1
|
Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato ( Solanum Lycopersicum L.). Genes (Basel) 2020; 12:genes12010023. [PMID: 33375673 PMCID: PMC7824348 DOI: 10.3390/genes12010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.
Collapse
|
2
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
4
|
Gurung AB, Bhattacharjee A, Ajmal Ali M, Al-Hemaid F, Lee J. Binding of small molecules at interface of protein-protein complex - A newer approach to rational drug design. Saudi J Biol Sci 2016; 24:379-388. [PMID: 28149177 PMCID: PMC5272936 DOI: 10.1016/j.sjbs.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 01/03/2016] [Indexed: 01/07/2023] Open
Abstract
Protein–protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein–protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein–protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein–protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein–protein interaction with the objective of normalizing such interactions.
Collapse
Affiliation(s)
- A B Gurung
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - A Bhattacharjee
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, Meghalaya, India
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - F Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Abstract
In this study, Sallee et al. demonstrate that E-protein dimer formation can promote C. elegans and human bHLH protein instability. By investigating HLH-2, the sole C. elegans E protein, the authors show that HLH-2 functions as a homodimer for sequential roles in AC specification and differentiation and that the functional dimer is targeted for degradation in VUs, the “opposite” fate. The findings indicate that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts. E proteins are conserved regulators of growth and development. We show that the Caenorhabditis elegans E-protein helix–loop–helix-2 (HLH-2) functions as a homodimer in directing development and function of the anchor cell (AC) of the gonad, the critical organizer of uterine and vulval development. Our structure–function analysis of HLH-2 indicates that dimerization drives its degradation in other uterine cells (ventral uterine precursor cells [VUs]) that initially have potential to be the AC. We also provide evidence that this mode of dimerization-driven down-regulation can target other basic HLH (bHLH) dimers as well. Remarkably, human E proteins can functionally substitute for C. elegans HLH-2 in regulating AC development and also display dimerization-dependent degradation in VUs. Our results suggest that dimerization-driven regulation of bHLH protein stability may be a conserved mechanism for differential regulation in specific cell contexts.
Collapse
|
6
|
Goyal P, Pandey D, Brünnert D, Hammer E, Zygmunt M, Siess W. Cofilin oligomer formation occurs in vivo and is regulated by cofilin phosphorylation. PLoS One 2013; 8:e71769. [PMID: 23951242 PMCID: PMC3738525 DOI: 10.1371/journal.pone.0071769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ADF/cofilin proteins are key regulators of actin dynamics. Their function is inhibited by LIMK-mediated phosphorylation at Ser-3. Previous in vitro studies have shown that dependent on its concentration, cofilin either depolymerizes F-actin (at low cofilin concentrations) or promotes actin polymerization (at high cofilin concentrations). METHODOLOGY/PRINCIPAL FINDINGS We found that after in vivo cross-linking with different probes, a cofilin oligomer (65 kDa) could be detected in platelets and endothelial cells. The cofilin oligomer did not contain actin. Notably, ADF that only depolymerizes F-actin was present mainly in monomeric form. Furthermore, we found that formation of the cofilin oligomer is regulated by Ser-3 cofilin phosphorylation. Cofilin but not phosphorylated cofilin was present in the endogenous cofilin oligomer. In vitro, formation of cofilin oligomers was drastically reduced after phosphorylation by LIMK2. In endothelial cells, LIMK-mediated cofilin phosphorylation after thrombin-stimulation of EGFP- or DsRed2-tagged cofilin transfected cells reduced cofilin aggregate formation, whereas inhibition of cofilin phosphorylation after Rho-kinase inhibitor (Y27632) treatment of endothelial cells promoted formation of cofilin aggregates. In platelets, cofilin dephosphorylation after thrombin-stimulation and Y27632 treatment led to an increased formation of the cofilin oligomer. CONCLUSION/SIGNIFICANCE Based on our results, we propose that an equilibrium exists between the monomeric and oligomeric forms of cofilin in intact cells that is regulated by cofilin phosphorylation. Cofilin phosphorylation at Ser-3 may induce conformational changes on the protein-protein interacting surface of the cofilin oligomer, thereby preventing and/or disrupting cofilin oligomer formation. Cofilin oligomerization might explain the dual action of cofilin on actin dynamics in vivo.
Collapse
Affiliation(s)
- Pankaj Goyal
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum Innenstadt, Universität München, München, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Aureli C, Gaucci E, Arcangeli V, Grillo C, Eufemi M, Chichiarelli S. ERp57/PDIA3 binds specific DNA fragments in a melanoma cell line. Gene 2013; 524:390-5. [PMID: 23587917 DOI: 10.1016/j.gene.2013.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Abstract
ERp57/PDIA3 is a ubiquitously expressed disulfide isomerase protein, which acts in concert with calreticulin and calnexin in the folding of glycoproteins destined to the plasma membrane or to be secreted. Its canonical compartment is the endoplasmic reticulum, where it acts as a chaperone and redox catalyst, but non canonical locations have been described as well, and ERp57 has been found associated with DNA and nuclear proteins. In previous work performed in HeLa cells, ERp57 has been demonstrated to bind specific DNA sequences involved in the stress response. The direct interaction with the DNA sequences identified as ERp57-targeted regions in HeLa cells has now been confirmed in a melanoma cell line. Furthermore, the ERp57 silencing, achieved by RNA interference, has produced a significant down-regulation of the expression of target genes. The possible involvement of other proteins in complex with ERp57 has been studied by an in vitro biotin-streptavidin based binding assay and the interacting protein APE/Ref-1 has been also assessed for its direct association with the ERp57 target regions. In conclusion, nuclear ERp57 interacts in vivo with DNA fragments in melanoma cells and is potentially involved in the transcriptional regulation of its target genes.
Collapse
Affiliation(s)
- Cristina Aureli
- Department of Biochemical Sciences "A. Rossi Fanelli", "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Davies O, Lin CY, Radzisheuskaya A, Zhou X, Taube J, Blin G, Waterhouse A, Smith A, Lowell S. Tcf15 primes pluripotent cells for differentiation. Cell Rep 2013; 3:472-84. [PMID: 23395635 PMCID: PMC3607254 DOI: 10.1016/j.celrep.2013.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state.
Collapse
Affiliation(s)
- Owen R. Davies
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aliaksandra Radzisheuskaya
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Xinzhi Zhou
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jessica Taube
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anna Waterhouse
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
9
|
Cho EJ, Yuen CY, Kang BH, Ondzighi CA, Staehelin LA, Christopher DA. Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 2011; 32:459-75. [PMID: 21909944 PMCID: PMC3887692 DOI: 10.1007/s10059-011-0150-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 12/16/2022] Open
Abstract
Protein disulfide isomerase (PDI) is a thiodisulfide oxidoreductase that catalyzes the formation, reduction and rearrangement of disulfide bonds in proteins of eukaryotes. The classical PDI has a signal peptide, two CXXC-containing thioredoxin catalytic sites (a,a'), two noncatalytic thioredoxin fold domains (b,b'), an acidic domain (c) and a C-terminal endoplasmic reticulum (ER) retention signal. Although PDI resides in the ER where it mediates the folding of nascent polypeptides of the secretory pathway, we recently showed that PDI5 of Arabidopsis thaliana chaperones and inhibits cysteine proteases during trafficking to vacuoles prior to programmed cell death of the endothelium in developing seeds. Here we describe Arabidopsis PDI2, which shares a primary structure similar to that of classical PDI. Recombinant PDI2 is imported into ER-derived microsomes and complements the E. coli protein-folding mutant, dsbA. PDI2 interacted with proteins in both the ER and nucleus, including ER-resident protein folding chaperone, BiP1, and nuclear embryo transcription factor, MEE8. The PDI2-MEE8 interaction was confirmed to occur in vitro and in vivo. Transient expression of PDI2-GFP fusions in mesophyll protoplasts resulted in labeling of the ER, nucleus and vacuole. PDI2 is expressed in multiple tissues, with relatively high expression in seeds and root tips. Immunoelectron microscopy with GFP- and PDI2-specific antisera on transgenic seeds (PDI2-GFP) and wild type roots demonstrated that PDI2 was found in the secretory pathway (ER, Golgi, vacuole, cell wall) and the nuclei. Our results indicate that PDI2 mediates protein folding in the ER and has new functional roles in the nucleus.
Collapse
Affiliation(s)
| | | | - Byung-Ho Kang
- Department of Microbiology and Cell Science, University of Florida, USA
| | - Christine A. Ondzighi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, USA
| | - L. Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, USA
| | | |
Collapse
|
10
|
ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 2011; 16:539-63. [PMID: 21837552 PMCID: PMC6275603 DOI: 10.2478/s11658-011-0022-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
The protein ERp57/GRP58 is a stress-responsive protein and a component of the protein disulfide isomerase family. Its functions in the endoplasmic reticulum are well known, concerning mainly the proper folding and quality control of glycoproteins, and participation in the assembly of the major histocompatibility complex class 1. However, ERp57 is present in many other subcellular locations, where it is involved in a variety of functions, primarily suggested by its participation in complexes with other proteins and even with DNA. While in some instances these roles need to be confirmed by further studies, a great number of observations support the participation of ERp57 in signal transduction from the cell surface, in regulatory processes taking place in the nucleus, and in multimeric protein complexes involved in DNA repair.
Collapse
|
11
|
Abstract
The mammalian target of rapamycin (mTOR) regulates cell growth and survival via two different multiprotein complexes, mTORC1 and mTORC2. The assembly of these serine-threonine kinase multiprotein complexes occurs via poorly understood molecular mechanisms. Here, we demonstrate that GRp58/ERp57 regulates the existence and activity of mTORC1. Endogenous mTOR interacts with GRp58/ERp57 in different mammalian cells. In vitro, recombinant GRp58/ERp57 preferentially interacts with mTORC1. GRp58/ERp57 knockdown reduces mTORC1 levels and phosphorylation of 4E-BP1 and p70(S6K) in response to insulin. In contrast, GRp58/ERp57 overexpression increases mTORC1 levels and activity. A redox-sensitive mechanism that depends on GRp58/ERp57 expression activates mTORC1. Although GRp58/ERp57 is known as an endoplasmic reticulum (ER) resident, we demonstrate its presence at the cytosol, together with mTOR, Raptor, and Rictor as well as a pool of these proteins associated to the ER. In addition, the presence of GRp58/ERp57 at the ER decreases in response to insulin or leucine. Interestingly, a fraction of p70(S6K), but not 4E-BP1, is associated to the ER and phosphorylated in response to serum, insulin, or leucine. Altogether, our results suggest that GRp58/ERp57 is involved in the assembly of mTORC1 and positively regulates mTORC1 signaling at the cytosol and the cytosolic side of the ER.
Collapse
|
12
|
Galli A, Robay D, Osterwalder M, Bao X, Bénazet JD, Tariq M, Paro R, Mackem S, Zeller R. Distinct roles of Hand2 in initiating polarity and posterior Shh expression during the onset of mouse limb bud development. PLoS Genet 2010; 6:e1000901. [PMID: 20386744 PMCID: PMC2851570 DOI: 10.1371/journal.pgen.1000901] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/09/2010] [Indexed: 01/21/2023] Open
Abstract
The polarization of nascent embryonic fields and the endowment of cells with organizer properties are key to initiation of vertebrate organogenesis. One such event is antero-posterior (AP) polarization of early limb buds and activation of morphogenetic Sonic Hedgehog (SHH) signaling in the posterior mesenchyme, which in turn promotes outgrowth and specifies the pentadactylous autopod. Inactivation of the Hand2 transcriptional regulator from the onset of mouse forelimb bud development disrupts establishment of posterior identity and Shh expression, which results in a skeletal phenotype identical to Shh deficient limb buds. In wild-type limb buds, Hand2 is part of the protein complexes containing Hoxd13, another essential regulator of Shh activation in limb buds. Chromatin immunoprecipitation shows that Hand2-containing chromatin complexes are bound to the far upstream cis-regulatory region (ZRS), which is specifically required for Shh expression in the limb bud. Cell-biochemical studies indicate that Hand2 and Hoxd13 can efficiently transactivate gene expression via the ZRS, while the Gli3 repressor isoform interferes with this positive transcriptional regulation. Indeed, analysis of mouse forelimb buds lacking both Hand2 and Gli3 reveals the complete absence of antero-posterior (AP) polarity along the entire proximo-distal axis and extreme digit polydactyly without AP identities. Our study uncovers essential components of the transcriptional machinery and key interactions that set-up limb bud asymmetry upstream of establishing the SHH signaling limb bud organizer. During early limb bud development, posterior mesenchymal cells are selected to express Sonic Hedgehog (Shh), which controls antero-posterior (AP) limb axis formation (axis from thumb to little finger). We generated a conditional loss-of-function Hand2 allele to inactivate Hand2 specifically in mouse limb buds. This genetic analysis reveals the pivotal role of Hand2 in setting up limb bud asymmetry as initiation of posterior identity and establishment of the Shh expression domain are completely disrupted in Hand2 deficient limb buds. The resulting loss of the ulna and digits mirror the skeletal malformations observed in Shh-deficient limbs. We show that Hand2 is part of the chromatin complexes that are bound to the cis-regulatory region that controls Shh expression specifically in limb buds. In addition, we show that Hand2 is part of a protein complex containing Hoxd13, which also participates in limb bud mesenchymal activation of Shh expression. Indeed, Hand2 and Hoxd13 stimulate ZRS–mediated transactivation in cells, while the Gli3 repressor form (Gli3R) interferes with this up-regulation. Interestingly, limb buds lacking both Hand2 and Gli3 lack AP asymmetry and are severely polydactylous. Molecular analysis reveals some of the key interactions and hierarchies that govern establishment of AP limb asymmetries upstream of SHH.
Collapse
Affiliation(s)
- Antonella Galli
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- * E-mail: (AG); (RZ)
| | - Dimitri Robay
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marco Osterwalder
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Xiaozhong Bao
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Denis Bénazet
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Muhammad Tariq
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- * E-mail: (AG); (RZ)
| |
Collapse
|
13
|
Chichiarelli S, Gaucci E, Ferraro A, Grillo C, Altieri F, Cocchiola R, Arcangeli V, Turano C, Eufemi M. Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch Biochem Biophys 2009; 494:178-83. [PMID: 19995546 DOI: 10.1016/j.abb.2009.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/15/2022]
Abstract
Chromatin immunoprecipitation in M14 melanoma cells showed that the protein ERp57 (endoplasmic reticulum protein 57) binds to DNA in the proximity of STAT3 in a subset of STAT3-regulated genes. In the same cells, IL-6 induced a significant increase of the expression of one of these genes, i.e. CRP. Upon depletion of ERp57 by RNA interference, the phosphorylation of STAT3 on tyrosine 705 was decreased, and the IL-6-induced activation of CRP expression was completely suppressed. In vitro experiments showed that ERp57 is also required for the binding of STAT3 to its consensus sequence on DNA. Thus ERp57, previously shown to associate with STAT3 in the cytosol and in the nuclear STAT3-containing enhanceosome, is a necessary cofactor for the regulation of at least a subset of STAT3-dependent genes, probably intervening both at the site of STAT3 phosphorylation and at the nuclear level.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Università 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Grillo C, D'Ambrosio C, Consalvi V, Chiaraluce R, Scaloni A, Maceroni M, Eufemi M, Altieri F. DNA-binding Activity of the ERp57 C-terminal Domain Is Related to a Redox-dependent Conformational Change. J Biol Chem 2007; 282:10299-310. [PMID: 17283067 DOI: 10.1074/jbc.m700966200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
ERp57, a member of the protein-disulfide isomerase family, although mainly localized in the endoplasmic reticulum is here shown to have a nuclear distribution. We previously showed the DNA-binding properties of ERp57, its association with the internal nuclear matrix, and identified the C-terminal region, containing the a' domain, as being directly involved in the DNA-binding activity. In this work, we demonstrate that its DNA-binding properties are strongly dependent on the redox state of the a' domain active site. Site-directed mutagenesis experiments on the first cysteine residue of the -CGHC-thioredoxin-like active site lead to a mutant domain (C406S) lacking DNA-binding activity. Biochemical studies on the recombinant domain revealed a conformational change associated with the redox-dependent formation of a homodimer, having two disulfide bridges between the cysteine residues of two a' domain active sites. The formation of intermolecular disulfide bridges rather than intramolecular oxidation of active site cysteines is important to generate species with DNA-binding properties. Thus, in the absence of any dedicated motif within the protein sequence, this structural rearrangement might be responsible for the DNA-binding properties of the C-terminal domain. Moreover, NADH-dependent thioredoxin reductase is active on intermolecular disulfides of the a' domain, allowing the control of dimeric protein content as well as its DNA-binding activity. A similar behavior was also observed for whole ERp57.
Collapse
Affiliation(s)
- Caterina Grillo
- Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chichiarelli S, Ferraro A, Altieri F, Eufemi M, Coppari S, Grillo C, Arcangeli V, Turano C. The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J Cell Physiol 2007; 210:343-51. [PMID: 17061245 DOI: 10.1002/jcp.20824] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The protein ERp57/GRP58 is a member of the protein disulfide isomerase family and is also a glucose-regulated protein, which, together with the other GRPs, is induced by a variety of cellular stress conditions. ERp57/GRP58 is mainly located in the endoplasmic reticulum (ER), but has also been found in the cytoplasm and in the nucleus, where it can bind DNA. In order to identify a possible correlation between the stress-response and the nuclear location of ERp57/GRP58, its binding sites on DNA in HeLa cells have been searched by chromatin immunoprecipitation and cloning of the immunoprecipitated DNA fragments. Following sequencing of the cloned fragments, 10 DNA sequences have been securely identified as in vivo targets of ERp57/GRP58. Nine of them are present in the non-coding regions of identified genes, and seven of these in introns. The features of some of these DNA sequences, that is, DNase hypersensitivity, proximity of MAR regions, and homology to the non-coding regions of orthologue genes of mouse or rat, are compatible with a gene expression regulatory function. Considering the nature of the genes concerned, two of which code for DNA repair proteins, we would suggest that at least part of the mechanism of action of ERp57/GRP58 takes place through the regulation of these, and possibly other still unidentified, stress-response genes.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Università 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grillo C, D'Ambrosio C, Scaloni A, Maceroni M, Merluzzi S, Turano C, Altieri F. Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic Biol Med 2006; 41:1113-23. [PMID: 16962936 DOI: 10.1016/j.freeradbiomed.2006.06.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 06/24/2006] [Indexed: 11/27/2022]
Abstract
ERp57, a protein disulfide isomerase localized mainly in the endoplasmic reticulum, has also been found in lesser amounts in the cytosol and nucleus, where its function is still not characterized. We report here that ERp57 displays affinity for Ref-1, a protein involved in DNA repair as well as in the reduction and activation of transcription factors. Immunoprecipitation experiments showed that Ref-1 and ERp57 also interact in vivo in at least three types of cultured human cells, namely HepG2, M14, and Raji. Oxidative stress increased the amount of nuclear Ref-1 associated with ERp57. Moreover, ERp57 reduced by the thioredoxin-reductase/thioredoxin system stimulated the binding of AP-1 to its consensus sequence on DNA, and HeLa cells stably transfected and overexpressing ERp57 were protected against hydrogen peroxide-induced cell killing. Accordingly, ERp57 appears to cooperate with Ref-1 in the regulation of gene expression mediated by redox-sensitive transcription factors and in the adaptive response of the cell to oxidative insult.
Collapse
Affiliation(s)
- Caterina Grillo
- Department of Biochemical Sciences A. Rossi Fanelli, University La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Hikima JI, Middleton DL, Wilson MR, Miller NW, Clem LW, Warr GW. Regulation of immunoglobulin gene transcription in a teleost fish: identification, expression and functional properties of E2A in the channel catfish. Immunogenetics 2005; 57:273-82. [PMID: 15900499 PMCID: PMC1360188 DOI: 10.1007/s00251-005-0793-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/15/2005] [Indexed: 10/25/2022]
Abstract
The function of the transcriptional enhancer, Emu3', of the IgH locus of the channel catfish, Ictalurus punctatus, involves the interaction of E-protein and Oct family transcription factors. The E-proteins [class I basic helix-loop-helix (bHLH) family] are encoded in mammals by three genes: E2A (of which E12/E47 are alternatively spliced products), HEB, and E2-2. An E2A homologue has been identified in a catfish B-cell cDNA library and contains regions homologous to the bHLH and activation domains of mammalian and other vertebrate E2A proteins. E2A message is widely expressed, being readily detected in catfish B cells, T cells, kidney, spleen, brain, and muscle. Its expression is lower than that previously observed for TF12/CFEB, the catfish homologue of HEB. E2A strongly activated transcription of a muE5 motif-dependent construct in catfish B cells, and also activated transcription from the core region of the catfish IgH enhancer (Emu3') in a manner dependent on the presence of the muE5 site. Catfish E2A, expressed in vitro, bound the muE5 motif present in the core region of Emu3'. These results document the conservation of structure and function in vertebrate E2A and suggest a potential role of E2A in driving expression of the IgH locus at the phylogenetic level of a teleost fish.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Marine Biomedicine and Environmental Sciences Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 331 Fort Johnson Road, Charleston, SC 29412, USA
| | | | | | | | | | | |
Collapse
|
18
|
Firulli AB, Conway SJ. Combinatorial transcriptional interaction within the cardiac neural crest: a pair of HANDs in heart formation. ACTA ACUST UNITED AC 2005; 72:151-61. [PMID: 15269889 PMCID: PMC2561314 DOI: 10.1002/bdrc.20009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cardiac neural crest cells migrate from the rostral dorsal neural folds and populate the branchial arches, which contribute directly to the cardiac-outflow structures. Although neural crest cell specification is associated with a number of morphogenic factors, little is understood about the mechanisms by which transcription factors actually implement the transcriptional programs that dictate cell migration and later the differentiation into the proper cell types within the great vessels and the heart. It is clear from genetic evidence that members of the paired box family and basic helix-loop-helix (bHLH) transcription factors from the twist family of proteins are expressed in and play an important function in cardiac neural crest specification and differentiation. Interestingly, both paired box and bHLH factors can function as dimers and, in the case of twist family bHLH factors, partner choice can clearly dictate a change in transcriptional program. The focus of this review is to consider what role the protein-protein interactions of these transcription factors may play in determining cardiac neural crest specification and differentiation, and how genetic alteration of transcription factor stoichiometry within the cell may reflect more than a simple null event.
Collapse
Affiliation(s)
- Anthony B Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202-5225, USA.
| | | |
Collapse
|
19
|
Hikima JI, Cioffi CC, Middleton DL, Wilson MR, Miller NW, Clem LW, Warr GW. Evolution of Transcriptional Control of theIgHLocus: Characterization, Expression, and Function of TF12/HEB Homologs of the Catfish. THE JOURNAL OF IMMUNOLOGY 2004; 173:5476-84. [PMID: 15494495 DOI: 10.4049/jimmunol.173.9.5476] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional enhancer (Emu3') of the IgH locus of the channel catfish, Ictalurus punctatus, differs from enhancers of the mammalian IgH locus in terms of its position, structure, and function. Transcription factors binding to multiple octamer motifs and a single muE5 motif (an E-box site, consensus CANNTG) interact for its function. E-box binding transcription factors of the class I basic helix-loop-helix family were cloned from a catfish B cell cDNA library in this study, and homologs of TF12/HEB were identified as the most highly represented E-proteins. Two alternatively spliced forms of catfish TF12 (termed CFEB1 and -2) were identified and contained regions homologous to the basic helix-loop-helix and activation domains of other vertebrate E-proteins. CFEB message is widely expressed, with CFEB1 message predominating over that of CFEB2. Both CFEB1 and -2 strongly activated transcription from a muE5-dependent artificial promoter. In catfish B cells, CFEB1 and -2 also activated transcription from the core region of the catfish IgH enhancer (Emu3') in a manner dependent on the presence of the muE5 site. Both CFEB1 and -2 bound the muE5 motif, and formed both homo- and heterodimers. CFEB1 and -2 were weakly active or inactive (in a promoter-dependent fashion) in mammalian B-lineage cells. Although E-proteins have been highly conserved in vertebrate evolution, the present results indicate that, at the phylogenetic level of a teleost fish, the TF12/HEB homolog differs from that of mammals in terms of 1) its high level of expression and 2) the presence of isoforms generated by alternative RNA processing.
Collapse
Affiliation(s)
- Jun-Ichi Hikima
- Center for Marine Biomedicine and Environmental Sciences, and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29407, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Eufemi M, Coppari S, Altieri F, Grillo C, Ferraro A, Turano C. ERp57 is present in STAT3–DNA complexes. Biochem Biophys Res Commun 2004; 323:1306-12. [PMID: 15451439 DOI: 10.1016/j.bbrc.2004.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Indexed: 01/20/2023]
Abstract
STAT3 has been found constitutively activated in M14 melanoma cell line, as previously found in other melanoma cells. Using EMSA, DNA affinity experiments, and chromatin immunoprecipitation, STAT3 was found in M14 to bind the alpha2-macroglobulin gene enhancer in association with the protein disulfide isomerase isoform ERp57. The two proteins have also been found to be associated when bound to the SIE sequence in HepG2 cells stimulated by IL-6. In both cases an anti-ERp57 antibody hinders the binding of STAT3 to its consensus sequence on DNA, indicating that ERp57 is a necessary component of the DNA-bound STAT3 complex. Considering the functional association of the two proteins, the overexpression of ERp57 observed in a variety of transformed cells might be relevant to the oncogenic properties of STAT3.
Collapse
Affiliation(s)
- Margherita Eufemi
- Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology, University La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Su WC, Chou HY, Chang CJ, Lee YM, Chen WH, Huang KH, Lee MY, Lee SC. Differential activation of a C/EBP beta isoform by a novel redox switch may confer the lipopolysaccharide-inducible expression of interleukin-6 gene. J Biol Chem 2003; 278:51150-8. [PMID: 14530280 DOI: 10.1074/jbc.m305501200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C/EBP beta, a member of the CCAAT/enhancer binding protein (C/EBP) family, is one of the key transcription factors responsible for the induction of a wide array of genes, some of which play important roles in innate immunity, inflammatory response, adipocyte and myeloid cell differentiation, and the acute phase response. Three C/EBP beta isoforms (i.e. LAP*, LAP, and LIP) were known to arise from differential translation initiation and display different functions in gene regulation. C/EBP beta is known to induce interleukin (IL)-6 gene when P388D1 cells are treated with lipopolysaccharide (LPS). Exactly how the transcriptional activities of C/EBP beta isoforms are involved in the regulation of the IL-6 gene remains unclear. Here we report that LPS-induced expression of IL-6 gene in P388D1 cells is mediated by a redox switch-activated LAP*. The intramolecular disulfide bonds of LAP* and LAP have been determined. Among the cysteine residues, amino acid 11 (Cys11) of LAP* plays key roles for determining the overall intramolecular disulfide bonds that form the basis for redox switch regulation. The DNA binding activity and transcriptional activity of LAP* are enhanced under reducing condition. LAP and LIP, lacking 21 and 151 amino acids, respectively, in the N-terminal region, are not regulated in a similar redox-responsive manner. Our results indicate that LAP* is the primary isoform of C/EBP beta that regulates, through a redox switch, the LPS-induced expression of the IL-6 gene.
Collapse
Affiliation(s)
- Wen-Chi Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Firulli AB. A HANDful of questions: the molecular biology of the heart and neural crest derivatives (HAND)-subclass of basic helix-loop-helix transcription factors. Gene 2003; 312:27-40. [PMID: 12909338 DOI: 10.1016/s0378-1119(03)00669-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The HAND subclass of basic Helix-loop-helix factors is comprised of two members HAND1 and HAND2. HAND genes are present within the genomes of organisms ranging from flies to man. Experiments employing chick embryology, tissue culture, and gene targeting in mice show that HAND function is critical for the specification and/or differentiation of extraembryonic structures that include the yolk sac, placenta, and the cells of the trophoblast lineages. HAND factors also play key roles in cardiac, gut, sympathetic neuronal development and in the proper development of tissues populated by HAND-expressing neural crest cells, including regions of the developing vasculature, the limbs, the jaw, and teeth. Surprisingly, nearly 10 years after their initial identification and characterization, little is understood about the nature of the downstream target genes which HAND1 and HAND2 regulate, whether the nature of their transcriptional regulation is positive or negative, or if they modulate genetic programs common to these diverse tissue types or if they drive unique subsets of genes that contribute to tissue identity. At the core of these questions is by which mechanisms do HAND factors modulate biological activity? Do they behave like classical class B bHLH factors or is their function more complex requiring a rethinking of the dogma? What follows is a review of what is currently known about HAND factors and a reflection on why elucidating their role in the biological programs within which they participate has been so difficult.
Collapse
Affiliation(s)
- Anthony B Firulli
- Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, 702 Barnhill Drive, Room 2666, Indianapolis, IN 46202-5225, USA.
| |
Collapse
|
23
|
Abstract
Lymphocytes develop from hematopoietic stem cells through a series of highly regulated differentiation events in the bone marrow and thymus. A number of transcription factors are known to collaborate in controlling the timing and specificity of gene expression required for these developmental processes to occur. The basic helix-loop-helix (bHLH) proteins encoded by the E2A gene have been shown to play particularly important roles in the initiation and progression of lymphocyte differentiation. Gene targeting experiments in mice have demonstrated a requirement for E2A proteins at the onset of B lymphocyte development. More recent studies have broadened our view on the function of E2A proteins at multiple stages of lymphopoiesis and in the regulation of lymphoid-specific gene expression. Here we review the mammalian E2A proteins and the accumulated evidence demonstrating central roles for E2A throughout early B and T lymphocyte development. We also speculate on the direction of future research on the mechanisms underlying the lineage and stage-specific functions of E2A in lymphopoiesis.
Collapse
Affiliation(s)
- Stephen Greenbaum
- Department of Immunology, Box 3010, Duke University Medical Center, 328 Jones Building, Research Drive, Durham, NC 27710, USA.
| | | |
Collapse
|
24
|
Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 2002; 193:154-63. [PMID: 12384992 DOI: 10.1002/jcp.10172] [Citation(s) in RCA: 405] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein disulfide isomerases (PDIs) constitute a family of structurally related enzymes which catalyze disulfide bonds formation, reduction, or isomerization of newly synthesized proteins in the lumen of the endoplasmic reticulum (ER). They act also as chaperones, and are, therefore, part of a quality-control system for the correct folding of the proteins in the same subcellular compartment. While their functions in the ER have been thoroughly studied, much less is known about their roles in non-ER locations, where, however, they have been shown to be involved in important biological processes. At least three proteins of this family from higher vertebrates have been found in unusual locations (i.e., the cell surface, the extracellular space, the cytosol, and the nucleus), reached through an export mechanism which has not yet been understood. In some cases their function in the non-ER location is clearly related to their redox properties, but in most cases their mechanism of action has still to be disclosed, although their propensity to associate with other proteins or even with DNA might be the main factor responsible for their activities.
Collapse
Affiliation(s)
- Carlo Turano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche 'Alessandro Rossi-Fanelli' and Centro di Biologia Molecolare del CNR, Università 'La Sapienza', Rome, Italy.
| | | | | | | |
Collapse
|
25
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
26
|
Grillo C, Coppari S, Turano C, Altieri F. The DNA-binding activity of protein disulfide isomerase ERp57 is associated with the a(') domain. Biochem Biophys Res Commun 2002; 295:67-73. [PMID: 12083768 DOI: 10.1016/s0006-291x(02)00634-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ERp57 belongs to the protein disulfide isomerases, a family of homologous proteins mainly localized in the endoplasmic reticulum and characterized by the presence of a thioredoxin-like folding domain. ERp57 is a protein chaperone with thiol-dependent protein disulfide isomerase and additional activities and recently it has been shown to be involved, in cooperation with calnexin or with calreticulin, in the correct folding of glycoproteins. However, we have demonstrated that the same protein is also present in the nucleus, mainly associated with the internal nuclear matrix fraction. In vitro studies have shown that ERp57 has DNA-binding properties which are strongly dependent on its redox state, the oxidized form being the competent one. A comparison study on a recombinant form of ERp57 and several deletion mutants, obtained as fusion proteins and expressed in Escherichia coli, allowed us to identify the C-terminal a(') domain as directly involved in the DNA-binding activity of ERp57.
Collapse
Affiliation(s)
- Caterina Grillo
- Dipartimento di Scienze Biochimiche A. Rossi-Fanelli, Centro di Biologia Molecolare del CNR and Istituto Pasteur-Fondazione Cenci Bolognetti, Università La Sapienza, P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
27
|
Guo GG, Patel K, Kumar V, Shah M, Fried VA, Etlinger JD, Sehgal PB. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J Interferon Cytokine Res 2002; 22:555-63. [PMID: 12060494 DOI: 10.1089/10799900252982034] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Glucose-regulated protein 58 (GRP58/ER-60/ERp57), best known as a chaperone in the endoplasmic reticulum lumen, was previously identified by us as one of several accessory proteins in the S100 cytosol fraction of human hepatoma Hep3B cells that was differentially coshifted by anti-Stat3 antibody in an antibody-subtracted differential protein display assay. In the present study, the association between GRP58 and Stat3 in different cytoplasmic compartments was evaluated using cross-immunoprecipitation and cell-fractionation techniques. In the S100 cytosol fraction, three different anti-GRP58 polyclonal antibodies (pAb) cross-immunoprecipitated Stat3 (but not Stat1), and, conversely, anti-Stat3 pAb cross-immunoprecipitated GRP58. Both cytosolic Stat3 and GRP58 eluted during Superose-6 gel-filtration chromatography in complexes of size 200-400 kDa (statosome I), and anti-Stat3 pAb cross-immunoprecipitated GRp58 from these FPLC elution fractions. Using differential sedimentation and density equilibrium flotation methods, Stat3 and GRP58 were observed to be coassociated with cytoplasmic membranes enriched for the plasma membrane marker 5' nucleotidase but not with those containing the endoplasmic reticulum marker BiP/GRP78. The Stat3 and GRP58-containing plasma membrane fraction also contained Stat1, Stat5b, and gp130. Stat activation by orthovanadate caused the accumulation of PY-Stat3 in the GRP58-containing plasma membrane fraction. However, this PY-Stat3 was DNA-binding deficient. Likewise, excess exogenous recombinant human GRP58 prepared using a baculovirus expression system preferentially inhibited Stat3 DNA-binding activity in the S100 cytosol, suggesting that GRP58 may sequester activated Stat3. The new data confirm the association between GRP58 and Stat3 in cytosolic 200-400-kDa statosome I complexes and show that both GRP58 and Stat family members coassociate in the plasma membrane compartment. We suggest that the chaperone GRP58 may regulate signaling by sequestering inactive and activated Stat3.
Collapse
Affiliation(s)
- Gary G Guo
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Graven KK, Molvar C, Roncarati JS, Klahn BD, Lowrey S, Farber HW. Identification of protein disulfide isomerase as an endothelial hypoxic stress protein. Am J Physiol Lung Cell Mol Physiol 2002; 282:L996-1003. [PMID: 11943664 DOI: 10.1152/ajplung.00359.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells (EC) exposed to hypoxia upregulate a unique set of five stress proteins. These proteins are upregulated in human and bovine aortic and pulmonary artery EC and are distinct from heat shock or glucose-regulated proteins. We previously identified two of these proteins as the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and enolase and postulated that the remaining proteins were also glycolytic enzymes. Using SDS-PAGE, tryptic digestion, and NH(2)-terminal amino acid sequencing, we report here the identification of the 56-kDa protein as protein disulfide isomerase (PDI). PDI is upregulated by hypoxia at the mRNA level and follows a time course similar to that of the protein, with maximal upregulation detected after exposure to 18 h of 0% O(2). Neither smooth muscle cells nor fibroblasts upregulate PDI to the same extent as EC, which correlates with their decreased hypoxia tolerance. Upregulation of PDI specifically in EC may contribute to their ability to tolerate hypoxia and may occur through PDI's functions as a prolyl hydroxylase subunit, protein folding catalyst, or molecular chaperone.
Collapse
Affiliation(s)
- Krista K Graven
- Department of Medicine, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Dai YS, Cserjesi P. The basic helix-loop-helix factor, HAND2, functions as a transcriptional activator by binding to E-boxes as a heterodimer. J Biol Chem 2002; 277:12604-12. [PMID: 11812799 DOI: 10.1074/jbc.m200283200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HAND2 (dHAND) is a basic helix-loop-helix (bHLH) transcription factor expressed in numerous tissues during development including the heart, limbs, and a subset of neural crest derivatives. Functional analysis has shown that HAND2 is involved in development of the branchial arches, heart, limb, vasculature, and nervous system. Although it is essential for development of numerous tissues, little is known about its mode of action. To this end, we have characterized HAND2 transcriptional regulatory mechanisms. Using mammalian one-hybrid analysis we show that HAND2 contains a strong transcriptional activation domain in the amino-terminal third of the protein. Like most tissue-restricted bHLH factors, HAND2 heterodimerizes with the broadly expressed bHLH factors, the E-proteins. We determined the consensus DNA binding site of HAND2 and show that HAND2 binds a subset of E-boxes as a heterodimer with E12. Yeast two-hybrid screening of a neuroblastoma cDNA library for HAND2-interacting proteins selected HAND2 and numerous additional members of the E-protein family. Although HAND2 homodimer formation was confirmed by in vitro analysis, HAND2 fails to homodimerize in a mammalian two-hybrid assay but demonstrates robust HAND2/E12 interaction. We conclude that HAND2 functions as a transcription activator by binding a subset of E-boxes as a heterodimer with E-proteins.
Collapse
Affiliation(s)
- Yan-Shan Dai
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Trebitsh T, Meiri E, Ostersetzer O, Adam Z, Danon A. The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts. J Biol Chem 2001; 276:4564-9. [PMID: 11087734 DOI: 10.1074/jbc.m005950200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation of psbA mRNA in Chlamydomonas reinhardtii chloroplasts is regulated by a redox signal(s). RB60 is a member of a protein complex that binds with high affinity to the 5'-untranslated region of psbA mRNA. RB60 has been suggested to act as a redox-sensor subunit of the protein complex regulating translation of chloroplast psbA mRNA. Surprisingly, cloning of RB60 identified high homology to the endoplasmic reticulum-localized protein disulfide isomerase, including an endoplasmic reticulum-retention signal at its carboxyl terminus. Here we show, by in vitro import studies, that the recombinant RB60 is imported into isolated chloroplasts of C. reinhardtii and pea in a transit peptide-dependent manner. Subfractionation of C. reinhardtii chloroplasts revealed that the native RB60 is partitioned between the stroma and the thylakoids. The nature of association of native RB60, and imported recombinant RB60, with thylakoids is similar and suggests that RB60 is tightly bound to thylakoids. The targeting characteristics of RB60 and the potential implications of the association of RB60 with thylakoids are discussed.
Collapse
Affiliation(s)
- T Trebitsh
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
31
|
Abstract
The large enzyme families of protein disulfide isomerases and peptidyl prolyl cis/trans isomerases have been shown to assist polypeptide restructuring. Various folding states of polypeptides may serve as substrates of the catalysed reaction. Our understanding of the cellular function of these enzymes is increasing as a result of the availability of more specific inhibitors, the discovery of natural substrates and the use of genetically modified organisms. Further highlights of these studies include insights into the three-dimensional structures of enzyme-ligand complexes, as well as into the mechanism of slow folding phases on the atomic level.
Collapse
Affiliation(s)
- C Schiene
- Research Unit Enzymology of Protein Folding, Max-Planck Society, Halle/Saale, D-06120, Germany
| | | |
Collapse
|
32
|
Scott IC, Anson-Cartwright L, Riley P, Reda D, Cross JC. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol 2000; 20:530-41. [PMID: 10611232 PMCID: PMC85124 DOI: 10.1128/mcb.20.2.530-541.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/1999] [Accepted: 10/11/1999] [Indexed: 12/14/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor genes Hand1 and Mash2 are essential for placental development in mice. Hand1 promotes differentiation of trophoblast giant cells, whereas Mash2 is required for the maintenance of giant cell precursors, and its overexpression prevents giant cell differentiation. We found that Hand1 expression and Mash2 expression overlap in the ectoplacental cone and spongiotrophoblast, layers of the placenta that contain the giant cell precursors, indicating that the antagonistic activities of Hand1 and Mash2 must be coordinated. MASH2 and HAND1 both heterodimerize with E factors, bHLH proteins that are the DNA-binding partners for most class B bHLH factors and which are also expressed in the ectoplacental cone and spongiotrophoblast. In vitro, HAND1 could antagonize MASH2 function by competing for E-factor binding. However, the Hand1 mutant phenotype cannot be solely explained by ectopic activity of MASH2, as the Hand1 mutant phenotype was not altered by further mutation of Mash2. Interestingly, expression of E-factor genes (ITF2 and ALF1) was down-regulated in the trophoblast lineage prior to giant cell differentiation. Therefore, suppression of MASH2 function, required to allow giant cell differentiation, may occur in vivo by loss of its E-factor partner due to loss of its expression and/or competition from HAND1. In giant cells, where E-factor expression was not detected, HAND1 presumably associates with a different bHLH partner. This may account for the distinct functions of HAND1 in giant cells and their precursors. We conclude that development of the trophoblast lineage is regulated by the interacting functions of HAND1, MASH2, and their cofactors.
Collapse
Affiliation(s)
- I C Scott
- Program in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario Canada
| | | | | | | | | |
Collapse
|