1
|
Ramadesikan S, Colwell CM, Supinger R, Hunter J, Thomas J, Varga E, Mardis ER, Wood RJ, Koboldt DC. Novel inherited CDX2 variant segregating in a family with diverse congenital malformations of the genitourinary system. Cold Spring Harb Mol Case Stud 2023; 9:a006294. [PMID: 37816608 PMCID: PMC10815271 DOI: 10.1101/mcs.a006294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Anorectal malformations (ARMs) constitute a group of congenital defects of the gastrointestinal and urogenital systems. They affect males and females, with an estimated worldwide prevalence of 1 in 5000 live births. These malformations are clinically heterogeneous and can be part of a syndromic presentation (syndromic ARM) or as a nonsyndromic entity (nonsyndromic ARM). Despite the well-recognized heritability of nonsyndromic ARM, the genetic etiology in most patients is unknown. In this study, we describe three siblings with diverse congenital anomalies of the genitourinary system, anemia, delayed milestones, and skeletal anomalies. Genome sequencing identified a novel, paternally inherited heterozygous Caudal type Homeobox 2 (CDX2) variant (c.722A > G (p.Glu241Gly)), that was present in all three affected siblings. The variant identified in this family is absent from population databases and predicted to be damaging by most in silico pathogenicity tools. So far, only two other reports implicate variants in CDX2 with ARMs. Remarkably, the individuals described in these studies had similar clinical phenotypes and genetic alterations in CDX2 CDX2 encodes a transcription factor and is considered the master regulator of gastrointestinal development. This variant maps to the homeobox domain of the encoded protein, which is critical for interaction with DNA targets. Our finding provides a potential molecular diagnosis for this family's condition and supports the role of CDX2 in anorectal anomalies. It also highlights the clinical heterogeneity and variable penetrance of ARM predisposition variants, another well-documented phenomenon. Finally, it underscores the diagnostic utility of genomic profiling of ARMs to identify the genetic etiology of these defects.
Collapse
Affiliation(s)
- Swetha Ramadesikan
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Caitlyn M Colwell
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Rachel Supinger
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jesse Hunter
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jessica Thomas
- Department of Pediatric Colorectal & Pelvic Reconstructive Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Elizabeth Varga
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Richard J Wood
- Department of Pediatric Colorectal & Pelvic Reconstructive Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World J Gastroenterol 2015; 21:1436-1443. [PMID: 25663763 PMCID: PMC4316086 DOI: 10.3748/wjg.v21.i5.1436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
The homeoprotein encoded by the intestinal-specific Cdx2 gene is a major regulator of gut development and homeostasis, also involved in colon cancer as well as in intestinal-type metaplasias when it is abnormally expressed outside the gut. At the molecular level, structure/function studies have demonstrated that the Cdx2 protein is a transcription factor containing a conserved homeotic DNA-binding domain made of three alpha helixes arranged in a helix-turn-helix motif, preceded by a transcriptional domain and followed by a regulatory domain. The protein interacts with several thousand sites on the chromatin and widely regulates intestinal functions in stem/progenitor cells as well as in mature differentiated cells. Yet, this transcription factor also acts trough original nontranscriptional mechanisms. Indeed, the identification of novel protein partners of Cdx2 and also of a splicing variant revealed unexpected functions in the control of signaling pathways like the Wnt and NF-κB pathways, in double-strand break DNA repair and in premessenger RNA splicing. These novel functions of Cdx2 must be considered to fully understand the complexity of the role of Cdx2 in the healthy intestine and in diseases.
Collapse
|
3
|
Savory JGA, Mansfield M, Rijli FM, Lohnes D. Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 2011; 138:1361-70. [DOI: 10.1242/dev.056622] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate Cdx genes (Cdx1, Cdx2 and Cdx4) encode homeodomain transcription factors with well-established roles in anteroposterior patterning. To circumvent the peri-implantation lethality inherent to Cdx2 loss of function, we previously used the Cre-loxP system to ablate Cdx2 at post-implantation stages and confirmed a crucial role for Cdx2 function in events related to axial extension. As considerable data suggest that the Cdx family members functionally overlap, we extended this analysis to assess the consequence of concomitant loss of both Cdx1 and Cdx2. Here, we report that Cdx1-Cdx2 double mutants exhibit a severely truncated anteroposterior axis. In addition, these double mutants exhibit fused somites, a widened mediolateral axis and craniorachischisis, a severe form of neural tube defect in which early neurulation fails and the neural tube remains open. These defects are typically associated with deficits in planar cell polarity (PCP) signaling in vertebrates. Consistent with this, we found that expression of Ptk7, which encodes a gene involved in PCP, is markedly reduced in Cdx1-Cdx2 double mutants, and is a candidate Cdx target. Genetic interaction between Cdx mutants and a mutant allele of Scrib, a gene involved in PCP signaling, is suggestive of a role for Cdx signaling in the PCP pathway. These findings illustrate a novel and pivotal role for Cdx function upstream of Ptk7 and neural tube closure in vertebrates.
Collapse
Affiliation(s)
- Joanne G. A. Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Melissa Mansfield
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Wang P, Jin T. Hydrogen peroxide stimulates nuclear import of the POU homeodomain protein Oct-1 and its repressive effect on the expression of Cdx-2. BMC Cell Biol 2010; 11:56. [PMID: 20637099 PMCID: PMC2913919 DOI: 10.1186/1471-2121-11-56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background The ubiquitously expressed POU homeodomain protein Oct-1 serves as a sensor for stress induced by irradiation. We found recently that in pancreatic and intestinal endocrine cells, Oct-1 also functions as a sensor for cyclic AMP (cAMP). The caudal homeobox gene Cdx-2 is a transactivator of proglucagon (gcg) and pro-insulin genes. Oct-1 binds to Cdx-2 promoter and represses its expression. cAMP elevation leads to increased nuclear exclusion of Oct-1, associated with reduced recruitment of nuclear co-repressors to the Cdx-2 promoter and increased Cdx-2 expression. Results We show in this study that inducing oxidative stress by hydrogen peroxide (H2O2) increased nuclear Oct-1 content in both pancreatic α and β cell lines, as well as in a battery of other cells. This increase was then attributed to accelerated nuclear import of Oct-1, assessed by Fluorescence Recovery After Photobleaching (FRAP) using green fluorescence protein (EGFP) tagged Oct-1 molecule. H2O2 treatment was then shown to stimulate the activities of DNA-dependent protein kinase (DNA-PK) and c-jun N-terminal kinase (JNK). Finally, increased Oct-1 nuclear content upon H2O2 treatment in a pancreatic α cell line was associated with reduced Cdx-2 and gcg mRNA expression. Conclusion These observations suggest that Oct-1 functions as a sensor for both metabolic and stress/survival signaling pathways via altering its nuclear-cytoplasmic shuttling.
Collapse
Affiliation(s)
- Peixiang Wang
- Div of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, 10-354 Toronto Medical Discovery Tower, The MaRS Building, 101 College St, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
5
|
Savory JGA, Bouchard N, Pierre V, Rijli FM, De Repentigny Y, Kothary R, Lohnes D. Cdx2 regulation of posterior development through non-Hox targets. Development 2009; 136:4099-110. [PMID: 19906845 DOI: 10.1242/dev.041582] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeodomain transcription factors Cdx1, Cdx2 and Cdx4 play essential roles in anteroposterior vertebral patterning through regulation of Hox gene expression. Cdx2 is also expressed in the trophectoderm commencing at E3.5 and plays an essential role in implantation, thus precluding assessment of the cognate-null phenotype at later stages. Cdx2 homozygous null embryos generated by tetraploid aggregation exhibit an axial truncation indicative of a role for Cdx2 in elaborating the posterior embryo through unknown mechanisms. To better understand such roles, we developed a conditional Cdx2 floxed allele in mice and effected temporal inactivation at post-implantation stages using a tamoxifen-inducible Cre. This approach yielded embryos that were devoid of detectable Cdx2 protein and exhibited the axial truncation phenotype predicted from previous studies. This phenotype was associated with attenuated expression of genes encoding several key players in axial elongation, including Fgf8, T, Wnt3a and Cyp26a1, and we present data suggesting that T, Wnt3a and Cyp26a1 are direct Cdx2 targets. We propose a model wherein Cdx2 functions as an integrator of caudalizing information by coordinating axial elongation and somite patterning through Hox-independent and -dependent pathways, respectively.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
Affiliation(s)
| | - Qinghua Wang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Jane Sun
- From the Division of Cell and Molecular Biology and
- the Departments of Laboratory Medicine and Pathobiology and
| | - Jing Wu
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hang Li
- From the Division of Cell and Molecular Biology and
| | - Nina Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Yachi Huang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda Su
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ren-ke Li
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ling Liu
- From the Division of Cell and Molecular Biology and
| | - Yi Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jim Hu
- the Departments of Laboratory Medicine and Pathobiology and
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Herbert Y. Gaisano
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tianru Jin
- From the Division of Cell and Molecular Biology and
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Departments of Laboratory Medicine and Pathobiology and
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Nutrition, School of Public Health, Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
7
|
Liu T, Branch DR, Jin T. Pbx1 is a co-factor for Cdx-2 in regulating proglucagon gene expression in pancreatic A cells. Mol Cell Endocrinol 2006; 249:140-9. [PMID: 16574312 DOI: 10.1016/j.mce.2006.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 01/06/2023]
Abstract
A number of Hox and Hox-like homeodomain (HD) proteins have been previously shown to utilize members of the TALE HD protein family as co-factors in regulating gene expression. The caudal HD protein Cdx-2 is a transactivator for the proglucagon gene, expressed in pancreatic A cells and intestinal endocrine L cells. We demonstrate here that co-transfection of the TALE homeobox gene Pbx1 enhanced the activation of Cdx-2 on the proglucagon promoter in either the pancreatic A cell line InR1-G9 or BHK fibroblasts. The activation was observed for proglucagon promoter constructs with or without the binding motifs for Pbx1. Furthermore, mutating the penta-peptide motif (binding motif for TALE HD proteins) on Cdx-2 substantially attenuated its activation on proglucagon promoter, but not on the sucrase-isomaltase gene (SI) promoter, or its own (Cdx-2) promoter; suggesting that Cdx-2 utilizes Pbx1 as a co-factor for regulating the expression of selected target genes. Physical interaction between Cdx-2 and Pbx1 was demonstrated by co-immunoprecipitation as well as GST fusion protein pull-down. We suggest that this study reveals a novel function for Pbx1 in pancreatic islet physiology: regulating proglucagon expression by serving as a co-factor for Cdx-2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicine and Institute of Medical Science, University of Toronto, Rm. 410, 67 College Street, Toronto, Ont., Canada M5G 2M1
| | | | | |
Collapse
|
8
|
Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 2006; 130:1191-206. [PMID: 16618413 DOI: 10.1053/j.gastro.2005.12.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/14/2005] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Although progression to adenocarcinoma at the gastroesophageal junction reflects exposure to acid and bile acids associated with reflux, mechanisms mediating this transformation remain undefined. Guanylyl cyclase C (GC-C), an intestine-specific tumor suppressor, may represent a mechanism-based marker and target of transformation at the gastroesophageal junction. The present studies examine the expression of GC-C in normal tissues and tumors from esophagus and stomach and mechanisms regulating its expression by acid and bile acids. METHODS Gene expression was examined by reverse-transcription polymerase chain reaction, promoter analysis, immunohistochemistry, immunoblotting, and functional analysis. Promoter transactivation was quantified by using luciferase constructs and mutational analysis. DNA binding of transcription factors was examined by electromobility shift analysis. RESULTS GC-C mRNA and protein were ectopically expressed in approximately 80% of adenocarcinomas arising in, but not in normal, esophagus and stomach. Similarly, in OE19 human esophageal cancer cells, deoxycholate and acid induced expression of GC-C. This was associated with the induction of expression of Cdx2, a transcription factor required for GC-C expression. In turn, induction of Cdx2 expression by deoxycholate was mediated by binding sites in the proximal promoter for nuclear factor kappaB (NF-kappaB). Furthermore, deoxycholate increased NF-kappaB activity, associated with nuclear translocation and Cdx2 promoter binding of the NF-kappaB subunit p50. Moreover, a dominant negative construct for NF-kappaB prevented deoxycholate-induced p50 nuclear translocation and activation of the Cdx2 promoter. CONCLUSIONS Transformation associated with reflux at the gastroesophageal junction reflects activation by bile acid and acid of a transcriptional program involving NF-kappaB and Cdx2, which mediate intestinal metaplasia and ectopic expression of GC-C.
Collapse
Affiliation(s)
- Philip R Debruyne
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Song BL, Wang CH, Yao XM, Yang L, Zhang WJ, Wang ZZ, Zhao XN, Yang JB, Qi W, Yang XY, Inoue K, Lin ZX, Zhang HZ, Kodama T, Chang C, Liu YK, Chang TY, Li BL. Human acyl-CoA:cholesterol acyltransferase 2 gene expression in intestinal Caco-2 cells and in hepatocellular carcinoma. Biochem J 2006; 394:617-26. [PMID: 16274362 PMCID: PMC1383711 DOI: 10.1042/bj20051417] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/02/2005] [Accepted: 11/08/2005] [Indexed: 11/17/2022]
Abstract
Humans express two ACAT (acyl-CoA:cholesterol acyltransferase) genes, ACAT1 and ACAT2. ACAT1 is ubiquitously expressed, whereas ACAT2 is primarily expressed in intestinal mucosa and plays an important role in intestinal cholesterol absorption. To investigate the molecular mechanism(s) responsible for the tissue-specific expression of ACAT2, we identified five cis-elements within the human ACAT2 promoter, four for the intestinal-specific transcription factor CDX2 (caudal type homeobox transcription factor 2), and one for the transcription factor HNF1alpha (hepatocyte nuclear factor 1alpha). Results of luciferase reporter and electrophoretic mobility shift assays show that CDX2 and HNF1alpha exert a synergistic effect, enhancing the ACAT2 promoter activity through binding to these cis-elements. In undifferentiated Caco-2 cells, the ACAT2 expression is increased when exogenous CDX2 and/or HNF1alpha are expressed by co-transfection. In differentiated Caco-2 cells, the ACAT2 expression significantly decreases when the endogenous CDX2 or HNF1alpha expression is suppressed by using RNAi (RNA interference) technology. The expression levels of CDX2, HNF1alpha, and ACAT2 are all greatly increased when the Caco-2 cells differentiate to become intestinal-like cells. These results provide a molecular mechanism for the tissue-specific expression of ACAT2 in intestine. In normal adult human liver, CDX2 expression is not detectable and the ACAT2 expression is very low. In the hepatoma cell line HepG2 the CDX2 expression is elevated, accounting for its elevated ACAT2 expression. A high percentage (seven of fourteen) of liver samples from patients affected with hepatocellular carcinoma exhibited elevated ACAT2 expression. Thus, the elevated ACAT2 expression may serve as a new biomarker for certain form(s) of hepatocellular carcinoma.
Collapse
Key Words
- acyl-coa:cholesterol acyltransferase (acat2)
- caudal type homeobox transcription factor 2 (cdx2)
- hepatocyte nuclear factor 1α (hnf1α)
- intestine
- hepatocellular carcinoma (hcc)
- acat, acyl-coa:cholesterol acyltransferase
- afp, α-fetalprotein
- cdx2, caudal type homeobox transcription factor 2
- cldn2, claudin 2 gene
- dmem, dulbecco's modified eagle's medium
- emsa, electrophoretic mobility shift assay
- fbs, fetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hcc, hepatocellular carcinoma
- hnf1α, hepatocyte nuclear factor 1α
- lph, lactase-phlorizin hydrolase gene
- luc, luciferase reporter
- rnai, rna interference
- rt, reverse transcriptase
- ugt1a8–10, udp glucuronosyltransferase 1 family polypeptides a8–10 gene
Collapse
Affiliation(s)
- Bao-Liang Song
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Can-Hua Wang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- †Department of Biochemistry and Technology, Jiao Tong University, Shanghai 200030, China
| | - Xiao-Min Yao
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- †Department of Biochemistry and Technology, Jiao Tong University, Shanghai 200030, China
| | - Li Yang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen-Jing Zhang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- ‡Department of Biochemistry and Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Zhen Wang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Nan Zhao
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Bo Yang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Qi
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Ying Yang
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kenji Inoue
- §Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Zhi-Xin Lin
- †Department of Biochemistry and Technology, Jiao Tong University, Shanghai 200030, China
| | - Hui-Zhan Zhang
- ‡Department of Biochemistry and Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Tatsuhiko Kodama
- §Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Yin-Kun Liu
- ¶Liver Cancer Institute of Zhong San Hospital, Fudan University, Shanghai 200031, China
| | - Ta-Yuan Chang
- ∥Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, U.S.A
| | - Bo-Liang Li
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Chen L, Wang P, Andrade CF, Zhao IY, Dubé PE, Brubaker PL, Liu M, Jin T. PKA independent and cell type specific activation of the expression of caudal homeobox gene Cdx-2 by cyclic AMP. FEBS J 2005; 272:2746-59. [PMID: 15943809 DOI: 10.1111/j.1742-4658.2005.04694.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdx-2 is a transactivator for the proglucagon gene in pancreatic and intestinal endocrine cells. Cdx-2 is also expressed in differentiated intestinal epithelia of nonendocrine origin. Cdx-2-/- mice are embryonic lethal, while Cdx-2+/- mutants show multiple malfunctions including the formation of intestinal polyps. Within the polyps, the remaining wild type Cdx-2 allele ceases its expression, while the expression of both Cdx-2 and proglucagon in the endocrine cells remains unaltered, indicating that Cdx-2 could be haplo-insufficient for nonendocrine cells, but not for proglucagon producing endocrine cells. We propose that mechanisms underlying Cdx-2 expression and auto-regulation [Xu F, Li H & Jin T (1999), J Biol Chem274, 34310-34316] differ in these two types of cells. We show here that forskolin and cAMP upregulate Cdx-2 expression in proglucagon producing cells, but not in colon cancer cells and primary intestinal cell cultures. It is unlikely that the activation is mainly mediated by PKA, because the activation was observed in a PKA deficient cell line. Co-transfecting a dominant negative Ras expression plasmid substantially repressed the Cdx-2 promoter, in contrast to a previous finding that Ras is a negative factor for Cdx-2 expression in colon cancer cells. Furthermore, forskolin activated ERK1/2 phosphorylation in the endocrine cells, and attenuation of ERK1/2 phosphorylation by its inhibitor is associated with attenuated Cdx-2 expression. Finally, an Epac pathway specific cAMP analogue stimulated both ERK1/2 phosphorylation and Cdx-2 expression. Taken together, our observations suggest that Cdx-2 expression is regulated by the second messenger cAMP, cell-type specifically, via the Epac pathway.
Collapse
Affiliation(s)
- Liang Chen
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Flock G, Cao X, Drucker DJ. Pdx-1 is not sufficient for repression of proglucagon gene transcription in islet or enteroendocrine cells. Endocrinology 2005; 146:441-9. [PMID: 15471960 DOI: 10.1210/en.2004-0495] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pdx-1 plays a key role in the development of the pancreas and the control of islet gene transcription and has also been proposed as a dominant regulator of the alpha- vs. beta-cell phenotype via extinction of proglucagon expression. To ascertain the relationship between Pdx-1 and proglucagon gene expression, we examined the effect of enhanced pdx-1 expression on proglucagon gene expression in murine islet alphaTC-1 and GLUTag enteroendocrine cells. Although adenoviral transduction increased the levels of pdx-1 mRNA transcripts and nuclear Pdx-1 protein, overexpression of pdx-1 did not repress endogenous proglucagon gene expression in alphaTC-1 or GLUTag cells or murine islets. Immunohistochemical analysis of cells transduced with Ad-pdx-1 demonstrated multiple individual islet or enteroendocrine cells exhibiting both nuclear Pdx-1 and cytoplasmic glucagon-like peptide-1 immunopositivity. The failure of pdx-1 to inhibit endogenous proglucagon gene expression was not attributable to defects in Pdx-1 nuclear translocation or DNA binding as demonstrated using Western blotting and EMSA analyses. Furthermore, Ad-pdx-1 transduction did not repress proglucagon promoter activity in alphaTC-1 or GLUTag cells. Taken together, these findings demonstrate that pdx-1 alone is not sufficient for specification of the hormonal phenotype or extinction of proglucagon gene expression in islet or enteroendocrine cells.
Collapse
Affiliation(s)
- Grace Flock
- Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Béland M, Pilon N, Houle M, Oh K, Sylvestre JR, Prinos P, Lohnes D. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol Cell Biol 2004; 24:5028-38. [PMID: 15143193 PMCID: PMC416402 DOI: 10.1128/mcb.24.11.5028-5038.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Cdx1 gene product is essential for normal anterior-posterior vertebral patterning. Expression of Cdx1 is regulated by several pathways implicated in anterior-posterior patterning events, including retinoid and Wnt signaling. We have previously shown that retinoic acid plays a key role in early stages of Cdx1 expression at embryonic day 7.5 (E7.5), while both Wnt3a signaling and an autoregulatory loop, dependent on Cdx1 itself, are involved in later stages of expression (E8.5 to E9.5). This autoregulation is reflected by the ability of Cdx1 to affect expression from proximal Cdx1 promoter sequences in tissue culture. However, this region is devoid of a demonstrable Cdx response element(s). We have now found that Cdx1 and LEF1, a nuclear effector of Wnt signaling, synergize to induce expression from the Cdx1 promoter through previously documented LEF/T-cell factor response elements. We also found a direct physical interaction between the homeodomain of Cdx1 and the B box of LEF1, suggesting a basis for this synergy. Consistent with these observations, analysis of Cdx1 Wnt3a(vt) compound mutants demonstrated that Wnt and Cdx1 converged on Cdx1 expression and vertebral patterning in vivo. Further data suggest that Cdx-high-mobility group box interactions might be involved in a number of additional pathways.
Collapse
Affiliation(s)
- Mélanie Béland
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | |
Collapse
|
13
|
Trinh DKY, Zhang K, Hossain M, Brubaker PL, Drucker DJ. Pax-6 activates endogenous proglucagon gene expression in the rodent gastrointestinal epithelium. Diabetes 2003; 52:425-33. [PMID: 12540617 DOI: 10.2337/diabetes.52.2.425] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The proglucagon gene encodes pancreatic glucagon and the glucagon-like peptides, which exert diverse effects on nutrient absorption and assimilation. The therapeutic potential of glucagon-like peptide-1 (GLP-1) has fostered interest in development of cellular engineering approaches to augment endogenous intestinal-derived GLP-1 for the treatment of type 2 diabetes. We have used adenovirus technology to examine the potential roles of the transcription factors Cdx-2/3 and Pax-6 as activators of endogenous proglucagon gene expression in enteroendocrine cell lines and in nontransformed rat intestinal cells. Adenoviral-expressed Cdx-2/3 and Pax-6 activated proglucagon promoter-luciferase activity in baby hamster kidney (BHK) fibroblasts, HEK 293 cells, and enteroendocrine cell lines. Pax-6, but not Cdx-2/3, induced expression of the endogenous proglucagon gene in enteroendocrine cell lines, but not in heterologous fibroblasts. Furthermore, transduction of primary rat intestinal cell cultures in vitro, or the rat colonic epithelium in vivo, with Ad-Pax-6 activated endogenous proglucagon gene expression. These data demonstrate that Pax-6, but not Cdx-2/3, is capable of activating the endogenous proglucagon gene in both immortalized enteroendocrine cells and the nontransformed intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Denny K Y Trinh
- Department of Medicine, Banting and Best Diabetes Center, Toronto General Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
14
|
Cdx homeodomain proteins in vertebral patterning. MURINE HOMEOBOX GENE CONTROL OF EMBRYONIC PATTERNING AND ORGANOGENESIS 2003. [DOI: 10.1016/s1569-1799(03)13003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Flock G, Drucker DJ. Pax-2 activates the proglucagon gene promoter but is not essential for proglucagon gene expression or development of proglucagon-producing cell lineages in the murine pancreas or intestine. Mol Endocrinol 2002; 16:2349-59. [PMID: 12351699 DOI: 10.1210/me.2002-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tissue-specific proglucagon gene transcription is achieved through combinations of transcription factors expressed in pancreatic A cells and enteroendocrine L cells of the small and large intestine. Cell transfection and electrophoretic mobility shift assay experiments previously identified Pax-2 as a regulator of islet proglucagon gene expression. We examined whether Pax-2 regulates gut proglucagon gene expression using enteroendocrine cell lines and Pax2(1NEU) mutant mice. Immunoreactive Pax-2 was detected in STC-1 enteroendocrine cells, and Pax-2 activated proglucagon promoter activity in transfected baby hamster kidney and GLUTag cells. Pax-2 antisera diminished the formation of a Pax-2-G3 complex in electrophoretic mobility shift assay studies using nuclear extracts from islet and enteroendocrine cell lines. Surprisingly, Pax-2 mRNA transcripts were not detected by RT-PCR in RNA isolated from adult rat pancreas, rat islets, embryonic d 19 or adult murine pancreas and gastrointestinal tract. Furthermore, embryonic d 19 or neonatal d 1 Pax2(1NEU) mice exhibited normal islet A cells and gut endocrine L cells, and no decrement in pancreatic or intestinal glucagon gene expression. These findings demonstrate that Pax-2 is not essential for the developmental formation of islet A or gut L cells and does not play a role in the physiological control of proglucagon gene expression in vivo.
Collapse
Affiliation(s)
- Grace Flock
- The Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
16
|
Liu Y, Shen W, Brubaker PL, Kaestner KH, Drucker DJ. Foxa3 (HNF-3gamma) binds to and activates the rat proglucagon gene promoter but is not essential for proglucagon gene expression. Biochem J 2002; 366:633-41. [PMID: 12000309 PMCID: PMC1222783 DOI: 10.1042/bj20020095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Revised: 04/19/2002] [Accepted: 05/09/2002] [Indexed: 12/13/2022]
Abstract
Members of the Forkhead box a (Foxa) transcription factor family are expressed in the liver, pancreatic islets and intestine and both Foxa1 and Foxa2 regulate proglucagon gene transcription. As Foxa proteins exhibit overlapping DNA-binding specificities, we examined the role of Foxa3 [hepatocyte nuclear factor (HNF)-3gamma] in control of proglucagon gene expression. Foxa3 was detected by reverse transcriptase PCR in glucagon-producing cell lines and binds to the rat proglucagon gene G2 promoter element in GLUTag enteroendocrine cells. Although Foxa3 increased rat proglucagon promoter activity in BHK fibroblasts, augmentation of Foxa3 expression did not increase proglucagon promoter activity in GLUTag cells. Furthermore, adenoviral Foxa3 expression did not affect endogenous proglucagon gene expression in islet or intestinal endocrine cell lines. Although Foxa3(-/-) mice exhibit mild hypoglycaemia during a prolonged fast, the levels of proglucagon-derived peptides and proglucagon mRNA transcripts were comparable in tissues from wild-type and Foxa3(-/-) mice. These findings identify Foxa3 as a member of the proglucagon gene G2 element binding-protein family that, unlike Foxa1, is not essential for control of islet or intestinal proglucagon gene expression in vivo.
Collapse
Affiliation(s)
- Yuanfang Liu
- Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, 101 College Street CCRW3-845, Toronto, Canada M5G 2C4
| | | | | | | | | |
Collapse
|
17
|
Rings EH, Boudreau F, Taylor JK, Moffett J, Suh ER, Traber PG. Phosphorylation of the serine 60 residue within the Cdx2 activation domain mediates its transactivation capacity. Gastroenterology 2001; 121:1437-50. [PMID: 11729123 DOI: 10.1053/gast.2001.29618] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cdx2 is critical in intestinal proliferation and differentiation. Modulation of Cdx2 function in response to cellular signaling is to be elucidated. We hypothesize that phosphorylation of the Cdx2 activation domain can modulate its function. METHODS The Cdx2 activation domain was delineated in transient transfections using different portions of Cdx2 fused to the Gal4-DNA binding domain. In vivo phosphorylation was studied by metabolic labeling with (32)P-orthophosphate. To study a potential phosphorylation site, polyclonal antibodies were generated: CNL was raised against amino acids 54-66 of Cdx2 and P-Cdx2-S60 against the same epitope in which serine 60 was phosphorylated. RESULTS A critical region for transactivation resides within amino acids 60-70. Substitution of serine 60 with alanine reduces incorporation of (32)P-orthophosphate substantially. S60-phosphorylation decreases Cdx2 transactivation. Phosphorylation of serine 60 can be inhibited with the mitogen-activated protein kinase inhibitors PD98059 or UO126. P-Cdx2-S60 recognizes phosphorylated serine 60 mainly in proliferative compartment of the intestinal epithelial layer. In contrast, CNL recognizes Cdx2 predominantly in the differentiated compartment. CONCLUSIONS The Cdx2 activation domain is phosphorylated at serine 60 via the mitogen-activated protein kinase pathway. S60-phosphorylated and S60-nonphosphorylated Cdx2 have different transcriptional activity, as well as different spatial expression patterns in the intestinal epithelium.
Collapse
Affiliation(s)
- E H Rings
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Houde M, Laprise P, Jean D, Blais M, Asselin C, Rivard N. Intestinal epithelial cell differentiation involves activation of p38 mitogen-activated protein kinase that regulates the homeobox transcription factor CDX2. J Biol Chem 2001; 276:21885-94. [PMID: 11283019 DOI: 10.1074/jbc.m100236200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The intracellular signaling pathways responsible for cell cycle arrest and differentiation along the crypt-villus axis of the human small intestine remain largely unknown. p38 mitogen-activated protein kinases (MAPKs) have recently emerged as key modulators of various vertebrate cell differentiation processes. In order to elucidate further the mechanism(s) responsible for the loss of proliferative potential once committed intestinal cells begin to differentiate, the role and regulation of p38 MAPK with regard to differentiation were analyzed in both intact epithelium as well as in well established intestinal cell models recapitulating the crypt-villus axis in vitro. Results show that phosphorylated and active forms of p38 were detected primarily in the nuclei of differentiated villus cells. Inhibition of p38 MAPK signaling by 2-20 microm SB203580 did not affect E2F-dependent transcriptional activity in subconfluent Caco-2/15 or HIEC cells. p38 MAPK activity dramatically increased as soon as Caco-2/15 cells reached confluence, whereas addition of SB203580 during differentiation of Caco-2/15 cells strongly attenuated sucrase-isomaltase gene and protein expression as well as protein expression of villin and alkaline phosphatase. The binding of CDX2 to the sucrase-isomaltase promoter and its transcriptional activity were significantly reduced by SB203580. Pull-down glutathione S-transferase and immunoprecipitation experiments demonstrated a direct interaction of CDX3 with p38. Finally, p38-dependent phosphorylation of CDX3 was observed in differentiating Caco-2/15 cells. Taken together, our results indicate that p38 MAPK may be involved in the regulation of CDX2/3 function and intestinal cell differentiation.
Collapse
Affiliation(s)
- M Houde
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Norris RA, Kern MJ. Identification of domains mediating transcription activation, repression, and inhibition in the paired-related homeobox protein, Prx2 (S8). DNA Cell Biol 2001; 20:89-99. [PMID: 11244566 DOI: 10.1089/104454901750070292] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the growing information concerning the developmental importance of the Prx2 protein, the structural determinants of Prx2 function are poorly understood. To gain insight into the transcription regulatory regions of the Prx2 protein, we generated a series of truncation mutants. Both the Prx2 response element (PRE) and a portion of the tenascin promoter, a downstream target of Prx2, were used as reporters in transient transfection assays. This analysis showed that a conserved domain (PRX), found in both Prx1 and Prx2, activated transcription in NIH 3T3 cells. This PRX domain, as well as other functional regions of Prx2, demonstrated both cell-specific and promoter-dependent transcriptional regulation. A second important region, the OAR (aristaless) domain, which is conserved among 35 Paired-type homeodomain proteins, was observed to inhibit transcription. Deletion of this element resulted in a 20-fold increase of transcription from the tenascin reporter in NIH 3T3 cells but not in C2C12 cells. The OAR domain did not function as a repressor in chimeric fusions with the Gal4 DNA binding domain in either cell type, characterizing it as an inhibitor instead of a repressor. These results give insight into the function of the Prx2 transcription factor while establishing the framework for comparison with the two isoforms of Prx1.
Collapse
Affiliation(s)
- R A Norris
- University of South Carolina, Department of Cell Biology and Anatomy, Charleston, South Carolina, USA
| | | |
Collapse
|
20
|
Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, Demchyshyn L, Asa SL, Drucker DJ. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 2000; 119:744-55. [PMID: 10982769 DOI: 10.1053/gast.2000.16489] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Glucagon-like peptide (GLP)-2, a product of the proglucagon gene, is expressed in enteroendocrine cells of the small and large intestine and is trophic to the gastrointestinal mucosa. GLP-2 also inhibits gastric acid secretion and emptying and up-regulates intestinal hexose transport. GLP-2 acts via binding to a single G protein-coupled GLP-2 receptor (GLP-2R), but the cellular targets for the diverse actions of GLP-2 remain unknown. METHODS GLP-2R expression in rodent and human tissues was examined using a combination of Northern blotting, reverse-transcription polymerase chain reaction (RT-PCR), and immunocytochemistry. RESULTS A single major GLP-2R messenger RNA transcript was detected by Northern blot analysis in rodent stomach, duodenum, jejunum, ileum, and colon, but not in rodent esophagus. GLP-2R expression was also detected by RT-PCR in RNA from the hypothalamus, brain stem, and lung. Immunocytochemical localization of human GLP-2R expression using specific antisera detected GLP-2R immunopositivity in subsets of endocrine cell populations in the epithelium of the stomach and both the small and large bowel. CONCLUSIONS These findings suggest that enteroendocrine-derived GLP-2 acts directly on endocrine cells to induce one or more downstream mediators of GLP-2 action in the gastrointestinal tract.
Collapse
Affiliation(s)
- B Yusta
- Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG. The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 2000; 275:4499-506. [PMID: 10660624 DOI: 10.1074/jbc.275.6.4499] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdx1 is a homeodomain transcription factor that regulates intestine-specific gene expression. Experimental evidence suggests that Cdx1 may be involved in cell cycle regulation, but its role is ill defined and the mechanisms have not been explored. We used stable transfection of inducible constructs and transient expression with a replication-deficient adenovirus to induce Cdx1 expression in rat IEC6 cells, a non-transformed intestinal epithelial cell line that does not express Cdx1 protein. Expression of Cdx1 markedly reduced proliferation of IEC6 cells with accumulation of cells in the G(0)/G(1) phase of the cell cycle. Cell cycle arrest was accompanied by an increase in the hypophosphorylated forms of the retinoblastoma protein (pRb) and the pRb-related p130 protein. Protein levels of multiple cyclin-dependent kinase inhibitors were either unchanged (p16, p18, p21, p27, and p57) or were not detected (p15 and p19). Most significantly, levels of cyclins D1 and D2 were markedly diminished with Cdx1 expression, but not cyclins D3, E, or the G(1) kinases. Additionally, cyclin-dependent kinase-4 activity was decreased in association with decreased cyclin D protein. We conclude that Cdx1 regulates intestinal epithelial cell proliferation by inhibiting progression through G(0)/G(1), most likely via modulation of cyclin D1 and D2 protein levels.
Collapse
Affiliation(s)
- J Lynch
- Division of Gastroenterology, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Xu F, Li H, Jin T. Cell type-specific autoregulation of the Caudal-related homeobox gene Cdx-2/3. J Biol Chem 1999; 274:34310-6. [PMID: 10567407 DOI: 10.1074/jbc.274.48.34310] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caudal-related homeobox gene Cdx-2/3 is a critical "master" control gene in embryogenesis. Mice heterozygous for a null mutation in Cdx-2/3 exhibit multiple malfunctions including tail abnormalities, stunted growth, a homeotic shift in vertebrae, and the development of multiple intestinal adenomatous polyps, indicating that Cdx-2/3 is haplo-insufficient. In vitro studies have identified more than a half-dozen downstream target genes expressed in pancreatic and intestinal cells for this transcription factor. We have examined the transcriptional properties of the mouse Cdx-2/3 promoter. This promoter could be autoregulated in pancreatic and intestinal cells that express endogenous Cdx-2/3. In contrast, Cdx-2/3 transfection represses the Cdx-2/3 promoter in fibroblasts, which do not express endogenous Cdx-2/3. Since Cdx-2/3 activates proglucagon gene promoter in both pancreatic and intestinal cells and in fibroblasts, we suggest that some, yet to be identified, cell type-specific components are required for activating selected target gene promoters of Cdx-2/3, including the Cdx-2/3 promoter itself. Cdx-2/3 binds to the TATA box and another AT-rich motif, designated as DBS, within an evolutionarily conserved proximal element of the Cdx-2/3 promoter. The DBS motif is critical for the autoregulation, whereas the TATA box may act as an attenuating element for the autoregulatory loop. Finally, overexpression of Cdx-2/3 in a pancreatic cell line activated the expression of the endogenous Cdx-2/3. Taken together, our results indicate that the dose-dependent phenotype of Cdx-2/3 expression on its downstream targets in vivo could be regulated initially via a transcriptional network involving cell type-specific autoregulation of the Cdx-2/3 promoter.
Collapse
Affiliation(s)
- F Xu
- Oncology Research Laboratory, The Toronto Hospital, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | | | | |
Collapse
|
23
|
Freund JN, Domon-Dell C, Kedinger M, Duluc I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 1999; 76:957-69. [PMID: 10392709 DOI: 10.1139/o99-001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The past years have witnessed an increasing number of reports relative to homeobox genes in endoderm-derived tissues. In this review, we focus on the caudal-related Cdx-1 and Cdx-2 homeobox genes to give an overview of the in vivo, in vitro, and ex vivo approaches that emphasize their primary role in intestinal development and in the control of intestinal cell proliferation, differentiation, and identity. The participation of these genes in colon tumorigenesis and their identification as important actors of the oncogenic process are also discussed.
Collapse
Affiliation(s)
- J N Freund
- Institut National de la Santé et de la Recherche Médicale, Unité 381, Strasbourg, France.
| | | | | | | |
Collapse
|