1
|
Nangle LA, Xu Z, Siefker D, Burkart C, Chong YE, Zhai L, Geng Y, Polizzi C, Guy L, Eide L, Tong Y, Klopp-Savino S, Ferrer M, Rauch K, Wang A, Hamel K, Crampton S, Paz S, Chiang KP, Do MH, Burman L, Lee D, Zhang M, Ogilvie K, King D, Adams RA, Schimmel P. A human histidyl-tRNA synthetase splice variant therapeutic targets NRP2 to resolve lung inflammation and fibrosis. Sci Transl Med 2025; 17:eadp4754. [PMID: 40073151 DOI: 10.1126/scitranslmed.adp4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARSWHEP because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells. Structural analysis of HARSWHEP confirmed a well-organized helix-turn-helix motif. This motif bound specifically and selectively to neuropilin-2 (NRP2), a receptor expressed by myeloid cells in active sites of inflammation, to inhibit expression of proinflammatory receptors and cytokines and to down-regulate inflammatory pathways in primary human macrophages. In animal models of lung injury and ILD, including bleomycin treatment, silicosis, sarcoidosis, chronic hypersensitivity pneumonitis, systemic sclerosis, and rheumatoid arthritis-ILD, HARSWHEP reduced lung inflammation, immune cell infiltration, and fibrosis. In patients with sarcoidosis, efzofitimod treatment resulted in down-regulation of gene expression for inflammatory pathways in peripheral immune cells and stabilization of inflammatory biomarkers in serum after steroid tapering. We demonstrate the immunomodulatory activity of HARSWHEP and present preclinical data supporting ongoing clinical development of the biologic efzofitimod based on HARSWHEP in ILD.
Collapse
Affiliation(s)
| | - Zhiwen Xu
- aTyr Pharma, San Diego, CA 92121, USA
| | | | | | | | - Liting Zhai
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | - Yanyan Geng
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | | | | | - Lisa Eide
- aTyr Pharma, San Diego, CA 92121, USA
| | - Yao Tong
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | - Darin Lee
- aTyr Pharma, San Diego, CA 92121, USA
| | - Mingjie Zhang
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | - Paul Schimmel
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Yamaguchi K, Tang Q, LaConti JJ, Kippelen F, Zhu L, Poland P, Hartoyo M, Aggarwal R, Oddis CV, Ascherman DP. Relationship between Jo-1 B Cell Epitope Profile and Clinical Features of Anti-Synthetase Syndrome. ACR Open Rheumatol 2024; 6:615-624. [PMID: 38973625 PMCID: PMC11471939 DOI: 10.1002/acr2.11715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024] Open
Abstract
OBJECTIVE Anti-histidyl-transfer RNA synthetase (Jo-1) antibodies are associated with myositis as well as different extramuscular organ complications comprising the anti-synthetase syndrome. This study aimed to clarify the relationship between anti-Jo-1 epitope recognition patterns and specific clinical features of this syndrome. METHODS B cell epitope mapping was performed via enzyme-linked immunosorbent assay in 180 patients who were anti-Jo-1 antibody-positive using overlapping peptides/protein fragments spanning the amino-terminal 151 amino acids of Jo-1 as substrate antigens. Statistical associations with clinical features were assessed through rank-sum, correlation, and cluster analyses. RESULTS The level of reactivity against subfragments spanning amino acids 1-151 of Jo-1 paralleled that of full-length Jo-1, confirming the immunodominance of this amino-terminal region. The corresponding frequencies of reactivity to peptides 1 (amino acids [aa] 1-21), 3 (aa 27-47), 4 (aa 40-60), 10 (aa 118-138), and 11 (aa 131-151) were 6.1%, 42.5%, 6.8%, 6.7%, and 20.3%. While anti-full-length Jo-1 antibodies were significantly associated with Raynaud phenomenon, anti-fragment A2 (aa 1-60) and A3 (aa 1-90) antibodies were associated with proximal muscle weakness, Raynaud phenomenon, arthritis, and sicca syndrome. Anti-fragment A4 (aa 1-120) and A5 (aa 1-151) antibodies were also associated with sicca syndrome. Peptide 1 (aa 1-21) antibodies were associated with Raynaud phenomenon and dysphagia. Whereas anti-peptide 3 (aa 27-47) antibodies were also linked to Raynaud phenomenon, anti-peptide 9 (aa 105-125) antibodies were associated with mechanic's hands. CONCLUSION Autoantibodies targeting different amino-terminal subfragments and/or peptides of Jo-1 were associated with specific clinical features of the anti-synthetase syndrome, demonstrating the biomarker potential of B cell epitope profiling in this disorder.
Collapse
Affiliation(s)
- Koichi Yamaguchi
- Gunma University Graduate School of Medicine, Gunma, Japan and University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Qi Tang
- Second Xiangya Hospital of Central South UniversityChangshaChina
| | | | - Fanny Kippelen
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Lei Zhu
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Paul Poland
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Mara Hartoyo
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | - Rohit Aggarwal
- University of Pittsburgh Medical CenterPittsburghPennsylvania
| | | | | |
Collapse
|
3
|
Kannappan R, Kumar R, Cichelli K, Brent LH. A Review of Myositis-Associated Interstitial Lung Disease. J Clin Med 2024; 13:4055. [PMID: 39064092 PMCID: PMC11278012 DOI: 10.3390/jcm13144055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a well-established relationship between different subsets of idiopathic inflammatory myopathies (IIMs, myositis) and interstitial lung disease (ILD), with lung complications sometimes presenting prior to myopathic manifestations. The subtypes of myositis include those that are strongly associated with ILD, such as polymyositis (PM) and dermatomyositis (DM). Research has shown that in certain patients, these can then be further divided into subtypes using myositis-specific antibodies (MSAs), which are specific for myositis, and myositis-associated antibodies (MAAs), which can be found in myositis in overlap syndromes with other connective tissue diseases (CTDs). Notably, certain MSAs and MAAs are associated with ILD in patients with myositis. The clinical presentations of ILD in patients with myositis can vary widely and can be insidious in onset and difficult to diagnose. As ILD can progress rapidly in some cases, it is essential that clinicians are able to identify and diagnose ILD in patients with myositis. For this reason, the aim of this review is to highlight the clinical features, diagnostic criteria, important histopathologic, laboratory, and radiographic features, and treatment modalities for those patients with myositis-associated ILD.
Collapse
Affiliation(s)
- Renuka Kannappan
- Department of Internal Medicine, Temple University Hospital, Philadelphia, PA 19140, USA
| | - Raagni Kumar
- Department of Internal Medicine, Temple University Hospital, Philadelphia, PA 19140, USA
| | - Kimberly Cichelli
- Section of Rheumatology, Temple University Hospital, Philadelphia, PA 19140, USA
| | - Lawrence H. Brent
- Section of Rheumatology, Temple University Hospital, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Mata Salvador MC, Francesqui J, Sellarés J. The current state-of-the-art in pharmacotherapy for pulmonary sarcoidosis. Expert Opin Pharmacother 2024; 25:1317-1324. [PMID: 38975682 DOI: 10.1080/14656566.2024.2377714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Sarcoidosis is a chronic granulomatous of unknown etiology that mostly affects lungs with an heterogenous clinical presentation and prognosis. Therefore, therapeutic management of the disease is challenging. The goals of treatment are to prevent or to minimize organ damage, to relieve symptoms, and to improve the patient's quality of life. AREAS COVERED The present review covers current pharmacotherapy options for pulmonary sarcoidosis. Corticosteroids are still the first-line treatment option, however, for those patients with prolonged expectation of treatment, undesirable side effects and refractory disease, immunosuppressive drugs are preferred options. Biological drugs are promising third line therapies. Recent evidence shows that antifibrotic agents, such as nintedanib, have a role in fibrotic lung disease, as well as efzofitimob, which has shown promising results in controlling inflammatory lung disease. EXPERT OPINION Sarcoidosis treatment is evolving as new molecules are available. The number of studies of therapies for pulmonary sarcoidosis has increased in recent years, however, the information available is still limited and there is no consensus on how to monitor the activity of the disease.
Collapse
Affiliation(s)
- María Caridad Mata Salvador
- Pulmonology Department, Hospital Clínic, WASOG Centre of Excellence, Respiratory Institute, Barcelona, Spain
| | - Joel Francesqui
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jacobo Sellarés
- Pulmonology Department, Hospital Clínic, WASOG Centre of Excellence, Respiratory Institute, Barcelona, Spain
| |
Collapse
|
5
|
Yang H, Chen Q, Sun C, Jin Q, Zhang L, Liu Q, Peng Q, Wang G, Lu X. Clinical and prognostic associations of anti-Jo-1 antibody levels in patients with antisynthetase syndrome. Respir Res 2024; 25:222. [PMID: 38811943 PMCID: PMC11137886 DOI: 10.1186/s12931-024-02851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE To investigate the association of serum anti-Jo-1 antibody levels with the disease activity and prognosis in anti-Jo-1-positive patients with antisynthetase syndrome (ASS). METHODS This study included 115 anti-Jo-1-positive patients with ASS who were admitted to China-Japan Friendship Hospital between 2009 and 2019. Anti-Jo-1 antibody serum levels at initial admission and follow-up were determined by enzyme-linked immunosorbent assay (ELISA). Global and organ disease activity was assessed at baseline and follow-up according to the International Myositis Assessment and Clinical Studies guidelines. RESULTS Among enrolled patients, 70 (60.9%) patients initially presented with interstitial lung disease (ILD), and 46 (40%) patients presented with with muscle weakness at initial admission. At baseline, patients with ILD had lower levels of anti-Jo-1 antibodies than those without ILD (p = 0.012). Baseline anti-Jo-1 antibody levels were higher in patients with muscle weakness, skin involvement, and arthritis (all p < 0.05) compared to those without these manifestations. Baseline anti-Jo-1 antibody levels were positively correlated with skin visual analogue scale (VAS) scores (r = 0.25, p = 0.006), but not with disease activity in other organs. However, changes in anti-Jo-1 antibody levels were significantly positively correlated with the changes in PGA (β = 0.002, p = 0.001), muscle (β = 0.003, p < 0.0001), and pulmonary (β = 0.002, p = 0.013) VAS scores, but not with skin and joint VAS scores. Older age of onset (hazard ratio [HR] 1.069, 95% confidence interval [CI]:1.010-1.133, p = 0.022) and higher C-reactive protein (CRP) levels (HR 1.333, 95% CI: 1.035-1.717, p = 0.026) were risk factors for death. CONCLUSION Anti-Jo-1 titers appear to correlate more with disease activity changes over time rather than with organ involvement at baseline, which provides better clinical guidance for assessing the disease course using anti-Jo-1 levels.
Collapse
Affiliation(s)
- Hongxia Yang
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Qingning Chen
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
- Department of Clinical Nutrition, The First Affiliate Hospital of Xiamen University, Xiamen, China
| | - Chao Sun
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Qiwen Jin
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Lining Zhang
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
| | - Qingyan Liu
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
| | - Qinglin Peng
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
| | - Guochun Wang
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China
| | - Xin Lu
- Department of Rheumatology, China-Japan Friendship Hospital, No.2 Yinghua East Road Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
6
|
Van Gompel E, Demirdal D, Fernandes-Cerqueira C, Horuluoglu B, Galindo-Feria A, Wigren E, Gräslund S, De Langhe E, Benveniste O, Notarnicola A, Chemin K, Lundberg IE. Autoantibodies against the melanoma differentiation-associated protein 5 in patients with dermatomyositis target the helicase domains. Rheumatology (Oxford) 2024; 63:1466-1473. [PMID: 37572295 PMCID: PMC11065437 DOI: 10.1093/rheumatology/kead400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVES Clinical observations in patients with dermatomyositis (DM) and autoantibodies against the melanoma differentiation-associated protein 5 (MDA5) suggest that the autoantibodies contribute to the pathogenesis of MDA5(+) DM. To gain insight into the role of the anti-MDA5 autoantibodies, we aimed to identify their binding sites on the different domains of the MDA5 protein. METHODS We developed an in-house ELISA to assess the reactivity against the MDA5 domains (conformational epitopes) in plasma (n = 8) and serum (n = 24) samples from MDA5(+) patients with varying clinical manifestations and disease outcomes. The reactivities were also assessed using western blot (linearized epitopes). An ELISA-based depletion assay was developed to assess cross-reactivity among the different MDA5 domains. RESULTS All eight plasma samples consistently showed reactivity towards conformational and linearized epitopes on the helicase domains of the MDA5 protein. The ELISA-based depletion assay suggests that anti-MDA5 autoantibodies specifically target each of the three helicase domains. Twenty-two of the 24 serum samples showed reactivity in the in-house ELISA and all 22 displayed reactivity towards the helicase domains of the MDA5 protein. CONCLUSIONS Our data revealed that the main immunogenic targets of anti-MDA5 autoantibodies from MDA5(+) patients are the helicase domains. Considering that the helicase domains are responsible for the enzymatic activity and subsequent triggering of an inflammatory response, our findings suggest that binding of anti-MDA5 autoantibodies could alter the canonical activity of the MDA5 protein and potentially affect the downstream induction of a pro-inflammatory cascade.
Collapse
Affiliation(s)
- Eveline Van Gompel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Deniz Demirdal
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastro, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Catia Fernandes-Cerqueira
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angeles Galindo-Feria
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Gastro, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Benveniste
- Centre de Recherche en Myologie, Unité Mixte de Recherche Scientifique 974, Sorbonne Université, INSERM, Paris, France
- Département de Médecine Interne et Immunologie Clinique, Centre de Référence Maladies Neuro-Musculaires, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Antonella Notarnicola
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastro, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Gastro, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Nelson NC, Kogan R, Condos R, Hena KM. Emerging Therapeutic Options for Refractory Pulmonary Sarcoidosis: The Evidence and Proposed Mechanisms of Action. J Clin Med 2023; 13:15. [PMID: 38202021 PMCID: PMC10779381 DOI: 10.3390/jcm13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Sarcoidosis is a systemic disease with heterogenous clinical phenotypes characterized by non-necrotizing granuloma formation in affected organs. Most disease either remits spontaneously or responds to corticosteroids and second-line disease-modifying therapies. These medications are associated with numerous toxicities that can significantly impact patient quality-of-life and often limit their long-term use. Additionally, a minority of patients experience chronic, progressive disease that proves refractory to standard treatments. To date, there are limited data to guide the selection of alternative third-line medications for these patients. This review will outline the pathobiological rationale behind current and emerging therapeutic agents for refractory or drug-intolerant sarcoidosis and summarize the existing clinical evidence in support of their use.
Collapse
Affiliation(s)
| | | | | | - Kerry M. Hena
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University, 301 E 17th St Suite 550, New York, NY 10003, USA
| |
Collapse
|
8
|
Kuan J, Hansen A, Wang H. Case Report: A new case of YARS1-associated autosomal recessive disorder with compound heterozygous and concurrent 47, XXY. Front Pediatr 2023; 11:1282253. [PMID: 38125821 PMCID: PMC10731953 DOI: 10.3389/fped.2023.1282253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Aminoacyl-tRNA synthetases play a pivotal role in catalyzing the precise coupling of amino acids with their corresponding tRNAs. Among them, Tyrosyl tRNA synthetase, encoded by the YARS1 gene, facilitates the aminoacylation of tyrosine to its designated tRNA. Heterozygous variants in the YARS1 gene have been linked to autosomal dominant Charcot-Marie-Tooth type C, while recent findings have unveiled biallelic YARS1 variants leading to an autosomal recessive multisystemic disorder in several cases. In this report, we present a novel case characterized by dysmorphic facies, and multisystemic symptoms, prominently encompassing neurological issues and a microarray conducted shortly after birth revealed 47, XXY. Utilizing whole exome sequencing, we uncovered a paternally inherited likely pathogenic variant (c.1099C > T, p.Arg367Trp), previously reported, coinciding with the father's history of hearing loss and neurological symptoms. Additionally, a maternally inherited variant of uncertain significance (c.782T > G, p.Leu261Arg), previously unreported, was identified within the YARS1 gene. The observed phenotypes and the presence of compound heterozygous results align with the diagnosis of an autosomal recessive disorder associated with YARS1. Through our cases, the boundaries of this emerging clinical entity are broadened. This instance underscores the significance of comprehensive genetic testing in patients exhibiting intricate phenotypes.
Collapse
Affiliation(s)
- Janene Kuan
- Department of Pediatrics, University of California, San Francisco, CA, United States
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Ashleigh Hansen
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Neurosciences Department, Cedars-Sinai, Los Angeles, CA, United States
| | - Hua Wang
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
9
|
Kim SM, Park S, Hwang SH, Lee EY, Kim JH, Lee GS, Lee G, Chang DH, Lee JG, Hwang J, Lee Y, Kyung M, Kim EK, Kim JH, Kim TH, Moon JH, Kim BC, Ko G, Kim SY, Ryu JH, Lee JS, Lee CH, Kim JY, Kim S, Lee WJ, Kim MH. Secreted Akkermansia muciniphila threonyl-tRNA synthetase functions to monitor and modulate immune homeostasis. Cell Host Microbe 2023; 31:1021-1037.e10. [PMID: 37269833 DOI: 10.1016/j.chom.2023.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis.
Collapse
Affiliation(s)
- Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; Department of Biology Education, Chonnam National University, Gwangju 61186, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Seung-Ho Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jong-Hwan Kim
- Korean Bioinformation Center, KRIBB, Daejeon 34141, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Korea; College of Pharmacy, Chungbuk National University, Cheongju 28160, Chungbuk, Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jae-Geun Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Minsoo Kyung
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eun-Kyoung Kim
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, KRIBB, Daejeon 34141, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon 34141, Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; HealthBiome, Inc., Bioventure Center, Daejeon 34141, Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea; Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Korea; KoBioLabs, Inc., Seoul 08826, Korea; Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Seon-Young Kim
- Korean Bioinformation Center, KRIBB, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, KRIBB, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sunghoon Kim
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| |
Collapse
|
10
|
Kanaji S, Chen W, Morodomi Y, Shapiro R, Kanaji T, Yang XL. Mechanistic perspectives on anti-aminoacyl-tRNA synthetase syndrome. Trends Biochem Sci 2023; 48:288-302. [PMID: 36280495 PMCID: PMC9974581 DOI: 10.1016/j.tibs.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/18/2023]
Abstract
Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Culver DA, Aryal S, Barney J, Hsia CCW, James WE, Maier LA, Marts LT, Obi ON, Sporn PHS, Sweiss NJ, Shukla S, Kinnersley N, Walker G, Baughman R. Efzofitimod for the Treatment of Pulmonary Sarcoidosis. Chest 2022; 163:881-890. [PMID: 36356657 DOI: 10.1016/j.chest.2022.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pulmonary sarcoidosis is characterized by the accumulation of immune cells that form granulomas affecting the lungs. Efzofitimod (ATYR1923), a novel immunomodulator, selectively binds neuropilin 2, which is upregulated on immune cells in response to lung inflammation. RESEARCH QUESTION What is the tolerability, safety, and effect on outcomes of efzofitimod in pulmonary sarcoidosis? STUDY DESIGN AND METHODS In this randomized, double-blind, placebo-controlled study evaluating multiple ascending doses of efzofitimod administered intravenously every 4 weeks for 24 weeks, randomized patients (2:1) underwent a steroid taper to 5 mg/d by week 8 or < 5 mg/d after week 16. The primary end point was the incidence of adverse events (AEs); secondary end points included steroid reduction, change in lung function, and patient-reported outcomes on health-related quality-of-life scales. RESULTS Thirty-seven patients received at least one dose of study medication. Efzofitimod was well tolerated at all doses, with no new or unexpected AEs and no dose-dependent AE incidence. Average daily steroid doses through end of study were 6.8 mg, 6.5 mg, and 5.6 mg for the 1 mg/kg, 3 mg/kg, and 5 mg/kg groups compared with 7.2 mg for placebo, resulting in a baseline-adjusted relative steroid reduction of 5%, 9%, and 22%, respectively. Clinically meaningful improvements were achieved across several patient-reported outcomes, several of which reached statistical significance in the 5 mg/kg dose arm. A dose-dependent but nonsignificant trend toward improved lung function also was observed for 3 and 5 mg/kg. INTERPRETATION Efzofitimod was safe and well tolerated and was associated with dose-dependent improvements of several clinically relevant end points compared with placebo. The results of this study support further evaluation of efzofitimod in pulmonary sarcoidosis. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03824392; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
| | - Shambhu Aryal
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA
| | - Joseph Barney
- Department of Pulmonary and Critical Care Medicine, University of Alabama, Birmingham, AL
| | - Connie C W Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Ennis James
- Susan Pearlstine Sarcoidosis Center of Excellence, Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, SC
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, National Jewish Health; Division of Pulmonary Sciences and Critical Care, Department of Medicine, School of Medicine, University of Colorado, Denver, CO
| | - Lucian T Marts
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ogugua Ndili Obi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Brody School of Medicine East Carolina University, Greenville, NC
| | - Peter H S Sporn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nadera J Sweiss
- Division of Rheumatology and Medical Director of the Arthritis Clinic, Chicago, IL; Bernie Mac Sarcoidosis Translational Advanced Research Center, University of Illinois College of Medicine, Chicago, IL
| | | | | | | | - Robert Baughman
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH
| |
Collapse
|
12
|
Galindo-Feria AS, Notarnicola A, Lundberg IE, Horuluoglu B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front Immunol 2022; 13:866087. [PMID: 35634293 PMCID: PMC9136399 DOI: 10.3389/fimmu.2022.866087] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases (aaRSs) along with clinical features including interstitial lung disease, myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino acid, which are essential for the RNA translation machinery and protein synthesis. Along with their main functions, aaRSs are involved in the development of immune responses, regulation of transcription, and gene-specific silencing of translation. During the last decade, these proteins have been associated with cancer, neurological disorders, infectious responses, and autoimmune diseases including ASSD. To date, several aaRSs have been described to be possible autoantigens in different diseases. The most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl (GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl (LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases. Autoantibodies against the first eight autoantigens listed above have been associated with ASSD while the rest have been associated with other diseases. This review will address what is known about the function of the aaRSs with a focus on their autoantigenic properties. We will also describe the anti-aaRSs autoantibodies and their association to specific clinical manifestations, and discuss their potential contribution to the pathogenesis of ASSD.
Collapse
Affiliation(s)
- Angeles S. Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Antonella Notarnicola
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Begum Horuluoglu,
| |
Collapse
|
13
|
Ho MT, Lu J, Vazquez-Pianzola P, Suter B. α-Phenylalanyl tRNA synthetase competes with Notch signaling through its N-terminal domain. PLoS Genet 2022; 18:e1010185. [PMID: 35486661 PMCID: PMC9094542 DOI: 10.1371/journal.pgen.1010185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling. Aminoacyl tRNA synthetases charge tRNAs with their cognate amino acid to ensure proper decoding of the genetic code during translation. Independent of its aminoacylation function, the alpha subunit of Drosophila cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) has an additional activity that promotes growth and proliferation. Here we describe that elevated α-PheRS levels also induce cell fate changes and tumorous phenotypes in Drosophila midguts. Excessive proliferating cells with stem and progenitor cell characteristics accumulate and the composition of the terminally differentiated cells changes, too. This phenotype together with observed genetic interactions between α-PheRS and Notch levels show that α-PheRS counteracts Notch signaling in many different tissues and developmental stages. This novel activity of α-PheRS maps to its N-terminal part, which is naturally produced. The fragment contains a DNA binding domain, translocates into nuclei, and displays essential similarities to a Notch domain that binds to the downstream transcription factor. This suggests that it might be competing with Notch for binding to a common target. Not only because Notch plays important roles in many tumors, but also because FARSA mRNA levels are considerably upregulated in many tumors, this novel activity deserves more attention for cancer research.
Collapse
Affiliation(s)
- Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jiongming Lu
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Notarnicola A, Preger C, Lundström SL, Renard N, Wigren E, Van Gompel E, Galindo-Feria AS, Persson H, Fathi M, Grunewald J, Jakobsson PJ, Gräslund S, Lundberg IE, Fernandes-Cerqueira C. Longitudinal assessment of reactivity and affinity profile of anti-Jo1 autoantibodies to distinct HisRS domains and a splice variant in a cohort of patients with myositis and anti-synthetase syndrome. Arthritis Res Ther 2022; 24:62. [PMID: 35236390 PMCID: PMC8889758 DOI: 10.1186/s13075-022-02745-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To address the reactivity and affinity against histidyl-transfer RNA synthetase (HisRS) autoantigen of anti-Jo1 autoantibodies from serum and bronchoalveolar lavage fluid (BALF) in patients with idiopathic inflammatory myopathies/anti-synthetase syndrome (IIM/ASSD). To investigate the associations between the reactivity profile and clinical data over time. METHODS Samples and clinical data were obtained from (i) 25 anti-Jo1+ patients (19 sera with 16 longitudinal samples and 6 BALF/matching sera at diagnosis), (ii) 29 anti-Jo1- patients (25 sera and 4 BALF/matching sera at diagnosis), and (iii) 27 age/gender-matched healthy controls (24 sera and 3 BALF/matching sera). Reactivity towards HisRS full-length (HisRS-FL), three HisRS domains (WHEP, antigen binding domain (ABD), and catalytic domain (CD)), and the HisRS splice variant (SV) was tested. Anti-Jo1 IgG reactivity was evaluated by ELISA and western blot using IgG purified from serum by affinity chromatography. In paired serum-BALF, anti-Jo1 IgG and IgA reactivity was analyzed by ELISA. Autoantibody affinity was measured by surface plasmon resonance using IgG purified from sera. Correlations between autoantibody reactivity and clinical data were evaluated at diagnosis and longitudinally. RESULTS Anti-Jo1 IgG from serum and BALF bound HisRS-FL, WHEP, and SV with high reactivity at the time of diagnosis and recognized both conformation-dependent and conformation-independent HisRS epitopes. Anti-HisRS-FL IgG displayed high affinity early in the disease. At the time of IIM/ASSD diagnosis, the highest autoantibody levels against HisRS-FL were found in patients ever developing interstitial lung disease (ILD) and arthritis, but with less skin involvement. Moreover, the reactivity of anti-WHEP IgG in BALF correlated with poor pulmonary function. Levels of autoantibodies against HisRS-FL, HisRS domains, and HisRS splice variant generally decreased over time. With some exceptions, longitudinal anti-HisRS-FL antibody levels changed in line with ILD activity. CONCLUSION High levels and high-affinity anti-Jo1 autoantibodies towards HisRS-FL were found early in disease in sera and BALF. In combination with the correlation of anti-HisRS-FL antibody levels with ILD and ILD activity in longitudinal samples as well as of anti-WHEP IgG in BALF with poor pulmonary function, this supports the previously raised hypothesis that the lung might have a role in the immune reaction in anti-Jo1-positive patients.
Collapse
Affiliation(s)
- Antonella Notarnicola
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Charlotta Preger
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Structural Genomics Consortium, Toronto, Canada
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, SE-171 77, Stockholm, Sweden
| | - Nuria Renard
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edvard Wigren
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Structural Genomics Consortium, Toronto, Canada
| | - Eveline Van Gompel
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KULeuven, Leuven, Belgium
| | - Angeles S Galindo-Feria
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Maryam Fathi
- Department of Respiratory Medicine and Allergy, J7:30, Bioclinicum, Karolinska University Hospital, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Johan Grunewald
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, J7:30, Bioclinicum, Karolinska University Hospital, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Structural Genomics Consortium, Toronto, Canada
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cátia Fernandes-Cerqueira
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-171 64, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- 4Dcell, 14 rue de la Beaune, 93100, Montreuil, France
| |
Collapse
|
15
|
Shim JA, Jo Y, Hwang H, Lee SE, Ha D, Lee JH, Kim J, Song P, Lee D, Hong C. Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency. Cell Mol Life Sci 2022; 79:87. [PMID: 35067747 PMCID: PMC11071942 DOI: 10.1007/s00018-021-04122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are emerging as important regulators in various immune diseases; however, their roles in immune cells remain unclear. In this study, using alanyl-tRNA synthetase (AARS) mutant (sti) mice with neurodegenerative disorder, we investigated the effect of translational fidelity in immune cells. Dysfunctional AARS caused disorders in immune cell responses and cellularity. The impairment was caused by dampened TCR signaling than cytokine signaling. Therefore, sti mutant inhibits TCR signaling, impeding T cell survival and responses. B cell numbers were decreased in sti mice. Despite low B cell cellularity, serum IgM, IgA, and IgE levels were higher in sti mice than in wild-type mice. Misacylation of ARS and the consequent translational infidelity induce disturbances in signaling pathways critical for immune cell survival and responses. Our findings provide a novel mechanism by which translational fidelity might play a critical role in cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyunju Hwang
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - So Eun Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dahyeon Ha
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jun Hwa Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
16
|
NK Cell Patterns in Idiopathic Inflammatory Myopathies with Pulmonary Affection. Cells 2021; 10:cells10102551. [PMID: 34685530 PMCID: PMC8534165 DOI: 10.3390/cells10102551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary affection (PA) is associated with a substantial increase in morbidity and mortality in patients with idiopathic inflammatory myopathies (IIM). However, the underlying immune mechanisms of PA remain enigmatic and prompt deeper immunological analyses. Importantly, the Janus-faced role of natural killer (NK) cells, capable of pro-inflammatory as well as regulatory effects, might be of interest for the pathophysiologic understanding of PA in IIM. METHODS To extend our understanding of immunological alterations in IIM patients with PA, we compared the signatures of NK cells in peripheral blood using multi-color flow cytometry in IIM patients with (n = 12, of which anti-synthetase syndrome = 8 and dermatomyositis = 4) or without PA (n = 12). RESULTS We did not observe any significant differences for B cells, CD4, and CD8 T cells, while total NK cell numbers in IIM patients with PA were reduced compared to non-PA patients. NK cell alterations were driven by a particular decrease of CD56dim NK cells, while CD56bright NK cells remained unchanged. Comparisons of the cell surface expression of a large panel of NK receptors revealed an increased mean fluorescence intensity of NKG2D+ on NK cells from patients with PA compared with non-PA patients, especially on the CD56dim subset. NKG2D+ and NKp46+ cell surface levels were associated with reduced vital capacity, serving as a surrogate marker for clinical severity of PA. CONCLUSION Our data illustrate that PA in IIM is associated with alterations of the NK cell repertoire, suggesting a relevant contribution of NK cells in certain IIMs, which might pave the way for NK cell-targeted therapeutic approaches.
Collapse
|
17
|
Burman L, Chong YE, Duncan S, Klaus A, Rauch K, Hamel K, Hervé K, Pfaffen S, Collins DW, Heyries K, Nangle L, Hansen C, King DJ. Isolation of monoclonal antibodies from anti-synthetase syndrome patients and affinity maturation by recombination of independent somatic variants. MAbs 2021; 12:1836718. [PMID: 33131414 PMCID: PMC7646482 DOI: 10.1080/19420862.2020.1836718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The autoimmune disease known as Jo-1 positive anti-synthetase syndrome (ASS) is characterized by circulating antibody titers to histidyl-tRNA synthetase (HARS), which may play a role in modulating the non-canonical functions of HARS. Monoclonal antibodies to HARS were isolated by single-cell screening and sequencing from three Jo-1 positive ASS patients and shown to be of high affinity, covering diverse epitope space. The immune response was further characterized by repertoire sequencing from the most productive of the donor samples. In line with previous studies of autoimmune repertoires, these antibodies tended to have long complementarity-determining region H3 sequences with more positive-charged residues than average. Clones of interest were clustered into groups with related sequences, allowing us to observe different somatic mutations in related clones. We postulated that these had found alternate structural solutions for high affinity binding, but that mutations might be transferable between clones to further enhance binding affinity. Transfer of somatic mutations between antibodies within the same clonal group was able to enhance binding affinity in a number of cases, including beneficial transfer of a mutation from a lower affinity clone into one of higher affinity. Affinity enhancement was seen with mutation transfer both between related single-cell clones, and directly from related repertoire sequences. To our knowledge, this is the first demonstration of somatic hypermutation transfer from repertoire sequences to further mature in vivo derived antibodies, and represents an additional tool to aid in affinity maturation for the development of antibodies.
Collapse
Affiliation(s)
- Luke Burman
- Discovery Biology, aTyr Pharma , San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Carl Hansen
- AbCellera Biologics Inc ., Vancouver, BC, USA
| | - David J King
- Discovery Biology, aTyr Pharma , San Diego, CA, USA
| |
Collapse
|
18
|
Estève C, Roman C, DeLeusse C, Baravalle M, Bertaux K, Blanc F, Bourgeois P, Bresson V, Cano A, Coste ME, Delteil C, Lacoste C, Loosveld M, De Paula AM, Monnier AS, Secq V, Levy N, Badens C, Fabre A. Novel partial loss-of-function variants in the tyrosyl-tRNA synthetase 1 (YARS1) gene involved in multisystem disease. Eur J Med Genet 2021; 64:104294. [PMID: 34352414 DOI: 10.1016/j.ejmg.2021.104294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are emerging as a cause of numerous rare inherited diseases. Recently, biallelic variants in tyrosyl-tRNA synthetase 1 (YARS1) have been described in ten patients of three families with multi-systemic disease (failure to thrive, developmental delay, liver dysfunction, and lung cysts). Here, we report an additional subject with overlapping clinical findings, heterozygous for two novel variants in tyrosyl-tRNA synthetase 1 (NM_003680.3(YARS1):c.176T>C; p.(Ile59Thr) and NM_003680.3(YARS1):c.237C>G; p.(Tyr79*) identified by whole exome sequencing. The p.Ile59Thr variant is located in the highly conserved aminoacylation domain of the protein. Compared to subjects previously described, this patient presents a much more severe condition. Our findings support implication of two novel YARS1 variants in these disorders. Furthermore, we provide evidence for a reduced protein abundance in cells of the patient, in favor of a partial loss-of-function mechanism.
Collapse
Affiliation(s)
| | - Céline Roman
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Cécile DeLeusse
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Melissa Baravalle
- Service de Pneumologie Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Karine Bertaux
- CRB TAC (CRB AP-HM TAC), [BIORESOURCES], Marseille, France
| | - Frédéric Blanc
- Service D'Anesthésie Réanimation Pédiatrique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Patrice Bourgeois
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Violaine Bresson
- Service D'Urgences Pédiatriques, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Aline Cano
- Service de Pédiatrie Spécialisée & Médecine Infantile, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie-Edith Coste
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Clémence Delteil
- Service de Médecine Légale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Caroline Lacoste
- Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Marie Loosveld
- Laboratoire D'Hématologie Biologique, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - André Maues De Paula
- Laboratoire D'Anatomie Pathologique, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Anne-Sophie Monnier
- Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France
| | - Véronique Secq
- U1068-CRCM, Aix Marseille Univ, APHM, Hôpital Nord, Service D'anatomo-pathologie, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Génétique Médicale, Assistance Publique des Hôpitaux de Marseille, Timone Enfant, Marseille, France
| | - Alexandre Fabre
- Aix Marseille Univ, INSERM, MMG, Marseille, France; Service de Pédiatrie Multidisciplinaire, Hôpital de La Timone Enfants, APHM, Marseille, France.
| |
Collapse
|
19
|
Adams RA, Fernandes-Cerqueira C, Notarnicola A, Mertsching E, Xu Z, Lo WS, Ogilvie K, Chiang KP, Ampudia J, Rosengren S, Cubitt A, King DJ, Mendlein JD, Yang XL, Nangle LA, Lundberg IE, Jakobsson PJ, Schimmel P. Serum-circulating His-tRNA synthetase inhibits organ-targeted immune responses. Cell Mol Immunol 2021; 18:1463-1475. [PMID: 31797905 PMCID: PMC8166958 DOI: 10.1038/s41423-019-0331-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
His-tRNA synthetase (HARS) is targeted by autoantibodies in chronic and acute inflammatory anti-Jo-1-positive antisynthetase syndrome. The extensive activation and migration of immune cells into lung and muscle are associated with interstitial lung disease, myositis, and morbidity. It is unknown whether the sequestration of HARS is an epiphenomenon or plays a causal role in the disease. Here, we show that HARS circulates in healthy individuals, but it is largely undetectable in the serum of anti-Jo-1-positive antisynthetase syndrome patients. In cultured primary human skeletal muscle myoblasts (HSkMC), HARS is released in increasing amounts during their differentiation into myotubes. We further show that HARS regulates immune cell engagement and inhibits CD4+ and CD8+ T-cell activation. In mouse and rodent models of acute inflammatory diseases, HARS administration downregulates immune activation. In contrast, neutralization of extracellular HARS by high-titer antibody responses during tissue injury increases susceptibility to immune attack, similar to what is seen in humans with anti-Jo-1-positive disease. Collectively, these data suggest that extracellular HARS is homeostatic in normal subjects, and its sequestration contributes to the morbidity of the anti-Jo-1-positive antisynthetase syndrome.
Collapse
Affiliation(s)
- Ryan A Adams
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Cátia Fernandes-Cerqueira
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Antonella Notarnicola
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | | | - Zhiwen Xu
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
- IAS HKUST- Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, and Pangu Biopharma, Hong Kong, China
| | - Wing-Sze Lo
- IAS HKUST- Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, and Pangu Biopharma, Hong Kong, China
| | - Kathleen Ogilvie
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Kyle P Chiang
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Jeanette Ampudia
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Sanna Rosengren
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Andrea Cubitt
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - David J King
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - John D Mendlein
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Xiang-Lei Yang
- The Scripps Laboratories for tRNA Synthetase Research, 10650 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Leslie A Nangle
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA, 92121, USA
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Paul Schimmel
- The Scripps Laboratories for tRNA Synthetase Research, 10650 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- The Scripps Laboratories for tRNA Synthetase Research, Scripps Florida, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
20
|
Ahn YH, Oh SC, Zhou S, Kim TD. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22094523. [PMID: 33926067 PMCID: PMC8123658 DOI: 10.3390/ijms22094523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.
Collapse
Affiliation(s)
- Young Ha Ahn
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Correspondence: (S.Z.); (T.-D.K.)
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.Z.); (T.-D.K.)
| |
Collapse
|
21
|
Ho MT, Lu J, Brunßen D, Suter B. A translation-independent function of PheRS activates growth and proliferation in Drosophila. Dis Model Mech 2021; 14:dmm.048132. [PMID: 33547043 PMCID: PMC7988764 DOI: 10.1242/dmm.048132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) not only load the appropriate amino acid onto their cognate tRNAs, but many of them also perform additional functions that are not necessarily related to their canonical activities. Phenylalanyl tRNA synthetase (PheRS/FARS) levels are elevated in multiple cancers compared to their normal cell counterparts. Our results show that downregulation of PheRS, or only its α-PheRS subunit, reduces organ size, whereas elevated expression of the α-PheRS subunit stimulates cell growth and proliferation. In the wing disc system, this can lead to a 67% increase in cells that stain for a mitotic marker. Clonal analysis of twin spots in the follicle cells of the ovary revealed that elevated expression of the α-PheRS subunit causes cells to grow and proliferate ∼25% faster than their normal twin cells. This faster growth and proliferation did not affect the size distribution of the proliferating cells. Importantly, this stimulation proliferation turned out to be independent of the β-PheRS subunit and the aminoacylation activity, and it did not visibly stimulate translation. This article has an associated First Person interview with the joint first authors of the paper. Summary: A moonlighting activity of the α-subunit of the Phenylalanyl tRNA synthetase in Drosophila promotes growth and proliferation through a novel mechanism that neither involves aminoacylation nor translation.
Collapse
Affiliation(s)
- Manh Tin Ho
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Jiongming Lu
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Dominique Brunßen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| |
Collapse
|
22
|
Opinc AH, Makowska JS. Antisynthetase syndrome - much more than just a myopathy. Semin Arthritis Rheum 2020; 51:72-83. [PMID: 33360231 DOI: 10.1016/j.semarthrit.2020.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The aim of the study was to summarize current knowledge on antisynthetase syndrome (ASS), including its epidemiology, pathogenesis, proposed so far diagnostic criteria, heterogeneity of clinical manifestations, prognostic factors and therapeutic possibilities. PubMed database was screened for "antisynthetase syndrome" OR "antisynthetase antibodies" between February and April 2020. Aminoacyl-tRNA synthetases participate in the immune system activation as antigens, but also serve chemoattractive and cytokine-resembling roles, initiating innate and adaptive pathways. Exposure to various inhaled antigens may induce the autoimmune cascade leading to ASS. NK cells with its impaired INF-y production as well as formation of NETs by neutrophils contribute to pathogenesis. The prevalence of symptoms vary significantly depending on the study with muscular, articular and pulmonary involvement being the most frequently observed. Although classified as subtype of idiopathic inflammatory myopathies, myositis may not necessarily be the prominent manifestation. Since clinical presentation is heterogeneous and symptoms can emerge gradually, ASS could be considered as a heterogeneous spectrum rather than a homogenous disease entity. The currently available classification criteria do not fully correspond with the clinical patterns of the disease. Therapy is based on glucocorticosteroids and other immunosuppressive agents. Randomized controlled trials, dedicated for patients with ASS, are needed to form treatment algorithms.
Collapse
Affiliation(s)
| | - Joanna Samanta Makowska
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland.
| |
Collapse
|
23
|
Preger C, Wigren E, Ossipova E, Marks C, Lengqvist J, Hofström C, Andersson O, Jakobsson PJ, Gräslund S, Persson H. Generation and validation of recombinant antibodies to study human aminoacyl-tRNA synthetases. J Biol Chem 2020; 295:13981-13993. [PMID: 32817337 DOI: 10.1074/jbc.ra120.012893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) have long been viewed as mere housekeeping proteins and have therefore often been overlooked in drug discovery. However, recent findings have revealed that many aaRSs have noncanonical functions, and several of the aaRSs have been linked to autoimmune diseases, cancer, and neurological disorders. Deciphering these roles has been challenging because of a lack of tools to enable their study. To help solve this problem, we have generated recombinant high-affinity antibodies for a collection of thirteen cytoplasmic and one mitochondrial aaRSs. Selected domains of these proteins were produced recombinantly in Escherichia coli and used as antigens in phage display selections using a synthetic human single-chain fragment variable library. All targets yielded large sets of antibody candidates that were validated through a panel of binding assays against the purified antigen. Furthermore, the top-performing binders were tested in immunoprecipitation followed by MS for their ability to capture the endogenous protein from mammalian cell lysates. For antibodies targeting individual members of the multi-tRNA synthetase complex, we were able to detect all members of the complex, co-immunoprecipitating with the target, in several cell types. The functionality of a subset of binders for each target was also confirmed using immunofluorescence. The sequences of these proteins have been deposited in publicly available databases and repositories. We anticipate that this open source resource, in the form of high-quality recombinant proteins and antibodies, will accelerate and empower future research of the role of aaRSs in health and disease.
Collapse
Affiliation(s)
- Charlotta Preger
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Ossipova
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn Marks
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Camilla Hofström
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Oskar Andersson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden .,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
24
|
Suh JH, Park MC, Goughnour PC, Min BS, Kim SB, Lee WY, Cho YB, Cheon JH, Lee KY, Nam DH, Kim S. Plasma Lysyl-tRNA Synthetase 1 (KARS1) as a Novel Diagnostic and Monitoring Biomarker for Colorectal Cancer. J Clin Med 2020; 9:533. [PMID: 32075312 PMCID: PMC7073917 DOI: 10.3390/jcm9020533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of world cancer deaths. To improve the survival rate of CRC, diagnosis and post-operative monitoring is necessary. Currently, biomarkers are used for CRC diagnosis and prognosis. However, these biomarkers have limitations of specificity and sensitivity. Levels of plasma lysyl-tRNA synthetase (KARS1), which was reported to be secreted from colon cancer cells by stimuli, along with other secreted aminoacyl-tRNA synthetases (ARSs), were analyzed in CRC and compared with the currently used biomarkers. The KARS1 levels of CRC patients (n = 164) plasma were shown to be higher than those of healthy volunteers (n = 32). The diagnostic values of plasma KARS1 were also evaluated by receiving operating characteristic (ROC) curve. Compared with other biomarkers and ARSs, KARS1 showed the best diagnostic value for CRC. The cancer specificity and burden correlation of plasma KARS1 level were validated using azoxymethane (AOM)/dextran sodium sulfate (DSS) model, and paired pre- and post-surgery CRC patient plasma. In the AOM/DSS model, the plasma level of KARS1 showed high correlation with number of polyps, but not for inflammation. Using paired pre- and post-surgery CRC plasma samples (n = 60), the plasma level of KARS1 was significantly decreased in post-surgery samples. Based on these evidence, KARS1, a surrogate biomarker reflecting CRC burden, can be used as a novel diagnostic and post-operative monitoring biomarker for CRC.
Collapse
Affiliation(s)
- Ji Hun Suh
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.H.S.); (M.C.P.); (P.C.G.); (S.B.K.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, Seoul National University, Seoul 08826, Korea
| | - Min Chul Park
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.H.S.); (M.C.P.); (P.C.G.); (S.B.K.)
| | - Peter C. Goughnour
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.H.S.); (M.C.P.); (P.C.G.); (S.B.K.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, Seoul National University, Seoul 08826, Korea
| | - Byung Soh Min
- Seoul Republic of Korea Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.S.M.); (K.Y.L.)
| | - Sang Bum Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.H.S.); (M.C.P.); (P.C.G.); (S.B.K.)
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (W.Y.L.); (Y.B.C.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (W.Y.L.); (Y.B.C.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kang Young Lee
- Seoul Republic of Korea Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.S.M.); (K.Y.L.)
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.H.S.); (M.C.P.); (P.C.G.); (S.B.K.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Technology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
25
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
26
|
Human diseases linked to cytoplasmic aminoacyl-tRNA synthetases. BIOLOGY OF AMINOACYL-TRNA SYNTHETASES 2020; 48:277-319. [DOI: 10.1016/bs.enz.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Meek B, Rijkers GT. The Haywain: Anti-synthetase Antibodies in Patients with Inflammatory Diseases: Targeting Monocytes or Neutrophils? Curr Med Chem 2019; 27:2863-2871. [PMID: 31778104 DOI: 10.2174/0929867326666191128141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/04/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
Autoantibiodies against aminoacyl-tRNA synthetases are found in patients suffering from a wide range of autoimmune and inflammatory disorders. Recent data indicate that these antibodies are directed against splice-variants of synthetase genes, the so-called catalytic nulls. Latter molecules have cytokine-like functions and are involved in the regulation of the activation of lymphocytes, monocytes and granulocytes. The potential role of anti-synthetase antibodies as a diagnostic tool and a target for therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Bob Meek
- Laboratory for Medical Microbiology and Immunology, St Antonius Hospital Nieuwegein, Middelburg, Netherlands
| | - Ger T Rijkers
- Laboratory for Medical Microbiology and Immunology, St Antonius Hospital Nieuwegein, Middelburg, Netherlands.,Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital, Tilburg, Middelburg, Netherlands.,Department of Science, University College Roosevelt, Middelburg, Netherlands
| |
Collapse
|
28
|
Gallay L, Gayed C, Hervier B. Antisynthetase syndrome pathogenesis: knowledge and uncertainties. Curr Opin Rheumatol 2019; 30:664-673. [PMID: 30239350 DOI: 10.1097/bor.0000000000000555] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Antisynthetase syndrome (ASyS) is an acquired myopathy characterized by the presence of myositis-specific autoantibodies directed against tRNA-synthetases. ASyS is potentially life threatening due to lung involvement and treatment remains a challenge to date. With symptoms not limited to muscles but also involving lung, skin and joints, ASyS appears specific and has a particular pathogenesis, different from the other inflammatory myopathies. This review is intended to discuss the current understanding of ASyS pathogenesis, pointing its current knowledge and also the crucial prospects that may lead to critical improvement of ASyS care. RECENT FINDINGS Regarding ASyS pathogenesis, initiation of the disease seems to arise in a multifactorial context, with first lesions occurring within the lungs. This may lead to aberrant self-antigen exposure and tolerance breakdown. The consequences are abnormal activation of both innate and adaptive immunity, resulting in the patients with favourable genetic background to autoimmune-mediated organ lesions. Immune and nonimmune roles of the antigen, as well as antigen presentation leading to specific T-cell and B-cell activation and to the production of specific autoantibodies belong to the disease process. SUMMARY This work aims to detail ASyS pathogenesis understanding, from initiation to the disease propagation and target tissue lesions, in order to considering future treatment directions.
Collapse
Affiliation(s)
- Laure Gallay
- Département de Médecine Interne et Immunologie Clinique, Centre Hospitalo-Universitaire Edouard Herriot, Hospices Civils de Lyon.,INMG, CNRS UMR 5310 - INSERM U1217, University Claude Bernard, Lyon 1
| | - Catherine Gayed
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses
| | - Baptiste Hervier
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses.,Département de Médecine Interne et Immunologie Clinique, Centre National de Référence des Maladies Musculaires, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
29
|
Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol 2019; 19:791-807. [PMID: 30038383 DOI: 10.1038/s41580-018-0034-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Abstract
Exosomes have generated significant interest in the last few decades owing to their important roles in a diverse range of biological pathways. They are nano-sized lipid bilayer membrane vesicles of endosomal origin, and are produced by a vast number of cell types. They are released into the extracellular environment and are found in most biological fluids. Exosomes can contain proteins, lipids and nucleic acids. The cargo of exosomes allows them to play roles in cell communication, antigen presentation, as biomarkers and in immune regulation. Substantial efforts have been made to understand their biology and potential clinical use in various diseases, including autoimmune connective tissue diseases (ACTD). In this review, we highlight the known functions of exosomes and detail recent advances made in the elucidation of the roles of exosomes in ACTDs with an emphasis on their potential use as a biomarker for disease diagnosis and as a therapeutic target. Key messages Exosome with the function of cell communication, antigen presentation, biomarkers, immune responses and immune regulation have become a hot area and have played an important role in several areas of science and technology especially in medicine. Exosomes play important roles in numerous biological processes as well as in the pathogenesis of ACTDs. Exosome comes into being the non-invasive procedure as potential biomarkers and excellent treatment means in ACTDs.
Collapse
Affiliation(s)
- Tian Zhu
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Yiman Wang
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Hongzhong Jin
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| | - Li Li
- a Department of Dermatology , Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
31
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
32
|
Mah JK, Chen YW. A Pediatric Review of Facioscapulohumeral Muscular Dystrophy. JOURNAL OF PEDIATRIC NEUROLOGY 2018; 16:222-231. [PMID: 30923442 PMCID: PMC6435288 DOI: 10.1055/s-0037-1604197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Facioscapulohumeral dystrophy is one of the most common forms of muscular dystrophies worldwide. It is a complex and heterogeneous disease secondary to insufficient epigenetic repression of D4Z4 repeats and aberrant expression of DUX4 in skeletal muscles. Type 1 facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of D4Z4 repeats on 4q35, whereas type 2 FSHD is associated with mutations of the SMCHD1 or DNMT3B gene in the presence of a disease-permissive 4qA haplotype. Classical FSHD is a slowly progressive disorder with gradual-onset of muscle atrophy and a descending pattern of muscle weakness. In contrast, early-onset FSHD is associated with a large deletion of D4Z4 repeats and a more severe disease phenotype, including early loss of independent ambulation as well as extramuscular manifestations, such as retinal vasculopathy, hearing loss, and central nervous system (CNS) involvement. However, the correlation between D4Z4 repeats and disease severity remains imprecise. The current standard of care guidelines offers comprehensive assessment and symptomatic management of secondary complications. Several clinical trials are currently underway for FSHD. New and emerging treatments focus on correcting the transcriptional misregulation of D4Z4 and reversing the cytotoxic effects of DUX4. Other potential therapeutic targets include reduction of inflammation, improving muscle mass, and activating compensatory molecular pathways. The utility of disease-modifying treatments will depend on selection of sensitive clinical endpoints as well as validation of muscle magnetic resonance imaging (MRI) and other biomarkers to detect meaningful changes in disease progression. Correction of the epigenetic defects using new gene editing as well as other DUX4 silencing technologies offers potential treatment options for many individuals with FSHD.
Collapse
Affiliation(s)
- Jean K. Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Health System, Washington, District of Columbia, United States
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
33
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
34
|
Tartar DM, Chung L, Fiorentino DF. Clinical significance of autoantibodies in dermatomyositis and systemic sclerosis. Clin Dermatol 2018; 36:508-524. [DOI: 10.1016/j.clindermatol.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Jobanputra P, Malick F, Derrett-Smith E, Plant T, Richter A. What does it mean if a patient is positive for anti-Jo-1 in routine hospital practice? A retrospective nested case-control study. F1000Res 2018; 7:698. [PMID: 30079243 PMCID: PMC6058461 DOI: 10.12688/f1000research.14834.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2018] [Indexed: 11/20/2022] Open
Abstract
Background: It is widely believed that patients bearing auto-antibodies to histidyl tRNA synthetase (anti-Jo-1) very likely have a connective tissue disease including myositis and interstitial lung disease. The value of positive tests in low disease prevalence settings such as those tested in routine care is unknown. We sought to determine the value of anti-Jo-1 auto-antibodies in routine practice. Methods: Our study was a nested case control study within a retrospective cohort of all patients tested for anti-ENA our hospital, from any hospital department, between January 2013 and December 2014. Data was extracted from electronic records of anti-Jo-1 positive patients and randomly selected ENA negative patients (ratio of 1:2), allowing for a minimum follow up of at least 12 months after first testing. Results: 4009 samples (3581 patients) were tested. Anti-ENA was positive in 616 (17.2%) patients, 40 (1.1%) were anti-Jo-1 positive. Repeat ENA testing was done for 350/3581 (9.8%) patients (428 of 4009 (10.7%) samples) and in 7/40 (17.5%) of anti-Jo-1 positive patients. The median interval between the first and second request was 124 days (inter-quartile range 233 days). The frequencies of interstitial lung disease (ILD), myositis and Raynaud's were comparable for anti-Jo-1 positive patients (n=40) and 80 randomly selected ENA negative controls. Positive tests led to additional diagnostic testing in the absence of clinical disease. Sensitivity of Jo-1 for ILD was 50% (CI 19-81%), specificity 68% (CI 59-77%), positive predictive value 12.5% (CI 4 to 27%) and negative predictive value 93.8% (CI 86-98%). Of 10 (25%) patients with high anti-Jo1 levels, 3 had ILD, one myositis and two a malignancy (disseminated melanoma and CML). Conclusion: Anti-Jo-1 is uncommon in a heterogenous hospital population and is only weakly predictive for ILD. Repeated test requests were common and potentially unnecessary indicating that controls over repeat requests could yield significant cost savings.
Collapse
Affiliation(s)
- Paresh Jobanputra
- Department of Rheumatology, Queen Elizabeth Hospital, Birmingham, Birmingham, B15 2TH, UK
| | - Feryal Malick
- Department of Rheumatology, Queen Elizabeth Hospital, Birmingham, Birmingham, B15 2TH, UK
- Department of Rheumatology, Epsom and St Helier University Hospitals NHS Trust, Carshalton, Surrey, SM15 1AA, UK
| | - Emma Derrett-Smith
- Department of Rheumatology, Queen Elizabeth Hospital, Birmingham, Birmingham, B15 2TH, UK
| | - Tim Plant
- Department of Clinical Immunology, School of Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alex Richter
- Department of Clinical Immunology, School of Medicine, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
|
37
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
38
|
Meyer-Schuman R, Antonellis A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Hum Mol Genet 2017; 26:R114-R127. [PMID: 28633377 PMCID: PMC5886470 DOI: 10.1093/hmg/ddx231] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are responsible for charging amino acids to cognate tRNA molecules, which is the essential first step of protein translation. Interestingly, mutations in genes encoding ARS enzymes have been implicated in a broad spectrum of human inherited diseases. Bi-allelic mutations in ARSs typically cause severe, early-onset, recessive diseases that affect a wide range of tissues. The vast majority of these mutations show loss-of-function effects and impair protein translation. However, it is not clear how a subset cause tissue-specific phenotypes. In contrast, dominant ARS-mediated diseases specifically affect the peripheral nervous system-most commonly causing axonal peripheral neuropathy-and usually manifest later in life. These neuropathies are linked to heterozygosity for missense mutations in five ARS genes, which points to a shared mechanism of disease. However, it is not clear if a loss-of-function mechanism or a toxic gain-of-function mechanism is responsible for ARS-mediated neuropathy, or if a combination of these mechanisms operate on a mutation-specific basis. Here, we review our current understanding of recessive and dominant ARS-mediated disease. We also propose future directions for defining the molecular mechanisms of ARS mutations toward designing therapies for affected patient populations.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Lee YH, Chang CP, Cheng YJ, Kuo YY, Lin YS, Wang CC. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci 2017; 74:2663-2677. [PMID: 28321488 PMCID: PMC11107585 DOI: 10.1007/s00018-017-2491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
The discriminator base N73 is a key identity element of tRNAHis. In eukaryotes, N73 is an "A" in cytoplasmic tRNAHis and a "C" in mitochondrial tRNAHis. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNAHis. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNAHis, have acquired highly specialized tRNA recognition properties through evolution.
Collapse
Affiliation(s)
- Yi-Hsueh Lee
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yu-Ju Cheng
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yi-Yi Kuo
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan.
| |
Collapse
|
40
|
Young HJ, Lee JW, Kim S. Function of membranous lysyl-tRNA synthetase and its implication for tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1707-1713. [PMID: 27663887 DOI: 10.1016/j.bbapap.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that conjugate specific amino acids to their cognate tRNAs for protein synthesis. Besides their catalytic activity, recent studies have uncovered many additional functions of these enzymes through their interactions with diverse cellular factors. Among human ARSs, cytosolic lysyl-tRNA synthetase (KRS) is often highly expressed in cancer cells and tissues, and facilitates cancer cell migration and invasion through the interaction with the 67kDa laminin receptor on the plasma membrane. Specific modulation of this interaction by small molecule inhibitors has revealed a new way to control metastasis. Here, we summarize the pro-metastatic functions of KRS and their patho-physiological implications.
Collapse
Affiliation(s)
- Ho Jeon Young
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Weon Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Tawil R, Mah JK, Baker S, Wagner KR, Ryan MM, Baker S, Corbett A, van Engelen B, McNamara S, Mah JK, Ryan MM, Rasko J, Raykar V, Sacconi S, Tapscott SJ, Tawil R, Wagner KR, Watts A. Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscul Disord 2016; 26:462-71. [DOI: 10.1016/j.nmd.2016.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
|
42
|
Abstract
Histidyl-tRNA synthetase (HRS = Jo-1) represents a key autoantibody target in the anti-synthetase syndrome that is marked by myositis as well as extra-muscular organ complications including interstitial lung disease (ILD). Over the last 25 years, a wealth of clinical, epidemiological, genetic, and experimental data have collectively supported a role for Jo-1 in mediating deleterious cell-mediated, adaptive immune responses contributing to the disease phenotype of the anti-synthetase syndrome. Complementing these studies, more recent work suggests that unique, non-enzymatic functional properties of Jo-1 also endow this antigen with the capacity to activate components of the innate immune system, particularly cell surface as well as endosomal Toll-like receptors and their downstream signaling pathways. Combining these facets of Jo-1-mediated immunity now supports a more integrated model of disease pathogenesis that should lead to improved therapeutic targeting in the anti-synthetase syndrome and related subsets of idiopathic inflammatory myopathy.
Collapse
Affiliation(s)
- Dana P Ascherman
- Division of Rheumatology, Department of Medicine, Miller School of Medicine, University of Miami, RMSB, 7152, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| |
Collapse
|
43
|
Interstitial lung disease associated with the idiopathic inflammatory myopathies and the antisynthetase syndrome: recent advances. Curr Opin Rheumatol 2015; 26:684-9. [PMID: 25203119 DOI: 10.1097/bor.0000000000000104] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To highlight recent advances in understanding the clinical spectrum, pathogenesis, and treatment of interstitial lung disease associated with inflammatory myositis and the antisynthetase syndrome. RECENT FINDINGS In recent years, serologic tests to identify the less common antisynthetase antibodies and the anti-MDA-5 antibody have become commercially available. As a result, several large, retrospective analyses have illustrated both the pulmonary and non-pulmonary features associated with the antisynthetase syndrome and myositis-related interstitial lung disease. Notably, there is now a better appreciation for the heterogeneity of these syndromes and the prognostic value in accurately identifying the associated autoantibodies. Human cytokine profiling and murine models of muscle inflammation suggest that tRNA synthetases themselves may act to trigger an initial innate immune response, thus offering new insights into the pathophysiology of these diseases. Finally, although randomized clinical trials in patients with myositis-associated interstitial lung disease have not occurred, new observational studies suggest that cyclosporine, tacrolimus, and rituximab may be effective treatment options. SUMMARY Recent research has provided a better understanding of the phenotype and prognosis that define interstitial lung disease in the setting of myositis and the antisynthetase syndrome. Although several therapeutic agents demonstrate promise, randomized trials are needed in order to establish the best clinical approach in these patients. Furthermore, additional research into the pathophysiology of this disease will be necessary to develop newer, more targeted therapeutics.
Collapse
|
44
|
Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun 2015; 16:213-20. [PMID: 25633979 PMCID: PMC4409473 DOI: 10.1038/gene.2014.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Numerous reports have suggested that immunogenetic factors may influence HIV-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20, and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single nucleotide polymorphisms (SNPs) passed quality control procedures. When HIV-1-exposed seronegative subjects (n = 486) were compared with newly seroconverted individuals (n = 313) and seroprevalent subjects (n = 478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio = 0.64, P = 1.7 × 10−4, and q = 0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.
Collapse
|