1
|
Leilei Z, Kewen Z, Biao H, Fang H, Yigang W. The Role of Chemokine IL-7 in Tumor and Its Potential Antitumor Immunity. J Interferon Cytokine Res 2022; 42:243-250. [PMID: 35613386 DOI: 10.1089/jir.2021.0236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-7 (IL-7) is a cytokine belonging to the chemokine family. It plays a key role in the differentiation, development, and maturation of T lymphocytes and B lymphocytes, which is pivotal to adaptive immunity. In addition to its role in lymphocyte development, recent studies have indicated the antitumor functions of IL-7 in the tumor microenvironment. In this review, we discuss the role of IL-7 in tumors and summarize its antitumor potential and clinical application in lymphoma, leukemia, breast cancer, colon cancer, and so on. Furthermore, the combinational strategies of IL-7 and other antitumor drugs have been also discussed.
Collapse
Affiliation(s)
- Zhang Leilei
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| | - Zhou Kewen
- Department of Immunology, University of Toronto, Bachelor of Science, Toronto, Canada
| | - Huang Biao
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huang Fang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wang Yigang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing, China
| |
Collapse
|
2
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
4
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
5
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
El Azreq MA, Arseneault C, Boisvert M, Pagé N, Allaeys I, Poubelle PE, Tessier PA, Aoudjit F. Cooperation between IL-7 Receptor and Integrin α2β1 (CD49b) Drives Th17-Mediated Bone Loss. THE JOURNAL OF IMMUNOLOGY 2015; 195:4198-209. [DOI: 10.4049/jimmunol.1500437] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/20/2015] [Indexed: 01/15/2023]
|
7
|
Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma. Oncogene 2015; 35:2723-34. [PMID: 26387544 DOI: 10.1038/onc.2015.334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/22/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting.
Collapse
|
8
|
Perspectives of the relationship between IL-7 and autoimmune diseases. Clin Rheumatol 2013; 32:1703-9. [PMID: 23934388 DOI: 10.1007/s10067-013-2360-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-7 is one of the IL-2 family cytokines comprised of IL-2, IL-4, IL-7, IL-9, IL-15, as well as IL-21. IL-7 is mainly secreted by stroma cells in primary lymphoid tissues, playing an essential role in the program of T cell development. Recently, studies have revealed that physiological function exerted by immunocytes can be influenced by aberrant IL-7 signaling, which is common in abnormal autoimmunity regulation. There is also increasing evidence that IL-7 is involved in several autoimmune diseases, such as rheumatoid arthritis, type I diabetes, multiple sclerosis and systemic lupus erythematosus, etc. Targeting components in IL-7 signaling pathways may have potential significance for treating numerous autoimmune diseases. In this review, we therefore summarize our current understandings regarding the relationship between IL-7 and autoimmune diseases so as to render more valuable information on this kind of research.
Collapse
|
9
|
Zouein FA, Duhé RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors 2011; 29:245-52. [PMID: 21892841 PMCID: PMC3595105 DOI: 10.3109/08977194.2011.614949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The four Janus kinases (JAKs) comprise a family of intracellular, nonreceptor tyrosine kinases that first gained attention as signaling mediators of the type I and type II cytokine receptors. Subsequently, the JAKs were found to be involved in signaling downstream of the insulin receptor, a number of receptor tyrosine kinases, and certain G-protein coupled receptors. Although a number of cytoplasmic targets for the JAKs have been identified, their predominant action was found to be the phosphorylation and activation of the signal transducers and activators of transcription (STAT) factors. Through the STATs, the JAKs activate gene expression linked to cellular stress, proliferation, and differentiation. The JAKs are especially important in hematopoiesis, inflammation, and immunity, and aberrant JAK activity has been implicated in a number of disorders including rheumatoid arthritis, psoriasis, polycythemia vera, and myeloproliferative diseases. Although once thought to reside strictly in the cytoplasm, recent evidence shows that JAK1 and JAK2 are present in the nucleus of certain cells often under conditions associated with high rates of cell growth. Nuclear JAKs have now been shown to affect gene expression by activating other transcription factors besides the STATs and exerting epigenetic actions, for example, by phosphorylating histone H3. The latter action derepresses global gene expression and has been implicated in leukemogenesis. Nuclear JAKs may have a role as well in stem cell biology. Here we describe recent developments in understanding the noncanonical nuclear actions of JAK1 and JAK2.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy J. Duhé
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- University of Mississippi Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
10
|
Xu HT, Ye J, Chen YB, Zhang LX, Huang JX, Xian JC, Liu L, Peng HL, Li L, Lin M, Huang JH. Changes in the proportions of CD4(+)T cell subsets defined by CD127 and CD25 expression during HBV infection. Immunol Invest 2011; 41:290-303. [PMID: 22122423 DOI: 10.3109/08820139.2011.631656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD4(+)T cell counts are closely related to the progression of HBV infection. Here, we investigated how the proportions of three CD4(+)T cell subsets - CD127(-)CD25(-), CD127(+)CD25(low/-) and CD127(low)CD25(high) - changed during HBV infection, as is little known. Compared with healthy controls, the proportions of CD127(-)CD25(-) in chronic hepatitis B (CHB) patients and HBV carriers significantly increased, while that of CD127(+)CD25(low/-) significantly decreased. The proportion of CD127(low)CD25(high) in CHB patients was significantly higher than those in HBV carriers or healthy controls. Compared with HBV-DNA negative group, the proportion of CD127(-)CD25(-) in positive group significantly decreased and that of CD127(+)CD25(low/-) significantly increased. In the follow-up study for CHB patients treated with interferon-α2b for 12 weeks or 24 weeks, the proportions of CD127(-)CD25(-) significantly decreased, while that of CD127(low/-)CD25(high) significantly increased. The results suggested that specific changes in the fraction of CD4(+)T cell subsets expressing CD127 and/or CD25 were associated with hepatitis B progression.
Collapse
Affiliation(s)
- Hong-Tao Xu
- Department of Laboratory Medicine, The Taizhou People's Hospital, Taizhou City, Jiangsu Province 225300, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Z, Knoepp SM, Ku H, Sansbury HM, Xie Y, Chahal MS, Tomlinson S, Meier KE. Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines. Clin Exp Metastasis 2011; 28:551-65. [PMID: 21533871 PMCID: PMC3193847 DOI: 10.1007/s10585-011-9391-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.
Collapse
Affiliation(s)
- Zhihong Zhang
- Program in Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99210
| | - Stewart M. Knoepp
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hsun Ku
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Heather M. Sansbury
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yuhuan Xie
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Manpreet S. Chahal
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington 99164
| | - Stephen Tomlinson
- Department of Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kathryn E. Meier
- Program in Nutrition and Exercise Physiology, Washington State University, Spokane, Washington 99210
| |
Collapse
|
12
|
Martini A, Bruno R, Mazzulla S, Nocita A, Martino G. Angiotensin II regulates endothelial cell migration through calcium influx via T-type calcium channel in human umbilical vein endothelial cells. Acta Physiol (Oxf) 2010; 198:449-55. [PMID: 20028346 DOI: 10.1111/j.1748-1716.2009.02070.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The T-type calcium channel is expressed in vascular endothelial cells, but its role in endothelial cell function is yet to be elucidated. We analysed the endothelial functional role of T-type calcium channel-dependent calcium under angiotensin II (Ang II) stimulation. METHODS Human umbilical vein endothelial cells were co-incubated with hormone at 10(-7) m and either Efonidipine 10(-5) m or Verapamil 10(-5) m or Mibefradil 10(-5) m or Wortmannin 10(-6) m. The contribution of Ang II receptors was evaluated using PD123319 10(-7) m and ZD 7155 10(-7) m. The calcium ion concentration was observed using Fluo-3 acetossimetil ester. The cells were observed after 3, 6, 9 and 12 h. RESULTS The microfluorescence method points out that Ang II induces intracellular calcium modulation in time by distinct mechanisms. AT2 receptor blockade is necessary to observe significant increase in [Ca(2+)](i) levels. Pre-treatment with Mibefradil abolishes Ang II -induced cell migration. CONCLUSIONS Our data show that Ang II, via AT1 receptor, modulates calcium concentration involving T-type calcium channel and L-type calcium channel but only the calcium influx via T-type calcium channels regulates endothelial cell migration which is essential for angiogenesis.
Collapse
|
13
|
Shen T, Chen X, Xu Q, Lu F, Liu S. Distributional characteristics of CD25 and CD127 on CD4+ T cell subsets in chronic HCV infection. Arch Virol 2010; 155:627-34. [PMID: 20204427 DOI: 10.1007/s00705-010-0626-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022]
Abstract
Attenuated CD4+ T-cell-mediated immune responses are involved in persistence of HCV infection, but the mechanism remains undefined. In this study, the proportions of CD4+ T cell subsets, naïve, central memory, effector memory and effector cells, along with CD25 (IL-2R alpha) and CD127 (IL-7R alpha) expression on different CD4+ T cell subsets, were measured by polychromatic flow cytometry in 24 chronic HCV-infected individuals and 21 healthy controls. A significant decrease in naïve CD4+ T cells and an increase of central memory and effector memory CD4+ T cells were found in HCV-infected patients compared with healthy controls. HCV-infected patients showed a lower level of CD127 expression in all CD4+ T cells subsets, especially in central memory and effector CD4+ T cells. In terms of total CD4+ T cells, an increase in CD25+ regular T cells (CD4+ CD25+ CD127lo) was found in HCV-infected patients. Interestingly, naïve CD4+ T cells showed increased CD25 expression, while effector memory and effector CD4+ T cells had lower CD25 expression. These data indicated that variations in different fractions of CD4+ T cells, including the phenotypic profile and expression level of CD25 and CD127, may be associated with low efficiency of immune response in chronic HCV infection. These results will strengthen the understanding of pathogenesis and dysfunction of CD4+ T cell immunity during long-term HCV persistence.
Collapse
Affiliation(s)
- Tao Shen
- Department of Microbiology, Peking University Health Science Center, 100191, Beijing, China.
| | | | | | | | | |
Collapse
|
14
|
Yammani RR, Long D, Loeser RF. Interleukin-7 stimulates secretion of S100A4 by activating the JAK/STAT signaling pathway in human articular chondrocytes. ARTHRITIS AND RHEUMATISM 2009; 60:792-800. [PMID: 19248116 PMCID: PMC2676111 DOI: 10.1002/art.24295] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE S100A4 has been shown to be increased in osteoarthritic (OA) cartilage and to stimulate chondrocytes to produce matrix metalloproteinase 13 (MMP-13) through activation of the receptor for advanced glycation end products (RAGE). The aim of this study was to examine the mechanism of S100A4 secretion by chondrocytes. METHODS Human articular chondrocytes isolated from ankle cartilage were stimulated with 10 ng/ml of interleukin-1beta (IL-1beta), IL-6, IL-7, or IL-8. Cells were pretreated with either a JAK-3 inhibitor, brefeldin A, or cycloheximide. Immunoblotting with phospho-specific antibodies was used to determine the activation of signaling proteins. Secretion of S100A4 was measured in conditioned media by immunoblotting, and MMP-13 was measured by enzyme-linked immunosorbent assay. RESULTS Chondrocyte secretion of S100A4 was observed after treatment with IL-6 or IL-8 but was much greater in cultures treated with equal amounts of IL-7 and was not observed after treatment with IL-1beta. IL-7 activated the JAK/STAT pathway, with increased phosphorylation of JAK-3 and STAT-3, leading to increased production of S100A4 and MMP-13. Overexpression of a dominant-negative RAGE construct inhibited the IL-7-mediated production of MMP-13. Pretreatment of chondrocytes with a JAK-3 inhibitor or with cycloheximide blocked the IL-7-mediated secretion of S100A4, but pretreatment with brefeldin A did not. CONCLUSION IL-7 stimulates chondrocyte secretion of S100A4 via activation of JAK/STAT signaling, and then S100A4 acts in an autocrine manner to stimulate MMP-13 production via RAGE. Since both IL-7 and S100A4 are up-regulated in OA cartilage and can stimulate MMP-13 production by chondrocytes, this signaling pathway could contribute to cartilage destruction during the development of OA.
Collapse
Affiliation(s)
- Raghunatha R Yammani
- Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
15
|
Maki K, Ikuta K. MEK1/2 induces STAT5-mediated germline transcription of the TCRgamma locus in response to IL-7R signaling. THE JOURNAL OF IMMUNOLOGY 2008; 181:494-502. [PMID: 18566415 DOI: 10.4049/jimmunol.181.1.494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IL-7R plays an essential role in gammadelta T cell development by inducing V-J recombination of the TCRgamma locus through STAT5. Although tyrosine residues in the intracellular domain of the mouse IL-7R alpha-chain (IL-7Ralpha) have been implicated in STAT5 activation, it is still unknown whether they are essential for gammadelta T cell development. In this study, we showed that those IL-7Ralpha tyrosine residues are not essential for gammadelta T cell development, because phenylalanine replacement of four intracellular tyrosine residues (IL-7R-FFFF) partially rescued gammadelta T cell development of IL-7Ralpha-/- progenitors. To examine signaling pathways activated by IL-7R-FFFF, we introduced a chimeric receptor consisting of the human IL-4R alpha-chain and mouse IL-7R-FFFF (4R/7R-FFFF) into an IL-7-dependent pre-B cell line and found that 4R/7R-FFFF induced TCRgamma germline transcription and STAT5 activation. Treatment of cells with MEK1/2 inhibitors significantly decreased levels of TCRgamma germline transcription and STAT5 tyrosine phosphorylation mediated by 4R/7R-FFFF, suggesting that MEK1/2 plays an alternative role in STAT5 activation by IL-7R. MEK1/2 associated with STAT5 and induced STAT5 tyrosine phosphorylation and DNA binding activity. Furthermore, MEK1 directly phosphorylated a STAT5 tyrosine residue in vitro. Finally, active MEK1 partially rescued TCRgamma germline transcription by IL-7R in a pre-T cell line. These results demonstrate that MEK1/2 induces TCRgamma germline transcription by phosphorylating STAT5 through IL-7R-FFFF and suggest a potential role for MAPK in IL-7R tyrosine-independent activation of STAT5.
Collapse
Affiliation(s)
- Kazushige Maki
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
16
|
Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther 2008; 10:R23. [PMID: 18289383 PMCID: PMC2374453 DOI: 10.1186/ar2376] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 01/29/2008] [Accepted: 02/20/2008] [Indexed: 02/04/2023] Open
Abstract
Introduction Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus. Methods Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR. Results IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants. Conclusion These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.
Collapse
|
17
|
'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat Immunol 2007; 9:186-93. [PMID: 18084294 DOI: 10.1038/ni1548] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 11/07/2007] [Indexed: 12/20/2022]
Abstract
Immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors modulate the amplitude and nature of macrophage responses to Toll-like receptor and cytokine receptor stimulation. However, the molecular mechanisms enabling this receptor crosstalk are not known. Here we investigated the function of the calcium-dependent kinases CaMK and Pyk2 'downstream' of ITAM-associated receptors in the regulation of cytokine-induced activation of Jak kinases and STAT transcription factors. CaMK and Pyk2 relayed signals from integrins and the ITAM-containing adaptor DAP12 to augment interleukin 10- and interferon-alpha-induced Jak activation and STAT1-dependent gene expression. CaMK inhibition suppressed STAT1-mediated interferon-alpha signaling in a mouse model of systemic lupus erythematosus. Our results associate Pyk2 and Jak kinases with the linkage of signals emanating from cytokine and heterologous ITAM-dependent receptors.
Collapse
|
18
|
Strappazzon F, Torch S, Trioulier Y, Blot B, Sadoul R, Verna JM. Survival response-linked Pyk2 activation during potassium depletion-induced apoptosis of cerebellar granule neurons. Mol Cell Neurosci 2006; 34:355-65. [PMID: 17188509 DOI: 10.1016/j.mcn.2006.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/27/2006] [Accepted: 11/14/2006] [Indexed: 11/16/2022] Open
Abstract
Numerous extracellular stimuli trigger trans-autophosphorylation at Tyr402 of Pyk2, inducing its activation. Pyk2 is a key mediator of several signaling pathways and has been implicated in apoptosis induced by specific stress signals. We investigated whether Pyk2 participates in cerebellar granule neuron (CGN) apoptosis induced by the suppression of membrane depolarization. We demonstrate that shifting CGN cultures from 25 mM to 5 mM KCl-containing medium induces an early, transient 70% increase in phosphorylated Tyr402 and Tyr580 Pyk2 levels that is triggered by Ca(2+) released from intracellular stores and mediated by calmodulin (CaM). Overexpression of Pyk2 increases CGN survival after 24 h by 70% compared to the control, thus suggesting that Pyk2 is involved in an anti-apoptotic response to K+ lowering. Furthermore, we show that CGN grown in K25 medium exhibit detectable CaM-dependent Pyk2 activity. When silencing Pyk2 activity by expressing a dominant-negative form, only 40% of the transfected neurons were alive 24 h after transfection when compared to the control. Overall, the present findings demonstrate for the first time that Pyk2 is a critical mediator of CGN survival.
Collapse
Affiliation(s)
- Flavie Strappazzon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Neurodégénérescence et Plasticité, EMI108, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Interleukin-7 plays important roles in the B cell developmental pathway including events leading to commitment, survival, proliferation, and maturation. Because of its central role in adult murine B lymphopoiesis, IL-7 is frequently used to generate B cell progenitors in vitro. We have shown that differentiation of IL-7-responsive cells in these cultures is influenced by CD45, pre-B cell receptor, and other downstream signaling molecules. A common, but often overlooked aspect of IL-7 containing cultures is the routine maturation of cells to the sIgM(+) stage. The production of B cells in IL-7 containing cultures is balanced by cell death, since such cells fail to survive for long without additional stimulation.
Collapse
Affiliation(s)
- Craig D Milne
- Ontario Cancer Institute, University Health Network, Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
20
|
Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 2005; 16:513-33. [PMID: 15996891 DOI: 10.1016/j.cytogfr.2005.05.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6:56-68. [PMID: 15688067 DOI: 10.1038/nrm1549] [Citation(s) in RCA: 1969] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.
Collapse
Affiliation(s)
- Satyajit K Mitra
- The Scripps Research Institute, Department of Immunology, IMM21 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
22
|
Abstract
Alternative splicing is widely recognized to be a ubiquitous and crucial mechanism for generating protein diversity and regulating protein expression. Numerous immunologically relevant genes have been found to undergo alternative splicing; however, there has been little effort to develop a coherent picture of how alternative splicing might be used as a general mechanism to regulate the function of the immune system. In this review, I summarize the mechanisms by which splicing is controlled in T cells, and discuss the role of alternative splicing and alternative isoform expression in the regulation of T-cell activation and function.
Collapse
Affiliation(s)
- Kristen W Lynch
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines boulevard, Dallas, Texas 75390-9038, USA.
| |
Collapse
|
23
|
Liu Y, Zhang GY, Yan JZ, Xu TL. Suppression of Pyk2 attenuated the increased tyrosine phosphorylation of NMDA receptor subunit 2A after brain ischemia in rat hippocampus. Neurosci Lett 2005; 379:55-8. [PMID: 15814199 DOI: 10.1016/j.neulet.2004.12.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 02/02/2023]
Abstract
Effects of suppressing the protein expression of Pyk2 on increased tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) after brain ischemia in rat hippocampus were studied with immunoprecipitation and immunoblot. Transient (15 min) brain ischemia and reperfusion (I/R) was induced by four-vessel occlusion in Sprague-Dawley (SD) rats. I/R led to increases of tyrosine phosphorylation of NR2A and interaction of Pyk2 and Src kinase with NR2A after 6 h of reperfusion. The increases were attenuated by Pyk2 antisense oligonucleotides intracerebroventricularly infused every 24 h for 4 days before ischemia, but not missense oligonucleotides or vehicle. The antisense also inhibited the increased auto-phosphorylation of Pyk2 and Src kinase, while the protein expression of NR2A or Src kinase had no obvious change under the above conditions. The data suggested that Pyk2 may be involved in facilitating NR2A tyrosine phosphorylation by Src kinase after I/R.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurobiology and Biophysics, School of Life Science, University of Science and Technology of China, Hefei 230027, PR China.
| | | | | | | |
Collapse
|
24
|
Abstract
Five core cytokines that control lymphocyte differentiation and maintenance have been identified and studied in depth. IL-7 sits at the apex of this cytokine hierarchy in terms of functional significance during lymphocyte development. The IL-7-dominant phase of lymphopoiesis is preceded by the actions of c-Kit ligand (also called stem cell factor; SCF) and fetal liver kinase 2 ligand (Flk-2L); the function of both of these cytokines is essential for the maintenance and development of the progenitor compartment of multiple lineages. IL-7 activity is complemented by two cytokines whose receptors share components of the IL-7 receptor: thymic stromal lymphopoietin (TSLP) and IL-15. The influences of these core cytokines on precursor lymphocyte subsets overlap during development and are often synergistic. Recent studies are beginning to uncover the molecular mechanisms of these interrelated core cytokine functions.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, Immunology and Virology Program, University of Massachusetts Medical School, S2-240, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | |
Collapse
|
25
|
Jiang Q, Li WQ, Hofmeister RR, Young HA, Hodge DR, Keller JR, Khaled AR, Durum SK. Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members. Mol Cell Biol 2004; 24:6501-13. [PMID: 15226449 PMCID: PMC434255 DOI: 10.1128/mcb.24.14.6501-6513.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/12/2003] [Accepted: 04/27/2004] [Indexed: 11/20/2022] Open
Abstract
The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang Q, Benbernou N, Chertov O, Khaled AR, Wooters J, Durum SK. IL-7 induces tyrosine phosphorylation of clathrin heavy chain. Cell Signal 2004; 16:281-6. [PMID: 14636898 DOI: 10.1016/s0898-6568(03)00138-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IL-7 induction of protein tyrosine phosphorylation was examined in an IL-7-dependent thymocyte cell line, D1, which was generated from a p53-/- mouse. Anti-phosphotyrosine antibody was used both to immunoprecipitate and Western blot, and showed that IL-7 induced tyrosine phosphorylation of a protein with a molecular weight of approximately 200 kDa. The P200 band was purified by reversed-phase high-performance liquid chromatography. Amino acid sequencing by mass spectrometry revealed three peptides identical to rat clathrin heavy chain (CHC) 1 (192 kDa), and this was confirmed by blotting with an anti-clathrin antibody. Stimulation of normal pro-T cells by IL-7 showed an increased tyrosine phosphorylation of clathrin heavy chain. Tyrosine phosphorylation of clathrin heavy chain was strongly induced by IL-7 and to a lesser extent by IL-4, while no effect could be observed with the cytokines IL-2, IL-9 and IL-15, whose receptors share the gammac chain. Phosphorylation of clathrin heavy chain was found to be sensitive to Jak3 inhibitors but not to Src inhibitors. Clathrin is involved in internalization of many receptors, and its phosphorylation by IL-7 stimulation may affect the internalization of the IL-7 receptor.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, CCR, National Cancer Institute, National Institutes of Health, Room 31-71, Building 560, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kim K, Khaled AR, Reynolds D, Young HA, Lee CK, Durum SK. Characterization of an interleukin-7-dependent thymic cell line derived from a p53(-/-) mouse. J Immunol Methods 2003; 274:177-84. [PMID: 12609543 DOI: 10.1016/s0022-1759(02)00513-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to study the response of T cells to IL-7, we aimed to generate an IL-7-dependent thymocyte line. CD4(-)CD8(-) thymocytes from a p53(-)/(-) mouse were continuously propagated in interleukin-7 (IL-7), and after 2 months there developed an immortal line termed "D1." The D1 line has retained a stable dependency on IL-7. Withdrawal of IL-7 from D1 cells induced arrest in G1 phase of the cell cycle, followed by apoptosis. In addition to IL-7, several other cytokines that employ gamma(c) as part of their receptor were also capable of stimulating D1 cell survival and proliferation. Gene induction by IL-7 was analyzed in D1 cells using RNase protection and array analysis and revealed a number of transcripts potentially involved in cell cycle, apoptosis and signaling.
Collapse
Affiliation(s)
- Kyungjae Kim
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
28
|
Rajnavolgyi E, Benbernou N, Rethi B, Reynolds D, Young HA, Magocsi M, Muegge K, Durum SK. IL-7 withdrawal induces a stress pathway activating p38 and Jun N-terminal kinases. Cell Signal 2002; 14:761-9. [PMID: 12034357 DOI: 10.1016/s0898-6568(02)00026-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
IL-7 delivers survival signals to cells at an early stage in lymphoid development. In the absence of IL-7, pro-T cells undergo programmed cell death, which has previously been associated with a decline in Bcl-2 and translocation of Bax from cytosol to mitochondria. A new, earlier feature of IL-7 withdrawal was identified using an IL-7-dependent thymocyte line. We observed that withdrawal of IL-7 induced increased expression of jun and fos family member genes including c-jun, junB, junD, c-fos and fra2. This transient response peaked 3-4 h after IL-7 was withdrawn and resulted in increased DNA-binding activity of AP-1 and in a change in the composition of the Jun/Fos family dimers shown by electrophoretic mobility shift and supershift assays. Induction of jun and fos genes and the increased DNA-binding activity of AP-1 were attributable to the phosphorylation-induced activation of the stress kinases p38 and JNK and were blocked by the chemical kinase inhibitors SB203580 and SB202190. The stress response contributed to cell death following IL-7 withdrawal as shown by blocking the activity of the stress (MAP) kinases or by blocking the production of c-Jun and c-Fos using antisense oligonucleotides.
Collapse
Affiliation(s)
- Eva Rajnavolgyi
- Laboratory of Molecular Immunoregulation, National Cancer Institute, National Institute of Health, Building 560, Room 31-71, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sarkar S, Svoboda M, de Beaumont R, Freedman AS. The role of Aktand RAFTK in beta1 integrin mediated survival of precursor B-acute lymphoblastic leukemia cells. Leuk Lymphoma 2002; 43:1663-71. [PMID: 12400610 DOI: 10.1080/1042819021000003009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, we report that the related adhesion focal tyrosine kinase RAFTK, is an upstream kinase in beta1 integrin mediated activation of Akt. Stimulation through beta1 integrins by fibronectin reversed apoptosis induced by adriamycin. Inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt (LY 294002), tyrosine kinases (Herbimycin-A) and the cytotoxic agent adriamycin induced apoptosis of REH cells. beta1 integrin ligation induced activation of Akt, and tyrosine phosphorylation of RAFTK and FAK, but not SYK in REH cells. This suggested that RAFTK and FAK activation might be linked to Akt activation. Evidence that RAFTK is a modulator of Akt came from phorbol myristic acetate (PMA) stimulation. RAFTK and Akt were activated but FAK was not. Using fibroblasts from FAK -/- mice, which express high levels of RAFTK, fibronectin plating enhanced Akt activation. Pretreatment of REH cells with a P13 kinase/Akt inhibitor LY 294002 did not inhibit RAFTK tyrosine phosphorylation showing that RAFTK is upstream of P13k/Akt. Further evidence for a link between RAFTK tyrosine phosphorylation and Akt activation was the observation that the p85 subunit of P13 kinase associated with RAFTK following integrin ligation in REH cells. These results suggest that RAFTK plays an anti-apoptotic role through the activation of Akt.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | | | | | | |
Collapse
|
30
|
Keogh RJ, Houliston RA, Wheeler-Jones CPD. Thrombin-stimulated Pyk2 phosphorylation in human endothelium is dependent on intracellular calcium and independent of protein kinase C and Src kinases. Biochem Biophys Res Commun 2002; 294:1001-8. [PMID: 12074576 DOI: 10.1016/s0006-291x(02)00568-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
G-protein-coupled receptor agonists (GPCAs) cause functional responses in endothelial cells including secretion, proliferation, and altering monolayer permeability. These events are mediated in part by activation of the p42/44 mitogen-activated protein kinase (MAPK) cascade. The cytosolic tyrosine kinase Pyk2 is postulated to link GPCA-induced changes in intracellular calcium to activation of the MAP kinase cascade. We have investigated the regulation of Pyk2 in human umbilical vein endothelial cells in response to GPCAs and show that (1) thrombin, a PAR-1 peptide, and histamine cause rapid concentration- and time-dependent phosphorylation on tyrosines 402 (Src kinase binding site), 881 (Grb2 binding site), and 580 (an autophosphorylation site), (2) thrombin-stimulated phosphorylation is dependent on intracellular calcium and independent of PKC and PI-3 kinase, and (3) inhibition of Src kinases has no significant effect on thrombin-stimulated phosphorylation, implying that tyrosine phosphorylation of Pyk2 is independent of Src binding.
Collapse
Affiliation(s)
- Rosemary J Keogh
- Royal Veterinary College, Department of Veterinary Basic Sciences, Royal College Street, London NW1 0TU, UK
| | | | | |
Collapse
|
31
|
Abstract
The past two decades have witnessed significant advances in our understanding of the cellular physiology and molecular regulation of hematopoiesis. At the heart of stem cell self-renewal and lineage commitment decisions lies the relative expression levels of lineage-specific transcription factors. The expression of these transcription factors in early stem cells may be promiscuous and fluctuate, but ultimately comes under the influence of extracellular regulatory signals in the form of hematopoietic cytokines. In this review, we first summarize our current understanding of the phenotypic characterization of hematopoietic stem cells. Next, we describe key known transcription factors which govern stem cell self-renewal and lineage commitment decisions. Finally, we review data concerning the role of specific cytokines in influencing these decisions. From this review, a picture emerges in which stem cell fate decisions are governed by the integrated effects of intrinsic transcription factors and external signaling pathways initiated by regulatory cytokines.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| | | |
Collapse
|
32
|
Keogh RJ, Houliston RA, Wheeler-Jones CPD. Human endothelial Pyk2 is expressed in two isoforms and associates with paxillin and p130Cas. Biochem Biophys Res Commun 2002; 290:1470-7. [PMID: 11820787 DOI: 10.1006/bbrc.2002.6350] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proline-rich kinase 2 (Pyk2) is a non-receptor tyrosine kinase belonging to the focal adhesion kinase family. Many stimuli can initiate phosphorylation and activation of Pyk2 but its specific activators and downstream targets are still largely unidentified and little is known of the mechanisms or role of Pyk2 activation in endothelial cells. In human umbilical vein endothelial cells (HUVEC), we show that (1) Pyk2 is phosphorylated on tyrosine residues 402, 580, and 881 in response to stimulation with G-protein-coupled receptor agonists (GPCAs), vascular endothelial growth factor, and the cytokine interleukin-1alpha; (2) HUVEC express mRNA for two isoforms of Pyk2 which do not appear to be regulated transcriptionally by GPCAs, growth factors, or cytokines; and (3) Pyk2 is localised to the cytosol and associates through its C-terminus with the cytoskeletal protein paxillin and the adapter molecule p130Cas in phosphorylation-independent interactions. These results demonstrate that Pyk2 is rapidly activated and associates with structural and adapter proteins suggesting that it is an important kinase involved in mediating acute responses in endothelium.
Collapse
Affiliation(s)
- Rosemary J Keogh
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | | | | |
Collapse
|
33
|
Fleming HE, Paige CJ. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 2001; 15:521-31. [PMID: 11672535 DOI: 10.1016/s1074-7613(01)00216-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocyte development is regulated at multiple checkpoints, mediated by signals originating both inside and outside the cell. Two signaling pathways known to be essential in this process are interleukin-7 (IL-7) and the pre-B cell receptor (pBCR). We have shown previously that these signaling pathways intersect functionally. Specifically, response to low concentrations of IL-7 requires pBCR expression. In this report, we identify the ERK/MAP kinase pathway as a key regulatory component of this response. We propose a molecular mechanism for the selective expansion of pBCR(+) precursors and for the culling of inappropriately rearranged pro-B cells.
Collapse
Affiliation(s)
- H E Fleming
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Zhang XF, Wang JF, Matczak E, Proper JA, Groopman JE. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001; 97:3342-8. [PMID: 11369622 DOI: 10.1182/blood.v97.11.3342] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1), the ligand for the CXCR4 receptor, is a highly efficacious chemoattractant for CD34(+) hematopoietic progenitor cells. However, the SDF-1/CXCR4 signaling pathways that regulate hematopoiesis are still not well defined. This study reports that SDF-1alpha can stimulate the tyrosine phosphorylation of Janus kinase 2 (JAK2) and other members of the JAK/signal transduction and activation of transcription (STAT) family, including JAK1, tyrosine kinase 2, STAT2, and STAT4 in the human progenitor cell line, CTS. SDF-1alpha stimulation of these cells also enhanced the association of JAK2 with phosphatidylinositol 3 (PI3)-kinase. This enhanced association was abolished by pretreatment of cells with AG490, a specific JAK2 inhibitor. Furthermore, pretreatment of CTS cells with AG490 significantly inhibited SDF-1alpha-induced PI3-kinase activity, and inhibition of JAK2 with AG490 ablated the SDF-1alpha-induced tyrosine phosphorylation of multiple focal adhesion proteins (including focal adhesion kinase, related adhesion focal tyrosine kinase, paxillin, CrkII, CrkL, and p130Cas). Chemotaxis assays showed that inhibition of JAK2 diminished SDF-1alpha-induced migration in both CTS cells and CD34(+) human bone marrow progenitor cells. Hence, these results suggest that JAK2 is required for CXCR4 receptor-mediated signaling that regulates cytoskeletal proteins and cell migration through PI3-kinase pathways in hematopoietic progenitor cells. (Blood. 2001;97:3342-3348)
Collapse
Affiliation(s)
- X F Zhang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
35
|
Duong LT, Nakamura I, Lakkakorpi PT, Lipfert L, Bett AJ, Rodan GA. Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2. J Biol Chem 2001; 276:7484-92. [PMID: 11102447 DOI: 10.1074/jbc.m008368200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoclast activation is initiated by adhesion to bone, cytoskeletal rearrangement, formation of the sealing zone, and formation of the polarized ruffled membrane. Previous findings suggest that protein-tyrosine kinase 2 (PYK2), a cytoplasmic kinase related to focal adhesion kinase, participates in these events. This study examines the role of PYK2 in adhesion-mediated signaling and osteoclast function, using PYK2 antisense. We produced a recombinant adenovirus containing a 300-base pair reversed 5'-coding region of PYK2 and used full-length PYK2 as a control. Murine osteoclast-like cells or their mononuclear precursors were generated in a co-culture of bone marrow and osteoblasts. Infection with antisense adenovirus significantly reduced the expression of endogenous PYK2 protein relative to uninfected cells or to cells infected with sense PYK2 and caused: 1) a reduction in osteoclast formation in vitro; 2) inhibition of cell spreading and of actin ring formation in osteoclasts plated on glass or bone and of attachment and spreading of osteoclast precursors plated on vitronectin; 3) inhibition of bone resorption in vitro; 4) marked reduction in p130(Cas) tyrosine phosphorylation; and 5) no change in alpha(v)beta(3) integrin expression or c-Src tyrosine phosphorylation. Taken together, these findings support the hypothesis that PYK2 plays a central role in the adhesion-dependent cytoskeletal organization and sealing zone formation required for osteoclastic bone resorption.
Collapse
Affiliation(s)
- L T Duong
- Department of Bone Biology and Osteoporosis, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | |
Collapse
|