1
|
Inholz K, Anderl JL, Klawitter M, Goebel H, Maurits E, Kirk CJ, Fan RA, Basler M. Proteasome composition in immune cells implies special immune‐cell‐specific immunoproteasome function. Eur J Immunol 2024; 54:e2350613. [PMID: 38458995 DOI: 10.1002/eji.202350613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Immunoproteasomes are a special class of proteasomes, which can be induced with IFN-γ in an inflammatory environment. In recent years, it became evident that certain immune cell types constitutively express high levels of immunoproteasomes. However, information regarding the basal expression of proteolytically active immunoproteasome subunits in different types of immune cells is still rare. Hence, we quantified standard proteasome subunits (β1c, β2c, β5c) and immunoproteasome subunits (LMP2, MECL-1, LMP7) in the major murine (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD11c+ dendritic cells, CD49d+ natural killer cells, Ly-6G+ neutrophils) and human immune cell (CD4+ T cells, CD8+ T cells, CD19+ B cells, CD1c+CD141+ myeloid dendritic cells, CD56+ natural killer cells, granulocytes) subsets. The different human immune cell types were isolated from peripheral blood and the murine immune cell subsets from spleen. We found that proteasomes of most immune cell subsets mainly consist of immunoproteasome subunits. Our data will serve as a reference and guideline for immunoproteasome expression and imply a special role of immunoproteasomes in immune cells.
Collapse
Affiliation(s)
- Katharina Inholz
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Janet L Anderl
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - Moritz Klawitter
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Christopher J Kirk
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - R Andrea Fan
- Department of Research, Kezar Life Sciences, South San Francisco, California, USA
| | - Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Diegelmann J, Brand S. Identification of IL-27 as a novel regulator of major histocompatibility complex class I and class II expression, antigen presentation, and processing in intestinal epithelial cells. Front Immunol 2023; 14:1226809. [PMID: 37818353 PMCID: PMC10561092 DOI: 10.3389/fimmu.2023.1226809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Antigen presentation via major histocompatibility complex (MHC) class I and class II receptors plays a fundamental role in T cell-mediated adaptive immunity. A dysregulation of this fine-tuned recognition might result in the development of autoimmune diseases such as inflammatory bowel diseases that are characterized by chronic relapsing inflammation of the intestinal tract and a damaged intestinal epithelial barrier. While MHCII receptors are usually expressed by professional antigen presenting cells (APC) only, there is increasing evidence that non-immune cells such as intestinal epithelial cells (IEC) might express MHCII upon stimulation with IFN-γ and thus act as non-professional APC. However, little is known about other factors regulating intestinal epithelial MHC expression. Here, we identify IL-27 as an inducer of different MHCI and MHCII receptor subtypes and the invariant chain (CD74/li) in IEC via the STAT1/IRF1/CIITA axis. CIITA, MHCII, and CD74 expression was significantly increased in IEC from Crohn's disease (CD) patients with active disease compared to controls or CD patients in remission. IEC phagocytosed and digested external antigens and apoptotic cells. IL-27 strongly stimulated antigen processing via the immunoproteasome in a IRF1-dependent manner. In co-culture experiments, antigen-primed IEC strongly enhanced lymphocyte proliferation and IL-2 secretion, dependent on direct cell-cell contact. IL-27 pretreatment of IEC significantly increased CD4+ T cell proliferation and reduced IL-2 levels in lymphocytes in coculture. In summary, we identified IL-27 as a novel regulator of IEC antigen processing and presentation via MHCI and MHCII receptors, underscoring the importance of IEC as non-professional APC.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, Ludwig-Maximilians-Universität (LMU) University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
3
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
4
|
Rodríguez-Ibarra C, Medina-Reyes EI, Déciga-Alcaraz A, Delgado-Buenrostro NL, Quezada-Maldonado EM, Ispanixtlahuatl-Meráz O, Ganem-Rondero A, Flores-Flores JO, Vázquez-Zapién GJ, Mata-Miranda MM, López-Marure R, Pedraza-Chaverri J, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology 2022; 478:153280. [PMID: 35973603 DOI: 10.1016/j.tox.2022.153280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 μg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.
Collapse
Affiliation(s)
- Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Estefany I Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Atmospheric Organic Aerosol Chemical Speciation Group, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, Mexico
| | - Norma Laura Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo s/n, Cuautitlán Izcalli CP 54740, Estado de México, Mexico
| | - José Ocotlán Flores-Flores
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico.
| |
Collapse
|
5
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
6
|
On the Role of the Immunoproteasome in Protein Homeostasis. Cells 2021; 10:cells10113216. [PMID: 34831438 PMCID: PMC8621243 DOI: 10.3390/cells10113216] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous cellular processes are controlled by the proteasome, a multicatalytic protease in the cytosol and nucleus of all eukaryotic cells, through regulated protein degradation. The immunoproteasome is a special type of proteasome which is inducible under inflammatory conditions and constitutively expressed in hematopoietic cells. MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), which is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Furthermore, the immunoproteasome is involved in T cell expansion and inflammatory diseases. In recent years, targeting the immunoproteasome in cancer, autoimmune diseases, and transplantation proved to be therapeutically effective in preclinical animal models. However, the prime function of standard proteasomes and immunoproteasomes is the control of protein homeostasis in cells. To maintain protein homeostasis in cells, proteasomes remove proteins which are not properly folded, which are damaged by stress conditions such as reactive oxygen species formation, or which have to be degraded on the basis of regular protein turnover. In this review we summarize the latest insights on how the immunoproteasome influences protein homeostasis.
Collapse
|
7
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
8
|
Krishnan R, Kim JO, Jang YS, Oh MJ. Proteasome subunit beta type-8 from sevenband grouper negatively regulates cytokine responses by interfering NF-κB signaling upon nervous necrosis viral infection. FISH & SHELLFISH IMMUNOLOGY 2021; 113:118-124. [PMID: 33848637 DOI: 10.1016/j.fsi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
During viral infection, proper regulation of immune signaling is essential to ensure successful clearance of virus. Immunoproteasome is constitutively expressed and gets induced during viral infection by interferon signaling and contributes to regulate proinflammatory cytokine production and activation of the NF-κB pathway. In this study, we identified Hs-PSMB8, a member of the proteasome β-subunits (PSMB) family, as a negative regulator of NF-κB responses during NNV infection. The transient expression of Hs-PSMB8 delayed the appearance of cytopathic effect (CPE) and showed a higher viral load. The Hs-PSMB8 interacted with NNV which was confirmed using immunocolocalization and co-IP. Overexpression of Hs-PSMB8 diminished virus induced activation of the NF-κB promoters and downregulated the activation of IL-1β, TNFα, IL6, IL8, IFNγ expression upon NNV infection. Collectively, our results demonstrate that PSMB8 is an important regulator of NF-κB signaling during NNV infection in sevenband grouper.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Jong-Oh Kim
- Institute of Marine Biotechnology, Pukyong National University, Busan, Republic of Korea.
| | - Yo-Seb Jang
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
9
|
Amend A, Wickli N, Schäfer AL, Sprenger DTL, Manz RA, Voll RE, Chevalier N. Dual Role of Interleukin-10 in Murine NZB/W F1 Lupus. Int J Mol Sci 2021; 22:1347. [PMID: 33572870 PMCID: PMC7866297 DOI: 10.3390/ijms22031347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.
Collapse
Affiliation(s)
- Anaïs Amend
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Natalie Wickli
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Rudolf A. Manz
- Institute for Systemic Inflammation, University of Lübeck, 23562 Lübeck, Germany;
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Centre—University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany; (A.A.); (N.W.); (A.-L.S.); (D.T.L.S.); (R.E.V.)
| |
Collapse
|
10
|
Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Sci Rep 2020; 10:15765. [PMID: 32978409 PMCID: PMC7519072 DOI: 10.1038/s41598-020-71550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1–β2–β5), the immunoproteasome (β1i–β2i–β5i) and the two intermediate proteasomes (β1–β2–β5i and β1i–β2–β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear. Using cells expressing exclusively one proteasome subtype, we observed that ubiquitinated p21 and c-myc were degraded at similar rates, indicating that the four 26S proteasomes degrade ubiquitinated proteins equally well. Under oxidative stress, we observed a partial dissociation of 26S into 20S proteasomes, which can degrade non-ubiquitinated oxidized proteins. Oxidized calmodulin and hemoglobin were best degraded in vitro by the three β5i-containing 20S proteasomes, while their native forms were not degraded. Circular dichroism analyses indicated that ubiquitin-independent recognition of oxidized proteins by 20S proteasomes was triggered by the disruption of their structure. Accordingly, β5i-containing 20S proteasomes degraded unoxidized naturally disordered protein tau, while 26S proteasomes did not. Our results suggest that the three β5i-containing 20S proteasomes, namely the immunoproteasome and the two intermediate proteasomes, might help cells to eliminate proteins containing disordered domains, including those induced by oxidative stress.
Collapse
|
11
|
Liu Q, Wang HY, He XJ. Induction of immunoproteasomes in porcine kidney (PK)-15 cells by interferon-γ and tumor necrosis factor-α. J Vet Med Sci 2019; 81:1776-1782. [PMID: 31548474 PMCID: PMC6943335 DOI: 10.1292/jvms.19-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunoproteasome (i-proteasome) has both immune and non-immune functions and plays
important roles in controlling infections and combating illnesses. Our previous studies
suggest that interferon (IFN)-γ induces the expression of three immune-specific catalytic
subunits of the 20S proteasome that can replace their constitutive homologues to form the
i-proteasome in immune cells, such as porcine alveolar macrophages (AMs) in
vitro. However, i-proteasome levels and their modulation in non-immune cells
such as the epithelial cells in pigs remain unknown. Here, we investigated the expression
of i-proteasomes in non-immune cells (porcine kidney (PK)-15 cells) to determine
i-proteasome modulation upon stimulation of PK-15 cells with IFN-γ and tumor necrosis
factor (TNF)-α in vitro. The expression of i-proteasome subunits in PK-15
cells were regulated by IFN-γ and TNF-α. Remarkably, we found that the combination
treatment of IFN-γ and TNF-α increased the expression of i-proteasome subunits LMP2, LMP7,
and MECL-1 in PK-15 cells at transcriptional levels, but may decrease their expression at
translational level, compared to their expression levels induced by individual cytokine
treatments. These results provide critical insight into i-proteasome modulation in porcine
non-immune cells, contribute further to our understanding of i-proteasome function in
tissue pathogenesis and the development of antiviral adaptive immune responses against
intracellular infections.
Collapse
Affiliation(s)
- Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
| | - Huai Yu Wang
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
12
|
Basler M, Lindstrom MM, LaStant JJ, Bradshaw JM, Owens TD, Schmidt C, Maurits E, Tsu C, Overkleeft HS, Kirk CJ, Langrish CL, Groettrup M. Co-inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. EMBO Rep 2018; 19:e46512. [PMID: 30279279 PMCID: PMC6280796 DOI: 10.15252/embr.201846512] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cells of hematopoietic origin express high levels of the immunoproteasome, a cytokine-inducible proteasome variant comprising the proteolytic subunits LMP2 (β1i), MECL-1 (β2i), and LMP7 (β5i). Targeting the immunoproteasome in pre-clinical models of autoimmune diseases with the epoxyketone inhibitor ONX 0914 has proven to be effective. ONX 0914 was previously described as a selective LMP7 inhibitor. Here, we show that PRN1126, developed as an exclusively LMP7-specific inhibitor, has limited effects on IL-6 secretion, experimental colitis, and experimental autoimmune encephalomyelitis (EAE). We demonstrate that prolonged exposure of cells with ONX 0914 leads to inhibition of both LMP7 and LMP2. Co-inhibition of LMP7 and LMP2 with PRN1126 and LMP2 inhibitors LU-001i or ML604440 impairs MHC class I cell surface expression, IL-6 secretion, and differentiation of naïve T helper cells to T helper 17 cells, and strongly ameliorates disease in experimental colitis and EAE. Hence, co-inhibition of LMP2 and LMP7 appears to be synergistic and advantageous for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | - Christian Schmidt
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elmer Maurits
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Christopher Tsu
- Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | | | | | | | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Beling A, Kespohl M. Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus-and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. Front Immunol 2018; 9:2620. [PMID: 30546359 PMCID: PMC6279938 DOI: 10.3389/fimmu.2018.02620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced cytolysis and immune response mechanisms with most severe consequences during early childhood. Acute and long-term manifestation of damaged heart tissue and disturbances of cardiac performance involve virus-triggered adverse activation of the immune response and both immunopathology, as well as, autoimmunity account for such immune-destructive processes. It is a matter of ongoing debate to what extent subclinical virus infection contributes to the debilitating sequela of the acute disease. In this review, we conceptualize the many functions of the proteasome in viral myocarditis and discuss the adaptation of this multi-catalytic protease complex together with its implications on the course of disease. Inhibition of proteasome function is already highly relevant as a strategy in treating various malignancies. However, cardiotoxicity and immune-related adverse effects have proven significant hurdles, representative of the target's wide-ranging functions. Thus, we further discuss the molecular details of proteasome-mediated activity of the immune response for virus-mediated inflammatory heart disease. We summarize how the spatiotemporal flexibility of the proteasome might be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation of the immune response in the heart.
Collapse
Affiliation(s)
- Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
14
|
Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Curr Opin Immunol 2018; 55:89-96. [PMID: 30447407 DOI: 10.1016/j.coi.2018.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
At the end of past century, when the prevailing view was that treatment of autoimmunity required immune suppression, experimental evidence suggested an approach of immune-stimulation such as with the BCG vaccine in type 1 diabetes (T1D) and multiple sclerosis (MS). Translating these basic studies into clinical trials, we showed the following: BCG harnessed the immune system to 'permanently' lower blood sugar, even in advanced T1D; BCG appeared to delay the disease progression in early MS; the effects were long-lasting (years after vaccination) in both diseases. The recently demonstrated capacity of BCG to boost glycolysis may explain both the improvement of metabolic indexes in T1D, and the more efficient generation of inducible regulatory T cells, which counteract the autoimmune attack and foster repair mechanisms.
Collapse
|
15
|
González Y, Doens D, Cruz H, Santamaría R, Gutiérrez M, Llanes A, Fernández PL. A Marine Diterpenoid Modulates the Proteasome Activity in Murine Macrophages Stimulated with LPS. Biomolecules 2018; 8:E109. [PMID: 30301161 PMCID: PMC6315684 DOI: 10.3390/biom8040109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022] Open
Abstract
The proteasome is an intracellular complex that degrades damaged or unfolded proteins and participates in the regulation of several processes. The immunoproteasome is a specialized form that is expressed in response to proinflammatory signals and is particularly abundant in immune cells. In a previous work, we found an anti-inflammatory effect in a diterpenoid extracted from the octocoral Pseudopterogorgia acerosa, here called compound 1. This compound prevented the degradation of inhibitor κB α (IκBα) and the subsequent activation of nuclear factor κB (NFκB), suggesting that this effect might be due to inhibition of the ubiquitin-proteasome system. Here we show that compound 1 inhibits the proteasomal chymotrypsin-like activity (CTL) of murine macrophages in the presence of lipopolysaccharide (LPS) but not in its absence. This effect might be due to the capacity of this compound to inhibit the activity of purified immunoproteasome. The compound inhibits the cell surface expression of major histocompatibility complex (MHC)-I molecules and the production of proinflammatory cytokines induced by LPS in vitro and in vivo, respectively. Molecular docking simulations predicted that compound 1 selectively binds to the catalytic site of immunoproteasome subunits β1i and β5i, which are responsible for the CTL activity. Taken together these findings suggest that the compound could be a selective inhibitor of the immunoproteasome, and hence could pave the way for its future evaluation as a candidate for the treatment of inflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Yisett González
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| | - Deborah Doens
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| | - Héctor Cruz
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
- Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panamá, 0801 Panamá, Panamá.
| | - Ricardo Santamaría
- Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá.
| |
Collapse
|
16
|
Liong S, Lim R, Nguyen-Ngo C, Barker G, Parkington HC, Lappas M. The immunoproteasome inhibitor ONX-0914 regulates inflammation and expression of contraction associated proteins in myometrium. Eur J Immunol 2018; 48:1350-1363. [PMID: 29883518 DOI: 10.1002/eji.201747458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
There are currently no effective treatments to prevent spontaneous preterm labor. The precise upstream biochemical pathways that regulate the transition between uterine quiescence during pregnancy and contractility during labor remain unclear. It is well known however that intrauterine inflammation, including infection, is commonly associated with preterm labor. In this study, we identified the immunoproteasome subunit low-molecular-mass protein (LMP)7 mRNA expression to be significantly upregulated in laboring human myometrium. Silencing LMP7 using siRNA-targeted knockdown of LMP7 and its inhibitor ONX-0914 in human myometrial cells and tissues decreased proinflammatory cytokines (IL-6), cell chemotaxis (CXCL8, CCL2 expression, and THP-1 migration), cell to cell adhesion (ICAM1 expression and myometrial adhesion), contraction-associated proteins (PTGS2, FP, PGE2, and PGF2α), as well as suppressing contractions in myometrial cells and in myometrial tissues obtained from laboring women. In addition, LMP7 silencing reduced NF-κB RelA activity. ONX-0914 alleviated inflammation (CCL3, CXCL1, PTGS2, and IL-6) in myometrium, placenta, fetal brain, amniotic fluid, and maternal serum induced by LPS in pregnant mice. Collectively, our data suggest a novel role for ONX-014 to suppress uterine activation and contractility associated with preterm labor.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Helena C Parkington
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
17
|
Faustman DL. TNF, TNF inducers, and TNFR2 agonists: A new path to type 1 diabetes treatment. Diabetes Metab Res Rev 2018; 34. [PMID: 28843039 DOI: 10.1002/dmrr.2941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
In the past decade, interest in the century-old tuberculosis vaccine, bacillus Calmette-Guerin (BCG), has been revived for potential new therapeutic uses in type 1 diabetes and other forms of autoimmunity. Diverse clinical trials are now proving the value of BCG in prevention and treatment of type 1 diabetes, in the treatment of new onset multiple sclerosis and other immune conditions. BCG contains the avirulent tuberculosis strain Mycobacterium bovis, a vaccine originally developed for tuberculosis prevention. BCG induces a host response that is driven in part by tumour necrosis factor (TNF). Induction of TNF through BCG vaccination or through selective agonism of TNF receptor 2 (TNFR2) has 2 desired cellular immune effects: (1) selective death of autoreactive T cells and (2) expansion of beneficial regulatory T cells (Tregs). In human clinical trials in both type 1 diabetes and multiple sclerosis, administration of the BCG vaccine to diseased adults has shown great promise. In a Phase I trial in advanced type 1 diabetes (mean duration of diabetes 15 years), 2 BCG vaccinations spaced 4 weeks apart selectively eliminated autoreactive T cells, induced beneficial Tregs, and allowed for a transient and small restoration of insulin production. The advancing global clinical trials using BCG combined with mechanistic data on BCGs induction of Tregs suggest value in this generic agent and possible immune reversal of the type 1 diabetic autoimmune process.
Collapse
Affiliation(s)
- Denise L Faustman
- Director of Immunobiology, Massachusetts General Hospital, Boston, MA, USA
- Associate Professor of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Matuszczak E, Sankiewicz A, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors. Clin Exp Immunol 2017; 191:125-132. [PMID: 28940383 DOI: 10.1111/cei.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis.
Collapse
Affiliation(s)
- E Matuszczak
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - A Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - W Debek
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - E Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - R Milewski
- Statistics Department, Medical University of Bialystok, Bialystok, Poland
| | - A Hermanowicz
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Vachharajani N, Joeris T, Luu M, Hartmann S, Pautz S, Jenike E, Pantazis G, Prinz I, Hofer MJ, Steinhoff U, Visekruna A. Prevention of colitis-associated cancer by selective targeting of immunoproteasome subunit LMP7. Oncotarget 2017; 8:50447-50459. [PMID: 28881574 PMCID: PMC5584149 DOI: 10.18632/oncotarget.14579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is a well-known risk factor in development of intestinal tumorigenesis, although the exact mechanisms underlying development of colitis-associated cancer (CAC) still remain obscure. The activity and function of immunoproteasome has been extensively analyzed in the context of inflammation and infectious diseases. Here, we show that the proteasomal immunosubunit LMP7 plays an essential role in development of CAC. Mice devoid of LMP7 were resistant to chronic inflammation and formation of neoplasia, and developed virtually no tumors after AOM/DSS treatment. Our data reveal that LMP7 deficiency resulted in reduced expression of pro-tumorigenic chemokines CXCL1, CXCL2 and CXCL3 as well as adhesion molecule VCAM-1. As a consequence, an impaired recruitment and activity of tumor-infiltrating leukocytes resulting in decreased secretion of cytokines IL-6 and TNF-α was observed. Further, the deletion or pharmacological inhibition of LMP7 and consequent blockade of NF-κB abrogated the production of IL-17A, which possesses a strong carcinogenic activity in the gut. Moreover, in vivo administration of the selective LMP7 inhibitor ONX-0914 led to a marked reduction of tumor numbers in wild-type (WT) mice. Collectively, we identified the immunoproteasome as a crucial mediator of inflammation-driven neoplasia highlighting a novel potential therapeutic approach to limit colonic tumorigenesis.
Collapse
Affiliation(s)
- Niyati Vachharajani
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Joeris
- Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Sabrina Hartmann
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Sabine Pautz
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Elena Jenike
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Georgios Pantazis
- Department of Neuropathology, Philipps University of Marburg, Marburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus J. Hofer
- Department of Neuropathology, Philipps University of Marburg, Marburg, Germany
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
20
|
Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-κB activation. Mol Immunol 2017; 83:147-153. [PMID: 28157553 DOI: 10.1016/j.molimm.2017.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 01/02/2023]
Abstract
Activation of the pro-inflammatory transcription factor NF-κB requires signal-induced proteasomal degradation of the inhibitor of NF-κB (IκB) in order to allow nuclear translocation. Most cell types are capable of expressing two types of 20S proteasome core particles, the constitutive proteasome and immunoproteasome. Inducible under inflammatory conditions, the immunoproteasome is mainly characterized through an altered cleavage specificity compared to the constitutive proteasome. However, the question whether immunoproteasome subunits affect NF-κB signal transduction differently from constitutive subunits is still up for debate. To study the effect of immunoproteasomes on LPS- or TNF-α-induced NF-κB activation, we used IFN-γ stimulated peritoneal macrophages and mouse embryonic fibroblasts derived from mice deficient for the immunoproteasome subunits low molecular mass polypeptide (LMP) 2, or LMP7 and multicatalytic endopeptidase complex-like 1 (MECL-1). Along the canonical signaling pathway of NF-κB activation no differences in the extent and kinetic of IκB degradation were observed. Neither the nuclear translocation and DNA binding of NF-κB nor the production of the NF-κB dependent cytokines TNF-α, IL-6, and IL-10 differed between immunoproteasome deficient and proficient cells. Hence, we conclude that immunoproteasome subunits have no specialized function for canonical NF-κB activation.
Collapse
|
21
|
Paeschke A, Possehl A, Klingel K, Voss M, Voss K, Kespohl M, Sauter M, Overkleeft HS, Althof N, Garlanda C, Voigt A. The immunoproteasome controls the availability of the cardioprotective pattern recognition molecule Pentraxin3. Eur J Immunol 2015; 46:619-33. [PMID: 26578407 DOI: 10.1002/eji.201545892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte death as a result of viral infection is an excellent model for dissecting the inflammatory stress response that occurs in heart tissue. We reported earlier that a specific proteasome isoform, the immunoproteasome, prevents exacerbation of coxsackievirus B3 (CVB3)-induced myocardial destruction and preserves cell vitality in heart tissue inflammation. Following the aim to decipher molecular targets of immunoproteasome-dependent proteolysis, we investigated the function and regulation of the soluble PRR Pentraxin3 (PTX3). We show that the ablation of PTX3 in mice aggravated CVB3-triggered inflammatory injury of heart tissue, without having any significant effect on viral titers. Thus, there might be a role of PTX3 in preventing damage-associated molecular pattern-induced cell death. We found that the catalytic activity of the immunoproteasome subunit LMP7 regulates the timely availability of factors controlling PTX3 production. We report on immunoproteasome-dependent alteration of ERK1/2 and p38MAPKs, which were both found to be involved in PTX3 expression control. Our finding of a cardioprotective function of immunoproteasome-dependent PTX3 expression revealed a crucial mechanism of the stress-induced damage response in myocardial inflammation. In addition to antigen presentation and cytokine production, proteolysis by the immunoproteasome can also regulate the innate immune response during viral infection.
Collapse
Affiliation(s)
- Anna Paeschke
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Possehl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Martin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Karolin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Meike Kespohl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Martina Sauter
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Nadine Althof
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | | | - Antje Voigt
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| |
Collapse
|
22
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
23
|
Faustman DL, Davis M. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 2013; 4:478. [PMID: 24391650 PMCID: PMC3870411 DOI: 10.3389/fimmu.2013.00478] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
The regulatory cytokine tumor necrosis factor (TNF) exerts its effects through two receptors: TNFR1 and TNFR2. Defects in TNFR2 signaling are evident in a variety of autoimmune diseases. One new treatment strategy for autoimmune disease is selective destruction of autoreactive T cells by administration of TNF, TNF inducers, or TNFR2 agonism. A related strategy is to rely on TNFR2 agonism to induce T-regulatory cells (Tregs) that suppress cytotoxic T cells. Targeting TNFR2 as a treatment strategy is likely superior to TNFR1 because of its more limited cellular distribution on T cells, subsets of neurons, and a few other cell types, whereas TNFR1 is expressed throughout the body. This review focuses on TNFR2 expression, structure, and signaling; TNFR2 signaling in autoimmune disease; treatment strategies targeting TNFR2 in autoimmunity; and the potential for TNFR2 to facilitate end organ regeneration.
Collapse
Affiliation(s)
- Denise L Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School , Boston, MA , USA
| | - Miriam Davis
- Immunobiology Laboratory, Massachusetts General Hospital , Boston, MA , USA
| |
Collapse
|
24
|
Ferrington DA, Gregerson DS. Immunoproteasomes: structure, function, and antigen presentation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 109:75-112. [PMID: 22727420 DOI: 10.1016/b978-0-12-397863-9.00003-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immunoproteasomes contain replacements for the three catalytic subunits of standard proteasomes. In most cells, oxidative stress and proinflammatory cytokines are stimuli that lead to elevated production of immunoproteasomes. Immune system cells, especially antigen-presenting cells, express a higher basal level of immunoproteasomes. A well-described function of immunoproteasomes is to generate peptides with a hydrophobic C terminus that can be processed to fit in the groove of MHC class I molecules. This display of peptides on the cell surface allows surveillance by CD8 T cells of the adaptive immune system for pathogen-infected cells. Functions of immunoproteasomes, other than generating peptides for antigen presentation, are emerging from studies in immunoproteasome-deficient mice, and are complemented by recently described diseases linked to mutations or single-nucleotide polymorphisms in immunoproteasome subunits. Thus, this growing body of literature suggests a more pleiotropic role in cell function for the immunoproteasome.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
25
|
Maldonado M, Kapphahn RJ, Terluk MR, Heuss ND, Yuan C, Gregerson DS, Ferrington DA. Immunoproteasome deficiency modifies the alternative pathway of NFκB signaling. PLoS One 2013; 8:e56187. [PMID: 23457524 PMCID: PMC3572990 DOI: 10.1371/journal.pone.0056187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Immunoproteasome is a protease abundant in immune cells and also present, albeit at lower concentrations, in cells outside the immune system. Recent evidence supports a novel role for the immunoproteasome in the cellular stress response potentially through regulation of NFκB signaling, which is the primary response to multiple stressors. The current study tests whether the Classical or Alternative Pathways are regulated by immunoproteasome following chronic TNFα exposure in cultured retinal pigment epithelial cells isolated from wild-type mice and mice deficient in one (LMP2, L2) or two (LMP7 and MECL-1, L7M1) immunoproteasome subunits. Assays were performed to assess the expression of NFκB responsive genes, the content and activity of NFκB transcription factors (p65, p50, p52, cRel, RelB), and expression and content of regulatory proteins (IκBα, A20, RPS3). Major findings include distinct differences in expression of NFκB responsive genes in both KO cells. The mechanism responsible for the altered gene expression could not be established for L7M1 since no major differences in NFκB transcription factor content or activation were observed. However, L2 cells exhibited substantially higher content and diminished activation of NFκB transcription factors associated with the Alternative Pathway and delayed termination of the Classical Pathway. These results provide strong experimental evidence supporting a role for immunoproteasome in modulating NFκB signaling.
Collapse
Affiliation(s)
- Marcela Maldonado
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rebecca J. Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marcia R. Terluk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ching Yuan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
26
|
The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 2012; 25:74-80. [PMID: 23219269 DOI: 10.1016/j.coi.2012.11.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 01/30/2023]
Abstract
Treatment of cells with interferon-γ leads to the replacement of the constitutive catalytic proteasome subunits β1, β2, and β5 by the inducible subunits LMP2 (β1i), MECL-1 (β2i), and LMP7 (β5i), respectively, building the so-called immunoproteasome. The incorporation of these subunits is required for the production of numerous MHC class-I restricted T cell epitopes. Recently, new evidence for an involvement of the immunoproteasome in other facets of the immune response emerged. Investigations of autoimmune diseases in animal models and a genetic predisposition of β5i in human autoimmune disorders suggest a crucial function of the immunoproteasome in proinflammatory diseases. The recent elucidation of the high-resolution structure of the immunoproteasome will facilitate the design of immunoproteasome selective inhibitors for pharmacological intervention.
Collapse
|
27
|
Jang ER, Lee NR, Han S, Wu Y, Sharma LK, Carmony KC, Marks J, Lee DM, Ban JO, Wehenkel M, Hong JT, Kim KB, Lee W. Revisiting the role of the immunoproteasome in the activation of the canonical NF-κB pathway. MOLECULAR BIOSYSTEMS 2012; 8:2295-302. [PMID: 22722901 DOI: 10.1039/c2mb25125f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of NF-κB signaling pathways has greatly enhanced our understanding of inflammatory and immune responses. In the canonical NF-κB pathway, the proteasomal degradation of IκBα, an inhibitory protein of NF-κB, is widely accepted to be a key regulatory step. However, contradictory findings have been reported as to whether the immunoproteasome plays an obligatory role in the degradation of IκBα and activation of the canonical NF-κB pathway. Such results were obtained mainly using traditional gene deletion strategies. Here, we have revisited the involvement of the immunoproteasome in the canonical NF-κB pathway using small molecule inhibitors of the immunoproteasome, namely UK-101 and LKS01 targeting β1i and β5i, respectively. H23 and Panc-1 cancer cells were pretreated with UK-101, LKS01 or epoxomicin (a prototypic inhibitor targeting both the constitutive proteasome and immunoproteasome). We then examined whether these pretreatments lead to any defect in activating the canonical NF-κB pathway following TNFα exposure by monitoring the phosphorylation and degradation of IκBα, nuclear translocation of NF-κB proteins and DNA binding and transcriptional activity of NF-κB. Our results consistently indicated that there is no defect in activating the canonical NF-κB pathway following selective inhibition of the immunoproteasome catalytic subunits β1i, β5i or both using UK-101 and LKS01, in contrast to epoxomicin. In summary, our current results using chemical genetic approaches strongly support that the catalytic activity of the immunoproteasome subunits β1i and β5i is not required for canonical NF-κB activation in lung and pancreatic adenocarcinoma cell line models.
Collapse
Affiliation(s)
- Eun Ryoung Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Novel Pharmacological Approaches for Inflammatory Bowel Disease: Targeting Key Intracellular Pathways and the IL-23/IL-17 Axis. Int J Inflam 2012; 2012:389404. [PMID: 22506136 PMCID: PMC3312283 DOI: 10.1155/2012/389404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022] Open
Abstract
This review identifies possible pharmacological targets for inflammatory bowel disease (IBD) within the IL-23/IL-17 axis. Specifically, there are several targets within the IL-23/IL-17 pathways for potential pharmacological intervention with antibodies or small molecule inhibitors. These targets include TL1A (tumor necrosis factor-like molecule), DR3 (death receptor 3), IL-23, IL-17 and the receptors for IL-23 and IL-17. As related to IBD, there are also other novel pharmacological targets. These targets include inhibiting specific immunoproteasome subunits, blocking a key enzyme in sphingolipid metabolism (sphingosine kinase), and modulating NF-κB/STAT3 interactions. Several good approaches exist for pharmacological inhibition of key components in the IL-23 and IL-17 pathways. These approaches include specific monoclonal antibodies to TL1A, IL-17 receptor, Fc fusion proteins, specific antibodies to IL-17F, and small molecule inhibitors of IL-17 like Vidofludimus. Also, other potential approaches for targeted drug development in IBD include specific chemical inhibitors of SK, specific small molecule inhibitors directed against catalytic subunits of the immunoproteasome, and dual inhibitors of the STAT3 and NF-κB signal transduction systems. In the future, well-designed preclinical studies are still needed to determine which of these pharmacological approaches will provide drugs with the best efficacy and safety profiles for entrance into clinical trials.
Collapse
|
29
|
Rockwell CE, Monaco JJ, Qureshi N. A critical role for the inducible proteasomal subunits LMP7 and MECL1 in cytokine production by activated murine splenocytes. Pharmacology 2012; 89:117-26. [PMID: 22398747 DOI: 10.1159/000336335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The proteasome is a multi-subunit complex that proteolytically cleaves proteins. The replacement of the constitutive proteasome subunits β1, β2, and/or β5 with the IFNγ-inducible subunits LMP2, MECL1, and/or LMP7 results in the 'immunoproteasome'. The inducible subunits change the cleavage specificities of the proteasome, but it is unclear whether they have functions in addition to this. The purpose of the present study was to determine the role of the proteasome in general, as well as LMP7 and MECL1 specifically, with regard to cytokine production by activated primary splenocytes. METHODS A LMP7/MECL1-null mouse was engineered to determine the roles of these subunits in cytokine production. Isolated splenocytes from wild-type and LMP7/MECL1-/- mice were treated with lactacystin and activated with PMA and ionomycin and subsequently cytokine mRNA levels were quantified. RESULTS The present study demonstrates that LMP7/MECL1 regulates the expression of IFNγ, IL4, IL10, IL2Rβ, GATA3, and t-bet. In contrast, the regulation of IL2, IL13, TNFα, and IL2Rα by the proteasome appears to occur independently of LMP7/MECL1. CONCLUSIONS Collectively, the present study demonstrates that LMP7 and MECL1 regulate cytokine expression, suggesting this system represents a novel mechanism for the regulation of cytokines and cytokine signaling.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich., USA
| | | | | |
Collapse
|
30
|
Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res 2012; 22:386-97. [PMID: 21940837 PMCID: PMC3266045 DOI: 10.1101/gr.124370.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/19/2011] [Indexed: 12/11/2022]
Abstract
Single variant or single gene analyses generally account for only a small proportion of the phenotypic variation in complex traits. Alternatively, gene set or pathway association analyses are playing an increasingly important role in uncovering genetic architectures of complex traits through the identification of systematic genetic interactions. Two dominant paradigms for gene set analyses are association analyses based on SNP genotypes and those based on gene expression profiles. However, gene-disease association can manifest in many ways, such as alterations of gene expression, genotype, and copy number; thus, an integrative approach combining multiple forms of evidence can more accurately and comprehensively capture pathway associations. We have developed a single statistical framework, Gene Set Association Analysis (GSAA), that simultaneously measures genome-wide patterns of genetic variation and gene expression variation to identify sets of genes enriched for differential expression and/or trait-associated genetic markers. Simulation studies illustrate that joint analyses of genomic data increase the power to detect real associations when compared with gene set methods that use only one genomic data type. The analysis of two human diseases, glioblastoma and Crohn's disease, detected abnormalities in previously identified disease-associated pathways, such as pathways related to PI3K signaling, DNA damage response, and the activation of NFKB. In addition, GSAA predicted novel pathway associations, for example, differential genetic and expression characteristics in genes from the ABC transporter family in glioblastoma and from the HLA system in Crohn's disease. These demonstrate that GSAA can help uncover biological pathways underlying human diseases and complex traits.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation National Research Council, Bari IT 70126, Italy
| | - Elizabeth R. Hauser
- Center for Human Genetics and Section of Medical Genetics, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Computer Science, and Mathematics, Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Terrence S. Furey
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
31
|
Hayashi T, Horiuchi A, Sano K, Hiraoka N, Kasai M, Ichimura T, Sudo T, Tagawa YI, Nishimura R, Ishiko O, Kanai Y, Yaegashi N, Aburatani H, Shiozawa T, Konishi I. Potential role of LMP2 as tumor-suppressor defines new targets for uterine leiomyosarcoma therapy. Sci Rep 2011; 1:180. [PMID: 22355695 PMCID: PMC3240965 DOI: 10.1038/srep00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/07/2011] [Indexed: 12/15/2022] Open
Abstract
Although the majority of smooth muscle neoplasms found in the uterus are benign, uterine
leiomyosarcoma (LMS) is extremely malignant, with high rates of recurrence and metastasis.
We earlier reported that mice with a homozygous deficiency for LMP2, an interferon
(IFN)-γ-inducible factor, spontaneously develop uterine LMS. The IFN-γ pathway is important
for control of tumor growth and invasion and has been implicated in several cancers. In this
study, experiments with human and mouse uterine tissues revealed a defective LMP2 expression
in human uterine LMS that was traced to the IFN-γ pathway and the specific effect of JAK-1
somatic mutations on the LMP2 transcriptional activation. Furthermore, analysis of a
human uterine LMS cell line clarified the biological significance of LMP2 in malignant
myometrium transformation and cell cycle, thus implicating LMP2 as an anti-tumorigenic
candidate. This role of LMP2 as a tumor suppressor may lead to new therapeutic targets in
human uterine LMS.
Collapse
Affiliation(s)
- Takuma Hayashi
- Dept. of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010; 80:1904-14. [PMID: 20599771 PMCID: PMC3090731 DOI: 10.1016/j.bcp.2010.06.039] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 12/16/2022]
Abstract
Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.
Collapse
Affiliation(s)
- Amit Deorukhkar
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
33
|
Wagner J, Sim WH, Ellis JA, Ong EK, Catto-Smith AG, Cameron DJS, Bishop RF, Kirkwood CD. Interaction of Crohn's disease susceptibility genes in an Australian paediatric cohort. PLoS One 2010; 5:e15376. [PMID: 21079743 PMCID: PMC2975706 DOI: 10.1371/journal.pone.0015376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/24/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes.
Collapse
Affiliation(s)
- Josef Wagner
- Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Faustman DL, Davis M. Stem cells in the spleen: therapeutic potential for Sjogren's syndrome, type I diabetes, and other disorders. Int J Biochem Cell Biol 2010; 42:1576-9. [PMID: 20601088 DOI: 10.1016/j.biocel.2010.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/19/2010] [Accepted: 06/11/2010] [Indexed: 01/13/2023]
Abstract
The view of the spleen as an unnecessary organ has been shattered. The evidence shows the spleen to be a source of naturally-occurring multipotent stem cells with possibly pluripotent potential. The stem cells are sequestered in the spleen of not only of animals but also of normal human adults. The reservoir of cells is set for differentiation and they need not be manipulated in vitro or ex vivo before autologous or heterologous use. Splenic stem cells, of Hox11 lineage, have been found in disease or injury to differentiate into pancreatic islets, salivary epithelial cells and osteoblast-like cells, cranial neurons, cochlea, lymphocytes, and more differentiated immune cells that repair injured heart cells. Injury or disease in target tissues induces these stem cells, still in the spleen, to upregulate the same embryonic transcription factors artificially introduced into induced pluripotent stem cells (iPS). Splenic stem cells may have broad pluripotent potential, but unlike iPS cells, possess low oncogenic risk.
Collapse
Affiliation(s)
- Denise L Faustman
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
35
|
Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 2010; 9:482-93. [PMID: 20489699 DOI: 10.1038/nrd3030] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although drug development has advanced for autoimmune diseases, many current therapies are hampered by adverse effects and the frequent destruction or inactivation of healthy cells in addition to pathological cells. Targeted autoimmune therapies capable of eradicating the rare autoreactive immune cells that are responsible for the attack on the body's own cells are yet to be identified. This Review presents a new emerging approach aimed at selectively destroying autoreactive immune cells by specific activation of tumour necrosis factor receptor 2 (TNFR2), which is found on autoreactive and normal T lymphocytes, with the potential of avoiding or reducing the toxicity observed with existing therapies.
Collapse
Affiliation(s)
- Denise Faustman
- Immunobiology Laboratory, Room 3602, Building 149, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
36
|
Gong P, Canaan A, Wang B, Leventhal J, Snyder A, Nair V, Cohen CD, Kretzler M, D'Agati V, Weissman S, Ross MJ. The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J Am Soc Nephrol 2009; 21:316-26. [PMID: 19959714 DOI: 10.1681/asn.2009050479] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NF-kappaB is a central mediator of innate immunity and contributes to the pathogenesis of several renal diseases. FAT10 is a TNF-alpha-inducible ubiquitin-like protein with a putative role in immune response, but whether FAT10 participates in TNF-alpha-induced NF-kappaB activation is unknown. Here, using renal tubular epithelial cells (RTECs) derived from FAT10(-/-) and FAT10(+/+) mice, we observed that FAT10 deficiency abrogated TNF-alpha-induced NF-kappaB activation and reduced the induction of NF-kappaB-regulated genes. Despite normal IkBalpha degradation and polyubiquitination, FAT10 deficiency impaired TNF-alpha-induced IkBalpha degradation and nuclear translocation of p65 in RTECs, suggesting defective proteasomal degradation of polyubiquitinated IkBalpha. In addition, FAT10 deficiency reduced the expression of the proteasomal subunit low molecular mass polypeptide 2 (LMP2). Transduction of FAT10(-/-) RTECs with FAT10 restored LMP2 expression, TNF-alpha-induced IkBalpha degradation, p65 nuclear translocation, and NF-kappaB activation. Furthermore, LMP2 transfection restored IkBalpha degradation in FAT10(-/-) RTECs. In humans, common types of chronic kidney disease associated with tubulointerstitial upregulation of FAT10. These data suggest that FAT10 mediates NF-kappaB activation and may promote tubulointerstitial inflammation in chronic kidney diseases.
Collapse
Affiliation(s)
- Pengfei Gong
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fu JJ, Lin P, Lv XY, Yan XJ, Wang HX, Zhu C, Tsang B, Yu XG, Wang H. Low Molecular Mass Polypeptide-2 in Human Trophoblast: Over-Expression in Hydatidiform Moles and Possible Role in Trophoblast Cell Invasion. Placenta 2009; 30:305-12. [DOI: 10.1016/j.placenta.2009.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 12/29/2022]
|
38
|
Visekruna A, Slavova N, Dullat S, Gröne J, Kroesen AJ, Ritz JP, Buhr HJ, Steinhoff U. Expression of catalytic proteasome subunits in the gut of patients with Crohn's disease. Int J Colorectal Dis 2009; 24:1133-9. [PMID: 19274467 PMCID: PMC2733182 DOI: 10.1007/s00384-009-0679-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Activation of the transcription factor NF-kappaB by proteasomes and subsequent nuclear translocation of cytoplasmatic complexes play a crucial role in the intestinal inflammation. Proteasomes have a pivotal function in NF-kappaB activation by mediating degradation of inhibitory IkappaB proteins and processing of NF-kappaB precursor proteins. This study aims to analyze the expression of the human proteasome subunits in colonic tissue of patients with Crohn's disease. MATERIALS AND METHODS Thirteen patients with Crohn's disease and 12 control patients were studied. The expression of immunoproteasomes and constitutive proteasomes was examined by Western blot analysis, immunoflourescence and quantitative real-time PCR. For real-time PCR, AK2C was used as housekeeping gene. RESULTS The results indicate the influence of the intestinal inflammation on the expression of the proteasomes in Crohn's disease. Proteasomes from inflamed intestine of patients with Crohn's disease showed significantly increased expression of immunosubunits on both protein and mRNA levels. Especially, the replacement of the constitutive proteasome subunit beta1 by inducible immunosubunit beta1i was observed in patients with active Crohn's disease. In contrast, relatively low abundance of immunoproteasomes was found in control tissue. CONCLUSIONS Our data demonstrate that in contrast to normal colonic tissue, the expression of immunoproteasomes was evidently increased in the inflamed colonic mucosa of patients with Crohn's disease. Thus, the chronic intestinal inflammation process in Crohn's disease leads to significant alterations of proteasome subsets.
Collapse
Affiliation(s)
- Alexander Visekruna
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Nadia Slavova
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Sonja Dullat
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Jörn Gröne
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anton-Josef Kroesen
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Jörg-Peter Ritz
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Heinz-Johannes Buhr
- Department of Surgery I, Charité-Medical School, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Ulrich Steinhoff
- Max-Planck Institute of Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
39
|
Kim A, Kwon OS, Kim SO, He L, Bae EY, Lee MS, Jeong SJ, Shim JH, Yoon DY, Kim CH, Moon A, Kim KE, Ahn JS, Kim BY. Caspase-3 activation as a key factor for HBx-transformed cell death. Cell Prolif 2008; 41:755-74. [PMID: 18700866 DOI: 10.1111/j.1365-2184.2008.00550.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Nuclear factor-kappa B (NF-kappaB) activation has been associated with the tumorigenic growth of hepatitis B virus X protein (HBx)-transformed cells. This study was aimed to find a key target for treatment of HBx-mediated cancers. MATERIALS AND METHODS NF-kappaB activation, endoplasmic reticulum-stress (ER-stress), caspase-3 activation, and cell proliferation were evaluated after Chang/HBx cells permanently expressing HBx viral protein were treated with inhibitors of NF-kappaB, proteasome and DNA topoisomerase. RESULTS Inhibition of NF-kappaB transcriptional activity by transient transfection with mutant plasmids encoding Akt1 and glycogen synthase kinase-3beta (GSK-3beta), or by treatment with chemical inhibitors, wortmannin and LY294002, showed little effect on the survival of Chang/HBx cells. Furthermore, IkappaBalpha (S32/36A) mutant plasmid or other NF-kappaB inhibitors, 1-pyrrolidinecarbonidithioic acid and sulphasalazine, were also shown to have little effect on the cell proliferation. By contrast, proteasome inhibitor-1 (Pro1) and MG132 enhanced the HBx-induced ER-stress response and the subsequent activation of caspase-12, -9 and -3 and reduced cell proliferation. Camptothecin (CPT), however, triggered activation of caspase-3 without induction of caspase-12, and reduced cell proliferation. In addition, CPT-induced cell death was reversed by pre-treatment with z-DEVD, a caspase-3-specific inhibitor. CONCLUSIONS Detailed exploitation of the regulators of caspase-3 activation could open the gate for finding an efficient target for development of anticancer therapeutics against HBx-transformed hepatocellular carcinoma.
Collapse
Affiliation(s)
- A Kim
- Functional Metabolomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Yuseong, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ban L, Zhang J, Wang L, Kuhtreiber W, Burger D, Faustman DL. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci U S A 2008; 105:13644-9. [PMID: 18755894 PMCID: PMC2533243 DOI: 10.1073/pnas.0803429105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Indexed: 12/13/2022] Open
Abstract
Human autoimmune (AI) diseases are difficult to treat, because immunosuppressive drugs are nonspecific, produce high levels of adverse effects, and are not based on mechanistic understanding of disease. Destroying the rare autoreactive T lymphocytes causing AI diseases would improve treatment. In animal models, TNF selectively kills autoreactive T cells, thereby hampering disease onset or progression. Here, we seek to determine, in fresh human blood, whether TNF or agonists of TNF selectively kill autoreactive T cells, while sparing normal T cells. We isolated highly pure CD4 or CD8 T cells from patients with type 1 diabetes (n = 675), other AI diseases, and healthy controls (n = 512). Using two cell death assays, we found that a subpopulation of CD8, but not CD4, T cells in patients' blood was vulnerable to TNF or TNF agonist-induced death. One agonist for the TNFR2 receptor exhibited a dose-response pattern of killing. In type 1 diabetes, the subpopulation of T cells susceptible to TNF or TNFR2 agonist-induced death was traced specifically to autoreactive T cells to insulin, a known autoantigen. Other activated and memory T cell populations were resistant to TNF-triggered death. This study shows that autoreactive T cells, although rare, can be selectively destroyed in isolated human blood. TNF and a TNFR2 agonist may offer highly targeted therapies, with the latter likely to be less systemically toxic.
Collapse
Affiliation(s)
- Liqin Ban
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| | - Jack Zhang
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| | - Limei Wang
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| | - Willem Kuhtreiber
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| | - Douglas Burger
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| | - Denise L. Faustman
- Department of Immunobiology, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Boston, MA 02129
| |
Collapse
|
41
|
Inhibition of experimental autoimmune myocarditis: peripheral deletion of TcR Vβ 8.1, 8.2+ CD4+ T cells in TLR-4 deficient mice. J Autoimmun 2008; 31:180-7. [DOI: 10.1016/j.jaut.2008.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/13/2008] [Accepted: 06/30/2008] [Indexed: 11/20/2022]
|
42
|
Fitzpatrick LR, Small JS, Poritz LS, McKenna KJ, Koltun WA. Enhanced intestinal expression of the proteasome subunit low molecular mass polypeptide 2 in patients with inflammatory bowel disease. Dis Colon Rectum 2007; 50:337-48; discussion 348-50. [PMID: 17160513 DOI: 10.1007/s10350-006-0796-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Low molecular mass polypeptide 2 is an inducible immunoproteasome subunit. The expression of low molecular mass polypeptide 2 has not been examined in the intestine of patients with inflammatory bowel disease. This study was designed to determine whether the intestinal expression of low molecular mass polypeptide 2 was enhanced in a group of patients with inflammatory bowel disease compared with a group of control patients without inflammatory bowel disease. Moreover, we examined the association between low molecular mass polypeptide 2 expression and histologic pathology in these patients. METHODS Twenty-one patients participated in the study. These included six control subjects without inflammatory bowel disease, eight patients with ulcerative colitis, and seven patients with Crohn's disease. Intestinal low molecular mass polypeptide 2 expression was evaluated by immunohistochemistry, as well as by Western blot. Histology scores (0-40 severity scale) were determined on the same sections of intestine as those used for low molecular mass polypeptide 2 histochemistry. RESULTS By immunohistochemistry, low molecular mass polypeptide 2 expression was significantly enhanced (P < 0.05 vs. control subjects) throughout visibly diseased areas of colon, rectum, and ileum from patients with inflammatory bowel disease. Low molecular mass polypeptide 2 expression also was increased in macroscopically normal intestine from patients with inflammatory bowel disease compared with normal tissue from control subjects. There was a significant correlation (P < 0.0001) between low molecular mass polypeptide 2 expression and histologic pathology in our patients. Western blot results confirmed that low molecular mass polypeptide 2 expression was enhanced in patients with ulcerative colitis (3.1-fold) and in patients with Crohn's disease (3.5-fold). CONCLUSIONS Intestinal low molecular mass polypeptide 2 expression is significantly increased in inflammatory bowel disease. The association between intestinal low molecular mass polypeptide 2 expression and histologic pathology suggests that this proteasome subunit plays a role in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Surgery, Section of Colon and Rectal Surgery, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
43
|
Dale E, Davis M, Faustman DL. A role for transcription factor NF-kappaB in autoimmunity: possible interactions of genes, sex, and the immune response. ADVANCES IN PHYSIOLOGY EDUCATION 2006; 30:152-8. [PMID: 17108242 DOI: 10.1152/advan.00065.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sex hormones have long been implicated in autoimmune diseases because women account for 80% of cases. The mechanism of hormonal action in autoimmunity is unknown. Drawing on genetic studies of autoimmune disease, this article discusses how both genes and sex hormones may exert their effects through the same general mechanism, dysregulation of transcription factor NF-kappaB, an immunoregulatory protein. Gene and hormone alterations of the NF-kappaB signaling cascade provide a unifying hypothesis to explain the wide-ranging human and murine autoimmune disease phenotypes regulated by NF-kappaB, including cytokine balance, antigen presentation, lymphoid development, and lymphoid repertoire selection by apoptosis.
Collapse
Affiliation(s)
- Elizabeth Dale
- Harvard Medical School and Massachusetts General Hospital-East, Boston, Massachusetts 02192, USA
| | | | | |
Collapse
|
44
|
Zhao SH, Kuhar D, Lunney JK, Dawson H, Guidry C, Uthe JJ, Bearson SMD, Recknor J, Nettleton D, Tuggle CK. Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray. Mamm Genome 2006; 17:777-89. [PMID: 16845603 DOI: 10.1007/s00335-005-0155-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/07/2006] [Indexed: 12/19/2022]
Abstract
Understanding the transcriptional response to pathogenic bacterial infection within food animals is of fundamental and applied interest. To determine the transcriptional response to Salmonella enterica serovar Choleraesuis (SC) infection, a 13,297-oligonucleotide swine array was used to analyze RNA from control, 24-h postinoculation (hpi), and 48-hpi porcine lung tissue from pigs infected with SC. In total, 57 genes showed differential expression (p < 0.001; false discovery rate = 12%). Quantitative real-time PCR (qRT-PCR) of 61 genes was used to confirm the microarray results and to identify pathways responding to infection. Of the 33 genes identified by microarray analysis as differentially expressed, 23 were confirmed by qRT-PCR results. A novel finding was that two transglutaminase family genes (TGM1 and TGM3) showed dramatic increases in expression postinoculation; combined with several other apoptotic genes, they indicated the induction of apoptotic pathways during SC infection. A predominant T helper 1-type immune response occurred during infection, with interferon gamma (IFNG) significantly increased at 48 hpi. Genes induced by IFNs (GBP1, GBP2, C1S, C1R, MHC2TA, PSMB8, TAP1, TAP2) showed increased expression during porcine lung infection. These data represent the first thorough investigation of gene regulation pathways that control an important porcine respiratory and foodborne bacterial infection.
Collapse
Affiliation(s)
- Shu-Hong Zhao
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fitzpatrick LR, Khare V, Small JS, Koltun WA. Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Dig Dis Sci 2006; 51:1269-76. [PMID: 16944024 DOI: 10.1007/s10620-006-8047-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 07/28/2005] [Indexed: 01/17/2023]
Abstract
Low molecular mass polypeptide 2 (LMP2) is an inducible proteasome subunit. Our goals were to examine LMP2 expression in mice with dextran sulfate sodium (DSS)-induced colitis and to evaluate colitis in LMP2 knockout (LMP2-/-) mice. Mice were given 2.5% DSS in the drinking water. On day 0, 2, 4, or 6 after DSS treatment, LMP2 expression was determined in the distal colon by western blot and immunohistochemistry. Parameters of colitis were measured in LMP2-/- mice or wild-type mice. LMP2 expression was enhanced in the colon of DSS-treated mice at all time points. Symptoms of DSS-induced colitis were always lower in LMP2-/- mice. Normalized histology scores and colonic IL-1ss levels increased over the 6-day study period in wild-type mice. These parameters were significantly reduced in LMP2-/- mice that consumed DSS for 6 days. Enhanced LMP2 expression contributes to the pathogenesis of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
46
|
Mishto M, Santoro A, Bellavista E, Sessions R, Textoris-Taube K, Dal Piaz F, Carrard G, Forti K, Salvioli S, Friguet B, Kloetzel PM, Rivett AJ, Franceschi C. A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms. Biol Chem 2006; 387:417-29. [PMID: 16606340 DOI: 10.1515/bc.2006.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The immunoproteasome subunit low molecular weight protein 2 (LMP2) codon 60 polymorphism has been associated with autoimmune diseases. It has also been demonstrated to influence susceptibility to TNF-alpha-induced apoptosis in blood cells and proteasome activity in aged human brain. In the present study, an in silico model of immunoproteasome was used to examine the effect of the R60H polymorphism in the LMP2 subunit. The investigation of immunoproteasome expression, activity and intracellular localisation in an in vitro cellular model, namely lymphoblastoid cell lines, showed no major variations in functionality and amount, while a significant difference in antibody affinity was apparent. These data were integrated with previous results obtained in different tissues and combined with a structural model of the LMP2 polymorphism. Accordingly, we identified three prospective mechanisms that could explain the biological data for the polymorphism, such as modulation of the binding affinity of a putative non-catalytic modifier site on the external surface of the immunoproteasome core, or the modification of any channel between alpha and beta rings.
Collapse
Affiliation(s)
- Michele Mishto
- Department of Experimental Pathology, University of Bologna, via S. Giacomo 14, I-40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang HX, Wang HM, Lin HY, Yang Q, Zhang H, Tsang BK, Zhu C. Proteasome subunit LMP2 is required for matrix metalloproteinase-2 and -9 expression and activities in human invasive extravillous trophoblast cell line. J Cell Physiol 2006; 206:616-23. [PMID: 16222703 DOI: 10.1002/jcp.20508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in the degradation of the extracellular matrix (ECM) and trophoblastic invasion during early pregnancy. Our previous studies demonstrated that inhibition of UPP suppresses expression of matrix metalloproteinase (MMP)-2 and -9. LMP2 is an important proteasome subunit that is critical for proteasome activity. This study investigated the regulatory mechanism of LMP2 on the expression and activities of MMP-2 and MMP-9. Our results showed that transfection of LMP2 siRNA plasmid into the human invasive extravillous trophoblast cell line (HTR8/Svneo) could significantly suppress expression of LMP2 mRNA and protein. The mRNA expression of MMP-2 and MMP-9 and their activities were markedly decreased in the LMP2-inhibited cells. Inhibition of LMP2 could also reduce IkappaBalpha mRNA level, although the expression of phosphorylated IkappaBalpha was increased. In the LMP2-inhibited cells, expression of mRNA encoding NF-kappaB subunits p50 and p65 remained normal, but the p50 protein level was significantly decreased in the cytosolic and nuclear extracts, while p65 protein was markedly reduced only in the nuclear extract. We also demonstrated that blockage of the NF-kappaB pathway by the NF-kappaB translocation inhibitor SN50 markedly reduced the expression of MMP-2 and MMP-9 in HTR8/Svneo cells, a result that is fully consistent with the results from the LMP2-inhibited HTR8/Svneo cells. These data suggest that LMP2 contributes to IkappaBalpha degradation and p50 generation, and that inhibition of LMP2 suppresses expression and activities of MMP-2 and MMP-9 by blocking the transfer of active NF-kappaB heterodimers into the nucleus.
Collapse
Affiliation(s)
- Hong-Xing Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Luyendyk JP, Mattes WB, Burgoon LD, Zacharewski TR, Maddox JF, Cosma GN, Ganey PE, Roth RA. Gene Expression Analysis Points to Hemostasis in Livers of Rats Cotreated with Lipopolysaccharide and Ranitidine. Toxicol Sci 2004; 80:203-13. [PMID: 15084757 DOI: 10.1093/toxsci/kfh146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies in rats have demonstrated that modest underlying inflammation can precipitate idiosyncratic-like liver injury from the histamine 2-receptor antagonist, ranitidine (RAN). Coadministration to rats of nonhepatotoxic doses of RAN and the inflammagen, bacterial lipopolysaccharide (LPS), results in hepatocellular injury. We tested the hypothesis that hepatic gene expression changes could be distinguished among vehicle-, LPS-, RAN- and LPS/RAN-treated rats before the onset of significant liver injury in the LPS/RAN-treated rats (i.e., 3 h post-treatment). Rats were treated with LPS (44 x 10(6) EU/kg, i.v.) or its vehicle, then two hours later with RAN (30 mg/kg, i.v.) or its vehicle. They were killed 3 h after RAN treatment, and liver samples were taken for evaluation of liver injury and RNA isolation. Hepatic parenchymal cell injury, as estimated by increases in serum alanine aminotransferase (ALT) activity, was not significant at this time. Hierarchal clustering of gene expression data from Affymetrix U34A rat genome array grouped animals according to treatment. Relative to treatment with vehicle alone, treatment with RAN and/or LPS altered hepatic expression of numerous genes, including ones encoding products involved in inflammation, hypoxia, and cell death. Some were enhanced synergistically by LPS/RAN cotreatment. Real-time PCR confirmed robust changes in expression of B-cell translocation gene 2, early growth response-1, and plasminogen-activator inhibitor-1 (PAI-1) in cotreated rats. The increase in PAI-1 mRNA was reflected in an increase in serum PAI-1 protein concentration in LPS/RAN-treated rats. Consistent with the antifibrinolytic activity of PAI-1, significant fibrin deposition occurred only in livers of LPS/RAN-treated rats. The results suggest the possibility that expression of PAI-1 promotes fibrin deposition in liver sinusoids of LPS/RAN-treated rats and are consistent with the development of local ischemia and consequent tissue hypoxia.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pharmacology and Toxicology, National Food Safety and Toxicology Center, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 2003; 22:5755-73. [PMID: 12947384 DOI: 10.1038/sj.onc.1206676] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few years, the ubiquitin(Ub)/proteasome system has become increasingly recognized as a controller of numerous physiological processes, including signal transduction, DNA repair, chromosome maintenance, transcriptional activation, cell cycle progression, cell survival, and certain immune cell functions. This is in addition to its more established roles in the removal of misfolded, damaged, and effete proteins. This review examines the role of the Ub/proteasome system in processes underlying the classical effects of irradiation on cells, such as radiation-induced gene expression, DNA repair and chromosome instability, oxidative damage, cell cycle arrest, and cell death. Furthermore, recent evidence suggests that the proteasome is a redox-sensitive target for ionizing radiation and other oxidative stress signals. In other words, the Ub/proteasome system may not simply be a passive player in radiation-induced responses, but may modulate them. The extent of the modulation will be influenced by the functional and structural diversity that is expressed by the system. Cell types vary in the Ub/proteasome structures they possess and the level at which they function, and this changes as they go from the normal to the cancerous condition. Cancer-related functional changes within the Ub/proteasome system may therefore present unique targets for cancer therapy, especially when targeting agents are used in combination with radio- or chemotherapy. The peptide boronic acid compound PS-341, which was designed to inhibit proteasome chymotryptic activity, is in clinical trials for the treatment of solid and hematogenous tumors. It has shown some efficacy on its own and in combination with chemotherapy. Preclinical studies have shown that PS-341 will also potentiate the cytotoxic effects of radiation therapy. In addition, other drugs in common clinical use have been shown to affect proteasome function, and their activities may be valuably reconsidered from this perspective.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
50
|
Barceló-Batllori S, André M, Servis C, Lévy N, Takikawa O, Michetti P, Reymond M, Felley-Bosco E. Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2002; 2:551-60. [PMID: 11987129 DOI: 10.1002/1615-9861(200205)2:5<551::aid-prot551>3.0.co;2-o] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.
Collapse
|