1
|
Figueiredo M, Daryadel A, Sihn G, Müller DN, Popova E, Rouselle A, Nguyen G, Bader M, Wagner CA. The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule. Pflugers Arch 2021; 473:1229-1246. [PMID: 34228176 PMCID: PMC8302575 DOI: 10.1007/s00424-021-02598-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
The ATP6ap2 (Pro)renin receptor protein associates with H+-ATPases which regulate organellar, cellular, and systemic acid-base homeostasis. In the kidney, ATP6ap2 colocalizes with H+-ATPases in various cell types including the cells of the proximal tubule. There, H+-ATPases are involved in receptor-mediated endocytosis of low molecular weight proteins via the megalin/cubilin receptors. To study ATP6ap2 function in the proximal tubule, we used an inducible shRNA Atp6ap2 knockdown rat model (Kd) and an inducible kidney-specific Atp6ap2 knockout mouse model. Both animal lines showed higher proteinuria with elevated albumin, vitamin D binding protein, and procathepsin B in urine. Endocytosis of an injected fluid-phase marker (FITC- dextran, 10 kDa) was normal whereas processing of recombinant transferrin, a marker for receptor-mediated endocytosis, to lysosomes was delayed. While megalin and cubilin expression was unchanged, abundance of several subunits of the H+-ATPase involved in receptor-mediated endocytosis was reduced. Lysosomal integrity and H+-ATPase function are associated with mTOR signaling. In ATP6ap2, KO mice mTOR and phospho-mTOR appeared normal but increased abundance of the LC3-B subunit of the autophagosome was observed suggesting a more generalized impairment of lysosomal function in the absence of ATP6ap2. Hence, our data suggests a role for ATP6ap2 for proximal tubule function in the kidney with a defect in receptor-mediated endocytosis in mice and rats.
Collapse
Affiliation(s)
- Marta Figueiredo
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anthony Rouselle
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charite University Medicine Berlin, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Cashikar AG, Hanson PI. A cell-based assay for CD63-containing extracellular vesicles. PLoS One 2019; 14:e0220007. [PMID: 31339911 PMCID: PMC6655660 DOI: 10.1371/journal.pone.0220007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are thought to be important in cell-cell communication and have elicited extraordinary interest as potential biomarkers of disease. However, quantitative methods to enable elucidation of mechanisms underlying release are few. Here, we describe a cell-based assay for monitoring EV release using the EV-enriched tetraspanin CD63 fused to the small, ATP-independent reporter enzyme, Nanoluciferase. Release of CD63-containing EVs from stably expressing cell lines was monitored by comparing luciferase activity in culture media to that remaining in cells. HEK293, U2OS, U87 and SKMel28 cells released 0.3%-0.6% of total cellular CD63 in the form of EVs over 5 hrs, varying by cell line. To identify cellular machinery important for secretion of CD63-containing EVs, we performed a screen of biologically active chemicals in HEK293 cells. While a majority of compounds did not significantly affect EV release, treating cells with the plecomacrolides bafilomycin or concanamycin, known to inhibit the V-ATPase, dramatically increased EV release. Interestingly, alkalization of the endosomal lumen using weak bases had no effect, suggesting a pH-independent enhancement of EV release by V-ATPase inhibitors. The ability to quantify EVs in small samples will enable future detailed studies of release kinetics as well as further chemical and genetic screening to define pathways involved in EV secretion.
Collapse
Affiliation(s)
- Anil G. Cashikar
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phyllis I. Hanson
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Bourgeois S, Bounoure L, Mouro-Chanteloup I, Colin Y, Brown D, Wagner CA. The ammonia transporter RhCG modulates urinary acidification by interacting with the vacuolar proton-ATPases in renal intercalated cells. Kidney Int 2018; 93:390-402. [PMID: 29054531 PMCID: PMC6166241 DOI: 10.1016/j.kint.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Bounoure
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Yves Colin
- UMR_S1134, INSERM, Université Paris Diderot, INTS, Labex GR-Ex, Paris, France
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Xiao S, Li R, El Zowalaty AE, Diao H, Zhao F, Choi Y, Ye X. Acidification of uterine epithelium during embryo implantation in mice. Biol Reprod 2017; 96:232-243. [PMID: 28395338 DOI: 10.1095/biolreprod.116.144451] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022] Open
Abstract
Uterine luminal epithelium (LE) is essential for establishing uterine receptivity. Previous microarray analysis revealed upregulation of Atp6v0d2 in gestation day 4.5 (D4.5) LE in mice. Realtime PCR showed upregulation of uterine Atp6v0d2 starting right before embryo attachment ∼D4.0. In situ hybridization demonstrated specific uterine localization of Atp6v0d2 in LE upon embryo implantation. Atp6v0d2 encodes one subunit for vacuolar-type H+-ATPase (V-ATPase), which regulates acidity of intracellular organelles and extracellular environment. LysoSensor Green DND-189 detected acidic signals in LE and glandular epithelium upon embryo implantation, correlating with Atp6v0d2 upregulation in early pregnant uterus. Atp6v0d2-/- females had significantly reduced implantation rate and marginally reduced delivery rate from first mating only, but comparable number of implantation sites and litter size compared to control and comparable fertility to control from subsequent matings, suggesting a nonessential role of Atp6v0d2 subunit in embryo implantation. Successful implantation in both control and Atp6v0d2-/- females was associated with uterine epithelial acidification. No significant compensatory upregulation of Atp6v0d1 mRNA was detected in D4.5 Atp6v0d2-/- uteri. To determine the role of V-ATPase instead of a single subunit in embryo implantation, a specific V-ATPase inhibitor bafilomycin A1 (2.5 μg/kg) was injected via uterine fat pad on D3 18:00 h. This treatment resulted in reduced uterine epithelial acidification, delayed implantation, and reduced number of implantation sites. It also suppressed oil-induced artificial decidualization. These data demonstrate uterine epithelial acidification as a novel phenomenon during embryo implantation and V-ATPase is involved in uterine epithelial acidification and uterine preparation for embryo implantation.
Collapse
Affiliation(s)
- Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Reproductive Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Collaco AM, Geibel P, Lee BS, Geibel JP, Ameen NA. Functional vacuolar ATPase (V-ATPase) proton pumps traffic to the enterocyte brush border membrane and require CFTR. Am J Physiol Cell Physiol 2013; 305:C981-96. [PMID: 23986201 DOI: 10.1152/ajpcell.00067.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar ATPases (V-ATPases) are highly conserved proton pumps that regulate organelle pH. Epithelial luminal pH is also regulated by cAMP-dependent traffic of specific subunits of the V-ATPase complex from endosomes into the apical membrane. In the intestine, cAMP-dependent traffic of cystic fibrosis transmembrane conductance regulator (CFTR) channels and the sodium hydrogen exchanger (NHE3) in the brush border regulate luminal pH. V-ATPase was found to colocalize with CFTR in intestinal CFTR high expresser (CHE) cells recently. Moreover, apical traffic of V-ATPase and CFTR in rat Brunner's glands was shown to be dependent on cAMP/PKA. These observations support a functional relationship between V-ATPase and CFTR in the intestine. The current study examined V-ATPase and CFTR distribution in intestines from wild-type, CFTR(-/-) mice and polarized intestinal CaCo-2BBe cells following cAMP stimulation and inhibition of CFTR/V-ATPase function. Coimmunoprecipitation studies examined V-ATPase interaction with CFTR. The pH-sensitive dye BCECF determined proton efflux and its dependence on V-ATPase/CFTR in intestinal cells. cAMP increased V-ATPase/CFTR colocalization in the apical domain of intestinal cells and redistributed the V-ATPase Voa1 and Voa2 trafficking subunits from the basolateral membrane to the brush border membrane. Voa1 and Voa2 subunits were localized to endosomes beneath the terminal web in untreated CFTR(-/-) intestine but redistributed to the subapical cytoplasm following cAMP treatment. Inhibition of CFTR or V-ATPase significantly decreased pHi in cells, confirming their functional interdependence. These data establish that V-ATPase traffics into the brush border membrane to regulate proton efflux and this activity is dependent on CFTR in the intestine.
Collapse
Affiliation(s)
- Anne M Collaco
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
6
|
Kartner N, Yao Y, Bhargava A, Manolson MF. Topology, glycosylation and conformational changes in the membrane domain of the vacuolar H+-ATPaseasubunit. J Cell Biochem 2013; 114:1474-87. [DOI: 10.1002/jcb.24489] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 12/21/2012] [Indexed: 11/08/2022]
|
7
|
Xue Y, Liao SF, Strickland JR, Boling JA, Matthews JC. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines. J Dairy Sci 2011; 94:3331-41. [PMID: 21700019 DOI: 10.3168/jds.2010-3612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 03/12/2011] [Indexed: 11/19/2022]
Abstract
l-Glutamate (Glu) is a major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50mM) Glu [Michaelis constant (measuring affinity), or K(m),=1 to 4mM] into synaptic vesicles (SV) for subsequent release into the synaptic cleft of glutamatergic neurons. Vesicular Glu transporter activity is dependent on vacuolar H(+)-ATPase function. Previous research has shown that ergopeptines contained in endophyte-infected tall fescue interact with dopaminergic and serotoninergic receptors, thereby affecting physiology regulated by these neuron types. To test the hypothesis that ergopeptine alkaloids inhibit VGLUT activity of bovine cerebral SV, SV were isolated from cerebral tissue of Angus-cross steers that were naive to ergot alkaloids. Immunoblot analysis validated the enrichment of VGLUT1, VGLUT2, synaptophysin 1, and vacuolar H(+)-ATPase in purified SV. Glutamate uptake assays demonstrated the dependence of SV VGLUT-like activity on the presence of ATP, H(+)-gradients, and H(+)-ATPase function. The effect of ergopeptines on VGLUT activity was evaluated by ANOVA. Inhibitory competition (IC(50)) experiments revealed that VGLUT-mediated Glu uptake (n=9) was inhibited by ergopeptine alkaloids: bromocriptine (2.83±0.59μM)<ergotamine (20.5±2.77μM)<ergocornine (114±23.1μM)<ergovaline (137±6.55μM). Subsequent ergovaline kinetic inhibition analysis (n=9; Glu=0.05, 0.10, 0.50, 1, 2, 4, 5mM) demonstrated no change in apparent K(m). However, the maximum reaction rate (V(max)) of Glu uptake was decreased when evaluated in the presence of 50, 100, and 200μM ergovaline, suggesting that ergovaline inhibited SV VGLUT activity through a noncompetitive mechanism. The findings of this study suggest cattle with fescue toxicosis may have a decreased glutamatergic neurotransmission capacity due to consumption of ergopeptine alkaloids.
Collapse
Affiliation(s)
- Y Xue
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546, USA
| | | | | | | | | |
Collapse
|
8
|
Saw NMN, Kang SYA, Parsaud L, Han GA, Jiang T, Grzegorczyk K, Surkont M, Sun-Wada GH, Wada Y, Li L, Sugita S. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. Mol Biol Cell 2011; 22:3394-409. [PMID: 21795392 PMCID: PMC3172264 DOI: 10.1091/mbc.e11-02-0155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, although they might not be as critical for exocytosis as recently proposed. The Vo sector of the vacuolar H+-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1–a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca2+-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed.
Collapse
Affiliation(s)
- Ner Mu Nar Saw
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hu M, He L, Campbell BE, Zhong W, Sternberg PW, Gasser RB. A vacuolar-type proton (H+) translocating ATPase alpha subunit encoded by the Hc-vha-6 gene of Haemonchus contortus. Mol Cell Probes 2010; 24:196-203. [PMID: 20362051 DOI: 10.1016/j.mcp.2010.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 12/23/2022]
Abstract
In the present study, a full-length cDNA (designated Hc-vha-6) inferred to encode an alpha subunit of a vacuolar-type proton translocating adenosine triphosphatase (V-ATPase) was isolated from the parasitic nematode Haemonchus contortus, and characterized. The transcript for Hc-vha-6 was detected in all developmental stages and both sexes of H. contortus. Elements, including two TATA box (TATAA), two inverted CAAT box (ATTGG), five E box (CANNTG) and six GATA as well as five inverse GATA (TTATC) transcription factor motifs, were identified in the non-coding region upstream of Hc-vha-6. The open reading frame (ORF) of 2601 nucleotides encoded a protein (Hc-VHA-6) of 866 amino acids and a molecular weight of approximately 98.7 kDa. Comparison with a published protein sequence for a homologue (VPH1P) from yeast showed that Hc-VHA-6 had nine transmembrane domains and the 14 essential amino acid residues associated with enzyme activity, assembly, intracellular and/or membrane targeting. Phylogenetic analyses of selected amino acid sequence data revealed Hc-VHA-6 to be most closely related to VHA-6 of Caenorhabditis elegans. A predictive network analysis inferred that vha-6 interacts with at least seven other genes encoding V-ATPase subunits and a small Rab GTPase. This study provides the first insight into a V-ATPase of parasitic nematodes and a sound basis for future functional genomic work.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia; School of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
10
|
Miranda KC, Karet FE, Brown D. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One 2010; 5:e9531. [PMID: 20224822 PMCID: PMC2835735 DOI: 10.1371/journal.pone.0009531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/03/2010] [Indexed: 12/31/2022] Open
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) is a multisubunit proton pump that is involved in both intra- and extracellular acidification processes throughout the body. Multiple homologs and splice variants of V-ATPase subunits are thought to explain its varied spatial and temporal expression pattern in different cell types. Recently subunit nomenclature was standardized with a total of 22 subunit variants identified. However this standardization did not accommodate the existence of splice variants and is therefore incomplete. Thus, we propose here an extension of subunit nomenclature along with a literature and sequence database scan for additional V-ATPase subunits. An additional 17 variants were pulled from a literature search while 4 uncharacterized potential subunit variants were found in sequence databases. These findings have been integrated with the current V-ATPase knowledge base to create a new V-ATPase subunit catalogue. It is envisioned this catalogue will form a new platform on which future studies into tissue- and organelle-specific V-ATPase expression, localization and function can be based.
Collapse
Affiliation(s)
- Kevin C. Miranda
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fiona E. Karet
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Guillard M, Dimopoulou A, Fischer B, Morava E, Lefeber DJ, Kornak U, Wevers RA. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta Mol Basis Dis 2009; 1792:903-14. [PMID: 19171192 DOI: 10.1016/j.bbadis.2008.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 02/08/2023]
Abstract
Glycosylation of proteins is one of the most important post-translational modifications. Defects in the glycan biosynthesis result in congenital malformation syndromes, also known as congenital disorders of glycosylation (CDG). Based on the iso-electric focusing patterns of plasma transferrin and apolipoprotein C-III a combined defect in N- and O-glycosylation was identified in patients with autosomal recessive cutis laxa type II (ARCL II). Disease-causing mutations were identified in the ATP6V0A2 gene, encoding the a2 subunit of the vacuolar H(+)-ATPase (V-ATPase). The V-ATPases are multi-subunit, ATP-dependent proton pumps located in membranes of cells and organels. In this article, we describe the structure, function and regulation of the V-ATPase and the phenotypes currently known to result from V-ATPase mutations. A clinical overview of cutis laxa syndromes is presented with a focus on ARCL II. Finally, the relationship between ATP6V0A2 mutations, the glycosylation defect and the ARCLII phenotype is discussed.
Collapse
Affiliation(s)
- Mailys Guillard
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.
Collapse
|
13
|
Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 2006; 292:F1-10. [PMID: 17032935 DOI: 10.1152/ajprenal.00340.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a key player in several aspects of cellular function, including acidification of intracellular organelles and regulation of extracellular pH. In specialized cells of the kidney, male reproductive tract and osteoclasts, proton secretion via the V-ATPase represents a major process for the regulation of systemic acid/base status, sperm maturation and bone resorption, respectively. These processes are regulated via modulation of the plasma membrane expression and activity of the V-ATPase. The present review describes selected aspects of V-ATPase regulation, including recycling of V-ATPase-containing vesicles to and from the plasma membrane, assembly/disassembly of the two domains (V(0) and V(1)) of the holoenzyme, and the coupling ratio between ATP hydrolysis and proton pumping. Modulation of the V-ATPase-rich cell phenotype and the pathophysiology of the V-ATPase in humans and experimental animals are also discussed.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114-2790, USA.
| | | |
Collapse
|
14
|
Sun-Wada GH, Tabata H, Kawamura N. Selective assembly of V-ATPase subunit isoforms in mouse kidney. J Bioenerg Biomembr 2006; 37:415-8. [PMID: 16691475 DOI: 10.1007/s10863-005-9482-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The kidney plays vital roles in acid-base homeostasis, and the reabsorption of water, ions, and proteins. These processes are achieved through acidification of urine and endosomes of proximal tubule epithelial cells. Multisubunit vacuolar-type proton ATPase (V-ATPase) is one of the major acidification-machinery proteins that localizes to the apical or basolateral plasma membranes of intercalated cells in collecting ducts and the endosomal region at the base of brush border microvilli in proximal tubules. Multiple subunit isoforms of V-ATPase, which are expressed in kidney, have been identified. One obvious question is whether the pumps at different locations in the kidney have their own unique subunit identities. We have used a combination of methods to study this enzyme in kidney including immunocytochemical staining and immunoprecipitation analyses. The subunit isoforms of V-ATPase exhibited selective association/assembly in kidney: kidney-specific isoforms predominantly formed the intercalated cell proton pump, whereas the pump located in the brush border comprised ubiquitously expressed counterparts.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan.
| | | | | |
Collapse
|
15
|
Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 2005; 74:185-94. [PMID: 16192400 DOI: 10.1095/biolreprod.105.043752] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.
Collapse
Affiliation(s)
- C Pietrement
- Program in Membrane Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Babichev Y, Tamir A, Park M, Muallem S, Isakov N. Cloning, expression and functional characterization of the putative regeneration and tolerance factor (RTF/TJ6) as a functional vacuolar ATPase proton pump regulatory subunit with a conserved sequence of immunoreceptor tyrosine-based activation motif. Int Immunol 2005; 17:1303-13. [PMID: 16113235 DOI: 10.1093/intimm/dxh308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In an attempt to identify new immunoreceptor tyrosine-based activation motif (ITAM)-containing human molecules that may regulate hitherto unknown immune cell functions, we BLAST searched the National Center for Biotechnology Information database for ITAM-containing sequences. A human expressed sequence tag showing partial homology to the murine TJ6 (mTJ6) gene and encoding a putative ITAM sequence has been identified and used to clone the human TJ6 (hTJ6) gene from an HL-60-derived cDNA library. hTJ6 was found to encode a protein of 856 residues with a calculated mass of 98 155 Da. Immunolocalization and sequence analysis revealed that hTJ6 is a membrane protein with predicted six transmembrane-spanning regions, typical of ion channels, and a single putative ITAM (residues 452-466) in a juxtamembrane or hydrophobic intramembrane region. hTJ6 is highly homologous to Bos taurus 116-kDa subunit of the vacuolar proton-translocating ATPase. Over-expression of hTJ6 in HEK 293 cells increased H+ uptake into intracellular organelles, an effect that was sensitive to inhibition by bafilomycin, a selective inhibitor of vacuolar H+ pump. Northern blot analysis demonstrated three different hybridizing mRNA transcripts corresponding to 3.2, 5.0 and 7.3 kb, indicating the presence of several splice variants. Significant differences in hTJ6 mRNA levels in human tissues of different origins point to possible tissue-specific function. Although hTJ6 was found to be a poor substrate for tyrosine-phosphorylating enzymes, suggesting that its ITAM sequence is non-functional in protein tyrosine kinase-mediated signaling pathways, its role in organellar H+ pumping suggests that hTJ6 function may participate in protein trafficking/processing.
Collapse
Affiliation(s)
- Yael Babichev
- Department of Microbiology and Immunology, Cancer Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
17
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
19
|
Stehberger PA, Schulz N, Finberg KE, Karet FE, Giebisch G, Lifton RP, Geibel JP, Wagner CA. Localization and Regulation of the ATP6V0A4 (a4) Vacuolar H+-ATPase Subunit Defective in an Inherited Form of Distal Renal Tubular Acidosis. J Am Soc Nephrol 2003; 14:3027-38. [PMID: 14638902 DOI: 10.1097/01.asn.0000099375.74789.ab] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT. Vacuolar-type H+-ATPases (V-H+-ATPases) are the major H+-secreting protein in the distal portion of the nephron and are involved in net H+secretion (bicarbonate generation) or H+reabsorption (net bicarbonate secretion). In addition, V-H+-ATPases are involved in HCO3−reabsorption in the proximal tubule and distal tubule. V-H+-ATPases consist of at least 13 subunits, the functions of which have not all been elucidated. Mutations in the accessory ATP6V0A4 (a4 isoform) subunit have recently been shown to cause an inherited form of distal renal tubular acidosis in humans. Here, the localization of this subunit in human and mouse kidney was studied and the regulation of expression and localization of this subunit in mouse kidney in response to acid-base and electrolyte intake was investigated. Reverse transcription-PCR on dissected mouse nephron segments amplified a4-specific transcripts in proximal tubule, loop of Henle, distal convoluted tubule, and cortical and medullary collecting duct. a4 protein was localized by immunohistochemistry to the apical compartment of the proximal tubule (S1/S2 segment), the loop of Henle, the intercalated cells of the distal convoluted tubule, the connecting segment, and all intercalated cells of the entire collecting duct in human and mouse kidney. All types of intercalated cells expressed a4. NH4Cl or NaHCO3loading for 24 h, 48 h, or 7 d as well as K+depletion for 7 and 14 d had no influence on a4 protein expression levels in either cortex or medulla as determined by Western blotting. Immunohistochemistry, however, demonstrated a subcellular redistribution of a4 in response to the different stimuli. NH4Cl and K+depletion led to a pronounced apical staining in the connecting segment, cortical collecting duct, and outer medullary collecting duct, whereas NaHCO3loading caused a stronger bipolar staining in the cortical collecting duct. Taken together, these results demonstrate a4 expression in the proximal tubule, loop of Henle, distal tubule, and collecting duct and suggest that under conditions in which increased V-H+-ATPase activity is required, a4 is regulated by trafficking but not protein expression. This may allow for the rapid adaptation of V-H+-ATPase activity to altered acid-base intake to achieve systemic pH homeostasis. The significance of a4 expression in the proximal tubule in the context of distal renal tubular acidosis will require further clarification.
Collapse
Affiliation(s)
- Paul A Stehberger
- Departments of Cellular and Molecular Physiology, Genetics, and Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun-Wada GH, Murata Y, Namba M, Yamamoto A, Wada Y, Futai M. Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J Biol Chem 2003; 278:44843-51. [PMID: 12947086 DOI: 10.1074/jbc.m307197200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H+-ATPases (V-ATPases) are multimeric proton pumps involved in a wide variety of physiological processes. We have identified two alternative splicing variants of C2 subunit isoforms: C2-a, a lung-specific isoform containing a 46-amino acid insertion, and C2-b, a kidney-specific isoform without the insert. Immunohistochemistry with isoform-specific antibodies revealed that V-ATPase with C2-a is localized specifically in lamellar bodies of type II alveolar cells, whereas the C2-b isoform is found in the plasma membranes of renal alpha and beta intercalated cells. Immunoprecipitation combined with immunohistological analysis revealed that C2-b together with other kidney-specific isoforms was selectively assembled to form a unique proton pump in intercalated cells. Furthermore, a chimeric yeast V-ATPase with mouse the C2-a or C2-b isoform showed a lower Km(ATP) and lower proton transport activity than that with C1 or Vma5p (yeast C subunit). These results suggest that V-ATPases with the C2-a and C2-b isoform are involved in luminal acidification of lamellar bodies and regulation of the renal acid-base balance, respectively.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:57-68. [PMID: 12507890 PMCID: PMC1851135 DOI: 10.1016/s0002-9440(10)63798-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal-recessive osteopetrosis is a severe genetic disease caused by osteoclast failure. Approximately 50% of the patients harbor mutations of the ATP6i gene, encoding for the osteoclast-specific a3 subunit of V-ATPase. We found inactivating ATP6i mutations in four patients, and three of these were novel. Patients shared macrocephaly, growth retardation and optic nerve alteration, osteosclerotic and endobone patterns, and high alkaline phosphatase and parathyroid hormone levels. Bone biopsies revealed primary spongiosa lined with active osteoblasts and high numbers of tartrate-resistant acid phosphatase (TRAP)-positive, a3 subunit-negative, morphologically unremarkable osteoclasts, some of which located in shallow Howship lacunae. Scarce hematopoietic cells and abundant fibrous tissue containing TRAP-positive putative osteoclast precursors were noted. In vitro osteoclasts were a3-negative, morphologically normal, with prominent clear zones and actin rings, and TRAP activity more elevated than in control patients. Podosomes, alphaVbeta3 receptor, c-Src, and PYK2 were unremarkable. Consistent with the finding in the bone biopsies, these cells excavated pits faintly stained with toluidine blue, indicating inefficient bone resorption. Bone marrow transplantation was successful in all patients, and posttransplant osteoclasts showed rescue of a3 subunit immunoreactivity.
Collapse
Affiliation(s)
- Anna Taranta
- Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Murata Y, Sun-Wada GH, Yoshimizu T, Yamamoto A, Wada Y, Futai M. Differential localization of the vacuolar H+ pump with G subunit isoforms (G1 and G2) in mouse neurons. J Biol Chem 2002; 277:36296-303. [PMID: 12133826 DOI: 10.1074/jbc.m200586200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases), a family of multimeric proton pumps, are involved in a wide variety of physiological processes. We have identified two mouse genes, Atp6g1 and Atp6g2, encoding the G1 and G2 isoforms of the V-ATPase G subunit, respectively. G1 was distributed ubiquitously in the tissues examined, whereas G2 was specifically distributed in central nervous system neurons. G1 was expressed at an early embryonic stage, whereas G2 transcription was significantly induced at 10.5 days postcoitus (embryonic day 10.5, i.e. 2 days before axon outgrowth). Both G1 and G2 were strongly expressed in cortical and hippocampal neurons, cerebellar granule cells, and Purkinje cells. Immunohistochemistry with isoform-specific antibodies revealed that G2 was localized in cell bodies, dendrites, and axons. In addition, electron microscopy and subcellular fractionation indicated that G2 was localized in synaptic vesicles, whereas G1 was not detectable. G1 and G2 exhibit 62% identity, and both isoforms were immunoprecipitated with the c and A subunits of V-ATPase. G2 could complement the yeast deletion mutant Deltavma10, which lacks the G subunit. The V-ATPases containing the G1 and G2 isoforms, respectively, showed similar K(m)((ATP)) values and maximal velocity. These results indicate that G1 and G2 are bona fide subunits of V-ATPases and that the enzyme with the G2 isoform is involved in synaptic vesicle acidification.
Collapse
Affiliation(s)
- Yoshiko Murata
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Sun-Wada GH, Imai-Senga Y, Yamamoto A, Murata Y, Hirata T, Wada Y, Futai M. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 2002; 277:18098-105. [PMID: 11872743 DOI: 10.1074/jbc.m111567200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H(+)-ATPases (V-ATPases) are a family of multimeric proton pumps involved in a wide variety of physiological processes. We have identified two novel mouse genes, Atp6e1 and Atp6e2, encoding testis-specific (E1) and ubiquitous (E2) V-ATPase subunit E isoforms, respectively. The E1 transcript appears about 3 weeks after birth, corresponding to the start of meiosis, and is expressed specifically in round spermatids in seminiferous tubules. Immunohistochemistry with isoform-specific antibodies revealed that the V-ATPase with E1 and a2 isoforms is located specifically in developing acrosomes of spermatids and acrosomes in mature sperm. In contrast, the E2 isoform was expressed in all tissues examined and present in the perinuclear compartments of spermatocytes. The E1 isoform exhibits 70% identity with the E2, and both isoforms functionally complemented a null mutation of the yeast counterpart VMA4, indicating that they are bona fide V-ATPase subunits. The chimeric enzymes showed slightly lower K(m)(ATP) than yeast V-ATPase. Consistent with the temperature-sensitive growth of Deltavma4-expressing E1 isoform, vacuolar membrane vesicles exhibited temperature-sensitive coupling between ATP hydrolysis and proton transport. These results suggest that E1 isoform is essential for energy coupling involved in acidification of acrosome.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corp., Osaka 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Smardon AM, Tarsio M, Kane PM. The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 2002; 277:13831-9. [PMID: 11844802 DOI: 10.1074/jbc.m200682200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
25
|
Smith AN, Finberg KE, Wagner CA, Lifton RP, Devonald MA, Su Y, Karet FE. Molecular cloning and characterization of Atp6n1b: a novel fourth murine vacuolar H+-ATPase a-subunit gene. J Biol Chem 2001; 276:42382-8. [PMID: 11495928 DOI: 10.1074/jbc.m107267200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 116-kDa a-subunit of the vacuolar proton pump (H(+)-ATPase) exists as several isoforms encoded by different genes and with different patterns of tissue expression. Its function within the multisubunit pump complex has yet to be elucidated. To date, three isoforms have been identified in mouse (designated a1-a3). We now report the cloning and characterization of Atp6n1b, encoding a novel fourth murine isoform (a4). Murine a4 has 833 residues and shows 85% amino acid identity to the human kidney-specific ATP6N1B protein in which loss-of-function alterations cause autosomal recessive distal renal tubular acidosis. The human and murine genes have similar genomic organization; furthermore, Atp6n1b maps to a region of mouse chromosome 6 that is syntenic with the segment of human 7q33-34 containing ATP6N1B. Together these findings establish the two genes as orthologs. The mouse a4 protein is 61, 52, and 47% identical to a1, a2, and a3, respectively. Phylogenetic analysis confirms that among vertebrates there are four a-subunit families, with a4 most resembling a1. Northern blot analysis of Atp6n1b reveals a 3.7-kilobase a4 transcript in kidney but not other major organs, and a reverse transcription polymerase chain reaction in 12 mouse tissues detects expression in kidney alone. Immunofluorescence studies in murine kidney demonstrate high intensity a4 staining at the surface of intercalated cells, with additional expression in the proximal tubule (not previously reported in human kidney). Similar apical a4 immunostaining is also present in male genital tissue. Identification of this novel murine kidney-enriched 116-kDa a-subunit provides a molecular tool for investigation of the currently unknown role of this protein, which is essential for proper function of the apical renal vacuolar H(+)-ATPase in man.
Collapse
Affiliation(s)
- A N Smith
- Department of Medical Genetics, Cambridge Institute for Medical Research, Box 139 Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Oka T, Murata Y, Namba M, Yoshimizu T, Toyomura T, Yamamoto A, Sun-Wada GH, Hamasaki N, Wada Y, Futai M. a4, a unique kidney-specific isoform of mouse vacuolar H+-ATPase subunit a. J Biol Chem 2001; 276:40050-4. [PMID: 11498539 DOI: 10.1074/jbc.m106488200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H+ -ATPase (V-ATPase) translocates protons across membranes. Here, we have identified a mouse cDNA coding for a fourth isoform (a4) of the membrane sector subunit a of V-ATPase. This isoform was specifically expressed in kidney, but not in the heart, brain, spleen, lung, liver, muscle, or testis. Immunoprecipitation experiments, together with sequence similarities for other isoforms (a1, a2, and a3), indicate that the a4 isoform is a component of V-ATPase. Moreover, histochemical studies show that a4 is localized in the apical and basolateral plasma membranes of cortical alpha- and beta-intercalated cells, respectively. These results suggest that the V-ATPase, with the a4 isoform, is important for renal acid/base homeostasis.
Collapse
Affiliation(s)
- T Oka
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oka T, Toyomura T, Honjo K, Wada Y, Futai M. Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development. J Biol Chem 2001; 276:33079-85. [PMID: 11441002 DOI: 10.1074/jbc.m101652200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified four genes (vha-5, vha-6, vha-7, and unc-32) coding for vacuolar-type proton-translocating ATPase (V-ATPase) subunit a in Caenorhabditis elegans, the first example of four distinct isoforms in eukaryotes. Their products had nine putative transmembrane regions, exhibited 43-60% identity and 62-84% similarity with the bovine subunit a1 isoform, and retained 11 amino acid residues essential for yeast V-ATPase activity (Leng, X. H., Manolson, M. F., and Forgac, M. (1998) J. Biol. Chem. 273, 6717-6723). The similarities, together with the results of immunoprecipitation, suggest that these isoforms are components of V-ATPase. Transgenic and immunofluorescence analyses revealed that these genes were strongly expressed in distinct cells; vha-5 was strongly expressed in an H-shaped excretory cell, vha-6 was strongly expressed in intestine, vha-7 was strongly expressed in hypodermis, and unc-32 was strongly expressed in nerve cells. Furthermore, the vha-7 and unc-32 genes were also expressed in the uteri of hermaphrodites. RNA interference analysis showed that the double-stranded RNA for unc-32 caused embryonic lethality similar to that seen with other subunit genes (vha-1, vha-4, and vha-11) (Oka, T., and Futai, M. (2000) J. Biol. Chem. 275, 29556-29561). The progenies of worms injected with the vha-5 or vha-6 double-stranded RNA became died at a specific larval stage, whereas the vha-7 double-stranded RNA showed no effect on development. These results suggest that V-ATPases with these isoforms generate acidic compartments essential for worm development in a cell-specific manner.
Collapse
Affiliation(s)
- T Oka
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Japan
| | | | | | | | | |
Collapse
|
28
|
Farina C, Gagliardi S, Nadler G, Morvan M, Parini C, Belfiore P, Visentin L, Gowen M. Novel bone antiresorptive agents that selectively inhibit the osteoclast V-H+-ATPase. ACTA ACUST UNITED AC 2001; 56:113-6. [PMID: 11347950 DOI: 10.1016/s0014-827x(01)01013-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vacuolar proton pump (V-ATPase) located on the plasma membrane of the osteoclast is a potential molecular target for the discovery of novel bone antiresorptive agents useful for the treatment of osteoporosis. In order to design novel compounds able to selectively inhibit the osteoclast V-ATPase we firstly identified the minimal structural requirements of bafilomycin A1, a macrolide antibiotic which potently inhibits all V-ATPases. This information allowed the design of 2-(indole)pentadienamide derivatives whose optimization led to a novel class of potent inhibitors that demonstrated a high degree of selectivity for the osteoclast V-ATPase. The most interesting derivative, SB-242784, was able to inhibit bone resorption by human osteoclasts in vitro and to completely prevent ovariectomy-induced bone loss in rats when administered orally at 10 mg kg(-1) day(-1). Structure activity relationships of this class of compounds were investigated further by replacing the 2,4-pentadienoyl chain with suitable spacers able to maintain the correct orientation and distance between the indole ring and the amide moiety.
Collapse
Affiliation(s)
- C Farina
- SmithKline Beecham SpA, Baranzate, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Merzendorfer H, Reineke S, Zhao XF, Jacobmeier B, Harvey WR, Wieczorek H. The multigene family of the tobacco hornworm V-ATPase: novel subunits a, C, D, H, and putative isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:369-79. [PMID: 11030595 DOI: 10.1016/s0005-2736(00)00233-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma membrane V-ATPase from Manduca sexta (Lepidoptera, Sphingidae) larval midgut is composed of at least 12 subunits, eight of which have already been identified molecularly [Wieczorek et al., J. Bioenerg. Biomembr. 31 (1999) 67-74]. Here we report primary sequences of subunits C, D, H and a, which previously had not been identified in insects. Expression of recombinant proteins, immunostaining and protein sequencing demonstrated that the corresponding proteins are subunits of the Manduca V-ATPase. Genomic Southern blot analysis indicated the existence of multiple genes encoding subunits G, a, c, d and e. Moreover, multiple transcripts were detected in Northern blots from midgut poly(A) RNA for subunits B, G, c and d. Thus, these polypeptides appear to exist as multiple isoforms that could be expressed either in different tissues or at distinct locations within a cell. By contrast subunits A, C, D, E, F and H appear to be encoded by single transcripts and therefore should be present in any Manduca V-ATPase, independent of its subcellular or cell specific origin.
Collapse
|
30
|
Parra KJ, Keenan KL, Kane PM. The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 2000; 275:21761-7. [PMID: 10781598 DOI: 10.1074/jbc.m002305200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are composed of a peripheral complex containing the ATP-binding sites, the V(1) sector, attached to a membrane complex containing the proton pore, the V(o) sector. In vivo, free, inactive V(1) and V(o) sectors exist in dynamic equilibrium with fully assembled, active V(1) V(o) complexes, and this equilibrium can be perturbed by changes in carbon source. Free V(1) complexes were isolated from the cytosol of wild-type yeast cells and mutant strains lacking V(o) subunit c (Vma3p) or V(1) subunit H (Vma13p). V(1) complexes from wild-type or vma3Delta mutant cells were very similar, and contained all previously identified yeast V(1) subunits except subunit C (Vma5p). These V(1) complexes hydrolyzed CaATP but not MgATP, and CaATP hydrolysis rapidly decelerated with time. V(1) complexes from vma13Delta cells contained all V(1) subunits except C and H, and had markedly different catalytic properties. The initial rate of CaATP hydrolysis was maintained for much longer. The complexes also hydrolyzed MgATP, but showed a rapid deceleration in hydrolysis. These results indicate that the H subunit plays an important role in silencing unproductive ATP hydrolysis by cytosolic V(1) complexes, but suggest that other mechanisms, such as product inhibition, may also play a role in silencing in vivo.
Collapse
Affiliation(s)
- K J Parra
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
31
|
Mattsson JP, Li X, Peng SB, Nilsson F, Andersen P, Lundberg LG, Stone DK, Keeling DJ. Properties of three isoforms of the 116-kDa subunit of vacuolar H+-ATPase from a single vertebrate species. Cloning, gene expression and protein characterization of functionally distinct isoforms in Gallus gallus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4115-26. [PMID: 10866814 DOI: 10.1046/j.1432-1327.2000.01445.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are involved in a wide variety of essential cellular processes. An unresolved question is how the cell regulates the activity of these proton pumps and their targeting to distinct cellular compartments. There is growing evidence for the presence of subunit diversity amongst V-pumps, particularly regarding the 116-kDa subunit (called the a subunit). We have cloned and characterized three isoforms (a1, a2 and a3) of this subunit from chicken. The amino-acid sequences of these homologues are approximately 50% similar and their nucleotide differences indicate that they are products of distinct genes. The levels of mRNA expression of these isoforms was quantified by ribonuclease protection analysis. The a1 and a2 isoforms have a similar tissue distribution, with the highest level of mRNA expression in brain, an intermediate level in kidney and relatively low levels in liver and bone. In contrast, the highest level of expression of the a3 isoform is in bone and liver, with a moderate level in kidney, and the lowest level in brain. An antibody against the a1 isoform reacted with a 116 kDa protein in a brain V-ATPase preparation that was not detected in bone or liver V-ATPase preparations, whereas an antibody against the a3 isoform reacted with a 116-kDa peptide in bone and liver, but not brain V-ATPases preparations. The bone and brain V-ATPases showed differential sensitivity to the inhibitors bafilomycin and (2Z,4E)-5-(5,6-dichloro-2-indolyl)-2-methoxy-N-[4-(2, 2,6,6-tetramethyl)piperidinyl]-2,4-pentadienamide. Thus, this work demonstrates the presence of structurally and functionally distinct V-ATPases in a single vertebrate species.
Collapse
Affiliation(s)
- J P Mattsson
- Department of Cell Biology, AstraZeneca R&D, Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Landolt-Marticorena C, Williams KM, Correa J, Chen W, Manolson MF. Evidence that the NH2 terminus of vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. J Biol Chem 2000; 275:15449-57. [PMID: 10747882 DOI: 10.1074/jbc.m000207200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) is composed of a peripherally bound (V(1)) and a membrane-associated (V(0)) complex. V(1) ATP hydrolysis is thought to rotate a central stalk, which in turn, is hypothesized to drive V(0) proton translocation. Transduction of torque exerted by the rotating stalk on V(0) requires a fixed structural link (stator) between the complexes to prevent energy loss through futile rotation of V(1) relative to V(0); this work sought to identify stator components. The 95-kDa V-ATPase subunit, Vph1p, has a cytosolic NH(2) terminus (Nt-Vph1p) and a membrane-associated COOH terminus. Two-hybrid assays demonstrated that Nt-Vph1p interacts with the catalytic V(1) subunit, Vma1p. Co-immunoprecipitation of Vma1p with Nt-Vph1p confirmed the interaction. Expression of Nt-Vph1p in a Deltavph1 mutant was necessary to recruit Vma13p to V(1). Vma13p bound to Nt-Vph1p in vitro demonstrating direct interaction. Limited trypsin digests cleaves both Nt-Vph1p and Vma13p. The same tryptic treatment results in a loss of proton translocation while not reducing bafilomycin A(1)-sensitive ATP hydrolysis. Trypsin cleaved Vph1p at arginine 53. Elimination of the tryptic cleavage site by substitution of arginine 53 to serine partially protected vacuolar acidification from trypsin digestion. These results suggest that Vph1p may function as a component of a fixed structural link, or stator, coupling V(1) ATP hydrolysis to V(0) proton translocation.
Collapse
|
33
|
Beyenbach KW, Pannabecker TL, Nagel W. Central role of the apical membrane H+-ATPase in electrogenesis and epithelial transport in Malpighian tubules. J Exp Biol 2000; 203:1459-68. [PMID: 10751161 DOI: 10.1242/jeb.203.9.1459] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of bafilomycin A(1), a blocker of V-type H(+)-ATPases, were investigated in Malpighian tubules of Aedes aegypti. Bafilomycin A(1) reduced rates of transepithelial fluid secretion and the virtual short-circuit current (vI(sc)) with an IC(50) of approximately 5 micromol l(−)(1). As vI(sc) decreased, the electrical resistance increased across the whole epithelium and across the apical membrane, indicating effects on electroconductive pathways. Bafilomycin A(1) had no effect when applied from the tubule lumen, pointing to the relative impermeability of the apical membrane to bafilomycin A(1). Thus, bafilomycin A(1) must take a cytoplasmic route to its blocking site in the proton channel of the H(+)-ATPase located in the apical membrane of principal cells. The inhibitory effects of bafilomycin A(1) were qualitatively similar to those of dinitrophenol in that voltages across the epithelium (V(t)), the basolateral membrane (V(bl)) and the apical membrane (V(a)) depolarized towards zero in parallel. Moreover, V(bl)always tracked V(a), indicating electrical coupling between the two membranes through the shunt. Electrical coupling allows the H(+)-ATPase to energize not only the apical membrane, but also the basolateral membrane. Furthermore, electrical coupling offers a balance between electroconductive entry of cations across the basolateral membrane and extrusion across the apical membrane to support steady-state conditions during transepithelial transport.
Collapse
Affiliation(s)
- K W Beyenbach
- Department of Biomedical Sciences, VRT 8014, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
34
|
Toyomura T, Oka T, Yamaguchi C, Wada Y, Futai M. Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 2000; 275:8760-5. [PMID: 10722719 DOI: 10.1074/jbc.275.12.8760] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is a multi-subunit enzyme with a membrane peripheral catalytic (V(1)) and an intrinsic (V(o)) sector. We have identified three cDNA clones coding for isoforms of mouse V(o) subunit a (a1, a2, and a3). They exhibit 48-52% identity with each other and high similarity to subunit a of other species. The a1 isoform was mainly expressed in brain and liver. The a2 isoform was observed in heart and kidney in addition to brain and liver. Transcripts for the a3 isoform were strongly expressed in heart and liver. The a3 isoform was induced during osteoclast differentiation, and localized in the plasma membrane and cytoplasmic filamentous structures. In contrast to a3, the a1 isoform was constitutively expressed and localized in the cytoplasmic endomembrane compartments of the same cells. These findings suggest that the a3 isoform is a component of the plasma membrane V-ATPase essential for bone resorption.
Collapse
Affiliation(s)
- T Toyomura
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation, Osaka 567-0047, Japan
| | | | | | | | | |
Collapse
|
35
|
Abstract
V-ATPases consist of a complex of peripheral subunits containing catalytic sites for ATP hydrolysis, the V(1) sector, attached to several membrane subunits containing a proton pore, the V(0) sector. ATP-driven proton transport requires structural and functional coupling of the two sectors, but in vivo, the interaction between the V(1) and V(0) sectors is dynamic and is regulated by extracellular conditions. Dynamic instability appears to be a general characteristic of V-ATPases and, in yeast cells, the assembly state of V-ATPases is governed by glucose availability. The structural and functional implications of reversible disassembly of V-ATPases are discussed.
Collapse
Affiliation(s)
- P M Kane
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, 750 E. Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
36
|
Nishi T, Forgac M. Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J Biol Chem 2000; 275:6824-30. [PMID: 10702241 DOI: 10.1074/jbc.275.10.6824] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified cDNAs encoding three isoforms (a1, a2, and a3) of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase (V-ATPase). The predicted protein sequences of the three isoforms are 838, 856, and 834 amino acids, respectively, and they display approximately 50% identity between isoforms. Northern blot analysis demonstrated that all three isoforms are expressed in most tissues examined. However, the a1 isoform is expressed most heavily in brain and heart, a2 in liver and kidney, and a3 in liver, lung, heart, brain, spleen, and kidney. We also identified multiple alternatively spliced variants for each isoform. Reverse transcriptase-mediated polymerase chain reaction revealed that one splicing variant of the a1 isoform (a1-I) was expressed only in brain, whereas two other variants (a1-II and a1-III) were expressed in tissues other than brain. These alternatively spliced forms differ in the presence or absence of 6-7 amino acid residues near the amino and carboxyl termini of the proteins encoded. The a3 isoform is also encoded by three alternatively spliced variants, two of which are predicted to encode a protein that is truncated near the border of the amino- and carboxyl-terminal domains of the a subunit and therefore lacks the integral transmembrane-spanning helices thought to participate in proton translocation. Expression of each isoform (with the exception of a1-I) was detectable at all developmental stages investigated, with a1-I absent only in day 7 embryos. The results obtained suggest that isoforms of the 100-kDa a subunit may contribute to tissue-specific functions of the V-ATPase.
Collapse
Affiliation(s)
- T Nishi
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
37
|
Pushkin A, Yip KP, Clark I, Abuladze N, Kwon TH, Tsuruoka S, Schwartz GJ, Nielsen S, Kurtz I. NBC3 expression in rabbit collecting duct: colocalization with vacuolar H+-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F974-81. [PMID: 10600945 DOI: 10.1152/ajprenal.1999.277.6.f974] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently cloned and characterized a unique sodium bicarbonate cotransporter, NBC3, which unlike other members of the NBC family, is ethylisopropylamiloride (EIPA) inhibitable, DIDS insensitive, and electroneutral (A. Pushkin, N. Abuladze, I. Lee, D. Newman, J. Hwang, and I. Kurtz. J. Biol. Chem. 274: 16569-16575, 1999). In the present study, a specific polyclonal antipeptide COOH-terminal antibody, NBC3-C1, was generated and used to determine the pattern of NBC3 protein expression in rabbit kidney. A major band of approximately 200 kDa was detected on immunoblots of rabbit kidney. Immunocytochemistry of rabbit kidney frozen sections revealed specific staining of the apical membrane of intercalated cells in both the cortical and outer medullary collecting ducts. The pattern of NBC3 protein expression in the collecting duct was nearly identical to the same sections stained with an antibody against the vacuolar H+-ATPase 31-kDa subunit. In addition, the NBC3-C1 antibody coimmunoprecipitated the vacuolar H+-ATPase 31-kDa subunit. Functional studies in outer medullary collecting ducts (inner stripe) showed that type A intercalated cells have an apical Na+-dependent base transporter that is EIPA inhibitable and DIDS insensitive. The data suggest that NBC3 participates in H+/base transport in the collecting duct. The close association of NBC3 and the vacuolar H+-ATPase in type A intercalated cells suggests a potential structural/functional interaction between the two transporters.
Collapse
Affiliation(s)
- A Pushkin
- Division of Nephrology, University of California at Los Angeles, School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou Z, Peng SB, Crider BP, Andersen P, Xie XS, Stone DK. Recombinant SFD isoforms activate vacuolar proton pumps. J Biol Chem 1999; 274:15913-9. [PMID: 10336497 DOI: 10.1074/jbc.274.22.15913] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar proton pump of clathrin-coated vesicles is composed of two general sectors, a cytosolic, ATP hydrolytic domain (V1) and an intramembranous proton channel, V0. V1 is comprised of 8-9 subunits including polypeptides of 50 and 57 kDa, termed SFD (Sub Fifty-eight-kDa Doublet). Although SFD is essential to the activation of ATPase and proton pumping activities catalyzed by holoenzyme, its constituent polypeptides have not been separated to determine their respective roles in ATPase functions. Recent molecular characterization of these subunits revealed that they are isoforms that arise through an alternative splicing mechanism (Zhou, Z., Peng, S.-B., Crider, B.P., Slaughter, C., Xie, X.S., and Stone, D.K. (1998) J. Biol. Chem. 273, 5878-5884). To determine the functional characteristics of the 57-kDa (SFDalpha)1 and 50-kDa (SFDbeta) isoforms, we expressed these proteins in Escherichia coli. We determined that purified recombinant proteins, rSFDalpha and rSFDbeta, when reassembled with SFD-depleted holoenzyme, are functionally interchangeable in restoration of ATPase and proton pumping activities. In addition, we determined that the V-pump of chromaffin granules has only the SFDalpha isoform in its native state and that rSFDalpha and rSFDbeta are equally effective in restoring ATPase and proton pumping activities to SFD-depleted enzyme. Finally, we found that SFDalpha and SFDbeta structurally interact not only with V1, but also withV0, indicating that these activator subunits may play both structural and functional roles in coupling ATP hydrolysis to proton flow.
Collapse
Affiliation(s)
- Z Zhou
- Division of Molecular Transport, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|