis. This study provides the first evidence of a direct involvement of G. vaginalis in the apoptotic process of vaginal ECs during BV. This effect was mediated by caspase-3 activation, and G. vaginalis appeared to be one of causes for inducing EC apoptosis in BV. Hence, our findings suggest a possible explanation for the increased exfoliation of ECs in the vagina during BV.
Collapse
|
10
|
Nguyen CN, Nguyen KVA, Eom S, Choi YJ, Kang LJ, Lee J, Kim C, Lee S, Lee SG, Lee JH. Regulation of p21 expression for anti-apoptotic activity of DDX3 against sanguinarine-induced cell death on intrinsic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153096. [PMID: 31568920 DOI: 10.1016/j.phymed.2019.153096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND DDX3 plays a role in multicellular pathways, especially exerting an anti-apoptotic effect on extrinsic apoptosis. However, studies on the role of DDX3 in intrinsic apoptosis are lacking. PURPOSE In this study, we aimed to study the bio-function of DDX3 anti-apoptotic activity in the intrinsic pathway using HeLa cells treated with sanguinarine. STUDY DESIGN Screening of apoptosis-inducing agents found that sanguinarine was the most effective. After treatment with sanguinarine, cell viability, caspase-3 activity, and intrinsic gene expression were analyzed. FACS assays were used to analyze the effect of overexpression and knockdown of DDX3 to determine its role on intrinsic apoptosis. The relationship between DDX3 and the inhibition of p21 and apoptosis was investigated. RESULTS Sanguinarine was determined to be the most effective intrinsic apoptosis-inducing agent in HeLa cervical cancer cells. DDX3 upregulated anti-apoptotic gene expression (Bcl-xL, cyclin D1, cyclin E, and cyclin B1) and downregulated pro-apoptotic gene expression (caspase-3, Bax) after sanguinarine treatment. The apoptotic cell death rate increased from 8.74% (sanguinarine-treated control) to 17.6% after the knockdown of DDX3 but decreased to 5.29% after DDX3 overexpression. The results implied that p21 might be involved in the toxicity of sanguinarine to HeLa cells. Overexpression and knockdown of DDX3 under sanguinarine-treated conditions showed that DDX3 inhibited p21 expression in sanguinarine-treated HeLa cells. Notably, when we tested p21 expression among eight mutants located in the functional residues of DDX3 (S90A, S90E, T204A, T204E, GET, NEAD, LAT, and HRISR) under sanguinarine-treated conditions, only the S90E mutation in DDX3 had an effect on the inhibition of p21 expression and levels of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic genes (Bcl-xL, cyclin D1, cyclin E, and cyclin B1), as well as DDX3. CONCLUSION Taken together, the results suggest that the S90E residue is important for the regulation of p21 expression responsible for the anti-apoptotic activity of DDX3 in HeLa cells treated with sanguinarine. A model of the antiapoptotic function of DDX3 on sanguinarine-treated HeLa cells was proposed to understand the molecular mechanism of the intrinsic apoptosis inhibition in cervical cancer cells.
Collapse
Affiliation(s)
- Cam Ngoc Nguyen
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Khoa V A Nguyen
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Sanung Eom
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Yeo-Jin Choi
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Li-Jung Kang
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Jaeeun Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Chaelin Kim
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Seong-Gene Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea.
| | - Jun-Ho Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea.
| |
Collapse
|
11
|
Wang L, Zhao L, Wei G, Saur D, Seidler B, Wang J, Wang C, Qi T. Homoharringtonine could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. J Cell Biochem 2018; 119:6644-6656. [PMID: 29665121 DOI: 10.1002/jcb.26847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/09/2018] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating disease with the 5-year survival rate less than 6%. In this study, we investigated if inhibiting protein synthesis directly with homoharringtonine (HHT) could induce acute apoptosis in pancreatic cancer cells through quick depletion of multiple short-lived critical members of the central proteome, example, PSMD11(26S proteasome non-ATPase regulatory subunit 11). It was shown that although HHT could inhibit proliferation and growth of MiaPaCa-2 and PANC-1 cells in a time- and dose-dependent manner, only part of pancreatic cancer cells could be induced to die through acute apoptosis. Mechanistic studies showed that HHT could induce quick protein synthesis of PSMD11 through activating MEK1/ERK1/2 signaling pathway in pancreatic cancer cells. Inhibiting MEK1/ERK1/2 pathway with sorafenib could improve the cytotoxity of HHT in vitro and in a genetically engineered mouse model of pancreatic cancer. These results suggest that quick induction of PSMD11 or other acute apoptosis inhibitors through activation of the MEK1/ERK1/2 signaling pathway may be one of the important surviving mechanism which can help pancreatic cancer cells avoid acute apoptosis, it may have significant implications for the targeted therapy of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Lele Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Linlin Zhao
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Guo Wei
- Department of Dermatology, The Second Hospital of Shandong University, Jinan, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, München, Germany
| | - Junyan Wang
- Department of Internal Medicine, Dezhou People's Hospital, Dezhou, China
| | - Chuanxin Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China.,The Third People's Hospital of Tibet, Central Laboratory, Lhasa, China
| |
Collapse
|
12
|
Kumar M, Irungbam K, Kataria M. Depletion of membrane cholesterol compromised caspase-8 imparts in autophagy induction and inhibition of cell migration in cancer cells. Cancer Cell Int 2018; 18:23. [PMID: 29467593 PMCID: PMC5819249 DOI: 10.1186/s12935-018-0520-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cholesterol in lipid raft plays crucial role on cancer cell survival during metastasis of cancer cells. Cancer cells are reported to enrich cholesterol in lipid raft which make them more susceptible to cell death after cholesterol depletion than normal cells. Methyl-β-cyclodextrin (MβCD), an amphipathic polysaccharide known to deplete the membrane cholesterol, induces cell death selectively in cancer cells. Present work was designed to identify the major form of programmed cell death in membrane cholesterol depleted cancer cells (MDA-MB 231 and 4T1) and its impact on migration efficiency of cancer cells. Methods Membrane cholesterol alteration and morphological changes in 4T1 and MDA-MB 231 cancer cells by MβCD were measured by fluorescent microscopy. Cell death and cell proliferation were observed by PI, AO/EB and MTT assay respectively. Programme cell death was confirmed by flow cytometer. Caspase activation was assessed by MTT and PI after treatments with Z-VAD [OME]-FMK, mitomycin c and cycloheximide. Necroptosis, autophagy, pyroptosis and paraptosis were examined by cell proliferation assay and flow cytometry. Relative quantitation of mRNA of caspase-8, necroptosis and autophagy genes were performed. Migration efficiency of cancer cells were determined by wound healing assay. Results We found caspase independent cell death in cholesterol depleted MDA-MB 231 cells which was reduced by (3-MA) an autophagy inhibitor. Membrane cholesterol depletion neither induces necroptosis, paraptosis nor pyroptosis in MDA-MB 231 cells. Subsequent activation of caspase-8 after co-incubation of mitomycin c and cycloheximide separately, restored the cell viability in cholesterol depleted MDA-MB 231 cells. Down regulation of caspase-8 mRNA in cholesterol depleted cancer cells ensures that caspase-8 indirectly promotes the induction of autophagy. In another experiment we have demonstrated that membrane cholesterol depletion reduces the migration efficiency in cancer cells. Conclusion Together our experimental data suggests that membrane cholesterol is the crucial for the recruitment and activation of caspase-8 as well as its non-apoptotic functions in cancer cells. Enriched cholesterol in lipid raft of cancer cells may be regulating the cross talk between caspase-8 and autophagy machineries to promote their survival and migration. Therefore it can be explored to understand and address the issues of chemotherapeutic and drugs resistance.
Collapse
Affiliation(s)
- Mukesh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Meena Kataria
- Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
13
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
14
|
Byun S, Hecht VC, Manalis SR. Characterizing Cellular Biophysical Responses to Stress by Relating Density, Deformability, and Size. Biophys J 2016; 109:1565-73. [PMID: 26488647 DOI: 10.1016/j.bpj.2015.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/28/2023] Open
Abstract
Cellular physical properties are important indicators of specific cell states. Although changes in individual biophysical parameters, such as cell size, density, and deformability, during cellular processes have been investigated in great detail, relatively little is known about how they are related. Here, we use a suspended microchannel resonator (SMR) to measure single-cell density, volume, and passage time through a narrow constriction of populations of cells subjected to a variety of environmental stresses. Osmotic stress significantly affects density and volume, as previously shown. In contrast to density and volume, the effect of an osmotic challenge on passage time is relatively small. Deformability, as determined by comparing passage times for cells with similar volume, exhibits a strong dependence on osmolarity, indicating that passage time alone does not always provide a meaningful proxy for deformability. Finally, we find that protein synthesis inhibition, cell-cycle arrest, protein kinase inhibition, and cytoskeletal disruption result in unexpected relationships among deformability, density, and volume. Taken together, our results suggest that by measuring multiple biophysical parameters, one can detect unique characteristics that more specifically reflect cellular behaviors.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vivian C Hecht
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott R Manalis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
15
|
Chung H, Vilaysane A, Lau A, Stahl M, Morampudi V, Bondzi-Simpson A, Platnich JM, Bracey NA, French MC, Beck PL, Chun J, Vallance BA, Muruve DA. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ 2016; 23:1331-46. [PMID: 26891693 DOI: 10.1038/cdd.2016.14] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Nod-like receptor, pyrin containing 3 (NLRP3) is characterized primarily as a canonical caspase-1 activating inflammasome in macrophages. NLRP3 is also expressed in the epithelium of the kidney and gut; however, its function remains largely undefined. Primary mouse tubular epithelial cells (TEC) lacking Nlrp3 displayed reduced apoptosis downstream of the tumor necrosis factor (TNF) receptor and CD95. TECs were identified as type II apoptotic cells that activated caspase-8, tBid and mitochondrial apoptosis via caspase-9, responses that were reduced in Nlrp3-/- cells. The activation of caspase-8 during extrinsic apoptosis induced by TNFα/cycloheximide (TNFα/CHX) was dependent on adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and completely independent of caspase-1 or caspase-11. TECs and primary human proximal tubular epithelial cells (HPTC) did not activate a canonical inflammasome, caspase-1, or IL-1β secretion in response to TNFα/CHX or NLRP3-dependent triggers, such as ATP or nigericin. In cell fractionation studies and by confocal microscopy, NLRP3 colocalized with ASC and caspase-8 in speck-like complexes at the mitochondria during apoptosis. The formation of NLRP3/ASC/caspase-8 specks in response to TNFα/CHX was downstream of TNFR signaling and dependent on potassium efflux. Epithelial ASC specks were present in enteroids undergoing apoptosis and in the injured tubules of wild-type but not Nlrp3-/- or ASC-/- mice following ureteric unilateral obstruction in vivo. These data show that NLRP3 and ASC form a conserved non-canonical platform for caspase-8 activation, independent of the inflammasome that regulates apoptosis within epithelial cells.
Collapse
Affiliation(s)
- H Chung
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - A Vilaysane
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - A Lau
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - M Stahl
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - V Morampudi
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Bondzi-Simpson
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - J M Platnich
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - N A Bracey
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - M-C French
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - P L Beck
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - J Chun
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - B A Vallance
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - D A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival. Mol Cell Biol 2015; 35:1805-24. [PMID: 25776553 DOI: 10.1128/mcb.00012-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Acidification of the extracellular and/or intracellular environment is involved in many aspects of cell physiology and pathology. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca(2+)/calmodulin-dependent kinase that regulates translation elongation by phosphorylating and inhibiting eEF2. Here we show that extracellular acidosis elicits activation of eEF2K in vivo, leading to enhanced phosphorylation of eEF2. We identify five histidine residues in eEF2K that are crucial for the activation of eEF2K during acidosis. Three of them (H80, H87, and H94) are in its calmodulin-binding site, and their protonation appears to enhance the ability of calmodulin to activate eEF2K. The other two histidines (H227 and H230) lie in the catalytic domain of eEF2K. We also identify His108 in calmodulin as essential for activation of eEF2K. Acidification of cancer cell microenvironments is a hallmark of malignant solid tumors. Knocking down eEF2K in cancer cells attenuated the decrease in global protein synthesis when cells were cultured at acidic pH. Importantly, activation of eEF2K is linked to cancer cell survival under acidic conditions. Inhibition of eEF2K promotes cancer cell death under acidosis.
Collapse
|
17
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis. Arch Toxicol 2014; 89:961-5. [PMID: 24888376 DOI: 10.1007/s00204-014-1284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Deoxynivalenol (DON) has critical health effects if the contaminated grains consumed by humans or animals. DON can have negative effects on the active transport of glucose and amino acids in the small intestine of chickens. As the underlying mechanisms are not fully elucidated, the present study was performed to delineate more precisely the effects of cycloheximide (protein synthesis inhibitor, CHX) and DON on the intestinal absorption of nutrients. This was to confirm whether DON effects on nutrient absorption are due to an inhibition of protein synthesis. Changes in ion transport and barrier function were assessed by short-circuit current (Isc) and transepithelial ion conductance (Gt) in Ussing chambers. Addition of D-glucose or L-glutamine to the luminal side of the isolated mucosa of the jejunum increased (P < 0.001) the Isc compared with basal conditions in the control tissues. However, the Isc was not increased by the glucose or glutamine addition after pre-incubation of tissues with DON or CHX. Furthermore, both DON and CHX reduced Gt, indicating that the intestinal barrier is compromised and consequently induced a greater impairment of the barrier function. The remarkable similarity between the activity of CHX and DON on nutrient uptake is consistent with their common ability to inhibit protein synthesis. It can be concluded that the decreases in transport activity by CHX was evident in this study using the chicken as experimental model. Similarly, DON has negative effects on the active transport of some nutrients, and these can be explained by its influence on protein synthesis.
Collapse
|
19
|
Qi T, Zhang W, Luan Y, Kong F, Xu D, Cheng G, Wang Y. Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells. Mol Cell Proteomics 2013; 13:49-62. [PMID: 24105791 DOI: 10.1074/mcp.m113.027813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Oncogene addiction" is an unexplained phenomenon in the area of cancer targeted therapy. In this study, we have tested a hypothesis that rapid apoptotic response of cancer cells following acute inhibition of the addicted oncogenes is because of loss of multiple short-lived proteins whose activity normally maintain cell survival by blocking caspase activation directly or indirectly. It was shown that rapid apoptotic response or acute apoptosis could be induced in both A431 and MiaPaCa-2 cells, and quick down-regulation of 17 proteins, which were all members of the central proteome of human cells, was found to be associated with the onset of acute apoptosis. Knockdown of PSMD11 could partially promote the occurrence of acute apoptosis in both MiaPaCa-2 and PANC-1 pancreatic cancer cells. These findings indicate that maintaining the stability of central proteome may be a primary mechanism for addicted oncogenes to maintain the survival of cancer cells through various signaling pathways, and quick loss of some of the short-lived members of the central proteome may be the direct reason for the rapid apoptotic response or acute apoptosis following acute inhibition of the addicted oncogenes in cancer cells. These findings we have presented can help us better understand the phenomenon of oncogene-addiction and may have important implications for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bortezomib is cytotoxic to the human growth plate and permanently impairs bone growth in young mice. PLoS One 2012; 7:e50523. [PMID: 23226303 PMCID: PMC3511518 DOI: 10.1371/journal.pone.0050523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
Bortezomib, a novel proteasome inhibitor approved for the treatment of cancer in adults, has recently been introduced in pediatric clinical trials. Any tissue-specific side effects on bone development have to our knowledge not yet been explored. To address this, we experimentally studied the effects of bortezomib in vivo in young mice and in vitro in organ cultures of rat metatarsal bones and human growth plate cartilage, as well as in a rat chondrocytic cell line. We found that bortezomib while efficiently blocking the ubiquitin/proteasome system (UPS) caused significant growth impairment in mice, by increasing resting/stem-like chondrocyte apoptosis. Our data support a local action of bortezomib, directly targeting growth plate chondrocytes leading to decreased bone growth since no suppression of serum levels of insulin-like growth factor-I (IGF-I) was observed. A local effect of bortezomib was confirmed in cultured rat metatarsal bones where bortezomib efficiently caused growth retardation in a dose dependent and irreversible manner, an effect linked to increased chondrocyte apoptosis, mainly of resting/stem-like chondrocytes. The cytotoxicity of bortezomib was also evaluated in a unique model of cultured human growth plate cartilage, which was found to be highly sensitive to bortezomib. Mechanistic studies of apoptotic pathways indicated that bortezomib induced activation of p53 and Bax, as well as cleavage of caspases and poly-ADP-ribose polymerase (PARP) in exposed chondrocytes. Our observations, confirmed in vivo and in vitro, suggest that bone growth could potentially be suppressed in children treated with bortezomib. We therefore propose that longitudinal bone growth should be closely monitored in ongoing clinical pediatric trials of this promising anti-cancer drug.
Collapse
|
21
|
Kataoka T. Translation inhibitors and their unique biological properties. Eur J Pharmacol 2011; 676:1-5. [PMID: 22173124 DOI: 10.1016/j.ejphar.2011.11.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
In eukaryotes, many translation inhibitors have been widely used as bioprobes to evaluate the contribution of translation to signaling pathways and cellular functions. Several types of translation inhibitors are also known to trigger the activation of the mitogen-activated protein kinase superfamily in an intracellular mechanism called ribotoxic stress response. This perspective focuses on the biological properties of recently identified translation inhibitors that trigger ribotoxic stress response, particularly glutarimides as well as triene-ansamycins.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
22
|
Skerman NB, Joubert AM, Cronjé MJ. The apoptosis inducing effects of Sutherlandia spp. extracts on an oesophageal cancer cell line. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1250-1260. [PMID: 21824511 DOI: 10.1016/j.jep.2011.07.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/07/2011] [Accepted: 07/24/2011] [Indexed: 05/31/2023]
Abstract
AIM OF STUDY Oesophageal cancer is the ninth most common cancer in the world and the second most common cancer among South African men. It also has one of the lowest possibilities of cure, with the 5-year survival rate estimated to be only 10% overall. Sutherlandia frutescens, or the "cancer bush", is a medicinal plant indigenous to southern Africa that is believed to have anti-cancer and anti-proliferative properties. The aim of this study was to investigate the potential apoptosis-inducing effects of two S. frutescens extracts and one Sutherlandia tomentosa extract on the SNO oesophageal cancer cell line. MATERIALS AND METHODS Cell viability and morphology of SNO cells were evaluated following exposure to the extracts. Apoptotic markers including cytochrome c translocation and phosphatidylserine externalisation were quantified by flow cytometry. The activity of caspases 3 and 7 was evaluated with spectrofluorometry. Apoptosis was evaluated in the presence of the pan-caspase inhibitor, Z-VAD-fmk. The effect of the extracts was compared to non-cancerous peripheral blood mononuclear cells (PBMCs). RESULTS Time- and dose-response studies were conducted to establish treatment conditions of 2.5 and 5mg/ml of crude plant extracts. Microscopy studies revealed that S. frutescens- and S. tomentosa-treated SNO cells had morphological features characteristic of apoptosis. Annexin V/propidium iodide flow cytometry confirmed that the extracts do, in fact, induce apoptosis in the SNO cells. Caspase inhibition studies seem to indicate that extracts A (S. frutescens (L.) R. Br. subsp. microphylla from Colesberg), B (S. frutescens (L.) R. Br. subsp. microphylla from Platvlei) and C (S. tomentosa Eckl. & Zeyh from Stil Bay) are able to induce caspase-dependent as well as -independent cell death. The S. frutescens and S. tomentosa extracts were found to be more cytotoxic to cancerous SNO cells when compared to the PBMCs. CONCLUSIONS S. frutescens and S. tomentosa extracts show promise as apoptosis-inducing anti-cancer agents.
Collapse
Affiliation(s)
- Nicola B Skerman
- Department of Biochemistry, University of Johannesburg, APK Campus, PO Box 524, Auckland Park 2006, South Africa
| | | | | |
Collapse
|
23
|
Jeon H, Zheng LT, Lee S, Lee WH, Park N, Park JY, Heo WD, Lee MS, Suk K. Comparative analysis of the role of small G proteins in cell migration and cell death: cytoprotective and promigratory effects of RalA. Exp Cell Res 2011; 317:2007-18. [PMID: 21645515 DOI: 10.1016/j.yexcr.2011.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 12/30/2022]
Abstract
Small G protein superfamily consists of more than 150 members, and is classified into six families: the Ras, Rho, Rab, Arf, Ran, and RGK families. They regulate a wide variety of cell functions such as cell proliferation/differentiation, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport and microtubule organization. The small G proteins have also been shown to regulate cell death/survival and cell shape. In this study, we compared the role of representative members of the six families of small G proteins in cell migration and cell death/survival, two cellular phenotypes that are associated with inflammation, tumorigenesis, and metastasis. Our results show that small G proteins of the six families differentially regulate cell death and cell cycle distribution. In particular, our results indicate that Rho family of small G proteins is antiapoptotic. Ras, Rho, and Ran families promoted cell migration. There was no significant correlation between the cell death- and cell migration-regulating activities of the small G proteins. Nevertheless, RalA was not only cytoprotective against multiple chemotherapeutic drugs, but also promigratory inducing stress fiber formation, which was accompanied by the activation of Akt and Erk pathways. Our study provides a framework for further systematic investigation of small G proteins in the perspectives of cell death/survival and motility in inflammation and cancer.
Collapse
Affiliation(s)
- Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chetty C, Lakka SS, Bhoopathi P, Gondi CS, Veeravalli KK, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Urokinase plasminogen activator receptor and/or matrix metalloproteinase-9 inhibition induces apoptosis signaling through lipid rafts in glioblastoma xenograft cells. Mol Cancer Ther 2010; 9:2605-17. [PMID: 20716639 DOI: 10.1158/1535-7163.mct-10-0245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small interfering RNA (siRNA)-mediated transcriptional knockdown of urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9), alone or in combination, inhibits uPAR and/or MMP-9 expression and induces apoptosis in the human glioblastoma xenograft cell lines 4910 and 5310. siRNA against uPAR (pU-Si), MMP-9 (pM-Si), or both (pUM-Si) induced apoptosis and was associated with the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase. Furthermore, protein levels of the Fas receptor (APO-1/CD-95) were increased following transcriptional inactivation of uPAR and/or MMP-9. In addition, Fas siRNA against the Fas death receptor blocked apoptosis induced by pU-Si, pM-Si, or pUM-Si, thereby indicating the role for Fas signaling in pU-Si-, pM-Si-, or pUM-Si-mediated apoptotic cell death of human glioma xenograft cells. Thus, transcriptional inactivation of uPAR and/or MMP-9 enhanced localization of Fas death receptor, Fas-associated death domain-containing protein, and procaspase-8 into lipid rafts. Additionally, disruption of lipid rafts with methyl β cyclodextrin prevented Fas clustering and pU-Si-, pM-Si-, or pUM-Si-induced apoptosis, which is indicative of coclustering of Fas death receptor into lipid rafts in the glioblastoma xenograft cell lines 4910 and 5310. These data indicate the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in programmed cell death, acting as concentrators of death receptors and downstream signaling molecules, and as the linchpin from which a potent death signal is launched in uPAR- and/or MMP-9-downregulated cells.
Collapse
Affiliation(s)
- Chandramu Chetty
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
N,N-Dimethyl phytosphingosine sensitizes HL-60/MX2, a multidrug-resistant variant of HL-60 cells, to doxorubicin-induced cytotoxicity through ROS-mediated release of cytochrome c and AIF. Apoptosis 2010; 15:982-93. [DOI: 10.1007/s10495-010-0512-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Specific Reduction of Fas-Associated Protein with Death Domain (FADD) in Clear Cell Renal Cell Carcinoma. Cancer Invest 2009; 27:836-43. [DOI: 10.1080/07357900902849681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Kadohara K, Nagumo M, Asami S, Tsukumo Y, Sugimoto H, Igarashi M, Nagai K, Kataoka T. Caspase-8 Mediates Mitochondrial Release of Pro-apoptotic Proteins in a Manner Independent of Its Proteolytic Activity in Apoptosis Induced by the Protein Synthesis Inhibitor Acetoxycycloheximide in Human Leukemia Jurkat Cells. J Biol Chem 2009; 284:5478-87. [DOI: 10.1074/jbc.m808523200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
Cell type-specific induction and inhibition of apoptosis by Herpes Simplex virus type 2 ICP10. J Virol 2008; 83:2765-9. [PMID: 19116254 DOI: 10.1128/jvi.02088-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) inhibits apoptosis induced by external stimuli in epithelial cells. In contrast, apoptosis is the primary outcome in HSV-infected lymphocytes. Here, we show that HSV type 2 (HSV-2) gene expression appears to be necessary for the induction of apoptosis in Jurkat cells, a T-cell leukemia line. HSV-2 ICP10 gene expression is sufficient to induce apoptosis in Jurkat cells, while its expression protects epithelial HEp-2 cells from apoptosis triggered by cycloheximide and tumor necrosis factor alpha. Thus, the effect of HSV-2 gene expression on the cellular apoptotic pathway appears to depend on the specific cell type.
Collapse
|
29
|
Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 2008; 82:10709-23. [PMID: 18715905 DOI: 10.1128/jvi.01012-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.
Collapse
|
30
|
Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M. On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 2008; 41:830-40. [PMID: 18673370 DOI: 10.1111/j.1365-2184.2008.00548.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Many flow-cytometric cell characterization methods require costly markers and colour reagents. We present here a novel device for cell discrimination based on impedance measurement of electrical cell properties in a microfluidic chip, without the need of extensive sample preparation steps and the requirement of labelling dyes. MATERIALS AND METHODS, RESULTS We demonstrate that in-flow single cell measurements in our microchip allow for discrimination of various cell line types, such as undifferentiated mouse fibroblasts 3T3-L1 and adipocytes on the one hand, or human monocytes and in vitro differentiated dendritic cells and macrophages on the other hand. In addition, viability and apoptosis analyses were carried out successfully for Jurkat cell models. Studies on several species, including bacteria or fungi, demonstrate not only the capability to enumerate these cells, but also show that even other microbiological life cycle phases can be visualized. CONCLUSIONS These results underline the potential of impedance spectroscopy flow cytometry as a valuable complement to other known cytometers and cell detection systems.
Collapse
Affiliation(s)
- G Schade-Kampmann
- Leister Process Technologies, Axetris Microsystems Division, Kägiswil, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol 2008; 129:389-406. [PMID: 18259769 PMCID: PMC2668650 DOI: 10.1007/s00418-008-0394-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2008] [Indexed: 12/19/2022]
Abstract
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH approximately 4 to 5) that constantly fuse and divide. It receives a large number of hydrolases ( approximately 50) from the trans-Golgi network, and substrates from both the cells' outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while 'resting' lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
32
|
Autelli R, Crepaldi S, De Stefanis D, Parola M, Bonelli G, Baccino FM. Intracellular free iron and acidic pathways mediate TNF-induced death of rat hepatoma cells. Apoptosis 2007; 10:777-86. [PMID: 16133868 DOI: 10.1007/s10495-005-2944-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rat hepatoma HTC cells are intrinsically resistant to various apoptosis-inducing agents. Strategies to induce death in hepatoma cells are needed and the present experimental study was aimed to investigate the sensitivity of HTC cells to TNF and to clarify the mechanisms of action of this cytokine. Cells were treated with TNF and death mechanisms characterized employing an integration of morphological and biochemical techniques. HTC cells, sensitized to TNF toxicity with cycloheximide, died in a caspase-independent apoptosis-like manner. Although we found no evidence for a direct involvement of lysosomal cathepsins, bafilomycin A1 and ammonium chloride significantly attenuated TNF toxicity. Also desferrioxamine mesylate, an iron chelator, partly protected the cells from TNF, while a complete protection was afforded by combining ammonium chloride and iron chelator. Moreover, HTC were protected from TNF also by lipophylic antioxidants and diphenylene iodonium chloride, a NADPH oxidase inhibitor. These data depict a novel mechanism of TNF-mediated cytotoxicity in HTC cells, in which the endo-lysosomal compartment, NADPH oxidase and an iron-mediated pro-oxidant status contribute in determining a caspase-independent, apoptosis-like cell death.
Collapse
Affiliation(s)
- R Autelli
- Department of Experimental Medicine and Oncology, University of Turin, Turin, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Zhang L, Wali A, Ramana CV, Rishi AK. Cell growth inhibition by okadaic acid involves gut-enriched Kruppel-like factor mediated enhanced expression of c-Myc. Cancer Res 2007; 67:10198-206. [PMID: 17974960 DOI: 10.1158/0008-5472.can-07-2505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human breast cancer (HBC) cell growth suppression by okadaic acid (OA) was previously found to involve elevated expression of oncogenes c-myc and c-fos and apoptosis. Since, c-Myc influences diverse pathways of cell growth, we hypothesized that elevated levels of c-Myc are involved in HBC growth suppression. Here, we investigated whether induction of c-Myc by OA or protein synthesis inhibitor cycloheximide contributed to HBC growth inhibition and the mechanisms involved. OA, cycloheximide, or the chemotherapeutic drug Taxol suppressed HBC cell growth. However, OA or cycloheximide treatments over 6 or 10 h, respectively, induced c-Myc expression. Depletion of c-Myc, on the other hand, resulted in enhanced HBC cell viabilities when exposed to OA or cycloheximide, but not by Taxol. OA induced c-myc transcription by targeting an 80-bp region from positions -11 to +70, relative to the P1 transcription start of mouse c-myc promoter. Gel mobility shift assays revealed binding of HBC cell nuclear proteins to the OA-responsive c-myc promoter fragment, whereas binding of one complex was elevated in the case of the OA-treated or cycloheximide-treated HBC cell nuclear extracts. Database search revealed presence of a consensus sequence for zinc finger protein gut-enriched Kruppel-like factor (GKLF) in OA-responsive region of the c-myc promoter. Mutation of GKLF consensus sequences abrogated OA responsiveness of the c-myc promoter, and OA treatments caused enhanced expression of GKLF in HBC cells. Thus, OA-dependent attenuation of HBC growth is accomplished, in part, by zinc finger transcription factor GKLF-mediated enhanced transcription of c-myc.
Collapse
Affiliation(s)
- Liyue Zhang
- John D. Dingell V.A. Medical Center and Department of Internal Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
34
|
Takashina T, Nakayama M. Modifications enhance the apoptosis-inducing activity of FADD. Mol Cancer Ther 2007; 6:1793-803. [PMID: 17575108 DOI: 10.1158/1535-7163.mct-06-0522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to enhance apoptosis-inducing activity in specific cells, despite the presence of cellular antiapoptotic proteins, would allow the removal of target cells from a cell population. Here, we show that modification of Fas-associated protein with death domain (FADD) by fusing the tandem death effector domains (DED) of FADD to the E protein of lambda phage, a head coat protein with self-assembly activity, greatly increases the apoptosis-inducing activity of FADD in both adherent NIH3T3 and HEK293 cells. Induction of apoptosis in cell lines that stably express modified FADD (2DEDplusE) resulted in rapid blebbing, and most cells detached from the flask within 5 h. In contrast, following induction of apoptosis, it took over 24 h for the cells expressing unmodified FADD to exhibit these signs. The cells expressing the modified FADD underwent apoptosis through the typical apoptosis cascade via activation of caspase-3, and apoptosis was inhibited by a caspase inhibitor (i.e., z-VAD-fmk). Theoretically, as our adhesive stable cell lines undergo apoptosis rapidly and in synchrony following mifepristone- or tetracycline-controlled production of a single apoptosis protein without affecting any other cellular pathways, they provide excellent model systems in which to analyze the phenomenon of apoptosis in adhesive cell lines, in particular, blebbing and detachment.
Collapse
Affiliation(s)
- Tomoki Takashina
- Laboratory of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Chiba University, Kisarazu, Chiba, Japan
| | | |
Collapse
|
35
|
Morton ER, Blaho JA. Herpes simplex virus blocks Fas-mediated apoptosis independent of viral activation of NF-kappaB in human epithelial HEp-2 cells. J Interferon Cytokine Res 2007; 27:365-76. [PMID: 17523868 DOI: 10.1089/jir.2006.0143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of our study was to characterize the apoptotic response of herpes simplex virus (HSV)-infected, human epithelial HEp-2 cells to extrinsic treatments through the Fas receptor. Initially, we defined the Fas response of these cells. We found the following: (1) Treatment of HEp-2 cells with anti-Fas antibody or Fas ligand (FasL) alone did not induce apoptosis. (2) In addition, these inducers did not activate NF-kappaB in these cells. (3) The addition of cycloheximide (CHX) during these treatments caused a dramatic increase in programmed cell death. (4) HEp-2 cells infected with HSV for 6 h prior to anti-Fas plus CHX treatment were nonapoptotic, and (5) these cells possessed nuclear NFkappaB. (6) HSV blocked anti-Fas or FasL plus CHX-induced apoptosis in HEp-2 cells that stably expressed a dominant-negative form of IkappaBalpha. These results indicate that HSV infection can block the process of Fas-mediated apoptosis through a mechanism that is independent of viral activation of NFkappaB. Our findings help define the molecular mechanisms involved in HSV evasion of the cytokine-driven, innate immune response in human epithelial cells.
Collapse
Affiliation(s)
- Elise R Morton
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
36
|
Shen J, Jiang J, Wei Y, Zhou L, Liu D, Zhou J, Gu J. Two specific inhibitors of the phosphatidylinositol 3-kinase LY294002 and wortmannin up-regulate beta1,4-galactosyltransferase I and thus sensitize SMMC-7721 human hepatocarcinoma cells to cycloheximide-induced apoptosis. Mol Cell Biochem 2007; 304:361-7. [PMID: 17557191 DOI: 10.1007/s11010-007-9519-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/16/2007] [Indexed: 12/11/2022]
Abstract
Previous study indicated that beta1,4-galactosyltransferase I (beta1,4GT1) was up-regulated by cycloheximide (CHX) and thus enhanced apoptosis induced by CHX in SMMC-7721 cells. In this study, we reported that constitutively active Akt protein (myr-Akt) inhibited CHX-induced apoptosis in SMMC-7721 cells through down-regulating beta1,4GT1. However, the two PI3K inhibitors LY294002 and wortmannin treatment up-regulated beta1,4GT1 through enhancing Sp1 protein expression and consequently increased CHX-induced SMMC-7721 cells apoptosis. Besides, our results suggested that beta1,4GT1 and cell surface galactose residues synthesized by elevated beta1,4GT1 played an important role in SMMC-7721 cells apoptosis treated with CHX and PI3K inhibitor together. Moreover, we found that CHX accentuated beta1,4GT1 through down-regulating Akt expression to mediate SMMC-7721 cells apoptosis. Taken together, PI3K inhibitors LY294002 and wortmannin up-regulated beta1,4GT1 and enhanced CHX-induced apoptosis in SMMC-7721 cells, which suggested that PI3K inhibitors might have therapeutic potential when combined with CHX in the treatment of hepatoma.
Collapse
Affiliation(s)
- Jialin Shen
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, P. R. China
| | | | | | | | | | | | | |
Collapse
|
37
|
Troncoso MF, Biron VA, Longhi SA, Retegui LA, Wolfenstein-Todel C. Peltophorum dubium and soybean Kunitz-type trypsin inhibitors induce human Jurkat cell apoptosis. Int Immunopharmacol 2007; 7:625-636. [PMID: 17386410 DOI: 10.1016/j.intimp.2007.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/27/2006] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
Plants constitute an important source of compounds which can induce apoptosis in a variety of cells. Previously, we reported the isolation of a trypsin inhibitor from Peltophorum dubium seeds (PDTI). This inhibitor, as well as soybean trypsin inhibitor (SBTI), both belonging to the Kunitz family, have lectin-like properties and trigger rat lymphoma cell apoptosis. In the present study, we demonstrate for the first time that PDTI and SBTI induce human leukemia Jurkat cell death. Induction of apoptosis was confirmed by flow cytometry after propidium iodide labeling of apoptotic nuclei, showing a considerable increase of the sub G(0)/G(1) fraction, with no cell cycle arrest. With the purpose of gaining insight into the signaling pathways involved, we investigated the activation of caspases and the effect of caspase inhibitors, and showed caspases-3 and -8-like activation by PDTI or SBTI-treatment. Consistent with these results, pan caspase inhibitor and caspase-8 inhibitor protected Jurkat cells from apoptosis. However, there was no caspase-9 activation, confirmed by the failure of caspase-9 inhibitor to prevent cell death. No significant release of cytochrome c from mitochondria was detected suggesting that the intrinsic mitochondrial pathway is not predominant in the apoptotic process. On the other hand, recruitment of Fas-associated death domain (FADD) to the cell membrane indicates the involvement of this adaptor protein in PDTI- and SBTI-induced apoptosis in Jurkat cells. Furthermore, human peripheral lymphocytes, either stimulated with phytohemagglutinin or not, are also susceptible to viability decrease induced by these inhibitors.
Collapse
Affiliation(s)
- María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
38
|
Stang MT, Armstrong MJ, Watson GA, Sung KY, Liu Y, Ren B, Yim JH. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 2007; 26:6420-30. [PMID: 17452973 DOI: 10.1038/sj.onc.1210470] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) is a transcription factor that has apoptotic anti-tumor activity. In breast cancer cell types, IRF-1 is implicated in mediating apoptosis by both novel and established anti-tumor agents, including the anti-estrogens tamoxifen and faslodex. Here we demonstrate that in MDA468 breast cancer cells, apoptosis by IFN-gamma is mediated by IRF-1 and IFN-gamma, and IRF-1-induced apoptosis is caspase-mediated. IRF-1 induction results in cleavage of caspase-8, -3 and -7, and application of caspase inhibitors attenuate activated cleavage products. IRF-1-induced apoptosis involves caspase-8 since apoptosis is significantly decreased by the caspase-8-specific inhibitor IETD, c-FLIP expression and in caspase-8-deficient cancer cells. Furthermore, we demonstrate that IRF-1-induced apoptosis requires fas-associated death domain (FADD) since dominant-negative FADD expressing cells resist IRF-1-induced apoptosis and activated downstream products. Immunofluorescent studies demonstrate perinuclear colocalization of FADD and caspase-8. Despite the known role of FADD in mediating death-ligand induced apoptosis, neutralizing antibodies against classical death receptors do not inhibit IRF-1 induced apoptosis, and no secreted ligand appears to be involved since MDA468 coincubated with IRF-1 transfected cells do not apoptose. Therefore, we demonstrate that IRF-1 induces a ligand-independent FADD/caspase-8-mediated apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- M T Stang
- Department of Surgery/University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Iga M, Iwami M, Sakurai S. Nongenomic action of an insect steroid hormone in steroid-induced programmed cell death. Mol Cell Endocrinol 2007; 263:18-28. [PMID: 17045392 DOI: 10.1016/j.mce.2006.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 08/08/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
Programmed cell death (PCD) of the silkworm silk glands is triggered by the insect steroid hormone, 20-hydroxyecdysone (20E), and proceeds sequentially through cell shrinkage, nuclear condensation, DNA fragmentation, nuclear fragmentation and apoptotic body formation. A protein synthesis inhibitor, cycloheximide (CHX, 2 mM) induced a cell death that exhibited only nuclear and DNA fragmentation. A concentration of 0.2 mM CHX was ineffective at inducing the cell death when added alone, but in the presence of 20E, a cell death similar to that induced by 2 mM CHX was resulted with accompanying nuclear condensation. Since 2 and 0.2 mM CHX inhibited protein synthesis equally, the DNA and nuclear fragmentation appear to be mediated by a nongenomic action of 20E. In addition, we show a possible involvement of Ca2+-PKC-caspase-3 like protease pathway in the nongenomic action. The data suggest that 20E-induced PCD is accomplished through the integration of genomic and nongenomic actions.
Collapse
Affiliation(s)
- Masatoshi Iga
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
40
|
Adams KW, Cooper GM. Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J Biol Chem 2007; 282:6192-200. [PMID: 17200126 PMCID: PMC1831535 DOI: 10.1074/jbc.m610643200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.
Collapse
Affiliation(s)
- Kenneth W Adams
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
41
|
Li Z, Zong H, Kong X, Zhang S, Wang H, Sun Q, Gu J. Cell surface beta 1, 4-galactosyltransferase 1 promotes apoptosis by inhibiting epidermal growth factor receptor pathway. Mol Cell Biochem 2006; 291:69-76. [PMID: 16786197 DOI: 10.1007/s11010-006-9198-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/21/2006] [Indexed: 11/28/2022]
Abstract
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Collapse
Affiliation(s)
- Zejuan Li
- Gene Research Center, Shanghai Medical College of Fudan University, Shanghai, China, 200032
| | | | | | | | | | | | | |
Collapse
|
42
|
Hoat TX, Nakayashiki H, Tosa Y, Mayama S. Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:922-33. [PMID: 16805727 DOI: 10.1111/j.1365-313x.2006.02752.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here we report that rRNA and mRNA are specifically degraded in oat (Avena sativa L.) cells during apoptotic cell death induced by victorin, a host-selective toxin produced by Cochliobolus victoriae. Northern analysis indicated that rRNA species from the cytosol, mitochondria and chloroplasts were all degraded via specific degradation intermediates during victorin-induced apoptotic cell death but, in contrast, they were randomly digested in necrotic cell death induced by 30 mM CuSO(4) and heat shock. This indicates that specific rRNA cleavage could be controlled by an intrinsic program. We also observed specific cleavage of mRNA of housekeeping genes such as actin and ubiquitin during victorin-induced cell death. Interestingly, no victorin-induced mRNA degradation was detected with stress-responding genes such as PR-1, PR-10 and GPx throughout the experimental period. The RNA degradation mostly, but not always, occurred in parallel with DNA laddering, but pharmacological studies indicated that these processes are regulated by different signaling pathways with some overlapping upstream signals.
Collapse
Affiliation(s)
- Trinh X Hoat
- Laboratory of Plant Pathology, Graduate School of Science and Technology, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
43
|
Alaoui-El-Azher M, Jia J, Lian W, Jin S. ExoS of Pseudomonas aeruginosa induces apoptosis through a Fas receptor/caspase 8-independent pathway in HeLa cells. Cell Microbiol 2006; 8:326-38. [PMID: 16441442 DOI: 10.1111/j.1462-5822.2005.00624.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa infection is a serious complication in immunocompromised individuals and in patients with cystic fibrosis. We have previously shown that the type III secreted effector ExoS triggers apoptosis in various cultured cell lines via its ADP-ribosyltransferase (ADPRT) activity. The apoptosis process was further shown to involve intrinsic signalling pathway requiring c-Jun N-terminal kinase (JNK)-initiated mitochondrial pathway. In the present study, we investigated the role of Fas pathway activation in P. aeruginosa-induced apoptosis. P. aeruginosa infection resulted in caspase 8 cleavage in HeLa cells, which was inhibited by overexpression of a dominant negative version of Fas-associated death domain (FADD), suggesting that Fas pathway was activated. In fact, confocal laser scanning microscopy showed that P. aeruginosa induced clustering of FasR. In addition, the ADPRT activity of the ExoS was required for the induction of FasR clustering and caspase 8 cleavage. However, blocking the FasR-FasL interaction by antagonistic antibodies to FasR or to FasL had no effect on P. aeruginosa-induced caspase 8 and caspase 3 activation, neither did the silencing of FasR by small interfering RNA (siRNA), suggesting that caspase 8 activation through the FADD bypasses FasR/FasL-mediated signalling. Thus, FADD-mediated caspase 8 activation involves intracellular ExoS in an ADPRT-dependent manner. Furthermore, silencing of caspase 8 by siRNA did not interfere with P. aeruginosa-induced apoptosis, whereas it rendered HeLa cells markedly increased resistance towards FasL-induced apoptosis. In conclusion, our findings indicate that ExoS of P. aeruginosa induces apoptosis through a mechanism that is independent of Fas receptor/caspase 8 pathway.
Collapse
Affiliation(s)
- Mounia Alaoui-El-Azher
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
44
|
de Goër de Herve MG, Durali D, Tran TA, Maigné G, Simonetta F, Leclerc P, Delfraissy JF, Taoufik Y. Differential effect of agonistic anti-CD40 on human mature and immature dendritic cells: the Janus face of anti-CD40. Blood 2005; 106:2806-14. [PMID: 15994291 DOI: 10.1182/blood-2004-12-4678] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractAgonistic monoclonal antibodies to CD40 (CD40 mAbs) have a puzzling dual therapeutic effect in experimental animal models. CD40 mAbs induce tumor regression by potentiating antitumoral T-cell responses, yet they also have immunosuppressive activity in chronic autoimmune inflammatory processes. CD40 mAbs are thought to act on antigen presentation by dendritic cells (DCs) to T cells. DCs can be distinguished as either immature or mature by their phenotype and their ability to generate an effective T-cell response. Here we found that, on human cells, although anti-CD40 led immature DCs to mature and became immunogenic, it also reduced the capacity of lipopolysaccharide (LPS) and tumor necrosis factor α (TNF-α)-matured DCs to generate a specific CD4 T-cell response. This inhibitory effect was related to rapid and selective apoptosis of mature DCs. Anti-CD40-mediated apoptosis was due to an indirect mechanism involving cooperation with the death domain-associated receptor Fas, leading to activation of Fas-associated death domain protein (FADD) and caspase-8. On human cells, CD40 activation by such agonists could, therefore, trigger immune responses to antigens presented by immature DCs, which are otherwise nonimmunogenic, by inducing maturation. On the other hand, anti-CD40 mAbs, by rapidly inducing apoptosis, may reduce the capacity of inflammatory signal-matured immunogenic DCs to generate an effective T-cell response. These results call for caution in CD40 mAb-based immunotherapy strategies. (Blood. 2005;106:2806-2814)
Collapse
|
45
|
Bhasi K, Forrest A, Ramanathan M. SPLINDID: a semi-parametric, model-based method for obtaining transcription rates and gene regulation parameters from genomic and proteomic expression profiles. Bioinformatics 2005; 21:3873-9. [PMID: 16096347 PMCID: PMC2607482 DOI: 10.1093/bioinformatics/bti624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To evaluate a semi-parametric, model-based approach for obtaining transcription rates from mRNA and protein expression. METHODS The transcription profile input was modeled using an exponential function of a cubic spline and the dynamics of translation; mRNA and protein degradation were modeled using the Hargrove-Schmidt model. The transcription rate profile and the translation, and mRNA and protein degradation rate constants were estimated by the maximum likelihood method. RESULTS Simulated datasets generated from the stochastic, transit compartment and dispersion signaling models were used to test the approach. The approach satisfactorily fit the mRNA and protein data, and accurately recapitulated the parameter and the normalized transcription rate profile values. The approach was successfully used to model published data on tyrosine aminotransferase pharmacodynamics. CONCLUSIONS The semi-parametric approach is effective and could be useful for delineating the genomic effects of drugs. AVAILABILITY Code suitable for use with the ADAPT software program is available from the corresponding author. CONTACT murali@acsu.buffalo.edu.
Collapse
Affiliation(s)
| | | | - Murali Ramanathan
- To whom correspondence should be addressed at Department of Pharmaceutical Sciences, 543 Cooke Hall, State University of New York at Buffalo, Buffalo, NY 14260-1200, USA, Contact:
| |
Collapse
|
46
|
Hougardy BMT, van der Zee AGJ, van den Heuvel FAJ, Timmer T, de Vries EGE, de Jong S. Sensitivity to Fas-mediated apoptosis in high-risk HPV-positive human cervical cancer cells: relationship with Fas, caspase-8, and Bid. Gynecol Oncol 2005; 97:353-64. [PMID: 15863130 DOI: 10.1016/j.ygyno.2005.01.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 01/18/2005] [Accepted: 01/31/2005] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Binding of Fas ligand or agonistic anti-Fas antibody to the death receptor Fas can activate a caspase-cascade resulting in apoptosis. In the present study, the functionality of the Fas pathway was studied in human cervical cancer cells with different HPV and p53 status. METHODS HeLa (HPV-18 positive), CaSki, and SiHa (both HPV-16 positive) contain wild-type p53, while C33A (HPV negative) expresses mutant p53. Fas cell surface expression was determined by flow cytometry. Expression of proteins involved in the apoptotic pathway was analyzed by Western blotting and apoptosis was measured by acridine orange staining of nuclear chromatin. RESULTS Despite high Fas membrane expression in the HPV-positive cells, CaSki was highly sensitive, HeLa slightly sensitive, and SiHa and C33A were resistant for agonistic anti-Fas antibody. Almost undetectable Fas membrane levels can explain the non-responsiveness of C33A for anti-Fas. Although interferon-gamma (IFNgamma) strongly and cisplatin to a lesser extend enhanced Fas membrane expression in all HPV-positive cells, sensitization to anti-Fas by IFNgamma or cisplatin was only observed in HeLa. Analysis of the Fas apoptotic pathway showed that anti-Fas treatment induced caspase-8 activation and concomitantly Bid cleavage, caspase-9 and caspase-3 activation, PARP cleavage and apoptosis in HeLa and CaSki. IFNgamma plus anti-Fas treatment, in contrast to anti-Fas alone, facilitated caspase-8 activation in HeLa and SiHa, while an increase in Bid cleavage, caspase-9 activation and apoptosis was only observed in HeLa. Apoptotic failure in SiHa (even in the presence of IFNgamma) was probably due to low caspase-8, almost undetectable Bid protein levels and therefore lack of caspase-9 activation. CONCLUSION Sensitivity to anti-Fas depends on Fas, caspase-8, and Bid protein levels in cervical cancer cells. Additionally, IFNgamma and cisplatin can increase sensitivity to anti-Fas in a subset of HPV-positive cervical cancer cell lines by upregulation of Fas and caspase-8 expression without major changes in p53 levels.
Collapse
Affiliation(s)
- Brigitte M T Hougardy
- Department of Gynecology-Oncology, University Medical Center Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Park MY, Ryu SW, Kim KD, Lim JS, Lee ZW, Kim E. Fas-associated factor-1 mediates chemotherapeutic-induced apoptosis via death effector filament formation. Int J Cancer 2005; 115:412-8. [PMID: 15688372 DOI: 10.1002/ijc.20857] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fas-associated factor-1 (FAF1) is a newly introduced member of the Fas death-inducing signaling complex and potentiates Fas-mediated apoptosis. Clinical study has revealed that FAF1 is significantly reduced in gastric carcinomas. The present study demonstrates that FAF1 mediates chemotherapeutic-induced apoptosis via participation in the formation of death effector filament (DEF), a cytoskeleton-like structure found in receptor-independent apoptosis. Overexpression of FAF1 enhanced DEF assembly and cell death induced by chemotherapeutics such as staurosporine (STS), cisplatin (CDDP) and etoposide (VP16). FAF1 sensitized cells to STS, CDDP and VP16 in dose- and time-dependent manner. Introduction of antisense FAF1 construct inhibited DEF assembly and chemotherapeutic-induced apoptosis. Analysis using FAF1 truncates showed that the FAF1 domain interacting with DEDs of FADD and caspase-8 was sufficient to enhance DEF assembly. Confocal microscopy revealed that FAF1 was present in DEFs together with FADD and caspase-8. Collectively, our data provide a molecular mechanism for the chemosensitization by FAF1 (i.e., mediating DEF assembly).
Collapse
Affiliation(s)
- Min-Young Park
- Research Center for Biomedicinal Resources and Department of Genetic Engineering, PaiChai University, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Kang J, Bu J, Hao Y, Chen F. Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 2005; 8:274-9. [PMID: 15897917 DOI: 10.1038/sj.pcan.4500798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most tumor cells are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis but sparing to normal cells, thus providing therapeutic potential for clinical use. Some tumor cells are resistant to TRAIL-induced cell death while the sensitivity could be recruited with the existence of some chemical agents. In this study, human prostatic cancer cell line LNCaP was found to be resistant to TRAIL-induced apoptosis while it could be restored to TRAIL sensitivity with combination treatment of low concentration of doxorubicin. TRAIL receptor-1 (DR4) and TRAIL receptor-2 (DR5) were upregulated under the treatment of doxorubicin and verified to be responsible for TRAIL-mediated signal transduction. Furthermore, caspase-8 and caspase-3 were activated and drove their autocleavage into programmed cell death. Interestingly, apoptosis-inhibitory protein c-FLIP, but not Bcl-2 and XIAP was downregulated after doxorubicin treatment. Taken together, these findings suggested that the pathway of cell apoptosis induced by TRAIL was intact but under negative control. Subtoxic concentration of doxorubicin effectively boosted TRAIL sensitivity via depletion of antiapoptotic protein. These findings support the new strategies for killing tumors with TRAIL and chemical agents.
Collapse
Affiliation(s)
- J Kang
- Department of Urology, Xinhua hospital, Shanghai Second Medical University, Shanghai, PR China.
| | | | | | | |
Collapse
|
49
|
Dewitte-Orr SJ, Zorzitto JR, Sutton LP, Bols NC. Preferential induction of apoptosis in the rainbow trout macrophage cell line, RTS11, by actinomycin D, cycloheximide and double stranded RNA. FISH & SHELLFISH IMMUNOLOGY 2005; 18:279-295. [PMID: 15561559 DOI: 10.1016/j.fsi.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 08/02/2004] [Indexed: 05/24/2023]
Abstract
The rainbow trout macrophage cell line RTS11 was found to be considerably more sensitive than rainbow trout fibroblast (RTG-2) and Chinook salmon epithelial (CHSE-214) cell lines to killing by macromolecular synthesis inhibitors, actinomycin D (AMD) and cycloheximide (CHX), a synthetic double stranded RNA (dsRNA), polyinosinic:polycytidylic acid (poly IC), and combinations of poly IC with AMD or CHX. Exposures of 24-30 h to AMD or CHX alone killed RTS11, but not CHSE-214 and RTG-2, in basal medium, L-15, with or without fetal bovine serum (FBS) supplementation. A two-week exposure to poly IC killed RTS11 in L-15, whereas RTG-2 and CHSE-214 remained viable. At concentrations that caused very little or no cell death, CHX or AMD pretreatments or co-treatments sensitized RTS11 to poly IC, causing death within 30 h. In all cases death was by apoptosis as judged by two criteria. H33258 staining revealed a fragmented nuclear morphology, and genomic degradation into oligonucleosomal fragments was seen with agarose gel electrophoresis. With AMD- or CHX-induced death, killing seemed caspase-independent as the pan caspase inhibitor, z-VAD-fmk, failed to block killing. By contrast, z-VAD-fmk almost completely abrogated killing by co-treatments of poly IC and low concentrations of AMD or CHX, suggesting caspase dependence. Killing by both types of treatments was blocked by 2 aminopurine (2-AP), which suggests the involvement of dsRNA-dependent protein kinase (PKR). The sensitizing of RTS11 to poly IC killing by AMD or CHX could be explained by a decrease in the level of a short-lived anti-apoptotic protein(s) and/or by the triggering of a ribotoxic stress.
Collapse
Affiliation(s)
- S J Dewitte-Orr
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | | | | |
Collapse
|
50
|
Wu RC, Chen DF, Liu MJ, Wang Z. Dual effects of cycloheximide on U937 apoptosis induced by its combination with VP-16. Biol Pharm Bull 2005; 27:1075-80. [PMID: 15256743 DOI: 10.1248/bpb.27.1075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, cycloheximide (CHX) and VP-16 alone and in combination (C&V) have been used to strongly trigger apoptosis in U937 cells. The presence of CHX markedly prevented VP-16-induced apoptosis, suggesting that in this process de novo protein synthesis is required. But interestingly, C&V had shown more similarities with CHX but not VP-16 alone, including the effects on cell cycle distribution and induction of apoptosis, which occurred more quickly and was steadily enhanced by increasing concentrations of CHX or by N-alpha-tosyl-L-lysyl-chloromethyl ketone (TLCK), a serine protease inhibitor. These results indicate that CHX, not VP-16, is indeed the dominant inducer of U937 apoptosis, when they are coadministered. In particular, VP-16 even promoted CHX-induced apoptosis, but did not alter its selection of cell types. In T-cells resistant to CHX (Molt-4), we have detected no apoptotic response to their combination. These findings may well explain why the inhibitory effects of CHX on apoptosis induced by the same stimuli are usually different according to the cell type used, and also suggest that CHX may have the potential to lower side effects and drug resistance of cancer therapy.
Collapse
Affiliation(s)
- Rong-Cong Wu
- Institute of Biomedicine, Tsinghua University, Beijing, PR China
| | | | | | | |
Collapse
|