1
|
Waheed Y, Mojumdar A, Shafiq M, de Marco A, De March M. The fork remodeler helicase-like transcription factor in cancer development: all at once. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167280. [PMID: 38851303 DOI: 10.1016/j.bbadis.2024.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.
Collapse
Affiliation(s)
- Yossma Waheed
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Aditya Mojumdar
- Department of Biochemistry and Microbiology, University of Victoria, BC V8W 2Y2, Victoria, Canada
| | - Mohammad Shafiq
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Ario de Marco
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia.
| |
Collapse
|
2
|
Bai G, Endres T, Kühbacher U, Mengoli V, Greer BH, Peacock EM, Newton MD, Stanage T, Dello Stritto MR, Lungu R, Crossley MP, Sathirachinda A, Cortez D, Boulton SJ, Cejka P, Eichman BF, Cimprich KA. HLTF resolves G4s and promotes G4-induced replication fork slowing to maintain genome stability. Mol Cell 2024; 84:3044-3060.e11. [PMID: 39142279 PMCID: PMC11366124 DOI: 10.1016/j.molcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Theresa Endres
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ulrike Kühbacher
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Briana H Greer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Emma M Peacock
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew D Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Roxana Lungu
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Magdalena P Crossley
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ataya Sathirachinda
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Karlene A Cimprich
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Harris S, Anwar I, Baksh SS, Pratt RE, Dzau VJ, Hodgkinson CP. Skeletal muscle differentiation induces wide-ranging nucleosome repositioning in muscle gene promoters. Sci Rep 2024; 14:9396. [PMID: 38658615 PMCID: PMC11043329 DOI: 10.1038/s41598-024-60236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
In a previous report, we demonstrated that Cbx1, PurB and Sp3 inhibited cardiac muscle differentiation by increasing nucleosome density around cardiac muscle gene promoters. Since cardiac and skeletal muscle express many of the same proteins, we asked if Cbx1, PurB and Sp3 similarly regulated skeletal muscle differentiation. In a C2C12 model of skeletal muscle differentiation, Cbx1 and PurB knockdown increased myotube formation. In contrast, Sp3 knockdown inhibited myotube formation, suggesting that Sp3 played opposing roles in cardiac muscle and skeletal muscle differentiation. Consistent with this finding, Sp3 knockdown also inhibited various muscle-specific genes. The Cbx1, PurB and Sp3 proteins are believed to influence gene-expression in part by altering nucleosome position. Importantly, we developed a statistical approach to determine if changes in nucleosome positioning were significant and applied it to understanding the architecture of muscle-specific genes. Through this novel statistical approach, we found that during myogenic differentiation, skeletal muscle-specific genes undergo a set of unique nucleosome changes which differ significantly from those shown in commonly expressed muscle genes. While Sp3 binding was associated with nucleosome loss, there appeared no correlation with the aforementioned nucleosome changes. In summary, we have identified a novel role for Sp3 in skeletal muscle differentiation and through the application of quantifiable MNase-seq have discovered unique fingerprints of nucleosome changes for various classes of muscle genes during myogenic differentiation.
Collapse
Affiliation(s)
- Sonalí Harris
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA
| | - Iqra Anwar
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA
| | - Syeda S Baksh
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Duke University, CaRL Building, 213 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Bai G, Endres T, Kühbacher U, Greer BH, Peacock EM, Crossley MP, Sathirachinda A, Cortez D, Eichman BF, Cimprich KA. HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.563641. [PMID: 37961428 PMCID: PMC10634870 DOI: 10.1101/2023.10.27.563641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
|
5
|
Tan Y, Wu D, Liu ZY, Yu HQ, Zheng XR, Lin XT, Bie P, Zhang LD, Xie CM. Degradation of helicase-like transcription factor (HLTF) by β-TrCP promotes hepatocarcinogenesis via activation of the p62/mTOR axis. J Mol Cell Biol 2023; 15:mjad012. [PMID: 36822623 PMCID: PMC10478628 DOI: 10.1093/jmcb/mjad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Helicase-like transcription factor (HLTF) has been found to be involved in the maintenance of genome stability and tumour suppression, but whether its downregulation in cancers is associated with posttranslational regulation remains unclear. Here, we observed that HLTF was significantly downregulated in hepatocellular carcinoma (HCC) tissues and positively associated with the survival of HCC patients. Mechanistically, the decreased expression of HLTF in HCC was attributed to elevated β-TrCP-mediated ubiquitination and degradation. Knockdown of HLTF enhanced p62 transcriptional activity and mammalian target of rapamycin (mTOR) activation, leading to HCC tumourigenesis. Inhibition of mTOR effectively blocked β-TrCP overexpression- or HLTF knockdown-mediated HCC tumourigenesis and metastasis. Furthermore, in clinical tissues, decreased HLTF expression was positively correlated with elevated expression of β-TrCP, p62, or p-mTOR in HCC patients. Overall, our data not only uncover new roles of HLTF in HCC cell proliferation and metastasis, but also reveal a novel posttranslational modification of HLTF by β-TrCP, indicating that the β-TrCP/HLTF/p62/mTOR axis may be a new oncogenic driver involved in HCC development. This finding provides a potential therapeutic strategy for HCC patients by targeting the β-TrCP/HLTF/p62/mTOR axis.
Collapse
Affiliation(s)
- Ye Tan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang-Ru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
6
|
Chen MX, Oh YS, Kim Y. S100A10 and its binding partners in depression and antidepressant actions. Front Mol Neurosci 2022; 15:953066. [PMID: 36046712 PMCID: PMC9423026 DOI: 10.3389/fnmol.2022.953066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
S100A10 (p11) is an emerging player in the neurobiology of depression and antidepressant actions. p11 was initially thought to be a modulator of serotonin receptor (5-HTR) trafficking and serotonergic transmission, though newly identified binding partners of p11 and neurobiological studies of these proteins have shed light on multifunctional roles for p11 in the regulation of glutamatergic transmission, calcium signaling and nuclear events related to chromatin remodeling, histone modification, and gene transcription. This review article focuses on direct binding partners of p11 in the brain including 5-HTRs, mGluR5, annexin A2, Ahnak, Smarca3, and Supt6h, as well as their roles in neuronal function, particularly in the context of depressive-like behavior as well as behavioral effects of antidepressant drug treatments in mice. In addition, we discuss neurobiological insights from recently uncovered p11 pathways in multiple types of neurons and non-neuronal cells and cast major remaining questions for future studies.
Collapse
Affiliation(s)
- Michelle X. Chen
- University of Iowa Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Yong Kim
| |
Collapse
|
7
|
Zhang S, Zheng W, Jiang D, Xiong H, Liao G, Yang X, Ma H, Li J, Qiu M, Li B, Sun C, Zhao J, Wang L, Pang J. Systematic Chromatin Accessibility Analysis Based on Different Immunological Subtypes of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:575425. [PMID: 33937014 PMCID: PMC8085385 DOI: 10.3389/fonc.2021.575425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/23/2021] [Indexed: 01/14/2023] Open
Abstract
Background Recent research of clear cell renal cell carcinoma (ccRCC) is focused on the tumor immune microenvironment (TIME). Chromatin accessibility is critical for regulation of gene expression. However, its role in different immunological subtypes of ccRCC based on immune cell infiltration has not been systematically studied. Methods Five hundred thirty patient data from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) were adopted to estimate immune cell infiltration. Twenty-four types of immune cells were evaluated with single-sample Gene Set Enrichment Analysis (ssGSEA). Patients were divided into two clusters based on immune cell infiltration. Systematic chromatin accessibility analysis was conducted based on the two clusters. Results We compared the relative expression of the immune gene signatures among 530 patients of TCGA-KIRC using ssGSEA. Overall survival (OS) analysis revealed 10 types of immune cells were significantly associated with prognosis. Patients were divided into two clusters based on 24 types of immune cell infiltration. Immune cell signals as well as PD-1/PD-L1 signal were higher in cluster 1. Among the two clusters, 2,400 differential peaks were found in TCGA-KIRC Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) data. The distribution of differential peaks and prognosis-related immune cells in 23 chromosomes are essentially the same. There is no peak distribution downstream. The proportion of peaks upstream of the 5’ transcription start site decreases, and both sides of binding regions of the TSS 0.1-1 kb becomes smaller. Enrichment analysis of GO and KEGG of these differential peaks showed that they are remarkably related to the immune regulation in tumor microenvironment. Known motifs and de novo motifs were found by linking motif annotations to different peaks. Survival analysis of related motif transcription factors were prognostic. The GSEA enrichment analysis showed that high SP1 expression positively correlates with TGF-beta signaling and inflammatory response, while negatively correlates with TNF-alpha signaling via NFKB. High KLF12 expression negatively correlates with interferon gamma response, IL2-STAT5 signaling, TNF-alpha signaling via NFKB, IL6-JAK-STAT3 signaling. Conclusion The abnormality of chromatin accessibility may play an important regulatory role in ccRCC immunity.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donggen Jiang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haiyun Xiong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guolong Liao
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiangwei Yang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - He Ma
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun Li
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Miaojuan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Binbin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunhui Sun
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liling Wang
- Maternal and Child Health Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Chen HY, Pang XY, Xu YY, Zhou GP, Xu HG. Transcriptional regulation of human cyclic GMP-AMP synthase gene. Cell Signal 2019; 62:109355. [PMID: 31276766 DOI: 10.1016/j.cellsig.2019.109355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS, cGAMP synthase) plays crucial roles in autoimmune disease, anti-tumor response, anti-senescence and anti-inflammatory response. Many studies have focused on cGAS-mediated signaling pathway. However, transcriptional mechanisms of cGAS gene have remained largely unknown. Here, we cloned the cGAS promoter region and characterized the molecular mechanisms controlling the cGAS transcriptional activity. By a series of 5' deletion and promoter constructions, we showed that the region (-414 to +76 relatives to the transcription start site) was sufficient for promoter activity. Mutation of Sp1 and CREB binding sites in this promoter region led to an apparent reduction of the cGAS promoter activity. Overexpression of Sp1 and CREB could obviously enhance promoter activity, whereas knocking-down of endogenous Sp1 and CREB markedly restrained the cGAS promoter activity. Sp1 and CREB binding to the cGAS promoter region in vivo was verified by Chromatin immunoprecipitation assay. These results pointed out that transcription factors Sp1 and CREB regulate the transcription of the cGAS gene.
Collapse
Affiliation(s)
- Hai-Yan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yan-Yan Xu
- Department of Endocrinology Genetics and Metabolism, Xuzhou Children's Hospital, Xuzhou, Jiangsu Province 221000, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
9
|
Wu Y, Zhang J, Wang M, Yang L, Wang Y, Hu T, Liu A, Cheng Q, Fu Z, Zhang P, Cao L. Proteomics analysis indicated the protein expression pattern related to the development of fetal conotruncal defects. J Cell Physiol 2019; 234:13544-13556. [PMID: 30635921 DOI: 10.1002/jcp.28033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Abnormal development of embryonic conus arteriosus could lead to conotruncal defects in fetal heart, and increase the incidence of fetal congenital heart disease. Tetralogy of Fallot (TOF) is one of the most common forms of congenital heart disease. It may be helpful for us to solve this clinical problem through exploring the molecular mechanisms of development in embryonic congenital heart disease. Proteomics has attracted much attention in understanding the development of human diseases during the past decades. However, there is still little information about the relationship between protein expression pattern and TOF. In this study, we aimed to explore the potential linkage of proteomics and TOF development. Briefly, 121 differentially expressed proteins were identified from a TOF group, compared with a control group. The expression levels of 34 of these proteins were significantly different (>1.5 absolute fold change, p < 0.05) between the two groups. Gene ontology (GO) and pathway analysis showed that these proteins were mainly associated with carbon metabolism, biosynthesis of antibodies, positive regulation of transcription from RNA polymerase II promoter, nucleus, ATP binding, and so on. The ingenuity pathway analysis (IPA) results indicated that 435 of upstream regulators were identified of these differentially expressed proteins, which might be involved in the development of TOF. Data of string analysis showed the protein-protein interaction network among the differentially expressed proteins and regulators, which are related to TOF. In conclusion, our study explored the protein expression pattern of TOF, which might provide new insights into understanding the mechanism of TOF development and afford potential targets for TOF diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Wu
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mei Wang
- Department of Pathology, Nanjing Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Yang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yongmei Wang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tao Hu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - An Liu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qing Cheng
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ziyi Fu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pingyang Zhang
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
10
|
Chhunchha B, Kubo E, Singh P, Singh DP. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress. Aging (Albany NY) 2018; 10:2284-2315. [PMID: 30215601 PMCID: PMC6188488 DOI: 10.18632/aging.101547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Progressive deterioration of antioxidant response in aging is a major culprit in the initiation of age-related pathobiology induced by oxidative stress. We previously reported that oxidative stress leads to a marked reduction in transcription factor Sp1 and its mediated Prdx6 expression in lens epithelial cells (LECs) leading to cell death. Herein, we examined how Sp1 activity goes awry during oxidative stress/aging, and whether it is remediable. We found that Sp1 is hyper-Sumoylated at lysine (K) 16 residue in aging LECs. DNA binding and promoter assays revealed, in aging and oxidative stress, a significant reduction in Sp1 overall binding, and specifically to Prdx6 promoter. Expression/overexpression assay revealed that the observed reduction in Sp1-DNA binding activity was connected to its hyper-Sumoylation due to increased reactive oxygen species (ROS) and Sumo1 levels, and reduced levels of Senp1, Prdx6 and Sp1. Mutagenesis of Sp1 at K16R (arginine) residue restored steady-state, and improved Sp1-DNA binding activity and transactivation potential. Extrinsic expression of Sp1K16R increased cell survival and reduced ROS levels by upregulating Prdx6 expression in LECs under aging/oxidative stress, demonstrating that Sp1K16R escapes the aberrant Sumoylation processes. Intriguingly, the deleterious processes are reversible by the delivery of Sumoylation-deficient Prdx6, an antioxidant, which would be a candidate molecule to restrict aging pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Prerna Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| |
Collapse
|
11
|
Nightingale K, Lin KM, Ravenhill BJ, Davies C, Nobre L, Fielding CA, Ruckova E, Fletcher-Etherington A, Soday L, Nichols H, Sugrue D, Wang ECY, Moreno P, Umrania Y, Huttlin EL, Antrobus R, Davison AJ, Wilkinson GWG, Stanton RJ, Tomasec P, Weekes MP. High-Definition Analysis of Host Protein Stability during Human Cytomegalovirus Infection Reveals Antiviral Factors and Viral Evasion Mechanisms. Cell Host Microbe 2018; 24:447-460.e11. [PMID: 30122656 PMCID: PMC6146656 DOI: 10.1016/j.chom.2018.07.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses. Multiplexed viral screens uncover host proteins targeted by early HCMV infection Finding host proteins targeted for degradation by HCMV reveals immune evasion strategies A screen of HCMV deletion mutants discovers viral factors that target >250 host proteins HLTF is an antiviral restriction factor that is targeted for degradation by HCMV UL145
Collapse
Affiliation(s)
- Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kai-Min Lin
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Colin Davies
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ceri A Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty Kopec 7, 65653 Brno, Czech Republic
| | | | - Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Hester Nichols
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Daniel Sugrue
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Eddie C Y Wang
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Pablo Moreno
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Yagnesh Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Gavin W G Wilkinson
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Peter Tomasec
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
12
|
Dhont L, Pintilie M, Kaufman E, Navab R, Tam S, Burny A, Shepherd F, Belayew A, Tsao MS, Mascaux C. Helicase-like transcription factor expression is associated with a poor prognosis in Non-Small-Cell Lung Cancer (NSCLC). BMC Cancer 2018; 18:429. [PMID: 29661164 PMCID: PMC5902896 DOI: 10.1186/s12885-018-4215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/12/2018] [Indexed: 01/09/2023] Open
Abstract
Background The relapse rate in early stage non-small cell lung cancer (NSCLC) after surgical resection is high. Prognostic biomarkers may help identify patients who may benefit from additional therapy. The Helicase-like Transcription Factor (HLTF) is a tumor suppressor, altered in cancer either by gene hypermethylation or mRNA alternative splicing. This study assessed the expression and the clinical relevance of wild-type (WT) and variant forms of HLTF RNAs in NSCLC. Methods We analyzed online databases (TCGA, COSMIC) for HLTF alterations in NSCLC and assessed WT and spliced HLTF mRNAs expression by RT-ddPCR in 39 lung cancer cell lines and 171 patients with resected stage I-II NSCLC. Results In silico analyses identified HLTF gene alterations more frequently in lung squamous cell carcinoma than in adenocarcinoma. In cell lines and in patients, WT and I21R HLTF mRNAs were detected, but the latter at lower level. The subgroup of 25 patients presenting a combined low WT HLTF expression and a high I21R HLTF expression had a significantly worse disease-free survival than the other 146 patients in univariate (HR 1.96, CI 1.17–3.30; p = 0.011) and multivariate analyses (HR 1.98, CI 1.15–3.40; p = 0.014). Conclusion A low WT HLTF expression with a high I21R HLTF expression is associated with a poor DFS.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium.,Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Cellular and Molecular Epigenetics, Université de Liège-GIGA, Liège, Belgium
| | - Melania Pintilie
- Biostatistics Department, University of Toronto, Toronto, Canada
| | - Ethan Kaufman
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Roya Navab
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shirley Tam
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arsène Burny
- Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Frances Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, Université de Mons, Mons, Belgium
| | - Ming-Sound Tsao
- Princess Margaret Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Céline Mascaux
- Department of Muldisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Chemin des Bourrely, 13195, Marseille, Cedex 20, France. .,Centre de Recherche en Cancérologie de Marseille (CRCM, Cancer Research Center of Marseille), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France.
| |
Collapse
|
13
|
Promoter analysis and transcriptional regulation of human carbonic anhydrase VIII gene in a MERRF disease cell model. Arch Biochem Biophys 2018; 641:50-61. [DOI: 10.1016/j.abb.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/22/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023]
|
14
|
Korzhnev DM, Neculai D, Dhe-Paganon S, Arrowsmith CH, Bezsonova I. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 66:209-219. [PMID: 27771863 DOI: 10.1007/s10858-016-0070-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities. Thus, they can convert Y-shaped replication forks into X-shaped Holliday junction structures that allow error-free replication over DNA lesions. The fork reversal activity of HLTF is dependent on 3'-ssDNA-end binding activity of its N-terminal HIRAN domain. Here we present the solution NMR structure of the human HLTF HIRAN domain, an OB-like fold module found in organisms from bacteria (as a stand-alone domain) to plants, fungi and metazoan (in combination with SWI2/SNF2 helicase-like domain). The obtained structure of free HLTF HIRAN is similar to recently reported structures of its DNA bound form, while the NMR analysis also reveals that the DNA binding site of the free domain exhibits conformational heterogeneity. Sequence comparison of N-terminal regions of HLTF, SHPRH and Rad5 aided by knowledge of the HLTF HIRAN structure suggests that the SHPRH N-terminus also includes an uncharacterized structured module, exhibiting weak sequence similarity with HIRAN regions of HLTF and Rad5, and potentially playing a similar functional role.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dante Neculai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
15
|
Cheng CK, Chan NPH, Wan TSK, Lam LY, Cheung CHY, Wong THY, Ip RKL, Wong RSM, Ng MHL. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica 2016; 101:448-57. [PMID: 26802049 DOI: 10.3324/haematol.2015.137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Natalie P H Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Thomas S K Wan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Lai Ying Lam
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Coty H Y Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Terry H Y Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Rosalina K L Ip
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina Sir Y. K. Pao Centre for Cancer, Prince of Wales Hospital, Hong Kong, Cina
| | - Margaret H L Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Cina
| |
Collapse
|
16
|
Dhont L, Mascaux C, Belayew A. The helicase-like transcription factor (HLTF) in cancer: loss of function or oncomorphic conversion of a tumor suppressor? Cell Mol Life Sci 2016; 73:129-47. [PMID: 26472339 PMCID: PMC11108516 DOI: 10.1007/s00018-015-2060-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
The Helicase-like Transcription Factor (HLTF) belongs to the SWI/SNF family of proteins involved in chromatin remodeling. In addition to its role in gene transcription, HLTF has been implicated in DNA repair, which suggests that this protein acts as a tumor suppressor. Accumulating evidence indicates that HLTF expression is altered in various cancers via two mechanisms: gene silencing through promoter hypermethylation or alternative mRNA splicing, which leads to the expression of truncated proteins that lack DNA repair domains. In either case, the alteration of HLTF expression in cancer has a poor prognosis. In this review, we gathered published clinical and molecular data on HLTF. Our purposes are (a) to address whether HLTF alterations could be considered as cancer drivers or passengers and (b) to determine whether its different functions (transcription or DNA repair) could be diverted in clonal selection during cancer progression.
Collapse
Affiliation(s)
- Ludovic Dhont
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
| | - Céline Mascaux
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, 14th floor, Toronto, ON M5G 1L7 Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2L9 Canada
| | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons, Avenue du Champ de Mars 6, Pentagone 3A, B-7000 Mons, Belgium
| |
Collapse
|
17
|
Liu D, Geng P, Jiang X, An L, Li W. Structural and functional characterization of the actin-1 gene promoter from the Antheraea pernyi (Lepidoptera: Saturniidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:173. [PMID: 25368086 PMCID: PMC5443593 DOI: 10.1093/jisesa/ieu035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/06/2013] [Indexed: 06/04/2023]
Abstract
The Chinese oak silkworm, Antheraea pernyi, is an economically important insect of the Saturniidae family. In this study, genome walking was performed to obtain an A. pernyi actin promoter, which can be employed in transgenic or stable cell line expression systems. The putative promoter was analyzed by the online promoter analysis programs at the Berkeley Drosophila Genome Project and the Web Promoter Scan Service, which led to the recognition of several functional elements. With respect to these elements, a series of actin A1 promoter fragments with 5'-deletions were generated that were then used to construct different vectors expressing Green Fluorescent Protein (GFP). The plasmids were transfected into Sf9 cells and GFP expression was determined by observing GFP fluorescence in cells and by measuring GFP mRNA levels with real-time polymerase chain reaction. Sequence comparisons indicated that the sequence cloned from A. pernyi was the actin A1 promoter. The basic function of the promoter was verified by constructing expression vectors and observing GFP expression. In addition, real-time polymerase chain reaction revealed a strong inhibitory element may exist upstream of the TATA box, which downregulated gene expression. The actin A1 promoter is an ideal candidate for use in A. pernyi transgenic systems.
Collapse
Affiliation(s)
- Danmei Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China School of Agriculture, Eastern Liaoning University, Dandong, Liaoning 118000, People's Republic of China
| | - Peng Geng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Xiran Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| | - Wenli Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, People's Republic of China
| |
Collapse
|
18
|
Helmer RA, Martínez-Zaguilán R, Dertien JS, Fulford C, Foreman O, Peiris V, Chilton BS. Helicase-like transcription factor (Hltf) regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis. PLoS One 2013; 8:e80461. [PMID: 24278285 PMCID: PMC3835564 DOI: 10.1371/journal.pone.0080461] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf’s regulation of the G2/M transition (p=9.726E-15) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus, silencing Hltf during heart organogenesis compromised DNA double-strand break repair, and caused aberrant collagen biogenesis altering the structural network that transmits cardiomyocyte force into muscle contraction.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martínez-Zaguilán
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Candra Fulford
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, United States of America
| | - Vasum Peiris
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Helmer RA, Foreman O, Dertien JS, Panchoo M, Bhakta SM, Chilton BS. Role of helicase-like transcription factor (hltf) in the G2/m transition and apoptosis in brain. PLoS One 2013; 8:e66799. [PMID: 23826137 PMCID: PMC3691323 DOI: 10.1371/journal.pone.0066799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/14/2013] [Indexed: 01/01/2023] Open
Abstract
HLTF participates in transcription, chromatin remodeling, DNA damage repair, and tumor suppression. Aside from being expressed in mouse brain during embryonic and postnatal development, little is known about Hltf's functional importance. Splice variant quantification of wild-type neonatal (6-8 hour postpartum) brain gave a ratio of 5:1 for Hltf isoform 1 (exons 1-25) to isoform 2 (exons 1-21 with exon 21 extended via a partial intron retention event). Western analysis showed a close correlation between mRNA and protein expression. Complete loss of Hltf caused encephalomalacia with increased apoptosis, and reduced viability. Sixty-four percent of Hltf null mice died, 48% within 12-24 hours of birth. An RNA-Seq snapshot of the neonatal brain transcriptome showed 341 of 20,000 transcripts were altered (p < 0.05) - 95 up regulated and 246 down regulated. MetaCoreTM enrichment pathway analysis revealed Hltf regulates cell cycle, cell adhesion, and TGF-beta receptor signaling. Hltf's most important role is in the G2/M transition of the cell cycle (p = 4.672e-7) with an emphasis on transcript availability of major components in chromosome cohesion and condensation. Hltf null brains have reduced transcript levels for Rad21/Scc1, histone H3.3, Cap-E/Smc2, Cap-G/G2, and Aurora B kinase. The loss of Hltf in its yeast Rad5-like role in DNA damage repair is accompanied by down regulation of Cflar, a critical inhibitor of TNFRSF6-mediated apoptosis, and increased (p<0.0001) active caspase-3, an indicator of intrinsic triggering of apoptosis in null brains. Hltf also regulates Smad7/Bambi/Tgf-beta/Bmp5/Wnt10b signaling in brain. ChIP confirmed Hltf binding to consensus sequences in predicted (promoter Scgb3a1 gene) and previously unidentified (P-element on chromosome 7) targets. This study is the first to provide a comprehensive view of Hltf targets in brain. Moreover, it reveals how silencing Hltf disrupts cell cycle progression, and attenuates DNA damage repair.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Oded Foreman
- Genentech, Inc., South San Francisco, California, United States of America
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Marlyn Panchoo
- St. George's University, St. George's, Grenada, West Indies
| | - Suhani M. Bhakta
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Guillaumond F, Boyer B, Becquet D, Guillen S, Kuhn L, Garin J, Belghazi M, Bosler O, Franc J, François‐Bellan A. Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF. FASEB J 2011; 25:2740-56. [DOI: 10.1096/fj.10-178616] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fabienne Guillaumond
- Institut des Sciences Moleculaires de Marseille (ISM2)UMR6263 Université Aix‐Marseille IIIMarseilleFrance
| | - Benedicte Boyer
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Denis Becquet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Severine Guillen
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Lauriane Kuhn
- Plateforme Étude de la Dynamique des Protéomes (EDyP)‐ServiceGrenobleFrance
| | - Jerome Garin
- Centre d'Analyse Protéomique de MarseilleInstitut Fédératif de Recherche (IFR) Jean‐RocheMarseilleFrance
| | - Maya Belghazi
- Plateforme Protéomique de l'Esplanade Institut de Biologie Moléculaire et Cellulaire (IBMC)StrasbourgFrance
| | - Olivier Bosler
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Jean‐Louis Franc
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| | - Anne‐Marie François‐Bellan
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6231Université Aix‐Marseille II, IIIMarseilleFrance
| |
Collapse
|
21
|
SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. Biochem J 2011; 435:489-98. [DOI: 10.1042/bj20101474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. However, little is known about how various intra- or extra-cellular stimuli regulate expression levels of components in the SUMO system. SUMO isoforms SUMO2 and SUMO3 can rapidly convert to be conjugated in response to a variety of cellular stresses. Owing to the limitations of sequence homology, SUMO2 and SUMO3 cannot be differentiated between and are thus referred to as SUMO2/3. Whether these two isoforms are regulated in distinct manners has never been addressed. In the present paper we report that the expression of SUMO3, but not SUMO2, can be down-regulated at the transcription level by cellular oxidative stress. In the present study, we checked SUMO2 and SUMO3 mRNA levels in cells exposed to various doses of H2O2 and in cells bearing different levels of ROS (reactive oxygen species). We found an inverse relationship between SUMO3 transcription and ROS levels. We characterized a promoter region specific for the mouse Sumo3 gene that is bound by the redox-sensitive transcription factor Sp1 (specificity protein 1) and demonstrated oxidation of Sp1, as well as suppression of Sp1–DNA binding upon oxidative stress. This revealed for the first time that the expression of SUMO2 and SUMO3 is regulated differently by ROS. These findings may enhance our understanding about the regulation of SUMOylation and also shed light on the functions of Sp1.
Collapse
|
22
|
Yamamichi N, Inada KI, Furukawa C, Sakurai K, Tando T, Ishizaka A, Haraguchi T, Mizutani T, Fujishiro M, Shimomura R, Oka M, Ichinose M, Tsutsumi Y, Omata M, Iba H. Cdx2 and the Brm-type SWI/SNF complex cooperatively regulate villin expression in gastrointestinal cells. Exp Cell Res 2009; 315:1779-89. [PMID: 19371634 DOI: 10.1016/j.yexcr.2009.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 01/07/2023]
Abstract
In our recent study showing a correlation between Brm-deficiency and undifferentiated status of gastric cancer, we found that the Brm-type SWI/SNF complex is required for villin expression. To elucidate intestinal villin regulation more precisely, we here analyzed structure and function of the promoter of human villin. About 1.1 kb upstream of the determined major transcription start site, we identified a highly conserved region (HCR-Cdx) among mammals, which contains two binding sites for Cdx. Expression analyses of 30 human gastrointestinal cell lines suggested that villin is regulated by Cdx2. Introduction of Cdx family genes into colorectal SW480 cells revealed that villin is strongly induced strongly by Cdx2, moderately by Cdx1, and marginally by Cdx4. Knockdown of Cdx2 in SW480 cells caused a clear downregulation of villin, and reporter assays showed that HCR-Cdx is crucial for Cdx2-dependent and Brm-dependent villin expression. Immunohistochemical analyses of gastric intestinal metaplasia and cancer revealed that villin and Cdx2 expression are tightly coupled. GST pull-down assays demonstrated a direct interaction between Cdx2 and several SWI/SNF subunits. Chromatin immunoprecipitation analyses showed the recruitment of Cdx2 and Brm around HCR-Cdx. From these results, we concluded that Cdx2 regulates intestinal villin expression through recruiting Brm-type SWI/SNF complex to the villin promoter.
Collapse
Affiliation(s)
- Nobutake Yamamichi
- Department of Microbiology and Immunology, Division of Host-Parasite Interaction, Institute of Medical Science, University of Tokyo, Shirokanedai Minato-ku, Tokyo Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
RUSH/SMARCA3 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A, member 3) is capable of sequence-selective DNA binding and ATP-dependent DNA unwinding. In rabbit uterine epithelial cells, RUSH-1alpha (113 kDa) is the progesterone-dependent splice variant and RUSH-1beta (95 kDa) is the oestrogen-dependent splice variant. Rabbit RUSH/SMARCA3 mRNA is primarily regulated at the proximal promoter (-162/+90) via a PRE (progesterone-response element) half-site/overlapping Y-box domain (-38/-26) and two Sp (specificity protein) 3 sites centred at -128 and -58. We investigated hormone regulation by exploring binding of transcription factors to a putative RUSH/SMARCA3 site (-616/-611) and the distal Sp3 (-131/-126) site. In response to progesterone, RUSH-1alpha binds the RUSH site and the Sp3 site becomes a functional binding site for Egr-1 (early growth-response gene product 1)/Sp (specificity protein)1/3/MAZ (Myc-associated zinc-finger protein)/MZF1 (myeloid zinc finger 1)/c-Rel. TransSignal TF-TF Interaction Arrays, supershift assays and ChIP (chromatin immunoprecipitation) analyses confirmed strong physical interactions between RUSH and Egr-1/c-Rel. Higher-order long-range interactions between RUSH and the Egr-1/c-Rel derivative of the anisotropic flexibility of the intervening DNA sequence were shown with 3C (chromosome conformation capture) assays. Transient transfection assays with mutant constructs showed the co-operative interaction between RUSH and Egr-1 mediates repression by c-Rel. Thus DNA-bound RUSH/SMARCA3 communicates with its own proximal promoter by looping the intervening DNA. Moreover, progesterone-dependent DNA looping is an adjunct to progesterone induction of the RUSH/SMARCA3 gene because the availability of RUSH isoforms and relevant binding partners is progesterone-regulated.
Collapse
|
24
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
25
|
Sturm RA, Duffy DL, Zhao ZZ, Leite FP, Stark MS, Hayward N, Martin NG, Montgomery GW. A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am J Hum Genet 2008; 82:424-31. [PMID: 18252222 DOI: 10.1016/j.ajhg.2007.11.005] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated that haplotypes of three single nucleotide polymorphisms (SNPs) within the first intron of the OCA2 gene are extremely strongly associated with variation in human eye color. In the present work, we describe additional fine association mapping of eye color SNPs in the intergenic region upstream of OCA2 and within the neighboring HERC2 (hect domain and RLD2) gene. We screened an additional 92 SNPs in 300-3000 European individuals and found that a single SNP in intron 86 of HERC2, rs12913832, predicted eye color significantly better (ordinal logistic regression R(2) = 0.68, association LOD = 444) than our previous best OCA2 haplotype. Comparison of sequence alignments of multiple species showed that this SNP lies in the center of a short highly conserved sequence and that the blue-eye-associated allele (frequency 78%) breaks up this conserved sequence, part of which forms a consensus binding site for the helicase-like transcription factor (HLTF). We were also able to demonstrate the OCA2 R419Q, rs1800407, coding SNP acts as a penetrance modifier of this new HERC2 SNP for eye color, and somewhat independently, of melanoma risk. We conclude that the conserved region around rs12913832 represents a regulatory region controlling constitutive expression of OCA2 and that the C allele at rs12913832 leads to decreased expression of OCA2, particularly within iris melanocytes, which we postulate to be the ultimate cause of blue eye color.
Collapse
|
26
|
Hewetson A, Chilton BS. Progesterone-dependent deoxyribonucleic acid looping between RUSH/SMARCA3 and Egr-1 mediates repression by c-Rel. Mol Endocrinol 2008; 22:813-22. [PMID: 18174357 DOI: 10.1210/me.2007-0432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroids regulate alternative splicing of RUSH/SMARCA3. The full-length, progesterone-dependent alpha-isoform and the 3'-truncated, estrogen-dependent beta-isoform have identical DNA-binding domains, nuclear localization signals, and RING fingers. Transcription of RUSH/SMARCA3 is mediated by a bipartite progesterone receptor half-site/overlapping Y-box combination (-38/-26), where progesterone activation is attenuated by nuclear factor Y binding. Regulation also involves two GC-rich sequences in the proximal promoter (-162/+90) and a RUSH/SMARCA3 site (-616/-611) in the 5'-untranslated region. Isoform-specific binding to the RUSH/SMARCA3 site is dictated by the hormonal milieu, as is the availability of factors that bind to the distal GC-rich site (-131/-126), a composite binding site for Egr-1/specific protein-1/3/Myc-associated zinc finger protein/myeloid zinc finger-1/c-Rel, and the proximal GC-rich site (-62/-53), which binds only Sp1/3. TransSignal TF-TF interaction arrays, supershift assays, and chromatin immunoprecipitation analyses confirmed strong physical interactions between RUSH/Egr-1 and RUSH/c-Rel that were visualized with fluorescent microscopy. Higher-order, long-range interactions between RUSH and Egr-1/c-Rel derivative of the anisotropic flexibility of the intervening DNA sequence were shown by Chromosome Conformation Capture assay. Glutathione S-transferase pull-downs confirmed that the RING finger is the protein-binding domain, suggesting that the RUSH isoforms have equivalent potential for protein interactions. Transient transfection assays showed that the cooperative interaction between RUSH and Egr-1 mediates repression by c-Rel. Thus, progesterone-induced transcription is fine-tuned by isoform-specific autoregulation, in which newly synthesized RUSH-1alpha binds DNA and interacts physically with liganded Egr-1 in the proximal promoter via a DNA-looping mechanism to mediate repression by c-Rel. In the absence of progesterone induction, RUSH-1beta replaces RUSH-1alpha binding, Egr-1 and c-Rel are unavailable as molecular ties, and DNA looping is disfavored.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Texas 79430, USA
| | | |
Collapse
|
27
|
Freson K, Stolarz K, Aerts R, Brand E, Brand-Herrmann SM, Kawecka-Jaszcz K, Kuznetsova T, Tikhonoff V, Thijs L, Vermylen J, Staessen JA, Van Geet C. -391 C to G substitution in the regulator of G-protein signalling-2 promoter increases susceptibility to the metabolic syndrome in white European men: consistency between molecular and epidemiological studies. J Hypertens 2007; 25:117-25. [PMID: 17143182 DOI: 10.1097/hjh.0b013e3280109c6c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The regulator of G-protein signalling-2 (RGS2) is a key factor in adipogenesis. We hypothesized that the metabolic syndrome, of which obesity is an important component, might be related to genetic variation in RGS2. METHODS AND RESULTS We screened the human RGS2 gene. We tested the functionality of a common genetic variant in vitro, ex vivo, and in epidemiological study involving six European populations. The C to G substitution at position -391 in the RGS2 promoter was associated with enhanced RGS2 expression in vitro in transfected 3T3-L1 adipocytes and Chinese hamster cells and ex vivo in adipocytes from male, but not female, volunteers. In 2732 relatives from 512 families and 348 unrelated individuals, randomly recruited from six European populations, the prevalence of GG homozygosity was 54.1%. The metabolic syndrome score, a composite of six continuous traits making up this clinical entity, was 0.27 standardized units higher (P < 0.001) in 795 GG homozygous men compared with 683 men carrying the C allele. Transmission of the -391 G allele to male offspring was associated with a 0.20 unit increase in the score (P=0.039). These epidemiological relations were not significant in 1602 women. CONCLUSIONS The C to G substitution at position -391 in the RGS2 promoter increases RGS2 expression in adipocytes and is associated with the metabolic syndrome in white European men. Further experimental and clinical research should establish whether this common polymorphism might be a target for preventive or therapeutic intervention.
Collapse
Affiliation(s)
- Kathleen Freson
- Center for Molecular and Vascular Biology, University Hospital Gasthuisberg, University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu J, Xue L, Weng M, Sun Y, Zhang Z, Wang W, Tong T. Sp1 is essential for p16 expression in human diploid fibroblasts during senescence. PLoS One 2007; 2:e164. [PMID: 17225865 PMCID: PMC1764714 DOI: 10.1371/journal.pone.0000164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/08/2006] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND p16(INK4a) tumor suppressor protein has been widely proposed to mediate entrance of the cells into the senescent stage. Promoter of p16(INK4a) gene contains at least five putative GC boxes, named GC-I to V, respectively. Our previous data showed that a potential Sp1 binding site, within the promoter region from -466 to -451, acts as a positive transcription regulatory element. These results led us to examine how Sp1 and/or Sp3 act on these GC boxes during aging in cultured human diploid fibroblasts. METHODOLOGY/PRINCIPAL FINDINGS Mutagenesis studies revealed that GC-I, II and IV, especially GC-II, are essential for p16(INK4a) gene expression in senescent cells. Electrophoretic mobility shift assays (EMSA) and ChIP assays demonstrated that both Sp1 and Sp3 bind to these elements and the binding activity is enhanced in senescent cells. Ectopic overexpression of Sp1, but not Sp3, induced the transcription of p16(INK4a). Both Sp1 RNAi and Mithramycin, a DNA intercalating agent that interferes with Sp1 and Sp3 binding activities, reduced p16(INK4a) gene expression. In addition, the enhanced binding of Sp1 to p16(INK4a) promoter during cellular senescence appeared to be the result of increased Sp1 binding affinity, not an alteration in Sp1 protein level. CONCLUSIONS/SIGNIFICANCE All these results suggest that GC- II is the key site for Sp1 binding and increase of Sp1 binding activity rather than protein levels contributes to the induction of p16(INK4a) expression during cell aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Wengong Wang
- * To whom correspondence should be addressed. E-mail: (WW); (TT)
| | - Tanjun Tong
- * To whom correspondence should be addressed. E-mail: (WW); (TT)
| |
Collapse
|
29
|
Chiang BT, Liu YW, Chen BK, Wang JM, Chang WC. Direct interaction of C/EBPdelta and Sp1 at the GC-enriched promoter region synergizes the IL-10 gene transcription in mouse macrophage. J Biomed Sci 2006; 13:621-35. [PMID: 16871431 DOI: 10.1007/s11373-006-9101-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/12/2006] [Indexed: 11/27/2022] Open
Abstract
We previously reported that LPS activates the transcription of the IL-10 gene through the Sp1 and C/EBP binding sites and indicated that Sp1, C/EBPbeta and C/EBPdelta can coactivate the IL-10 gene expression in mouse macrophage cells [Liu Y.-W., Tseng H.-P., Chen L.-C., Chen B.-K., Chang W.-C. J. Immunol. 171: 821-828, 2003]. In the present report, we demonstrated the direct physical interaction between C/EBPdelta and Sp1, and also mapped the interaction domains of these two proteins. C/EBPdelta binds to Sp1 via its basic region leucine zipper domain. The C-terminus of Sp1 was also the major region interacting with C/EBPdelta. However, both glutamine- and serine/threonine-rich homologus regions of Sp1 also interacted with C/EBPdelta. The binding of Sp1 and C/EBPdelta as a complex to the Sp1 binding site on the promoter of IL-10 was further confirmed by using the DNA affinity precipitation assay. By using Sp1-deficient SL2 cells, we also found that the overexpressions of C/EBPdelta and Sp1 synergically activate the transcriptional activity of IL-10 gene. Taken together, our present results revealed a novel mechanism of a superactivation of Sp1 by C/EBPdelta via a direct interaction between these two transcription factors leading to the activation of the IL-10 gene in mouse macrophage cells.
Collapse
Affiliation(s)
- Ben-Tzu Chiang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Debauve G, Nonclercq D, Ribaucour F, Wiedig M, Gerbaux C, Leo O, Laurent G, Journé F, Belayew A, Toubeau G. Early expression of the Helicase-Like Transcription Factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis. Mol Cancer 2006; 5:23. [PMID: 16762066 PMCID: PMC1550248 DOI: 10.1186/1476-4598-5-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 06/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Helicase-Like Transcription Factor (HLTF/SMARCA3) belongs to the family of SWI/SNF proteins that use the energy of ATP hydrolysis to remodel chromatin in a variety of cellular processes. Several SWI/SNF genes are disrupted in cancer, suggesting a role of tumor suppressor. Similarly, the HLTF gene was recently found to be inactivated by hypermethylation in a number of advanced colon and gastric tumors. However, other evidences indicated a 20-fold HLTF overexpression in cell lines derived from various neoplasms (ovary, breast, cervix, kidney...). RESULTS In the present study, we investigated HLTF expression by immunohistochemistry in a model of kidney tumors induced by continuous administration of diethylstilbestrol to male Syrian golden hamsters. A strong labeling was already detected in small tumor buds, making HLTF an early cancer marker in this model. Although every cell stained for HLTF at this early stage, the number of HLTF-positive cells decreased to 10% with cancer progression, and these positive cells were dispersed in the tumor mass. HLTF expression was conserved in the HKT-1097 cell line established from kidney tumors, but again only 10% of positive cells were found in xenografts produced by HKT-1097 cells in nude mice. CONCLUSION In conclusion, our data suggest that HLTF gene activation is linked to initial steps of carcinogenesis in this model and should be investigated in early stages of other neoplasms.
Collapse
Affiliation(s)
- Gaël Debauve
- Laboratory of Molecular Biology, University of Mons-Hainaut, Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, University of Mons-Hainaut, Mons, Belgium
| | - Fabrice Ribaucour
- Laboratory of Molecular Biology, University of Mons-Hainaut, Mons, Belgium
| | | | | | - Oberdan Leo
- Laboratory of Animal Physiology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Guy Laurent
- Laboratory of Histology, University of Mons-Hainaut, Mons, Belgium
| | - Fabrice Journé
- Laboratory of Endocrinology and Bone Diseases and Department of Internal Medicine, Institut J Bordet, Brussels, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, University of Mons-Hainaut, Mons, Belgium
| | - Gérard Toubeau
- Laboratory of Histology, University of Mons-Hainaut, Mons, Belgium
| |
Collapse
|
31
|
Jaiswal AS, Balusu R, Narayan S. 7,12-Dimethylbenzanthracene-dependent transcriptional regulation of adenomatous polyposis coli (APC) gene expression in normal breast epithelial cells is mediated by GC-box binding protein Sp3. Carcinogenesis 2005; 27:252-61. [PMID: 16150893 DOI: 10.1093/carcin/bgi225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present investigation, we have examined the transcriptional regulation of adenomatous polyposis coli (APC) gene expression in the spontaneously immortalized human normal breast epithelial cell line, MCF10A, in response to carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The APC mRNA levels and the APC gene's promoter (pAPCP) activity were increased in MCF10A cells after treatment with DMBA. A sequential deletion analysis and site-directed mutagenesis of the pAPCP promoter revealed that the DMBA response is mediated through a GC-box element. Also, the GC-box binding agent mithramycin A, which prevents binding of proteins to the GC-box region, abolished DMBA-mediated increase of the pAPCP promoter activity. The specificity of the proteins binding to the GC-box region was characterized by gel-shift analysis. An increased binding of the GC-box binding proteins was observed in the gel-shift analysis with nuclear extracts from DMBA-treated MCF10A cells, which corresponded to the increased levels of Sp1 and Sp3 proteins. However, a super-shift of the DNA-protein complexes was observed with only anti-Sp3 antibody. Based on the chromatin-immunoprecipitation assay results, the Sp3 appeared to be a genuine protein binding to the GC-box site of the pAPCP promoter. In RNA interference experiments, in which the Sp3 expression was knocked down, the DMBA response on the pAPCP promoter activity was reduced, suggesting that the binding of Sp3 to the GC-box site is critical for DMBA-induced pAPCP promoter activity. From these results we conclude that the increased pAPCP promoter activity in the MCF10A cell line in response to DMBA treatment is mediated by Sp3.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
32
|
Chang WC, Chen BK. Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem Biophys Res Commun 2005; 338:117-21. [PMID: 16122700 DOI: 10.1016/j.bbrc.2005.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
The signal transduction of human 12(S)-lipoxygenase and the regulation of gene activation, induced by epidermal growth factor (EGF), are discussed in this review article. Treatment of human epidermoid carcinoma A431 cells with EGF induces the gene expression of human 12(S)-lipoxygenase, and two Sp1 binding sites residing at -158 to -150 bp and -123 to -114 bp are essential in the mediation of EGF induction of the 12(S)-lipoxygenase gene. EGF induces MAPK activation in cells, followed by the activation of AP1. Thus, the biosynthesis of c-Jun is enhanced, which subsequently interacts with Sp1. c-Jun on Sp1/c-Jun complex is then recruited to gene promoter through the binding of Sp1 to Sp1-binding sites on gene promoter. Subsequent transactivation of the promoter activation of the human 12(S)-lipoxygenase gene is induced. In addition to the functional role of Sp1 in gene regulation of 12(S)-lipoxygenase, recent studies have also demonstrated that Sp1 acting as an anchor protein to recruit transcription factor c-Jun is essential for growth factor and/or phorbol ester-induced expression of several genes.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
33
|
Duffy AA, Martin MM, Elton TS. RETRACTED: Transcriptional regulation of the AT1 receptor gene in immortalized human trophoblast cells. ACTA ACUST UNITED AC 2004; 1680:158-70. [PMID: 15507319 DOI: 10.1016/j.bbaexp.2004.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 09/07/2004] [Accepted: 09/21/2004] [Indexed: 11/26/2022]
Abstract
Studies investigating the mechanisms that govern the expression of the human angiotensin II (Ang II) type 1 receptor (hAT1R) gene have progressed slowly due to the lack of human cell lines that express the AT1R. Recently, however, an immortalized human trophoblast cell line (HTR-8/SVNeo) was demonstrated to respond to Ang II. Therefore, we utilized this cell line to characterize the AT1R expressed on the cell surface and to investigate the mechanisms by which the hAT1R gene is regulated in these cells. HTR-8/SVNeo cells were shown to express functional high affinity AT1Rs having a Bmax value of 114+/-11 fmol/mg protein and a Kd value of 0.14+/-0.1 nM. Additionally, Ang II-induced IP3 production was mediated via the AT1R. Deletional analysis of the hAT1R promoter localized a major basal regulatory sequence within the -105 to -79 bp region, relative to the transcription start site, in HTR-8/SVNeo cells. Electrophoretic mobility shift assay (EMSA) and Chromatin Immunoprecipitation (ChIP) assay demonstrated that the transcription factors, Sp1 and Sp3, interact with this region of the hAT1R promoter in vitro and in vivo. Taken together, our data demonstrate that HTR-8/SVNeo cells express functional AT1Rs and that basal level expression of this gene is regulated, in part, by Sp1 and Sp3 in this cell line.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Base Sequence
- Cells, Cultured
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Luciferases
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Sequence Homology, Nucleic Acid
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp3 Transcription Factor
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Aaron A Duffy
- Davis Heart and Lung Research Institute, College of Pharmacy, Division of Pharmacology, The Ohio State University, DHLRI 515, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
34
|
Okumura K, Hosoe Y, Nakajima N. c-Jun and Sp1 family are critical for retinoic acid induction of the lamin A/C retinoic acid-responsive element. Biochem Biophys Res Commun 2004; 320:487-92. [PMID: 15219855 DOI: 10.1016/j.bbrc.2004.05.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Indexed: 10/26/2022]
Abstract
The expression of A-type lamins, subdivided into lamin A and C, is developmentally regulated. Retinoic acid (RA)-induced differentiation of P19 embryonic carcinoma cells, in which A-type lamins are absent, increases the expression of lamin A/C. We previously showed, using P19 cells as a model system, that the lamin A/C promoter has a retinoic acid-responsive element (L-RARE), and that Sp1 and Sp3 bind the CACCC box of the L-RARE. In this study, we report that Sp1, Sp3, and c-Jun increase transactivation of the L-RARE during RA treatment. Sp1 and Sp3 regulate the lamin A/C promoter in Sp1-deficient SL2 cells and contribute to RA-dependent activation in GAL4-based transcriptional assays. Overexpression of c-Jun causes transactivation of a chimeric promoter consisting of four tandem L-RARE repeats fused with the luciferase gene in P19 cells. c-Jun also transactivates a reporter construct with five tandem GAL4-binding sites, only when co-expressed with either GAL4-Sp1 or Sp3 fusion proteins. Furthermore, we detect a physiological interaction between c-Jun with Sp1/Sp3 in RA-treated cells. Our data suggest that Sp1, Sp3, and c-Jun play an important role in gene expression through the L-RARE during RA treatment.
Collapse
Affiliation(s)
- Koichi Okumura
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
35
|
Chae YM, Park KK, Magae J, Lee IS, Kim CH, Kim HC, Hong S, Lee JG, Choi IJ, Kim HS, Min KS, Lee IK, Chang YC. Sp1-decoy oligodeoxynucleotide inhibits high glucose-induced mesangial cell proliferation. Biochem Biophys Res Commun 2004; 319:550-555. [PMID: 15178441 DOI: 10.1016/j.bbrc.2004.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Indexed: 11/24/2022]
Abstract
Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalities observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of transforming growth factor-beta1 and plasminogen activator inhibitor-1. The Sp1-decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to high glucose. These results suggest that the Sp1-decoy oligodeoxynucleotide could be a powerful tool in preventing the pathogenesis of renal hypertrophy.
Collapse
Affiliation(s)
- Young-Mi Chae
- Kidney Institute, Keimyung University School of Medicine, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xue L, Wu J, Zheng W, Wang P, Li J, Zhang Z, Tong T. Sp1 is involved in the transcriptional activation of p16(INK4) by p21(Waf1) in HeLa cells. FEBS Lett 2004; 564:199-204. [PMID: 15094066 DOI: 10.1016/s0014-5793(04)00352-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/17/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
Both p16(INK4) and p21(Waf1) are very important negative regulators of the cell cycle. In this study we examined the effects of p21(Waf1) on the transcription of p16(INK4). We determined that p21(Waf1) can activate the transcription of p16(INK4), and that this effect is GC-box dependent. We also found that the transcription factor Sp1 plays a key role in this event. Upregulation of Sp1 contributes to the transcriptional activation and protein level of p16(INK4) mediated by p21(Waf1), and is a potential point of cooperation between the p16/pRb and p14 (ARF)/p53 tumor suppressor pathways.
Collapse
Affiliation(s)
- Lixiang Xue
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Safe S, Kim K. Nuclear receptor-mediated transactivation through interaction with Sp proteins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:1-36. [PMID: 15196889 DOI: 10.1016/s0079-6603(04)77001-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | | |
Collapse
|
38
|
Chen HC, Feener EP. MEK1,2 response element mediates angiotensin II-stimulated plasminogen activator inhibitor-1 promoter activation. Blood 2003; 103:2636-44. [PMID: 14656894 DOI: 10.1182/blood-2003-05-1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MEK1,2 (MAPK/ERK kinase 1 and 2) pathway mediates the up-regulation of plasminogen activator inhibitor-1 (PAI-1) expression in vascular smooth muscle cells by a variety of hormones, including angiotensin II. Transfection of constitutively active MEKK-1, an upstream activator of the mitogen-activated protein (MAP) kinase pathways, was used to isolate an enhancer element located between -89 and -50 bp in PAI-1 promoter that was activated by MEKK-1 and selectively blocked by the MEK1,2 inhibitor PD98059. Mutational analysis revealed that the MEKK-1 response element (MRE) contained 2 cis-acting Sp1- and AP-1-like sequences, located between -75 to -70 and -63 to -52 bp, respectively. Overexpression of Sp1 enhanced MEKK-1-induced MRE promoter activity and a dominant-negative c-Fos blocked this Sp1 response. The combination of Sp1 and c-Jun or c-Fos was required to activate this MRE. Angiotensin II (Ang II) stimulation increased c-Fos, c-Jun, and Sp1 binding to the MRE by 100-, 4.9-, and 1.9-fold, respectively, and these responses were inhibited by PD98059 and AT1 receptor antagonist candesartan. Intravenous Ang II infusion in rats increased aortic c-Fos binding to the MRE. This MRE sequence mediated a 4-fold increase of MEK1,2-dependent PAI-1/luciferase mRNA expression by angiotensin II stimulation. This report identifies the MEK1,2 response element that mediates angiotensin II-stimulated PAI-1 promoter activation and shows that activation of this element requires Sp1 and AP-1 co-activation.
Collapse
Affiliation(s)
- Hong-Chi Chen
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
39
|
Hewetson A, Chilton BS. An Sp1-NF-Y/progesterone receptor DNA binding-dependent mechanism regulates progesterone-induced transcriptional activation of the rabbit RUSH/SMARCA3 gene. J Biol Chem 2003; 278:40177-85. [PMID: 12890680 DOI: 10.1074/jbc.m303921200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroids regulate alternative splicing of rabbit RUSH/SMARCA3, an SWI/SNF-related transcription factor. Transactivation was evaluated in 2057 bp of genomic sequence. Truncation analysis identified a minimal 252-bp region with strong basal promoter activity in transient transfection assays. The size of the 5'-untranslated region (233 bp) and the transcription start site were determined by primer extension analysis. The transcription start site mapped to a consensus initiator (Inr) element in a TATA-less region with a downstream promoter element (+29). These elements were authenticated by mutation/deletion analysis. The Inr/downstream promoter element combination is conserved in the putative core promoter (-35/+35) of the human ortholog, suggesting that transcription initiation is similarly conserved. Two Sp1 sites that are also conserved in the putative promoter of human SMARCA3 and a RUSH binding site (-616/-611) that is unique to the rabbit promoter repress basal transcription. These sites were variously authenticated by gel shift and chromatin immunoprecipitation assays. Analysis of the proximal promoter showed the -162/+90 region was required for progesterone responsiveness in transient transfection assays. Subsequent mutation/deletion analysis revealed a progesterone receptor half-site mediated induction by progesterone. An overlapping Y-box (in the reverse ATTGG orientation) repressed basal transcription and progesterone-induced transcriptional activation in the presence of the Sp1 sites. The specificity of progesterone receptor and transcription factor NF-Y binding were authenticated by gel shift assays. Chromatin immunoprecipitation assays confirmed the Y-box effects were mediated in a DNA binding-dependent fashion. This represents a unique regulatory scenario in which ligand-dependent transactivation by the progesterone receptor is subject to Sp1/NF-Y repression.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | |
Collapse
|
40
|
Liu YW, Tseng HP, Chen LC, Chen BK, Chang WC. Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:821-8. [PMID: 12847250 DOI: 10.4049/jimmunol.171.2.821] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have revealed that LPS can activate transcription of the IL-10 gene promoter through an SV40 promoter factor 1 (Sp1) binding site in mouse macrophage RAW264.7. In this study, we determined that, in addition to Sp1, C/EBPbeta and delta were also involved in LPS-induced gene expression of IL-10. By transient transfection with 5'-deletion mutants of the IL-10 promoter, we found that there were two LPS-responsive elements in the promoter of the mouse IL-10 gene. Analysis of these two regions by gel shift assay suggested that Sp1 and C/EBPbeta and delta were bound to these two regions, respectively. By site-directed mutagenesis, we found that disruption at both the Sp1 and C/EBP binding sites almost completely blocked the LPS response. By gel shift assay and Western blotting, we found that the DNA binding complex and protein expression of C/EBPbeta and delta were increased by LPS treatment, but these results were not found for Sp1. Overexpression of C/EBPbeta or C/EBPdelta, respectively, activated the promoter of the IL-10 gene, and they were enhanced by LPS. Coimmunoprecipitation experiments in intact cells indicated that LPS stimulated interaction between Sp1 and C/EBPbeta and delta. These results suggested that the interaction between Sp1 and C/EBPbeta and delta induced by LPS cooperatively activated expression of the IL-10 gene. The increase of C/EBPbeta and delta proteins and the enhancement of transactivation activity of C/EBPbeta and delta by LPS treatment, at least in part, explain the activation of IL-10 gene expression.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Graduate Institute of Biopharmaceutics, College of Life Science, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Chang WC. Cell signaling and gene regulation of human 12(S)-lipoxygenase expression. Prostaglandins Other Lipid Mediat 2003; 71:277-85. [PMID: 14518567 DOI: 10.1016/s1098-8823(03)00048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human 12(S)-lipoxygenase is a platelet-type 12(S)-lipoxyenase. Its expression is detected in human erythroleukemia cells, human skin epidermal cells and human epidermoid carcinoma A431 cells. Treatment of A431 cells with EGF or PMA induces the gene expression of human 12(S)-lipoxygenase. The induction of gene expression is mediated through the cell signaling of MAPK activation, followed by the induction of c-Jun expression. The transcription factor Sp1 binding to the two Sp1 recognition motifs residing at -158 to 150 bp and -123 to 114 bp in the gene promoter is found to be essential for both EGF- and PMA-induced gene expression of human 12(S)-lipoxygenase. However, no change of Sp1 binding to GC-rich sequence was observed while no AP-1-binding site can be found in the responsive region of the promoter in EGF- and PMA-induced promoter activation of the human 12(S)-lipoxygenase gene. Since both of the transcription factors c-Jun and Sp1 are prerequisite for EGF and PMA response, interaction between c-Jun and Sp1 may account for the functional regulation of human 12(S)-lipoxygenase gene regulation. The direct and cooperative interaction between c-Jun and Sp1 induced by EGF or PMA activates the expression of the human 12(S)-lipoxygenase gene. Therefore, Sp1 may serve at least in part as a carrier to bring c-Jun to the promoter, thu's transactivating the transcriptional activity of the human 12(S)-lipoxygenase gene.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
42
|
Abstract
The initiation of transcription is accomplished via interactions of many different proteins with common and gene-specific regulatory motifs. Clearly, sequence-specific transcription factors play a crucial role in the specificity of transcription initiation. A group of sequence-specific DNA-binding proteins, related to the transcription factor Sp1, has been implicated in the regulation of many different genes, since binding sites for these transcription factors (GC/GT boxes) are a recurrent motif in regulatory sequences such as promoters, enhancers and CpG islands of these genes. The simultaneous occurrence of several homologous GC/GT box-binding factors precludes a straightforward deduction of their role in transcriptional regulation. In this review, we focus on the connection between functional specificity and biochemical properties including glycosylation, phosphorylation and acetylation of Sp1-related factors.
Collapse
Affiliation(s)
- Peter Bouwman
- Hubrecht Laboratory/NIOB, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
43
|
Cogan JG, Subramanian SV, Polikandriotis JA, Kelm RJ, Strauch AR. Vascular smooth muscle alpha-actin gene transcription during myofibroblast differentiation requires Sp1/3 protein binding proximal to the MCAT enhancer. J Biol Chem 2002; 277:36433-42. [PMID: 12110667 DOI: 10.1074/jbc.m203232200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The conversion of stromal fibroblasts into contractile myofibroblasts is an essential feature of the wound-healing response that is mediated by transforming growth factor beta1 (TGF-beta1) and accompanied by transient activation of the vascular smooth muscle alpha-actin (SmalphaA) gene. Multiple positive-regulatory elements were identified as essential mediators of basal SmalphaA enhancer activity in mouse AKR-2B stromal fibroblasts. Three of these elements bind transcriptional activating proteins of known identity in fibroblasts. A fourth site, shown previously to be susceptible to single-strand modifying agents in myofibroblasts, was additionally required for enhancer response to TGF-beta1. However, TGF-beta1 activation was not accompanied by a stoichiometric increase in protein binding to any known positive element in the SmalphaA enhancer. By using oligonucleotide affinity isolation, DNA-binding site competition, gel mobility shift assays, and protein overexpression in SL2 and COS7 cells, we demonstrate that the transcription factors Sp1 and Sp3 can stimulate SmalphaA enhancer activity. One of the sites that bind Sp1/3 corresponds to the region of the SmalphaA enhancer required for TGF-beta1 amplification. Additionally, the TGF-beta1 receptor-regulated Smad proteins, in particular Smad3, are rate-limiting for SmalphaA enhancer activation. Whereas Smad proteins collaborate with Sp1 in activating several stromal cell-associated promoters, they appear to operate independently from the Sp1/3 proteins in activating the SmalphaA enhancer. The identification of Sp and Smad proteins as essential, independent activators of the SmalphaA enhancer provides new insight into the poorly understood process of myofibroblast differentiation.
Collapse
Affiliation(s)
- John G Cogan
- Department of Physiology/Cell Biology, The Ohio State University College of Medicine and Public Health, Dorothy M. Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
44
|
Nawrocki AR, Goldring CE, Kostadinova RM, Frey FJ, Frey BM. In vivo footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2 promoter: evidence for cell-specific regulation by Sp1 and Sp3. J Biol Chem 2002; 277:14647-56. [PMID: 11850421 DOI: 10.1074/jbc.m111549200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
11beta-Hydroxysteroid dehydrogenase type 2 is selectively expressed in aldosterone target tissues, where it confers aldosterone selectivity for the mineralocorticoid receptor by inactivating 11beta-hydroxyglucocorticoids with a high affinity for the mineralocorticoid receptor. The present investigation aimed to elucidate the mechanisms accounting for the rigorous control of the HSD11B2 gene in humans. Using dimethyl sulfate in vivo footprinting via ligation-mediated PCR, we identified potentially important regions for HSD11B2 regulation in human cell lines: two GC-rich regions in the first exon (I and II) and two upstream elements (III and IV). The footprints suggest a correlation between the extent of in vivo protein occupancy at three of these regions (I, II, and III) and the rate of HSD11B2 transcription in cells with high (SW620), intermediate (HCD, MCF-7, and HK-2), or low HSD11B2 mRNA levels (SUT). Moreover, gel shift assays with nuclear extracts from these cell lines revealed that decreased HSD11B2 expression is related to a decreased binding activity with oligonucleotides containing the putative regulatory elements. Antibody supershifts identified the majority of the components of the binding complexes as the transcription factors Sp1 and Sp3. Finally, transient transfections with various deletion mutant reporters define positive regulatory elements that might account for basal and selective expression of 11beta-hydroxysteroid dehydrogenase type 2.
Collapse
Affiliation(s)
- Andrea R Nawrocki
- Division of Nephrology and Hypertension, Department of Internal Medicine, University Hospital of Berne, CH-3010 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Moinova HR, Chen WD, Shen L, Smiraglia D, Olechnowicz J, Ravi L, Kasturi L, Myeroff L, Plass C, Parsons R, Minna J, Willson JKV, Green SB, Issa JP, Markowitz SD. HLTF gene silencing in human colon cancer. Proc Natl Acad Sci U S A 2002; 99:4562-7. [PMID: 11904375 PMCID: PMC123687 DOI: 10.1073/pnas.062459899] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin remodeling enzymes are increasingly implicated in a variety of important cellular functions. Various components of chromatin remodeling complexes, including several members of the SWI/SNF family, have been shown to be disrupted in cancer. In this study we identified as a target for gene inactivation in colon cancer the gene for helicase-like transcription factor (HLTF), a SWI/SNF family protein. Loss of HLTF expression accompanied by HLTF promoter methylation was noted in nine of 34 colon cancer cell lines. In these cell lines HLTF expression was restored by treatment with the demethylating agent 5-azacytidine. In further studies of primary colon cancer tissues, HLTF methylation was detected in 27 of 63 cases (43%). No methylation of HLTF was detected in breast or lung cancers, suggesting selection for HLTF methylation in colonic malignancies. Transfection of HLTF suppressed 75% of colony growth in each of three different HLTF-deficient cell lines, but showed no suppressive effect in any of three HLTF-proficient cell lines. These findings show that HLTF is a common target for methylation and epigenetic gene silencing in colon cancer and suggest HLTF is a candidate colon cancer suppressor gene.
Collapse
Affiliation(s)
- Helen R Moinova
- Cancer Center and Department of Medicine at Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Sp family of transcription factors binds GC-rich DNA sequences. The ubiquitously expressed Sp1 and Sp3 have been well characterized in mammals. Presented here is the characterization of the only Sp protein expressed in the liver or heart tissue of the teleost fish Fundulus heteroclitus. This protein, fSp3, is most similar to and homologous with mammalian Sp3 proteins. The evolution of the Sp transcription family is described, with Sp1 and Sp3 representing the most recent duplication of the Sp family. Sp4 appears to be the most ancestral member. Sp1, Sp3, and Sp4 form a monophyletic group without Sp2. Sp2 is the least similar of the Sp family and is more similar to the non-Sp transcription factors. These results suggest that Sp2 should not be considered a member of the Sp family. Only two domains (zinc fingers and B domain) share similarity outside the Sp family. The zinc fingers are homologous to other GC-binding domains, yet the B domain is homologous to protein-protein interacting domains in the CCAAT-binding/NF-Y transcription factor families. These results suggest that these different domains have different evolutionary histories.
Collapse
Affiliation(s)
- Kevin J Kolell
- Division of Molecular Biology and Biochemistry, School of Biological Science, University of Missouri-Kansas City
| | | |
Collapse
|
47
|
Shaheduzzaman S, Krishnan V, Petrovic A, Bittner M, Meltzer P, Trent J, Venkatesan S, Zeichner S. Effects of HIV-1 Nef on cellular gene expression profiles. J Biomed Sci 2002; 9:82-96. [PMID: 11810028 DOI: 10.1007/bf02256581] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The early human immunodeficiency virus (HIV) accessory protein Nef makes an important contribution to virulence, but the mechanisms by which Nef influences pathogenesis remain unclear. Many well-studied effects of Nef, like CD4 and class I MHC downregulation, occur posttranslationally. However, Nef has the potential to affect gene expression by interfering with cell signaling pathways and by virtue of structural features such as the Pro-X-X-Pro motif, which may interact with src homology region-3 domains of src-like kinases. We used a cDNA microarray screening strategy to identify cellular genes whose steady state transcriptional levels may be affected by Nef. We generated HeLa cell lines expressing wild-type or mutant HIV-1 nef protein sequences. Using cDNA microarray technology, we compared the patterns of cellular gene expression in the various cell lines to the pattern in non-Nef-expressing HeLa cells. By matching the patterns of cellular gene expression in HeLa cell lines expressing various Nefs with that of parental HeLa cells, we identified several cellular genes whose expression was modulated differentially by Nef and its mutants. We confirmed the differential expression of selected genes by RNA filter blotting. Genes expressed at higher levels included proteases, transcription factors, protein kinases, nuclear import/export proteins, adaptor molecules and cyclins, some of which have previously been implicated as being important for HIV replication and pathogenesis. The results indicate that Nef expression can alter the expression of cellular genes and suggest that this alteration in cellular gene expression may serve to optimize the cell to support the subsequent stages of viral replication.
Collapse
Affiliation(s)
- Syed Shaheduzzaman
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mahajan MC, Weissman SM. DNA-dependent adenosine triphosphatase (helicaselike transcription factor) activates beta-globin transcription in K562 cells. Blood 2002; 99:348-56. [PMID: 11756191 DOI: 10.1182/blood.v99.1.348] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Correct developmental regulation of beta-like globin gene expression is achieved by preferential transcription of a gene at a given developmental stage, silencing of other beta-like gene promoters, and competition among these promoters for interaction with the locus control region (LCR). Several evolutionarily conserved DNA elements in the promoters of the beta-like genes and LCR have been studied in detail, and the role of their binding factors has been investigated. However, the beta-globin promoter includes additional evolutionarily conserved sequences of unknown function. The present study examined the properties of a 21-base pair (bp) promoter-conserved sequence (PCS) located at positions -115 to -136 bp relative to the transcription start site of the beta-globin gene. A helicaselike transcription factor (HLTF) belonging to the SWI2/SNF2 family of proteins binds to the PCS and a partly homologous sequence in the enhancer region of the LCR hypersensitive site 2 (HS2). Elevation of the level of HLTF in K562 erythroleukemic cells increases beta-promoter activity in transient transfection experiments, and mutations in the PCS that remove HLTF-binding regions abolish this effect, suggesting that HLTF is an activator of beta-globin transcription. Overexpression of HLTF in K562 cells does not affect the endogenous levels of gamma- and epsilon-globin message, but it markedly activates beta-globin transcription. In conclusion, this study reports a transcription factor belonging to the SWI2/SNF2 family, which preferentially activates chromosomal beta-globin gene transcription and which has not previously been implicated in globin gene regulation.
Collapse
Affiliation(s)
- Milind C Mahajan
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
49
|
Zhao X, Martin MM, Elton TS. The transcription factors Sp1 and Sp3 are required for human angiotensin II type 1 receptor gene expression in H295-R cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:195-206. [PMID: 11779634 DOI: 10.1016/s0167-4781(01)00341-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide hormone angiotensin II regulates a variety of physiological responses which are mediated by its interaction with high affinity G protein-coupled receptors localized on the surface of target cells. Our previous studies have demonstrated that a 145 bp sequence within the promoter region was required for basal level expression of the human angiotensin II type 1 receptor (hAT(1)R) gene. In the present study, deletional analysis of the hAT(1)R promoter localized the major regulatory sequence to two overlapping GC boxes harbored within the -105 to -85 bp region relative to the transcription start site in H295-R cells. Electrophoretic mobility shift assays (EMSAs) using a double-stranded (ds) oligonucleotide corresponding to this region and H295-R cell nuclear extract resulted in five specific DNA-protein complexes. EMSAs performed with competitive ds-oligonucleotides which harbored the consensus binding site for Sp1 prevented the formation of the DNA-protein complexes. Supershift EMSAs also demonstrated that Sp1 and Sp3 could bind to the GC boxes present within the -105 to -85 bp region of the hAT(1)R promoter. Transactivation experiments utilizing Drosophila SL2 cells, which lack endogenous Sp family transcription factors, demonstrated that Sp1 and Sp3 activated the hAT(1)R promoter and that maximal activation was only achieved when both GC boxes were present. Taken together, these findings suggest that Sp1 and Sp3 are necessary for the expression of the hAT(1)R gene in H295-R cells.
Collapse
Affiliation(s)
- X Zhao
- Department of Chemistry and Biochemistry, Brigham Young University, C206 Benson Building, P.O. Box 25700, Provo, UT 84602-5700, USA
| | | | | |
Collapse
|
50
|
Baek SJ, Horowitz JM, Eling TE. Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem 2001; 276:33384-92. [PMID: 11445565 DOI: 10.1074/jbc.m101814200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is known to be associated with anti-tumorigenic activity and belongs to the transforming growth factor-beta superfamily. In the present study, we cloned the promoter region (-3500 to +41) and investigated the transcriptional regulatory mechanisms of the basal expression of the human NAG-1 gene. Several potential transcription factor-binding sites in this region were identified. Based on the results from clones of nested deletions, the construct between -133 and +41 base pairs contains three Sp1-binding sites (Sp1-A, Sp1-B, and Sp1-C), which confer basal transcription specific activity of NAG-1 expression. When the Sp1-C site was mutated (GG to TT), a 60-80% decrease in promoter activity was observed in HCT-116 cells. Gel shift, co-transfection, and chromatin immunoprecipitation assays showed that the Sp transcription factors bind to the Sp1-binding sites and transactivate NAG-1 expression. In addition, chicken ovalbumin upstream promoter-transcription factor 1 can interact with the C-terminal region of Sp1 and Sp3 proteins and induce NAG-1 promoter activity through Sp1 and Sp3 transcription factors. These results identify the critical regulatory regions for the human NAG-1 basal promoter. Furthermore, the results suggest that the level of expression of the NAG-1 gene will depend on the availability of Sp proteins and on co-factors such as chicken ovalbumin upstream promoter-transcription factor 1.
Collapse
Affiliation(s)
- S J Baek
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|