1
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
2
|
Guzmán-Beltrán S, Torres M, Arellano M, Juárez E. Human macrophages chronically exposed to LPS can be reactivated by stimulation with MDP to acquire an antimicrobial phenotype. Cell Immunol 2017; 315:45-55. [PMID: 28258715 DOI: 10.1016/j.cellimm.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/04/2017] [Accepted: 02/18/2017] [Indexed: 01/01/2023]
Abstract
Macrophages are important in host defense and can differentiate into functionally distinct subsets named classically (M1) or alternatively (M2) activated. In several inflammatory disorders, macrophages become tolerized to prevent deleterious consequences. This tolerization reduces the ability of macrophages to respond to bacterial components (e.g., LPS) maintaining a low level of inflammation but compromising the ability of macrophages to mount an effective immune response during subsequent pathogen encounters. In this study, we aimed to reactivate human monocyte-derived macrophages chronically exposed to LPS by re-stimulation with muramyl dipeptide (MDP). We observed an undefined profile of cell surface marker expression during endotoxin tolerance and absence of TNFα production. Stimulating macrophages chronically exposed to LPS with LPS+MDP restored TNFα, production together with an increased production of IL1, IL6, IFNγ, IL4, IL5 and IL10. These results suggest that macrophages chronically exposed to LPS possess a mixed M1-M2 phenotype with sufficient antimicrobial and homeostatic potential.
Collapse
Affiliation(s)
- Silvia Guzmán-Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Monserrat Arellano
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico.
| |
Collapse
|
3
|
Slomiany B, Piotrowski J, Slomiany A. Effect of ebrotidine on Helicobacter pylori lipopolysaccharide-induced up-regulation of endothelin-1 in gastric mucosa. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050050401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori is recognized as a primary etiologic factor in the development of gastric disease. We applied the animal model of H. pylori lipopolysaccharide-induced acute gastritis to study the effect of the anti-ulcer agent, ebrotidine, on the course of mucosal inflammatory responses by analyzing over a period of 10 days the extent of epithelial cell apoptosis and the mucosal expression of endothelin-1 (ET-1), tumor necrosis factor α (TNFα), and the activity of constitutive (cNOS) and inducible (NOS-2) nitric oxide synthase. Rats, pretreated twice daily for 3 days with ebrotidine at 100 mg/kg or the vehicle, were subjected to intragastric application of H. pylori lipopolysaccharide at 50 µg/animal, and after 2, 4, and 10 additional days on the drug or vehicle regimen their mucosal tissue was used for histological and biochemical assessment. In the absence of ebrotidine, H. pylori lipopolysaccharide elicited within 2 days extensive mucosal inflammation accompanied by a significant increase in epithelial cell apoptosis (13.5-fold) and the mucosal expression of TNFα (11.7-fold), NOS-2 (9.3-fold), and ET-1 (2.9-fold), while cNOS activity showed a 5.5-fold decrease. The extent of mucosal inflammatory involvement reached a maximum by the 4th day and showed a decline by the 10th day. This was reflected in a marked reduction in epithelial cell apoptosis, a decrease in the mucosal expression of ET-1, TNFα and NOS-2, and the recovery in cNOS activity. Treatment with ebrotidine caused a reduction in the extent of mucosal inflammatory involvement elicited by the lipopolysaccharide and this effect of ebrotidine was reflected at the end of a 10 day period in a 61.3% reduction in inflammation, and a decrease in apoptosis (83%), TNFα (51.8%), ET-1 (27.6%) and NOS-2 (62.9%), while the expression of cNOS increased by 78.6%. The findings indicate that an increase in the ET-1 level elicited by H. pylori lipopolysaccharide, combined with a decline in cNOS, trigger the induction of TNFα which propagates the inflammatory process. We also show that ebrotidine is capable of suppressing the H. pylori-induced gastric mucosal inflammatory responses.
Collapse
Affiliation(s)
- B.L. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA,
| | - J. Piotrowski
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | - A. Slomiany
- Research Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
4
|
Stodden GR, Lindberg ME, King ML, Paquet M, MacLean JA, Mann JL, DeMayo FJ, Lydon JP, Hayashi K. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene 2015; 34:2471-82. [PMID: 24998851 PMCID: PMC4551401 DOI: 10.1038/onc.2014.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages and promotes aggressive ECs.
Collapse
Affiliation(s)
- Genna R. Stodden
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Mallory E. Lindberg
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Mandy L. King
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Marilène Paquet
- Departement de Pathologie et de Microbiologie, Université de Montreal, St-Hyacinthe (Qc) J2S 2M2, Canada
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Jordan L. Mann
- Department of Pathology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
5
|
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2014; 72:557-581. [PMID: 25332099 PMCID: PMC4293489 DOI: 10.1007/s00018-014-1762-5] [Citation(s) in RCA: 564] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Aneta Hromada-Judycka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Kinga Borzęcka
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
McCusker RH, Kelley KW. Immune-neural connections: how the immune system's response to infectious agents influences behavior. ACTA ACUST UNITED AC 2013; 216:84-98. [PMID: 23225871 DOI: 10.1242/jeb.073411] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood-brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival.
Collapse
Affiliation(s)
- Robert H McCusker
- Integrative Immunology and Behavior Program, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3873, USA.
| | | |
Collapse
|
7
|
Rajaiah R, Perkins DJ, Polumuri SK, Zhao A, Keegan AD, Vogel SN. Dissociation of endotoxin tolerance and differentiation of alternatively activated macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 190:4763-72. [PMID: 23543762 DOI: 10.4049/jimmunol.1202407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endotoxin tolerance is a complex phenomenon characterized primarily by decreased production of proinflammatory cytokines, chemokines, and other inflammatory mediators, whereas the expression of other genes are induced or unchanged. Endotoxin tolerance is induced by prior exposure of murine macrophages/human monocytes, experimental animals, or people to TLR ligands. Although recent studies reported a possible relationship between endotoxin tolerance and differentiation of alternatively activated macrophages (AA-MΦs or M2), we show in this study that LPS pretreatment of IL-4Rα(-/-) and STAT6(-/-) macrophages, which fail to develop into AA-MΦs, resulted in tolerance of proinflammatory cytokines, as well as molecules and chemokines previously associated with AA-MΦs (e.g., arginase-1, mannose receptor, CCL2, CCL17, and CCL22). In contrast to LPS, wild-type (WT) MΦs pretreated with IL-4, the prototype inducer of AA-MΦs, did not induce endotoxin tolerance with respect to proinflammatory cytokines, AA-MΦ-associated chemokines, negative regulators, NF-κB binding and subunit composition, and MAPKs; conversely, IL-13(-/-) macrophages were tolerized equivalently to WT MΦs by LPS pretreatment. Further, IL-4Rα deficiency did not affect the reversal of endotoxin tolerance exerted by the histone deacetylase inhibitor trichostatin A. Like WT mice, 100% of LPS-tolerized IL-4Rα-deficient mice survived LPS + d-galactosamine-induced lethal toxicity and exhibited decreased serum levels of proinflammatory cytokines and AA-MΦ-associated chemokines induced by LPS challenge compared with nontolerized mice. These data indicate that the signaling pathways leading to endotoxin tolerance and differentiation of AA-MΦs are dissociable.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Pupjalis D, Goetsch J, Kottas DJ, Gerke V, Rescher U. Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Mol Med 2011; 3:102-14. [PMID: 21254404 PMCID: PMC3377061 DOI: 10.1002/emmm.201000113] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023] Open
Abstract
The immunosuppressive effects of apoptotic cells involve inhibition of pro-inflammatory cytokine release and establishment of an anti-inflammatory cytokine profile, thus limiting the degree of inflammation and promoting resolution. We report here that this is in part mediated by the release of the anti-inflammatory mediator annexin A1 from apoptotic cells and the functional activation of annexin A1 receptors of the formyl peptide receptor (FPR) family on target cells. Supernatants from apoptotic neutrophils or the annexin A1 peptidomimetic Ac2-26 significantly reduced IL-6 signalling and the release of TNF-α from endotoxin-challenged monocytes. Ac2-26 activated STAT3 in a JAK-dependent manner, resulting in upregulated SOCS3 levels, and depletion of SOCS3 reversed the Ac2-26-mediated inhibition of IL-6 signalling. This identifies annexin A1 as part of the anti-inflammatory pattern of apoptotic cells and links the activation of FPRs to established signalling pathways triggering anti-inflammatory responses.
Collapse
Affiliation(s)
- Danute Pupjalis
- Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, Institute of Medical Biochemistry, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
9
|
Józefowski S, Czerkies M, Łukasik A, Bielawska A, Bielawski J, Kwiatkowska K, Sobota A. Ceramide and Ceramide 1-Phosphate Are Negative Regulators of TNF-α Production Induced by Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2010; 185:6960-73. [DOI: 10.4049/jimmunol.0902926] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Ogawa K, Funaba M, Tsujimoto M. The effects of TGF-β1 on the expression of type IV collagenases in mouse peritoneal macrophages. Mol Biol Rep 2010; 38:1451-6. [PMID: 20845081 DOI: 10.1007/s11033-010-0250-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/02/2010] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that plays a critical role in modulating immune response and inflammation. We have investigated the effects of TGF-β1 on the expression of type IV collagenases, matrix metalloproteinase (MMP)-2 and MMP-9, in mouse peritoneal macrophages. TGF-β1 alone enhanced the secretion of MMP-9, while it blocked lipopolysaccharide (LPS)-stimulated MMP-9 production. We have shown that this biphasic effect of TGF-β1 is exerted at the mRNA level of the MMP-9 gene. Although TGF-β1 increased both basal and LPS-induced MMP-2 production at the protein and mRNA levels, the extent of the increase was smaller in LPS-activated macrophages than in control macrophages. The expression of type I and type II receptors for TGF-β was significantly decreased upon activation, suggesting that the lesser effect of TGF-β1 in activated macrophages may result from the decreased expression of TGF-β receptors. In addition, the expression of endogenous TGF-β1 mRNA was decreased significantly in activated macrophages. These findings suggest that activated macrophages not only produce less TGF-β1, but also respond less well to TGF-β to provide for inflammatory response.
Collapse
Affiliation(s)
- Kenji Ogawa
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | |
Collapse
|
11
|
Chiba N, Kakimoto K, Masuda A, Matsuguchi T. Functional roles of Cot/Tpl2 in mast cell responses to lipopolysaccharide and FcεRI-clustering. Biochem Biophys Res Commun 2010; 402:1-6. [PMID: 20732300 DOI: 10.1016/j.bbrc.2010.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 08/17/2010] [Indexed: 12/26/2022]
Abstract
Cot/Tpl2, a member of MAP kinase kinase kinase (MAPKKK), is indispensable for the ERK activation, as well as the production of TNF-α, IL-1β, IL-23, and PGE(2) in lipopolysaccharide (LPS)-stimulated macrophages. However, the expression and the functional roles of Cot/Tpl2 in mast cells have not been elucidated. The administration of LPS impairs allergic airway inflammation in a mast cell-dependent manner, and LPS stimulates mast cells to produce not only pro-inflammatory cytokines, such as IL-6 and TNF-α, but also Th2-type cytokines, such as IL-5, IL-10 and IL-13. Here, we examine the role of Cot/Tpl2 by using bone marrow-derived mast cells (BMMCs) from cot/tpl2 gene-deficient mice. Phosphorylation of ERKs was significantly decreased, whereas that of JNKs and p38 kinase was normal in LPS-stimulated cot/tpl2(-/-) BMMCs compared with wild-type counterparts. LPS-induced mRNA increase was significantly impaired for IL-5, IL-10, IL-13, and TNF-α, but was normal for IL-6, in cot/tpl2(-/-) BMMCs. On the other hand, degranulation by FcεRI-clustering from cot/tpl2(-/-) BMMCs was significantly enhanced compared with the WT control. Although the phosphorylation of ERKs and p38 kinase by FcεRI-clustering was similar in WT and cot/tpl2(-/-) BMMCs, the phosphorylation of Syk was significantly enhanced in cot/tpl2(-/-) BMMCs, which seemed to be due to the increased protein concentration of Syk. These results imply the functional importance of Cot/Tpl2 in mast cells during the course of allergic diseases such as asthma.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Biochemistry and Molecular Dentistry, Department of Developmental Medicine, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | |
Collapse
|
12
|
The inhibition of lipopolysaccharide-induced tumor necrosis factor-α and nitric oxide production by Clostridium perfringens α-toxin and its relation to α-toxin-induced intracellular ceramide generation. Int J Med Microbiol 2009; 299:554-62. [DOI: 10.1016/j.ijmm.2009.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/04/2009] [Accepted: 04/19/2009] [Indexed: 11/18/2022] Open
|
13
|
Seok J, Xiao W, Moldawer LL, Davis RW, Covert MW. A dynamic network of transcription in LPS-treated human subjects. BMC SYSTEMS BIOLOGY 2009; 3:78. [PMID: 19638230 PMCID: PMC2729748 DOI: 10.1186/1752-0509-3-78] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 07/28/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Understanding the transcriptional regulatory networks that map out the coordinated dynamic responses of signaling proteins, transcription factors and target genes over time would represent a significant advance in the application of genome wide expression analysis. The primary challenge is monitoring transcription factor activities over time, which is not yet available at the large scale. Instead, there have been several developments to estimate activities computationally. For example, Network Component Analysis (NCA) is an approach that can predict transcription factor activities over time as well as the relative regulatory influence of factors on each target gene. RESULTS In this study, we analyzed a gene expression data set in blood leukocytes from human subjects administered with lipopolysaccharide (LPS), a prototypical inflammatory challenge, in the context of a reconstructed regulatory network including 10 transcription factors, 99 target genes and 149 regulatory interactions. We found that the computationally estimated activities were well correlated to their coordinated action. Furthermore, we found that clustering the genes in the context of regulatory influences greatly facilitated interpretation of the expression data, as clusters of gene expression corresponded to the activity of specific factors or more interestingly, factor combinations which suggest coordinated regulation of gene expression. The resulting clusters were therefore more biologically meaningful, and also led to identification of additional genes under the same regulation. CONCLUSION Using NCA, we were able to build a network that accounted for between 8-11% genes in the known transcriptional response to LPS in humans. The dynamic network illustrated changes of transcription factor activities and gene expressions as well as interactions of signaling proteins, transcription factors and target genes.
Collapse
Affiliation(s)
- Junhee Seok
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|
14
|
Goldsmith M, Avni D, Levy-Rimler G, Mashiach R, Ernst O, Levi M, Webb B, Meijler MM, Gray NS, Rosen H, Zor T. A ceramide-1-phosphate analogue, PCERA-1, simultaneously suppresses tumour necrosis factor-alpha and induces interleukin-10 production in activated macrophages. Immunology 2009; 127:103-15. [PMID: 18793216 DOI: 10.1111/j.1365-2567.2008.02928.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tight regulation of the production of the key pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is essential for the prevention of chronic inflammatory diseases. In vivo administration of a synthetic phospholipid, named hereafter phospho-ceramide analogue-1 (PCERA-1), was previously found to suppress lipopolysaccharide (LPS)-induced TNF-alpha blood levels. We therefore investigated the in vitro anti-inflammatory effects of PCERA-1. Here, we show that extracellular PCERA-1 potently suppresses production of the pro-inflammatory cytokine TNF-alpha in RAW264.7 macrophages, and in addition, independently and reciprocally regulates the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Specificity is demonstrated by the inability of the phospholipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) to perform these activities. Similar TNF-alpha suppression and IL-10 induction by PCERA-1 were observed in macrophages when activated by Toll-like receptor 4 (TLR4), TLR2 and TLR7 agonists. Regulation of cytokine production is demonstrated at the mRNA and protein levels. Finally, we show that, while PCERA-1 does not block activation of nuclear factor (NF)-kappaB and mitogen-activated protein kinases by LPS, it elevates the intracellular cAMP level. In conclusion, the anti-inflammatory activity of PCERA-1 seems to be mediated by a cell membrane receptor, upstream of cAMP production, and eventually TNF-alpha suppression and IL-10 induction. Thus, identification of the PCERA-1 receptor may provide new pharmacological means to block inflammation.
Collapse
Affiliation(s)
- Meir Goldsmith
- Department of Molecular and Structural Biochemistry, Life Sciences Institute, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen JH, Riazy M, Smith EM, Proud CG, Steinbrecher UP, Duronio V. Oxidized LDL-Mediated Macrophage Survival Involves Elongation Factor-2 Kinase. Arterioscler Thromb Vasc Biol 2009; 29:92-8. [DOI: 10.1161/atvbaha.108.174599] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Johnny H. Chen
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| | - Maziar Riazy
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| | - Ewan M. Smith
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| | - Christopher G. Proud
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| | - Urs P. Steinbrecher
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| | - Vincent Duronio
- From the Department of Medicine (J.H.C., M.R., U.P.S., V.D.), University of British Columbia, and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; Genome Damage and Stability Centre (E.M.S.), University of Sussex, Falmer, Brighton, UK; and the School of Biological Sciences (C.G.P.), University of Southampton, UK
| |
Collapse
|
16
|
Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, Meydani SN. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. THE JOURNAL OF IMMUNOLOGY 2007; 179:4829-39. [PMID: 17878382 DOI: 10.4049/jimmunol.179.7.4829] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a leading risk factor for type 2 diabetes (T2D). Aging is associated with an increase in T2D incidence, which is not totally explained by the much lower prevalence of obesity in the elderly. Low-grade inflammation in adipose tissue (AT) contributes to insulin resistance and T2D. Thus, we determined whether inflammatory responses are up-regulated with age in AT. The results showed that visceral AT from old C57BL mice had significantly higher mRNA expression of the proinflammatory cytokines IL-1beta, IL-6, TNF-alpha, and COX-2 and lower expression of anti-inflammatory PPAR-gamma than those of young mice. We further showed that adipocytes (AD) and not stromal vascular cells including macrophages (Mphi) were the cells responsible for this higher inflammatory state of the aged AT, suggesting that the age-associated increase in AT inflammation is distinguished from that seen in obesity, in which Mphi are the main contributors. However, peritoneal Mphi of either age (young or old) produced more TNF-alpha and IL-6 after incubation in old AD-conditioned medium compared with young AD-conditioned medium. This suggests that in addition to producing more inflammatory cytokines, AD from old mice induce a higher inflammatory response in other cells. Sphingolipid ceramide was higher in old compared with young AD. Reducing ceramide levels or inhibiting NF-kappaB activation decreased cytokine production, whereas the addition of ceramide increased cytokine production in young AD to a level comparable to that seen in old AD, suggesting that ceramide-induced activation of NF-kappaB plays a key role in AT inflammation.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer Unites States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chiba N, Masuda A, Yoshikai Y, Matsuguchi T. Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol 2007; 213:126-36. [PMID: 17458900 DOI: 10.1002/jcp.21101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mast cells are central regulators of allergic inflammation through production of various chemical mediators and cytokines. Bacterial infection occasionally worsens allergic inflammation. Although the exact mechanism of this phenomenon remains unclear, we have previously reported that LPS stimulates mast cells to produce not only pro-inflammatory cytokines, such as IL-6 and TNF-alpha, but also Th2-type cytokines, such as IL-5 and IL-13, and a regulatory cytokine, IL-10. In the present study, we have studied the effect of ceramide on LPS-mediated cytokine production from mast cells, as ceramide modulates various cellular functions in many cell types. Administration of cell-permeable C8 ceramide reduced production of IL-5, IL-10, and IL-13 from LPS-stimulated mouse bone marrow-derived mast cells (BMMCs) apparently through transcriptional inhibition, but did not affect IL-6 or TNF-alpha production. Consistently, LPS-stimulated production of IL-5, IL-10, and IL-13 from BMMCs is significantly enhanced in the presence of fumonisin B1, a de novo ceramide synthesis inhibitor. Interestingly, the same C8 ceramide treatment showed opposite effects on cytokine production from LPS-stimulated macrophages, reducing IL-6 and TNF-alpha while not affecting IL-10 production. C8 ceramide pretreatment significantly reduced LPS-induced Akt phosphorylation in BMMCs, but not in macrophages. Furthermore, pretreatment of BMMCs by wortmannin, a specific inhibitor of PI3 kinase, inhibited LPS-stimulated expression of IL-5, IL-10, and IL-13, but not that of TNF-alpha or IL-6. Thus, ceramide appeared to down-regulate LPS-stimulated production of IL-5, IL-10, and IL-13 from mast cells by inhibiting PI3 kinase-Akt pathway in a cell type-specific manner.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Host Defense, Center for Neural Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | |
Collapse
|
18
|
Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007; 8:91-106. [PMID: 17381401 DOI: 10.1089/sur.2006.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lipid rafts, composed of sphingolipids, are critical to Toll-like receptor 4 (TLR4) assembly during lipopolysaccharide (LPS) exposure as a result of phosphokinase C (PKC)-zeta activation. However, the mechanism responsible for these events remains unknown. PURPOSE We determined whether LPS-induced TLR4 assembly and activation are dependent on the sphingolipid metabolite ceramide, produced by acid sphingomyelinase following the initial binding of LPS to CD14. METHODS Cultured THP-1 cells were stimulated with LPS, exogenous C(2) ceramide, or both. Selected cells were pretreated with the acid sphingomyelinase inhibitor imipramine or CD14 neutralizing antibody. RESULTS Exposure to LPS led to activation of acid sphingomyelinase, production of ceramide, phosphorylation of PKCzeta, and assembly of the TLR4 receptor within lipid rafts. This was followed by activation of the MAPK family of products and the liberation of tumor necrosis factor-alpha. Pretreatment with imipramine or CD14 blockade was associated with attenuation of all of these LPS-induced events. Simultaneous treatment with C(2) ceramide and LPS reversed all the inhibitory effects induced by imipramine, but not those associated with CD14 blockade. CONCLUSION Assembly and activation of the TLR4 receptor following LPS binding to CD14 requires the production of ceramide by acid sphingomyelinase.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
19
|
Sakata A, Yasuda K, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Soeda S. Inhibition of lipopolysaccharide-induced release of interleukin-8 from intestinal epithelial cells by SMA, a novel inhibitor of sphingomyelinase and its therapeutic effect on dextran sulphate sodium-induced colitis in mice. Cell Immunol 2007; 245:24-31. [PMID: 17466962 DOI: 10.1016/j.cellimm.2007.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 01/28/2023]
Abstract
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The use of SMase inhibitors may offer new therapies for the treatment of the LPS- and cytokines-related inflammatory bowel disease (IBD). We synthesized a series of difluoromethylene analogues of SM (SMAs). Here, we show that LPS efficiently increases the release of IL-8 from HT-29 intestinal epithelial cells by activating both neutral SMase and nuclear factor (NF)-kappaB in the cells. The addition of SMA-7 suppressed neutral SMase-catalyzed ceramide production, NF-kappaB activation, and IL-8 release from HT-29 cells caused by LPS. The results suggest that activation of neutral SMase is an underlying mechanism of LPS-induced release of IL-8 from the intestinal epithelial cells. Ceramide production following LPS-induced SM hydrolysis may trigger the activation of NF-kappaB in nuclei. Oral administration of SMA-7 (60 mg/kg) to mice with 2% dextran sulfate sodium (DSS) in their drinking water, for 21 consecutive days, reduced significantly the severity of colonic injury. This finding suggests a central role for SMase/ceramide signaling in the pathology of DSS-induced colitis in mice. The therapeutic effect of SMA-7 observed in mice may involve the suppression of IL-8 production from intestinal epithelial cells by LPS or other inflammatory cytokines.
Collapse
Affiliation(s)
- Akira Sakata
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sakata A, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Toda A, Eyanagi R, Soeda S. Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 2007; 122:54-64. [PMID: 17451462 PMCID: PMC2265987 DOI: 10.1111/j.1365-2567.2007.02612.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) and inflammatory cytokines cause activation of sphingomyelinases (SMases) and subsequent hydrolysis of sphingomyelin (SM) to produce a lipid messenger ceramide. The design of SMase inhibitors may offer new therapies for the treatment of LPS- and cytokine-related inflammatory bowel disease. We synthesized a series of difluoromethylene analogues of SM (SMAs). We report here the effects of the most potent SMase inhibitor, SMA-7, on the LPS-mediated release of tumour necrosis factor-alpha, interleukin-1beta and interleukin-6 from THP-1 macrophages and the pathology of dextran sulphate sodium (DSS)-induced colitis in mice. SMA-7 suppressed the LPS-induced cytokine release and nuclear factor-kappaB activation. LPS stimulation caused a four-fold increase in acid SMase activation, but little increase in neutral SMase activity. The presence of 10 microm SMA-7 caused acid SMase to remain at the control levels and reduced the formation of ceramide. HT-29 cells had significantly decreased cell viability when incubated with media from LPS-stimulated THP-1 macrophages. However, incubating the colon cells in media from both SMA-7 and LPS-treated macrophages caused little decrease in viability, suggesting that ceramide has a role in the LPS-stimulated signalling that releases cytotoxic factors against colon cells. Oral administration of SMA-7 to mice with 2% DSS in the drinking water, for 10 or 21 consecutive days, reduced significantly the cytokine levels in the colon and the severity of colonic injury. These findings suggest a central role for acid SMase/ceramide signalling in the pathology of DSS-induced colitis in mice, indicating a possible preventive or therapeutic role for SMase inhibitor in inflammatory bowel disease.
Collapse
Affiliation(s)
- Akira Sakata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fischer H, Ellström P, Ekström K, Gustafsson L, Gustafsson M, Svanborg C. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol 2007; 9:1239-51. [PMID: 17223929 DOI: 10.1111/j.1462-5822.2006.00867.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mucosal Toll-like receptors (TLRs) respond to pathogens, but remain inert to the indigenous flora, suggesting that the TLRs can receive pathogen-specific signals. For example, TLR4 signalling is activated in CD14-negative epithelial cells by P-fimbriated, uropathogenic Escherichia coli, but not by lipopolysaccharide. The fimbriae use glycosphingolipids as recognition receptors and there is release of ceramide, which is the membrane-anchoring domain of the receptors. In this study, ceramide was identified as a TLR4 agonist and as a putative signalling intermediate between the glycosphingolipid recognition receptors and TLR4. Exogenous ceramide activated a TLR4-dependent epithelial cell response, as shown by exposing stably transfected TLR4-positive or -negative human embryonal kidney cells to C2 and C6 ceramide. A similar, TLR4-dependent response occurred after deliberate release of endogenous long-chained ceramide with sphingomyelinase. Microbial ligands with glycosphingolipid specificity (P fimbriae or the B subunit of Shiga toxin) were shown to increase the levels of ceramide and to trigger a TLR4-dependent response in epithelial cells. The results show that ceramide activates TLR4 signalling and suggest that this mechanism might allow pathogens to elicit mucosal TLR4 responses by perturbing sphingolipid receptors for virulence ligands like P fimbriae.
Collapse
Affiliation(s)
- Hans Fischer
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-22362 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
El Alwani M, Wu BX, Obeid LM, Hannun YA. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther 2006; 112:171-83. [PMID: 16759708 DOI: 10.1016/j.pharmthera.2006.04.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/06/2006] [Indexed: 12/13/2022]
Abstract
Inflammation is viewed as a protective response against insults to the organism. It involves the recruitment of many cell types and the production of various inflammatory mediators in attempts to contain and reverse the insult. However, inflammation can lead to irreversible tissue destruction by itself and, therefore, can represent a disease state that causes significant morbidity and mortality. Understanding the molecular mechanisms controlling the inflammatory response is essential to formulate therapeutic strategies for the treatment of inflammatory conditions. In fact, substantial research has unveiled important aspects of the inflammatory machinery, both at the cellular and molecular levels. Recently, sphingolipids (SLs) have emerged as signaling molecules that regulate many cell functions, and ample evidence emphasizes their role in the regulation of inflammatory responses. Here, we review the role of bioactive SL as regulators and mediators of inflammatory responses.
Collapse
Affiliation(s)
- Mazen El Alwani
- Department of Medicine, Division of General Internal Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
23
|
Gazzinelli RT, Ropert C, Campos MA. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites. Immunol Rev 2004; 201:9-25. [PMID: 15361229 DOI: 10.1111/j.0105-2896.2004.00174.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different studies have illustrated the activation of the innate immune system during infection with protozoan parasites. Experiments performed in vivo also support the notion that innate immunity has a crucial role in resistance as well as pathogenesis observed during protozoan infections such as malaria, leishmaniasis, toxoplasmosis, and trypanosomiasis. While major advances have been made in the assignment of bacterial molecules as Toll-like receptors (TLRs) agonists as well as defining the role of the Toll/interleukin-1 receptor (TIR) signaling pathway in host resistance to bacterial infection, this research area is now emerging in the field of protozoan parasites. In this review, we discuss the recent studies describing parasite molecules as TLR agonists and those studies indicating the essential role of the TIR-domain bearing molecule named myeloid differentiation factor 88 in host resistance to infection with protozoan parasites. Together, these studies support the hypothesis that the TIR signaling pathway is involved in the initial recognition of protozoan parasites by the immune system of the vertebrate host, early resistance to infection, development of acquired immunity, as well as pathology observed during acute infection with this class of pathogens.
Collapse
Affiliation(s)
- Ricardo T Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This article presents an overview of the recent progress in understanding metabolic and functional interrelationships of biologically active sphingolipids related to the sphingomyelin signal transduction pathway in relation to the regulation of apoptosis in macrophages. RECENT FINDINGS Ceramide generation is an essential, early step in apoptosis in numerous systems. There are several mechanisms for ceramide generation, including activation of plasma membrane, lysosomal, nuclear, and mitochondrial sphingomyelinases, and induction of de-novo synthesis of ceramide. Some of the proapoptotic actions of ceramide are to facilitate assembly of death receptor complexes in the plasma membrane, to prevent the activation of protein kinase B/Akt, and to promote the activation of caspase 3. Failure of macrophages in developing atherosclerotic plaques to undergo apoptosis is a possible contributor to plaque expansion. At low concentrations, oxidized LDL has been shown to prevent apoptosis induced by growth factor withdrawal in cultured bone marrow-derived macrophages, in part by inhibiting sphingomyelinase and preventing generation of ceramide. At high concentrations, however, oxidized LDL can induce apoptosis or necrosis of macrophages. SUMMARY Sphingolipid signal transduction pathways play an important role in the regulation of growth and survival pathways in macrophages. These are directly relevant to the pathogenesis of a variety of chronic inflammatory disorders, including atherosclerosis.
Collapse
Affiliation(s)
- Urs P Steinbrecher
- Department of Medicine, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
25
|
Medvedev AE, Lentschat A, Kuhns DB, Blanco JCG, Salkowski C, Zhang S, Arditi M, Gallin JI, Vogel SN. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 2003; 198:521-31. [PMID: 12925671 PMCID: PMC2194174 DOI: 10.1084/jem.20030701] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We identified previously a patient with recurrent bacterial infections who failed to respond to gram-negative LPS in vivo, and whose leukocytes were profoundly hyporesponsive to LPS and IL-1 in vitro. We now demonstrate that this patient also exhibits deficient responses in a skin blister model of aseptic inflammation. A lack of IL-18 responsiveness, coupled with diminished LPS and/or IL-1-induced nuclear factor-kappaB and activator protein-1 translocation, p38 phosphorylation, gene expression, and dysregulated IL-1R-associated kinase (IRAK)-1 activity in vitro support the hypothesis that the defect lies within the signaling pathway common to toll-like receptor 4, IL-1R, and IL-18R. This patient expresses a "compound heterozygous" genotype, with a point mutation (C877T in cDNA) and a two-nucleotide, AC deletion (620-621del in cDNA) encoded by distinct alleles of the IRAK-4 gene (GenBank/EMBL/DDBJ accession nos. AF445802 and AY186092). Both mutations encode proteins with an intact death domain, but a truncated kinase domain, thereby precluding expression of full-length IRAK-4 (i.e., a recessive phenotype). When overexpressed in HEK293T cells, neither truncated form augmented endogenous IRAK-1 kinase activity, and both inhibited endogenous IRAK-1 activity modestly. Thus, IRAK-4 is pivotal in the development of a normal inflammatory response initiated by bacterial or nonbacterial insults.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD 20101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The alveolar macrophage responds to bacterial infection with the production of inflammatory mediators that include TNFalpha. Early production of TNFalpha results in increased bacterial clearance, whereas too much TNFalpha results in many of the hallmarks of bacterial sepsis. TNFalpha production is regulated at many levels, including multiple signaling pathways, that lead to transcription, translation, and release of functional TNFalpha. Interactions of mitogen-activated protein (MAP) kinases, lipid signaling pathways, and oxidant-mediated mechanisms regulate the response of alveolar macrophages to infection. Animal models of sepsis support the central role played by macrophage-derived TNFalpha in sepsis.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa, USA.
| | | |
Collapse
|
27
|
Seitzer U, Gerdes J. Cytoplasmic bacterial lipopolysaccharide does not induce NFkappaB activation or NFkappaB mediated activation signals in human macrophages and an LPS reporter cell line. J Cell Physiol 2003; 194:20-9. [PMID: 12447986 DOI: 10.1002/jcp.10177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many membrane components have been described to be involved in the activation of cells by bacterial lipopolysaccharide (LPS), the question remains whether LPS, once internalized by target cells, is also capable of interacting with cytoplasmic elements in such a way that activation of cells results independently of receptor engagement. This is an important aspect to consider with respect to the development of strategies aimed at attenuating adverse effects of LPS in the framework of bacterial infections. In this study, human monocyte derived macrophages as representatives of one of the primary target cells activated by LPS, were microinjected with LPS to circumvent exogenous LPS stimulation. Parameters correlating to cytoplasmic activation of the nuclear transcription factor NFkappaB (intracellular calcium mobilization), to nuclear translocation of the NFkappaB p65 subunit and to mRNA-transcription of inflammatory cytokines known to be expressed upon exogenous LPS-stimulation and to require NFkappaB activation (interleukin-1beta, interleukin-6, tumor necrosis factor alpha) were investigated. In addition, the LPS-reporter cell line 3E10, which contains a reporter gene under the control of an NFkappaB-inducible promoter was analyzed with respect to NFkappaB nuclear translocation and reporter gene expression. None of the cellular systems used and none of the parameters investigated led to the observation that intracellular LPS leads to activation of the cells in comparison to external LPS stimulation. These experiments allow the conclusion that LPS in the cytoplasmic compartment does not lead to NFkappaB translocation, cytokine mRNA transcription, and NFkappaB dependent protein expression and suggest that these activation parameters require the interaction of LPS with external membrane components.
Collapse
Affiliation(s)
- Ulrike Seitzer
- Department of Immunology and Cell Biology, Research Center Borstel, Germany.
| | | |
Collapse
|
28
|
Jin L, Raymond DP, Crabtree TD, Pelletier SJ, Rudy CK, Pruett TL, Sawyer RG. Preexposure of murine macrophages to CpG-containing oligonucleotides results in nuclear factor kappaB p50 homodimer-associated hyporesponsiveness. Surgery 2002; 132:245-51. [PMID: 12219019 DOI: 10.1067/msy.2002.125355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND DNA containing the CpG motif is associated with immunomodulation of the innate immune response. Preexposure of macrophages to CpG DNA elicits a hyporesponsiveness to subsequent lipopolysaccharide (LPS) stimulation. We tested the hypothesis that this effect is due to decreased nuclear translocation of nuclear factor kappaB (NF-kappaB). METHODS Murine macrophage-like RAW 264.7 cells were incubated with 1.5 microg/mL CpG-containing oligonucleotides (CpG ODN) for 0.5 to 9 hours followed by restimulation with 1 microg/mL LPS for 20 minutes. Some cells were cotransfected with an NF-kappaB sensitive luciferase reporter construct and a control beta-gal plasmid. Cytoplasmic and nuclear extracts were assayed for NF-kappaB by electrophoretic mobility shift assay and supershift assays, for NF-kappaB, IkappaB and phospho-IkappaB by Western blot, for luciferase activity, and for p38, c-Jun NH(2)-terminal kinase, and extracellular signal-related kinase activity assay. RESULTS NF-kappaB functional activity was decreased as demonstrated by luciferase activity assay in the prolonged CpG ODN pretreatment groups. Unlike endotoxin tolerance, CpG ODN preexposure increased cytoplasmic phospho-IkappaB-alpha and did not abrogate mitogen-activated protein kinase activity. CONCLUSIONS In macrophages, exposure to CpG DNA increases expression of the inhibitory p50 NF-kappaB homodimer and decreases NF-kappaB activity without inhibition of IkappaB kinases. Mitogen-activated protein kinase activity remains intact. Understanding these interactions between different toll receptor ligands may provide insight into novel therapeutic modalities.
Collapse
Affiliation(s)
- Long Jin
- Surgical Infectious Disease Laboratory, Department of Surgery, University of Virginia, Charlottesville 22906, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Roach SK, Schorey JS. Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect Immun 2002; 70:3040-52. [PMID: 12010996 PMCID: PMC128028 DOI: 10.1128/iai.70.6.3040-3052.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mycobacteria are the etiologic agents of numerous diseases which account for significant morbidity and mortality in humans and other animal species. Many mycobacteria are intramacrophage pathogens and therefore the macrophage response to infection, which includes synthesis of cytokines such as tumor necrosis factor alpha (TNF-alpha) and production of nitric oxide, has important consequences for host immunity. However, very little is known about the macrophage cell signaling pathways initiated upon infection or how pathogenic mycobacteria may modulate the macrophage responses. Using primary murine bone marrow macrophages, we established that p38 and extracellular signal-regulated kinases 1 and 2 of the mitogen-activated protein kinase (MAPK) pathways are activated upon infection with different species of mycobacteria. However, we observed decreased MAPK activity over time in macrophages infected with pathogenic Mycobacterium avium strains relative to infections with nonpathogenic mycobacteria. Furthermore, macrophages infected with M. avium produced lower levels of TNF-alpha, interleukin 1beta, and inducible nitric oxide synthase 2 than macrophages infected with nonpathogenic species. Inhibitor studies indicate that the MAPKs are required for the Mycobacterium-mediated induction of these effector proteins. Our data indicate that MAPKs are activated in macrophages upon invasion by mycobacteria and that this activation is diminished in macrophages infected with pathogenic strains of M. avium, resulting in decreased production of important immune effector proteins. The decreased MAPK activation associated with M. avium infections suggests a novel point of immune intervention by this mycobacterial species.
Collapse
Affiliation(s)
- Shannon K Roach
- Department of Biology, Center of Tropical Disease Research and Training, University of Notre Dame, Notre Dame, Indiana 46617, USA.
| | | |
Collapse
|
30
|
Monick MM, Mallampalli RK, Carter AB, Flaherty DM, McCoy D, Robeff PK, Peterson MW, Hunninghake GW. Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5977-85. [PMID: 11698477 DOI: 10.4049/jimmunol.167.10.5977] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-kappaB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-kappaB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.
Collapse
Affiliation(s)
- M M Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- S Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University.
| |
Collapse
|
32
|
Medicherla R, Leers-Sucheta S, Luo Y, Azhar S. Impaired activation of AP-1 and altered expression of constituent proteins in rat adrenal during ageing. Mech Ageing Dev 2001; 122:1169-86. [PMID: 11389931 DOI: 10.1016/s0047-6374(01)00258-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxidative stress appears to be one of the primary factors contributing to an age related decline in steroidogenic response in rat adrenocortical and testicular Leydig cells. In this report we concentrate on age-related changes in the DNA binding activity of the transcription factor AP-1 which is particularly responsive to changes in cellular oxidative conditions: adrenal nuclear extracts from young mature (5 months) and old (24 months) rats treated with, and without, lipopolysaccharide (LPS) were studied. AP-1 binding activity, as measured by electrophoretic mobility shift assays (EMSA), was diminished approximately 70% with age in unstimulated adrenals. Following LPS treatment, AP-1 binding activity increased significantly in the adrenals of both young and old animals; however, the level of AP-1 binding achieved in LPS-stimulated old rats was less than that observed for LPS-stimulated young rats. There was no corresponding change in the binding activity of housekeeping transcription factors SP-1 and OCT-1. To further understand these observations, compositional changes in the members of the AP-1 DNA-binding complex were examined by a super-shift assay and Western blot analysis. In adrenals from old rats, a significant decrease in the amount of Fra2 was noted under basal conditions, whereas, substantial decreases in c-Fos, Jun D and c-Jun were observed in response to LPS treatment. In contrast, basal levels of JunB, an inhibitor of the trans-activating function of c-Jun and repressor of AP-1-dependent transcription, were significantly elevated in adrenals from old rats compared to young rats. Together, these findings suggest that ageing-induced oxidative stress may contribute to impaired functional expression of AP-1 by differentially regulating the steady state levels of AP-1 components. The observed decrease in AP-1 binding activity in ageing adrenals is most likely due to decreased expression of the AP-1 activating components (c-Fos, c-Jun, JunD, etc.) and increased expression of JunB, resulting in a switch from transcriptionally active AP-1 complexes observed in young rats to less efficient JunB containing complexes in old rats.
Collapse
Affiliation(s)
- R Medicherla
- Geriatric Research, Education and Clinical Centre (GRECC), VA Palo Alto Health Care System (GRECC, 182B), 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
33
|
Hsu YW, Chi KH, Huang WC, Lin WW. Ceramide inhibits lipopolysaccharide-mediated nitric oxide synthase and cyclooxygenase-2 induction in macrophages: effects on protein kinases and transcription factors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5388-97. [PMID: 11313375 DOI: 10.4049/jimmunol.166.9.5388] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The goal of this study was to elucidate whether triggering the sphingomyelin pathway modulates LPS-initiated responses. For this purpose we investigated the effects of N-acetylsphingosine (C(2)-ceramide) on LPS-induced production of NO and PGE(2) in murine RAW 264.7 macrophages and explored the signaling pathways involved. We found that within a range of 10-50 microM, C(2)-ceramide inhibited LPS-elicited NO synthase and cyclooxygenase-2 induction accompanied by a reduction in NO and PGE(2) formation. By contrast, a structural analog of C(2)-ceramide that does not elicit functional activity, C(2)-dihydroceramide, did not affect the LPS response. The nuclear translocation and DNA binding study revealed that ceramide can inhibit LPS-induced NF-kappaB and AP-1 activation. The immunocomplex kinase assay indicated that IkappaB kinase activity stimulated by LPS was inhibited by ceramide, which concomitantly reduced the IkappaBalpha degradation caused by LPS within 1-6 h. In concert with the decreased cytosolic p65 protein level, LPS treatment resulted in rapid nuclear accumulation of NF-kappaB subunit p65 and its association with the cAMP-responsive element binding protein. Ceramide coaddition inhibited all the LPS responses. In addition, LPS-induced PKC and p38 mitogen-activated protein kinase activation were overcome by ceramide. In conclusion, we suggest that ceramide inhibition of LPS-mediated induction of inducible NO synthase and cyclooxygenase-2 is due to reduction of the activation of NF-kappaB and AP-1, which might result from ceramide's inhibition of LPS-stimulated IkappaB kinase, p38 mitogen-activated protein kinase, and protein kinase C.
Collapse
Affiliation(s)
- Y W Hsu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
34
|
Abstract
Low doses of oxidative stress can induce cellular resistance to subsequent higher doses of the same stress. By using human U937 leukemia cells, we previously demonstrated that H(2)O(2) can induce such an adaptive response without elevating the cellular capacity to degrade H(2)O(2), and were able to confer the cells a cross-resistance to an H(2)O(2)-independent lethal stimulus, C(2)-ceramide. In this study, it was found that the adaptation is accompanied by the translocation of cytoplasmic NF-kappa B to the nuclei. This event was promoted or abolished when either IKK alpha or a dominant negative mutant of I kappa B, respectively, was overexpressed. The overexpression of IKK alpha also resulted in the suppression of H(2)O(2)-induced cell death and DNA fragmentation, whereas these events were accelerated by the expression of the I kappa B mutant. The protective effect of IKK alpha was accompanied neither by an elevation of protein levels of various antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase, nor by an increase in the cellular capacity to consume H(2)O(2). Moreover, the overexpression of IKK alpha resulted in an enhancement of H(2)O(2)-induced resistance to C(2)-ceramide. The overall data suggest that NF-kappa B mediates the H(2)O(2) adaptation induced in a manner independent of H(2)O(2)-degrading activity.
Collapse
Affiliation(s)
- D K Kim
- Laboratory of Cell Biology, Yonsei Medical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
35
|
Lakics V, Medvedev AE, Okada S, Vogel SN. Inhibition of LPS-induced cytokines by Bcl-xL in a murine macrophage cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2729-37. [PMID: 10946304 DOI: 10.4049/jimmunol.165.5.2729] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.
Collapse
Affiliation(s)
- V Lakics
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
36
|
Blanco JCG, Contursi C, Salkowski CA, DeWitt DL, Ozato K, Vogel SN. Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression. J Exp Med 2000; 191:2131-44. [PMID: 10859338 PMCID: PMC2193204 DOI: 10.1084/jem.191.12.2131] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/24/2000] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenases (Cox) are rate-limiting enzymes that initiate the conversion of arachidonic acid to prostanoids. Cox-2 is the inducible isoform that is upregulated by proinflammatory agents, initiating many prostanoid-mediated pathological aspects of inflammation. In this study, we demonstrate that interferon (IFN)-gamma alone or in synergy with lipopolysaccharide (LPS) or interleukin 1alpha induces Cox-2 expression in mouse peritoneal macrophages, which is paralleled by changes in Cox-2 protein levels and prostaglandin E(2) (PGE(2)) release. Induction of Cox-2 was abrogated in macrophages that lack IFN regulatory factor (IRF)-1, consistent with an attenuated hepatic mRNA response in IRF-1(-/-) mice injected with LPS. Conversely, the absence of IRF-2 in macrophages resulted in a significant increase in both basal and inducible Cox-2 gene and protein expression as well as IFN-gamma-stimulated PGE(2) release, identifying IRF-2 as negative regulator of this promoter. Two IFN stimulation response elements were identified in the mouse Cox-2 promoter that were highly conserved in the human Cox-2 gene. Both bind endogenous IRF-1 and IRF-2 and regulate transcription in an IRF-1/2-dependent manner. Our data demonstrate conclusively the importance of IFN-gamma as a direct activator and coactivator of the Cox-2 gene, and the central role of IRF-1/2 family members in this process.
Collapse
Affiliation(s)
- Jorge C. G. Blanco
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Cristina Contursi
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Cindy A. Salkowski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - David L. DeWitt
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
37
|
Medvedev AE, Kopydlowski KM, Vogel SN. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5564-74. [PMID: 10820230 DOI: 10.4049/jimmunol.164.11.5564] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, the effect of in vitro endotoxin tolerance on LPS-induced mitogen-activated protein kinase activation, transcription factor induction, and cytokine, chemokine, and Toll-like receptor (TLR) 2 and 4 gene expression, as well as the involvement of TNF and IL-1 signaling pathways in tolerance, were examined. Pretreatment of mouse macrophages with LPS inhibited phosphorylation of the extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38 kinase; degradation of I-kappaBalpha (inhibitory protein that dissociates from NF-kappaB) and I-kappaBbeta; and activation of the transcription factors NF-kappaB and AP-1 in response to subsequent LPS stimulation. These changes were accompanied by suppression of LPS-induced expression of mRNA for GM-CSF, IFN-gamma-inducible protein-10, KC, JE/monocyte chemoattractant protein-1, macrophage-inflammatory protein-1beta, and macrophage-inflammatory protein-2, with concurrent inhibition of chemokine secretion. In contrast to control cells, endotoxin-tolerant macrophages exhibited an increased basal level of TLR2 mRNA, and failed to increase levels of TLR2 mRNA or to down-regulate TLR4 gene expression upon restimulation with LPS. As judged by transcription factor activation, LPS and IL-1 were found to induce a state of cross-tolerance against each other, while no such reciprocal effect was seen for LPS and TNF-alpha. In addition, macrophages from TNFR I/II double knockout mice were LPS tolerizable, and blocking of endogenous TNF-alpha with TNFR-Fc fusion protein did not affect the capacity of LPS to tolerize macrophages. These data extend our understanding of LPS-signaling mechanisms that are inhibited in endotoxin-tolerized macrophages and suggest that endotoxin tolerance might result from impaired expression and/or functions of common signaling intermediates involved in LPS and IL-1 signaling.
Collapse
MESH Headings
- Animals
- Chemokines/antagonists & inhibitors
- Chemokines/biosynthesis
- Chemokines/genetics
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Cytokines/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Drosophila Proteins
- Gene Expression Regulation/immunology
- Immune Tolerance/genetics
- Interleukin-1/physiology
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/immunology
- MAP Kinase Signaling System/immunology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transcription Factor AP-1/antagonists & inhibitors
- Transcription Factor AP-1/metabolism
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- A E Medvedev
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|