1
|
Guo L, Wang S, Lian C, He L. Expression and molecular characterization of an intriguing hyaluronan synthase (HAS) from the symbiont " Candidatus Mycoplasma liparidae" in snailfish. PeerJ 2025; 13:e19253. [PMID: 40297469 PMCID: PMC12036578 DOI: 10.7717/peerj.19253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Hyaluronan synthases (HASs) are ubiquitous in living organisms, and the hyaluronic acid (HA) synthesized by them are important to their body and well used in medicine, cosmetics and other fields. HAS from deep-sea creatures has not yet been explored before. The study aims to analyse the characteristics and enzyme kinetics of a novel hyaluronan synthase derived from the symbiont "Candidatus Mycoplasma liparidae" found in deep-sea snailfish (snHAS). Methodology snHAS was over-expressed using His 6 as tag in the study. The sequence alignment was conducted by Cluster W and then the phylogenetic analyse of HASs was performed by Mega 6.0 to investigate the position of snHAS during evolution. K m and V max were detected to study the enzyme kinetics of snHAS wildtype and its mutant. The molecular weight of HA was evaluated by high performance gel permeation chromatography (HPGPC). The cardiolipin was added to investigate whether it had a promoting effect on the snHAS. Results The length of snHAS was 933 bp with an open reading frame (ORF) of 310 amino acids. Unlike other repoted HASs, snHAS had no transmembrane region and was not classified into the currently known Class I or Class II. snHAS could synthesize hyaluronan with lower molecular weights using the substrates of uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and uridine-diphosphate-glucuronic acid (UDP-GlcA) in vitro. The K m values of snHAS were 258 ± 45 µM and 39 ± 5 µM for UDP-GlcNAc and UDP-GlcA, respectively, much lower than those from mice (K m for UDP-GlcA: 55 ± 5 µM; K m for UDP-GlcNAc: 870 ± 60 µM). The k cat/K m values of snHAS were 163.5 s-1 mM-1 and 8.08 s-1 mM-1 for UDP-GlcA and UDP-GlcNAc, respectively. Furthermore, the activity of snHAS was independent of cardiolipin. Conclusions snHAS was a novel HAS based on the characteristics of the animo acid sequence, which could produce low molecular weight of HA with high efficiency. This provides a molecular basis for the biosynthesis of low molecular weight of HA.
Collapse
Affiliation(s)
- Lulu Guo
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shaolu Wang
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Chunang Lian
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Lisheng He
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
2
|
Hu L, Xiao S, Sun J, Wang F, Yin G, Xu W, Cheng J, Du G, Chen J, Kang Z. Regulating cellular metabolism and morphology to achieve high-yield synthesis of hyaluronan with controllable molecular weights. Nat Commun 2025; 16:2076. [PMID: 40021631 PMCID: PMC11871322 DOI: 10.1038/s41467-025-56950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
High-yield biosynthesis of hyaluronan (HA) with controllable molecular weights (MWs) remains challenging due to the poorly understood function of Class I HA synthase (HAS) and the metabolic imbalance between HA biosynthesis and cellular growth. Here, we systematically characterize HAS to identify crucial regions involved in HA polymerization, secretion, and MW control. We construct HAS mutants that achieve complete HA secretion and expand the MW range from 300 to 1400 kDa. By dynamically regulating UDP-glucose 6-dehydrogenase activity and applying an adaptive evolution approach, we recover cell normal growth with increased metabolic capacities. Final titers and productivities for high MW HA (500 kDa) and low MW HA (10 kDa) reach 45 g L-1 and 105 g L-1, 0.94 g L-1 h-1 and 1.46 g L-1 h-1, respectively. Our findings advance our understanding of HAS function and the interplay between cell metabolism and morphology, and provide a shape-guided engineering strategy to optimize microbial cell factories.
Collapse
Affiliation(s)
- Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Sen Xiao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jieyu Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Faying Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Wenjie Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jianhua Cheng
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, China.
| |
Collapse
|
3
|
Zhao R, Li J, Li Y, Pei X, Di J, Xie Z, Liu H, Gao W. Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus. Microb Cell Fact 2025; 24:24. [PMID: 39825423 PMCID: PMC11748608 DOI: 10.1186/s12934-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW. Currently, few effective approaches exist for the direct and precise regulation of HA MW through a one-step fermentation process, and S. zooepidemicus lacks metabolic regulatory elements with varying intensities. The ratio of HA's precursors, UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA), is critical for the extension and release of HA. An imbalance in the precursor proportions for HA synthesis leads to a significant decrease in HA MW, indicating that controlling the precursor ratio may serve as a potential method for regulating HA MW. RESULTS In this study, the type and concentration of carbon sources were manipulated to disrupt the balance of precursor supply. Based on the results, it was speculated that the transcription level of hasE, which may connect the two HA synthesis precursors, is positively correlated with HA MW. Consequently, an endogenous expression component library for S. zooepidemicus was constructed, comprising 32 constitutive and 4 inducible expression elements. The expression of hasE was subsequently regulated in strain SE0 (S12 ΔhasE) using two constitutive promoters of differing strengths. The recombinant strain SE1, in which hasE was controlled by the stronger promoter PR31, produced HA with a MW of 1.96 MDa. In contrast, SE2, utilizing the weaker promoter PR22, synthesized shorter HA with a MW of 1.63 MDa, thereby verifying the hypothesis. Finally, to precisely regulate HA MW according to specific demands, an efficient sucrose-induced expression system was screened and employed to control the transcription level of hasE, obtaining recombinant strain SE3. When induced with sucrose concentrations of 3, 5-10 g/L, the HA MW of SE3 reached 0.78 to 1.77 MDa, respectively. CONCLUSIONS Studies on regulating the balance of the HA precursor substances indicate that an oversupply of either UDP-GlcNAc or UDP-GlcUA can reduce HA MW. The hasE gene serves as a crucial regulator for maintaining this balance. Precise regulation of hasE transcription was achieved through an efficient inducible expression system, enabling the customized production of HA with specific MW. The HA MW of strain SE3 can be accurately manipulated by adjusting sucrose concentration, establishing a novel strategy for customized HA fermentation.
Collapse
Affiliation(s)
- Rui Zhao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jun Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yingtian Li
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xujuan Pei
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jingyi Di
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhoujie Xie
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
4
|
Wang J, Wu Z, Cao L, Long F. Differential Regulation of Hyaluronan Synthesis by Three Isoforms of Hyaluronan Synthases in Mammalian Cells. Biomolecules 2024; 14:1567. [PMID: 39766274 PMCID: PMC11673962 DOI: 10.3390/biom14121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Hyaluronan (HA) is one of the crucial components of the extracellular matrix in vertebrates and is synthesized by three hyaluronan synthases (HASs), namely HAS1, HAS2, and HAS3. The low expression level of HASs in normal keratinocytes and other various types of cells presents a recognized challenge, impeding biological and pathological research on their localization. In this study, the human proteins HAS1, HAS2, and HAS3 with fused maltose-binding protein (MBP) tags were successfully expressed at high levels and purified for the first time in HEK293F cells. The enzymatic properties of the three HAS proteins were further characterized and compared. A pulse-field gel electrophoresis analysis of the size distribution of the hyaluronan generated in vitro by the membrane proteins demonstrated that the three HAS isoforms generate HA polymer chains at different molecular masses. Kinetic studies demonstrated that the three HAS proteins differed in their catalytic efficiency and apparent Km values for the two substrates, UDP-GlcA and UDP-GlcNAc. Furthermore, the cellular hyaluronan secretion by the three isoenzymes was evaluated and quantified in the HEK 293T cells transfected with GFP-tagged HAS1-GFP, HAS2-GFP, and HAS3-GFP using an ELISA assay. These findings enhance our understanding of the membrane protein HASs in mammalian cells.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhikun Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Longtao Cao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (J.W.); (Z.W.); (L.C.)
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Ebrahimi T, Keramati M, Khodabakhsh F, Cohan RA. Enzyme variants in biosynthesis and biological assessment of different molecular weight hyaluronan. AMB Express 2024; 14:56. [PMID: 38730188 PMCID: PMC11087452 DOI: 10.1186/s13568-024-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, low- and high-molecular-weight hyaluronic acids (LMW-HA and HMW-HA) were synthesized in vitro by truncated Streptococcus equisimilis hyaluronan synthases (SeHAS). The enzyme kinetic parameters were determined for each enzyme variant. The MW, structure, dispersity, and biological activity of polymers were determined by electrophoresis, FTIR spectroscopy, carbazole, cell proliferation, and cell migration assay, respectively. The specific activities were calculated as 7.5, 6.8, 4.9, and 2.8 µgHA µgenzyme-1 min-1 for SeHAS, HAS123, HAS23, and HASIntra, respectively. The results revealed SeHAS produced a polydisperse HMW-HA (268 kDa), while HAS123 and HAS23 produced a polydisperse LMW-HA (< 30 kDa). Interestingly, HASIntra produced a low-disperse LMW-HA. Kinetics studies revealed the truncated variants displayed increased Km values for two substrates when compared to the wild-type enzyme. Biological assessments indicated all LMW-HAs showed a dose-dependent proliferation activity on endothelial cells (ECs), whereas HMW-HAs exhibited an inhibitory effect. Also, LMW-HAs had the highest cell migration effect at 10 µg/mL, while at 200 µg/mL, both LMW- and HMW-HAs postponed the healing recovery rate. The study elucidated that the transmembrane domains (TMDs) of SeHAS affect the enzyme kinetics, HA-titer, HA-size, and HA-dispersity. These findings open new insight into the rational engineering of SeHAS to produce size-defined HA.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Ahangari Cohan
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
DeAngelis PL, Zimmer J. Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases. Glycobiology 2023; 33:1117-1127. [PMID: 37769351 PMCID: PMC10939387 DOI: 10.1093/glycob/cwad075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Hyaluronan (HA), the essential [-3-GlcNAc-1-β-4-GlcA-1-β-]n matrix polysaccharide in vertebrates and molecular camouflage coating in select pathogens, is polymerized by "HA synthase" (HAS) enzymes. The first HAS identified three decades ago opened the window for new insights and biotechnological tools. This review discusses current understanding of HA biosynthesis, its biotechnological utility, and addresses some misconceptions in the literature. HASs are fascinating enzymes that polymerize two different UDP-activated sugars via different glycosidic linkages. Therefore, these catalysts were the first examples to break the "one enzyme/one sugar transferred" dogma. Three distinct types of these bifunctional glycosyltransferases (GTs) with disparate architectures and reaction modes are known. Based on biochemical and structural work, we present an updated classification system. Class I membrane-integrated HASs employ a processive chain elongation mechanism and secrete HA across the plasma membrane. This complex operation is accomplished by functionally integrating a cytosolic catalytic domain with a channel-forming transmembrane region. Class I enzymes, containing a single GT family-2 (GT-2) module that adds both monosaccharide units to the nascent chain, are further subdivided into two groups that construct the polymer with opposite molecular directionalities: Class I-R and I-NR elongate the HA polysaccharide at either the reducing or the non-reducing end, respectively. In contrast, Class II HASs are membrane-associated peripheral synthases with a non-processive, non-reducing end elongation mechanism using two independent GT-2 modules (one for each type of monosaccharide) and require a separate secretion system for HA export. We discuss recent mechanistic insights into HA biosynthesis that promise biotechnological benefits and exciting engineering approaches.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK 73104, United States
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, Howard Hughes Medical Institute, University of Virginia, 480 Ray C. Hunt Dr, Charlottesville, VA 22908, United States
| |
Collapse
|
7
|
Cohan RA, Keramati M, Afshari E, Parsian P, Ahani R, Ebrahimi T. Evaluation of transmembrane domain deletions on hyaluronic acid polymerization of hyaluronan synthase isolated from Streptococcus equisimilis group G. World J Microbiol Biotechnol 2023; 39:227. [PMID: 37326689 DOI: 10.1007/s11274-023-03650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
The membrane enzyme of hyaluronan synthase (HAS) is the key enzyme in hyaluronic acid (HA) biosynthesis by coupling UDP-sugars. Prior studies proposed the C-terminus region of HAS enzyme mediates the production rate and molecular weight of HA. The current study describes the isolation and characterizations of a transmembrane HAS enzyme isolated from Streptococcus equisimilis Group G (GGS-HAS) in vitro. The effect of transmembrane domains (TMDs) on HA productivity was determined and the shortest active variant was also identified by recombinant expression of full-length and five truncated forms of GGS-HAS in Escherichia coli. We found that the GGS-HAS enzyme is longer than that of S. equisimilis group C (GCS-HAS) which includes three more residues (LER) at the C-terminus region (positions 418-420) and also one-point mutation at position 120 (E120D). Amino acid sequence alignment demonstrated 98% and 71% identity of GGS-HAS with that of S. equisimilis Group C and S. pyogenes Group A, respectively. The in vitro productivity of the full-length enzyme was 35.57 µg/nmol, however, extended TMD deletions led to a reduction in the HA productivity. The HAS-123 variant showed the highest activity among the truncated forms, indicating the essential role of first, second, and third TMDs for the full activity. Despite a decline in activity, the intracellular variant can still mediate the binding and polymerization of HA without any need for TMDs. This significant finding suggests that the intracellular domain is the core for HA biosynthesis in the enzyme and other domains are probably involved in other attributes including the enzyme kinetics that affect the size distribution of the polymer. However, more investigations on the recombinant forms are still needed to confirm clearly the role of each transmembrane domain on these properties.
Collapse
Affiliation(s)
- Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | - Malihe Keramati
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran.
| | - Elnaz Afshari
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | - Parsa Parsian
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | - Roshanak Ahani
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | - Tahereh Ebrahimi
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| |
Collapse
|
8
|
Brauer VS, Pessoni AM, Freitas MS, Cavalcanti-Neto MP, Ries LNA, Almeida F. Chitin Biosynthesis in Aspergillus Species. J Fungi (Basel) 2023; 9:jof9010089. [PMID: 36675910 PMCID: PMC9865612 DOI: 10.3390/jof9010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.
Collapse
Affiliation(s)
- Veronica S. Brauer
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - André M. Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Mateus S. Freitas
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
| | - Marinaldo P. Cavalcanti-Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Rio de Janeiro 27965-045, Brazil
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
- Correspondence: (L.N.A.R.); (F.A.)
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 01000-000, Brazil
- Correspondence: (L.N.A.R.); (F.A.)
| |
Collapse
|
9
|
Amjad Zanjani FS, Afrasiabi S, Norouzian D, Ahmadian G, Hosseinzadeh SA, Fayazi Barjin A, Cohan RA, Keramati M. Hyaluronic acid production and characterization by novel Bacillus subtilis harboring truncated Hyaluronan Synthase. AMB Express 2022; 12:88. [PMID: 35821141 PMCID: PMC9445140 DOI: 10.1186/s13568-022-01429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Hyaluronic Acid (HA) is a natural biopolymer that has important physiological and industrial applications due to its viscoelastic and hydrophilic characteristics. The responsible enzyme for HA production is Hyaluronan synthase (HAS). Although in vitro structure–function of intact HAS enzyme has been partly identified, there is no data on in vivo function of truncated HAS forms. In the current study, novel recombinant Bacillus subtilis strains harboring full length (RBSFA) and truncated forms of SeHAS (RBSTr4 and RBSTr3) were developed and HA production was studied in terms of titer, production rate and molecular weight (Mw). The maximum HA titer for RBSFA, RBSTr4 and RBSTr3 was 602 ± 16.6, 503 ± 19.4 and 728 ± 22.9 mg/L, respectively. Also, the HA production rate was 20.02, 15.90 and 24.42 mg/L.h−1, respectively. The findings revealed that RBSTr3 produced 121% and 137% more HA rather than RBSFA and RBSTr4, respectively. More interestingly, the HA Mw was about 60 kDa for all strains which is much smaller than those obtained in prior studies. The strains containing truncated forms of SeHAS enzysme are able to produce HA. The HA from all recombinant strains was the same and low Mw. Deletion of C-terminal region of SeHAS was not effective on Mw.
Collapse
Affiliation(s)
| | - Shadi Afrasiabi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sara Ali Hosseinzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Fayazi Barjin
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
11
|
Bernard PE, Duarte A, Bogdanov M, Musser JM, Olsen RJ. Single Amino Acid Replacements in RocA Disrupt Protein-Protein Interactions To Alter the Molecular Pathogenesis of Group A Streptococcus. Infect Immun 2020; 88:e00386-20. [PMID: 32817331 PMCID: PMC7573446 DOI: 10.1128/iai.00386-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen and major cause of disease worldwide. The molecular pathogenesis of GAS, like many pathogens, is dependent on the coordinated expression of genes encoding different virulence factors. The control of virulence regulator/sensor (CovRS) two-component system is a major virulence regulator of GAS that has been extensively studied. More recent investigations have also involved regulator of Cov (RocA), a regulatory accessory protein to CovRS. RocA interacts, in some manner, with CovRS; however, the precise molecular mechanism is unknown. Here, we demonstrate that RocA is a membrane protein containing seven transmembrane helices with an extracytoplasmically located N terminus and cytoplasmically located C terminus. For the first time, we demonstrate that RocA directly interacts with itself (RocA) and CovS, but not CovR, in intact cells. Single amino acid replacements along the entire length of RocA disrupt RocA-RocA and RocA-CovS interactions to significantly alter the GAS virulence phenotype as defined by secreted virulence factor activity in vitro and tissue destruction and mortality in vivo In summary, we show that single amino acid replacements in a regulatory accessory protein can affect protein-protein interactions to significantly alter the virulence of a major human pathogen.
Collapse
Affiliation(s)
- Paul E Bernard
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
| | - Amey Duarte
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Disease Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Texas A&M Health Science Center College of Medicine, Bryan, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
12
|
Zakeri A, Khoshsorour S, Karami Fath M, Pourzardosht N, Fazeli F, Khalili S. Structural analyses and engineering of the pmHAS enzyme to improve its functional performance: An in silico study. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1821041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sepideh Khoshsorour
- Department of Biology, Faculty of Fundamental Sciences, Payame Noor University, Branch of Rey, Tehran, Iran
| | - Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Faezeh Fazeli
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
13
|
Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, Du G, Kang Z. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020; 11:3120. [PMID: 32561727 PMCID: PMC7305114 DOI: 10.1038/s41467-020-16962-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L−1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L−1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers. Bioproduction of hyaluronan needs increases in yield and greater diversity of the molecular weights. Here, the author increases hyaluronan production and diversifies the molecular weights through engineering the hyaluronan biosynthesis pathway and disruption of Corynebacterium glutamicum encapsulation caused by secreted hyaluronan.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | | | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
14
|
Analysis of the Topology and Active-Site Residues of WbbF, a Putative O-Polysaccharide Synthase from Salmonella enterica Serovar Borreze. J Bacteriol 2020; 202:JB.00625-19. [PMID: 31792013 DOI: 10.1128/jb.00625-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Bacterial lipopolysaccharides are major components and contributors to the integrity of Gram-negative outer membranes. The more conserved lipid A-core part of this complex glycolipid is synthesized separately from the hypervariable O-antigenic polysaccharide (OPS) part, and they are joined in the periplasm prior to translocation to the outer membrane. Three different biosynthesis strategies are recognized for OPS biosynthesis, and one, the synthase-dependent pathway, is currently confined to a single example: the O:54 antigen from Salmonella enterica serovar Borreze. Synthases are complex enzymes that have the capacity to both polymerize and export bacterial polysaccharides. Although synthases like cellulose synthase are widespread, they typically polymerize a glycan without employing a lipid-linked intermediate, unlike the O:54 synthase (WbbF), which produces an undecaprenol diphosphate-linked product. This raises questions about the overall similarity between WbbF and conventional synthases. In this study, we examine the topology of WbbF, revealing four membrane-spanning helices, compared to the eight in cellulose synthase. Molecular modeling of the glycosyltransferase domain of WbbF indicates a similar architecture, and site-directed mutagenesis confirmed that residues important for catalysis and processivity in cellulose synthase are conserved in WbbF and required for its activity. These findings indicate that the glycosyltransferase mechanism of WbbF and classic synthases are likely conserved despite the use of a lipid acceptor for chain extension by WbbF.IMPORTANCE Glycosyltransferases play a critical role in the synthesis of a wide variety of bacterial polysaccharides. These include O-antigenic polysaccharides, which form the distal component of lipopolysaccharides and provide a protective barrier important for survival and host-pathogen interactions. Synthases are a subset of glycosyltransferases capable of coupled synthesis and export of glycans. Currently, the O:54 antigen of Salmonella enterica serovar Borreze involves the only example of an O-polysaccharide synthase, and its generation of a lipid-linked product differentiates it from classical synthases. Here, we explore features conserved in the O:54 enzyme and classical synthases to shed light on the structure and function of the unusual O:54 enzyme.
Collapse
|
15
|
Agarwal G, K V K, Prasad SB, Bhaduri A, Jayaraman G. Biosynthesis of Hyaluronic acid polymer: Dissecting the role of sub structural elements of hyaluronan synthase. Sci Rep 2019; 9:12510. [PMID: 31467312 PMCID: PMC6715743 DOI: 10.1038/s41598-019-48878-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid (HA) based biomaterials have several biomedical applications. HA biosynthesis is catalysed by hyaluronan synthase (HAS). The unavailability of 3-D structure of HAS and gaps in molecular understanding of HA biosynthesis process pose challenges in rational engineering of HAS to control HA molecular weight and titer. Using in-silico approaches integrated with mutation studies, we define a dictionary of sub-structural elements (SSE) of the Class I Streptococcal HAS (SeHAS) to guide rational engineering. Our study identifies 9 SSE in HAS and elucidates their role in substrate and polymer binding and polymer biosynthesis. Molecular modelling and docking assessment indicate a single binding site for two UDP-substrates implying conformationally-driven alternating substrate specificities for this class of enzymes. This is the first report hypothesizing the involvement of sites from SSE5 in polymer binding. Mutation at these sites influence HA production, indicating a tight coupling of polymer binding and synthase functions. Mutation studies show dispensable role of Lys-139 in substrate binding and a key role of Gln-248 and Thr-283 in HA biosynthesis. Based on the functional architecture in SeHAS, we propose a plausible three-step polymer extension model from its reducing end. Together, these results open new avenues for rational engineering of Class I HAS to study and regulate its functional properties and enhanced understanding of glycosyltransferases and processive enzymes.
Collapse
Affiliation(s)
- Garima Agarwal
- Materials Simulation group, Samsung Advanced Institute of Technology, Samsung R&D Institute, Bengaluru, Karnataka, 560037, India.
| | - Krishnan K V
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shashi Bala Prasad
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Anirban Bhaduri
- Materials Simulation group, Samsung Advanced Institute of Technology, Samsung R&D Institute, Bengaluru, Karnataka, 560037, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
16
|
Malke H. Genetics and Pathogenicity Factors of Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0002-2017. [PMID: 30873932 PMCID: PMC11590425 DOI: 10.1128/microbiolspec.gpp3-0002-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/17/2022] Open
Abstract
Of the eight phylogenetic groups comprising the genus Streptococcus, Lancefield group C and G streptococci (GCS and GGS, resp.) occupy four of them, including the Pyogenic, Anginosus, and Mitis groups, and one Unnamed group so far. These organisms thrive as opportunistic commensals in both humans and animals but may also be associated with clinically serious infections, often resembling those due to their closest genetic relatives, the group A streptoccci (GAS). Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 12 species, several of which being subdivided into subspecies. This review summarizes these advances, citing 264 early and recent references. It focuses on the molecular structure and genetic regulation of clinically important proteins associated with the cell wall, cytoplasmic membrane and extracellular environment. The article also addresses the question of how, based on the current knowledge, basic research and translational medicine might proceed to further advance our understanding of these multifaceted organisms. Particular emphasis in this respect is placed on streptokinase as the protein determining the host specificity of infection and the Rsh-mediated stringent response with its potential for supporting bacterial survival under nutritional stress conditions.
Collapse
Affiliation(s)
- Horst Malke
- Friedrich Schiller University Jena, Faculty of Biology and Pharmacy, D-07743 Jena, Germany, and University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73190
| |
Collapse
|
17
|
Wessels MR. Capsular Polysaccharide of Group A Streptococcus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0050-2018. [PMID: 30632480 PMCID: PMC6342470 DOI: 10.1128/microbiolspec.gpp3-0050-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Most clinical isolates of Streptococcus pyogenes elaborate a capsular polysaccharide, which is composed of hyaluronic acid, a high-molecular-mass polymer of alternating residues of N-acetyl glucosamine and glucuronic acid. Certain strains, particularly those of the M18 serotype, produce abundant amounts of capsule, resulting in formation of large, wet-appearing, translucent or "mucoid" colonies on solid media, whereas strains of M-types 4 and 22 produce none. Studies of acapsular mutant strains have provided evidence that the capsule enhances virulence in animal models of infection, an effect attributable, at least in part, to resistance to complement-mediated opsonophagocytic killing by leukocytes. The presence of the hyaluronic acid capsule may mask adhesins on the bacterial cell wall. However, the capsule itself can mediate bacterial attachment to host cells by binding to the hyaluronic-acid binding protein, CD44. Furthermore, binding of the S. pyogenes capsule to CD44 on host epithelial cells can trigger signaling events that disrupt cell-cell junctions and facilitate bacterial invasion into deep tissues. This article summarizes the biochemistry, genetics, regulation, and role in pathogenesis of this important virulence determinant.
Collapse
Affiliation(s)
- Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Mandawe J, Infanzon B, Eisele A, Zaun H, Kuballa J, Davari MD, Jakob F, Elling L, Schwaneberg U. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid. Chembiochem 2018; 19:1414-1423. [PMID: 29603528 DOI: 10.1002/cbic.201800093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/20/2023]
Abstract
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge-gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain-length specificity and a twofold increase in mass-based turnover number. Seven improved pmHAS variants out of 1392 generated by error-prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell-free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N-terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.
Collapse
Affiliation(s)
- John Mandawe
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belen Infanzon
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Anna Eisele
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Henning Zaun
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Lothar Elling
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
19
|
Blackburn MR, Hubbard C, Kiessling V, Bi Y, Kloss B, Tamm LK, Zimmer J. Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 2018; 28:108-121. [PMID: 29190396 PMCID: PMC6192386 DOI: 10.1093/glycob/cwx096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA) is an acidic high molecular weight cell surface polysaccharide ubiquitously expressed by vertebrates, some pathogenic bacteria and even viruses. HA modulates many essential physiological processes and is implicated in numerous pathological conditions ranging from autoimmune diseases to cancer. In various pathogens, HA functions as a non-immunogenic surface polymer that reduces host immune responses. It is a linear polymer of strictly alternating glucuronic acid and N-acetylglucosamine units synthesized by HA synthase (HAS), a membrane-embedded family-2 glycosyltransferase. The enzyme synthesizes HA and secretes the polymer through a channel formed by its own membrane-integrated domain. To reveal how HAS achieves these tasks, we determined the biologically functional units of bacterial and viral HAS in a lipid bilayer environment by co-immunoprecipitation, single molecule fluorescence photobleaching, and site-specific cross-linking analyses. Our results demonstrate that bacterial HAS functions as an obligate homo-dimer with two functional HAS copies required for catalytic activity. In contrast, the viral enzyme, closely related to vertebrate HAS, functions as a monomer. Using site-specific cross-linking, we identify the dimer interface of bacterial HAS and show that the enzyme uses a reaction mechanism distinct from viral HAS that necessitates a dimeric assembly.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Caitlin Hubbard
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yunchen Bi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center (NYSBC), 89 Convent Avenue, New York, NY 10027, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
20
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|
21
|
Gohlke S, Muthukrishnan S, Merzendorfer H. In Vitro and In Vivo Studies on the Structural Organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 2017; 18:E702. [PMID: 28346351 PMCID: PMC5412288 DOI: 10.3390/ijms18040702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.
Collapse
Affiliation(s)
- Simon Gohlke
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas-State University, Manhattan 66506, KS, USA.
| | - Hans Merzendorfer
- Department of Biology and Chemistry, University of Osnabrück, 49068 Osnabrück, Germany.
- Institute of Biology, University of Siegen, 57068 Siegen, Germany.
| |
Collapse
|
22
|
Yang J, Cheng F, Yu H, Wang J, Guo Z, Stephanopoulos G. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules 2017; 18:1064-1073. [DOI: 10.1021/acs.biomac.6b01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Gonçalves IR, Brouillet S, Soulié MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M. Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 2016; 16:252. [PMID: 27881071 PMCID: PMC5122149 DOI: 10.1186/s12862-016-0815-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chitin, the second most abundant biopolymer on earth after cellulose, is found in probably all fungi, many animals (mainly invertebrates), several protists and a few algae, playing an essential role in the development of many of them. This polysaccharide is produced by type 2 glycosyltransferases, called chitin synthases (CHS). There are several contradictory classifications of CHS isoenzymes and, as regards their evolutionary history, their origin and diversity is still a matter of debate. RESULTS A genome-wide analysis resulted in the detection of more than eight hundred putative chitin synthases in proteomes associated with about 130 genomes. Phylogenetic analyses were performed with special care to avoid any pitfalls associated with the peculiarities of these sequences (e.g. highly variable regions, truncated or recombined sequences, long-branch attraction). This allowed us to revise and unify the fungal CHS classification and to study the evolutionary history of the CHS multigenic family. This update has the advantage of being user-friendly due to the development of a dedicated website ( http://wwwabi.snv.jussieu.fr/public/CHSdb ), and it includes any correspondences with previously published classifications and mutants. Concerning the evolutionary history of CHS, this family has mainly evolved via duplications and losses. However, it is likely that several horizontal gene transfers (HGT) also occurred in eukaryotic microorganisms and, even more surprisingly, in bacteria. CONCLUSIONS This comprehensive multi-species analysis contributes to the classification of fungal CHS, in particular by optimizing its robustness, consensuality and accessibility. It also highlights the importance of HGT in the evolutionary history of CHS and describes bacterial chs genes for the first time. Many of the bacteria that have acquired a chitin synthase are plant pathogens (e.g. Dickeya spp; Pectobacterium spp; Brenneria spp; Agrobacterium vitis and Pseudomonas cichorii). Whether they are able to produce a chitin exopolysaccharide or secrete chitooligosaccharides requires further investigation.
Collapse
Affiliation(s)
- Isabelle R Gonçalves
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Microbiologie Adaptation et Pathogénie, Bâtiment André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France. .,BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France.
| | - Sophie Brouillet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205 (MNHN, UPMC, CNRS, EPHE), Atelier de Bioinformatique, F-75231, Paris, Cedex 05, France
| | - Marie-Christine Soulié
- Sorbonne Universités, UPMC Univ Paris 06, INRA-AgroParisTech UMR1318, F-78026, Versailles, France
| | - Simonetta Gribaldo
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Docteur Roux, F-75015, Paris, France
| | - Catherine Sirven
- BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| | - Noémie Charron
- BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| | - Martine Boccara
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7205 (MNHN, UPMC, CNRS, EPHE), Atelier de Bioinformatique, F-75231, Paris, Cedex 05, France
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Microbiologie Adaptation et Pathogénie, Bâtiment André Lwoff, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France.,BAYER S.A.S., Centre de Recherche de la Dargoire, F-69263, Lyon, France
| |
Collapse
|
24
|
Zhang L, Huang H, Wang H, Chen J, Du G, Kang Z. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett 2016; 38:2103-2108. [DOI: 10.1007/s10529-016-2193-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
|
25
|
Baggenstoss BA, Harris EN, Washburn JL, Medina AP, Nguyen L, Weigel PH. Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif. Glycobiology 2016; 27:154-164. [PMID: 27558839 DOI: 10.1093/glycob/cww089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan synthases (HAS) normally make large (>MDa) hyaluronan (HA) products. Smaller HA fragments (e.g. 100-400 kDa) produced in vivo are associated with inflammation and cell signaling by HA receptors that bind small, but not large, HA. Although HA fragments can arise from breakdown by hyaluronidases, HAS might also be regulated directly to synthesize small HA. Here we examined the Streptococcus equisimilis HAS (SeHAS) C-terminus, which contains a tandem B-X7-B motif (K398-X7-R406-X7-K414), by testing the effects of 27 site-specific scanning mutations and 7 C-terminal truncations on HA synthesis activity and weight-average mass. Although HAS enzymes cannot be HA-binding proteins, these motifs are highly conserved within the Class I HAS family. Fifteen Arg406 mutants made large MDa HA (86-110% wildtype size), with specific activities from 70% to 177% of wildtype. In contrast, 10 of 12 Lys398 mutants made HA that was 8-14% of wildtype size (≤250-480 kDa), with specific activities from 14% to 64% of wildtype. Four nearly inactive (2% wildtype activity) C-terminal truncation mutants made MDa HA (56-71% wildtype). The results confirm earlier findings with Cys-mutants [Weigel PH, Baggenstoss BA. 2012. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22:1302-1310] that HAS uses two independent activities to control HA size and HA synthesis rate; these are two separate functions. We conclude that HAS regulatory modifications that alter tandem B-X7-B motif conformation could mimic these mutagenesis-induced effects, allowing HAS in vivo to make small HA directly. The results also support a model in which the tandem-motif region is part of the intra-HAS pore and interacts directly with HA.
Collapse
Affiliation(s)
- Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Edward N Harris
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer L Washburn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Tsepilov RN, Beloded AV. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2016; 80:1093-108. [PMID: 26555463 DOI: 10.1134/s0006297915090011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.
Collapse
Affiliation(s)
- R N Tsepilov
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | |
Collapse
|
27
|
Zhao X, Chen Z, Gu G, Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1205597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Bi Y, Hubbard C, Purushotham P, Zimmer J. Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 2015; 34:78-86. [PMID: 26342143 PMCID: PMC4684724 DOI: 10.1016/j.sbi.2015.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. Here, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin, alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).
Collapse
Affiliation(s)
- Yunchen Bi
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Caitlin Hubbard
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Pallinti Purushotham
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States.
| |
Collapse
|
29
|
Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior. Int J Cell Biol 2015; 2015:367579. [PMID: 26472958 PMCID: PMC4581545 DOI: 10.1155/2015/367579] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 12/05/2022] Open
Abstract
Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers.
Collapse
|
30
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
31
|
Heterologous Production of Hyaluronic Acid in an ε-Poly-L-Lysine Producer, Streptomyces albulus. Appl Environ Microbiol 2015; 81:3631-40. [PMID: 25795665 DOI: 10.1128/aem.00269-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo.
Collapse
|
32
|
Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol 2013; 35:8-13. [PMID: 24134926 DOI: 10.1016/j.matbio.2013.10.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
33
|
Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 2012. [PMID: 23202856 DOI: 10.1038/emboj.2012.315] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In many bacterial pathogens, the second messenger c-di-GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c-di-GMP induces EPS biogenesis is largely unknown. Here, we show that c-di-GMP allosterically activates the synthesis of poly-β-1,6-N-acetylglucosamine (poly-GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C-di-GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly-GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c-di-GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c-di-GMP-mediated process that relies on protein-protein interaction. At low c-di-GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c-di-GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c-di-GMP signalling. These data uncover a mechanism of c-di-GMP-mediated EPS control and provide a frame for c-di-GMP signalling specificity in pathogenic bacteria.
Collapse
|
34
|
Weigel PH, Baggenstoss BA. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 2012; 22:1302-10. [PMID: 22745284 PMCID: PMC3425326 DOI: 10.1093/glycob/cws102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/12/2022] Open
Abstract
Streptococcus equisimilis hyaluronan (HA) synthase (SeHAS) contains four cysteines (C226, C262, C281 and C367) that are conserved in the mammalian HAS family. Previous studies of single Cys-to-Ser and all possible Cys-to-Ala mutants of SeHAS found that: the Cys-null mutant is active, Cys modification inhibits HAS activity and the conserved cysteines are clustered at the membrane-enzyme interface in substrate-binding sites (Kumari K, Weigel PH. 2005. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology. 15:529-539). We re-examined these Cys mutants using a single technique (size exclusion chromatography-multi-angle laser light scattering) that allows simultaneous assays on the same sample for both HA synthesis activity and HA product size. Among 18 mutants compared with wild type, 4 showed no change in either function and 3 showed changes in both (decreased activity and HA size). Only one of the two functions was altered in 11 other mutants, which showed either decreased polymerizing activity or product size. No mutants made larger HA, 8 made smaller HA and 10 showed no change in HA size. Nine mutants showed no change in activity and nine were less active. The mutants fell into four of nine possible groups in terms of changes in HA size or synthesis rate (i.e. none, increased or decreased). Specific Cys residues were associated with each mutant group and the pattern of effects on both functions. Thus, the four conserved Cys residues, individually and in specific combinations, influence the rate of sugar assembly by HAS and HA product size, but their participation in one function is independent of the other.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, The Oklahoma Center for Medical Glycobiology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | |
Collapse
|
35
|
Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J. The Hyaluronan Synthase Catalyzes the Synthesis and Membrane Translocation of Hyaluronan. J Mol Biol 2012; 418:21-31. [DOI: 10.1016/j.jmb.2012.01.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 12/25/2022]
|
36
|
DeAngelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 2012; 94:295-305. [PMID: 22391966 DOI: 10.1007/s00253-011-3801-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 10/28/2022]
Abstract
Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen's sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| |
Collapse
|
37
|
Medina AP, Lin J, Weigel PH. Hyaluronan synthase mediates dye translocation across liposomal membranes. BMC BIOCHEMISTRY 2012; 13:2. [PMID: 22276637 PMCID: PMC3331846 DOI: 10.1186/1471-2091-13-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
Abstract
Background Hyaluronan (HA) is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS), which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS) to liposomes preloaded with the fluorophore Cascade Blue (CB). Results CB translocation (efflux) was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL). An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL) and that, in contrast, tetramyristoyl cardiolipin (TM-CL) is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006). Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL. Conclusions The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.
Collapse
Affiliation(s)
- Andria P Medina
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center (940 S, L, Young Blvd), Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
38
|
Tlapak-Simmons VL, Medina AP, Baggenstoss BA, Nguyen L, Baron CA, Weigel PH. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg 2+ Ions and Severe Inhibitory Effects of Divalent Cations. ACTA ACUST UNITED AC 2012; Suppl 1:001. [PMID: 25267933 DOI: 10.4172/2153-0637.s1-001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg2+ for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg2+ with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg2+ dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg2+. In the presence of Mg2+, other divalent cations inhibited SeHAS with different potencies (Cu2+~Zn2+ >Co2+ >Ni2+ >Mn2+ >Ba2+ Sr2+ Ca2+). Some divalent metal ions likely inhibit by displacement of Mg2+-UDP-Sugar complexes (e.g. Ca2+, Sr2+ and Ba2+ had apparent Ki values of 2-5 mM). In contrast, Zn2+ and Cu2+ inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu2+, but not Zn2+, was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn2+ or Cu2+. Wildtype SeHAS allowed to make HA prior to exposure to Zn2+ or Cu2+ was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg2+ and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.
Collapse
Affiliation(s)
- Valarie L Tlapak-Simmons
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Andria P Medina
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Bruce A Baggenstoss
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Long Nguyen
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Christina A Baron
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Paul H Weigel
- Department of Biochemistry & Molecular Biology, The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
39
|
Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91:221-64. [PMID: 21248167 DOI: 10.1152/physrev.00052.2009] [Citation(s) in RCA: 799] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
Collapse
Affiliation(s)
- Dianhua Jiang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
40
|
ABC transporters do not contribute to extracellular translocation of hyaluronan in human breast cancer in vitro. Exp Cell Res 2010; 316:1241-53. [PMID: 20060827 DOI: 10.1016/j.yexcr.2010.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 12/19/2022]
Abstract
Extracellular translocation of the polysaccharide, hyaluronan (HA) has been thought to be mediated via its transmembrane synthetic enzyme, hyaluronan synthase (HAS) but recent studies have indicated that the ATP-Binding-Cassette (ABC) transporter, MRP5 contributes to this process. Liberated and cell-associated HA contributes to breast cancer initiation and progression, and therefore the inhibition of ABC transporters and consequently HA transport could provide therapeutic benefit in the treatment of breast cancer. Quantitation of ABC transporter genes, MRP1-5, BCRP and MDR1 were determined in six breast cancer cell lines selected for their differential HA synthetic rates. Low endogenous expression of transporters was detected but no significant correlation existed between ABC transporter and HAS gene expression or HA production. A dose titration of up to ten times the IC(50) of ten small molecule ABC transporter inhibitors did not significantly inhibit HA export in four breast cancer cell lines. Unlike the changes observed after inhibition of HA synthesis by the characterised inhibitor 4-MU, inhibition of ABC transporters did not alter the cell morphology, HA glycocalyx or the intracellular quantity or localisation of HA. Collectively these data indicate that ABC transporters do not contribute to the extracellular transport of HA in breast cancer, supporting a role for the hyaluronan synthase in translocation.
Collapse
|
41
|
Stern R, Jedrzejas MJ. Carbohydrate Polymers at the Center of Life’s Origins: The Importance of Molecular Processivity. Chem Rev 2008; 108:5061-85. [DOI: 10.1021/cr078240l] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| | - Mark J. Jedrzejas
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| |
Collapse
|
42
|
Steenbergen SM, Vimr ER. Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment. Mol Microbiol 2008; 68:1252-67. [PMID: 18435708 PMCID: PMC2408645 DOI: 10.1111/j.1365-2958.2008.06231.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2008] [Indexed: 11/28/2022]
Abstract
Capsular polysaccharides are important virulence determinants in a wide range of invasive infectious diseases. Although capsule synthesis has been extensively investigated, understanding polysaccharide export from the cytoplasm to the external environment has been more difficult. Here we present the results of a novel protection assay indicating that synthesis and export of the Escherichia coli K1 group 2 capsular polysialic acid (K1 antigen) occur within a protected subcellular compartment designated the sialisome. In addition to the polymerase encoded by neuS, localization and complementation analyses indicated that the sialisome includes the accessory membrane protein NeuE. The requirement for NeuE was suppressed by overproducing NeuS, suggesting that NeuE functions by stabilizing the polymerase or facilitating its assembly in the sialisome. Although an interaction between NeuE and NeuS could not be demonstrated with a bacterial two-hybrid system that reconstitutes an intracellular cell-signalling pathway, interactions between NeuS and KpsC as well as other sialisome components were detected. The combined results provide direct evidence for specific protein-protein interactions in the synthesis and export of group 2 capsular polysaccharides under in vivo conditions. The approaches developed here will facilitate further dissection of the sialisome, suggesting similar methodology for understanding the biosynthesis of other group 2 capsules.
Collapse
Affiliation(s)
- Susan M Steenbergen
- Laboratory of Sialobiology and Comparative Metabolomics, Department of Pathobiology, University of Illinois at Urbana-ChampaignUrbana, IL 61802, USA
| | - Eric R Vimr
- Laboratory of Sialobiology and Comparative Metabolomics, Department of Pathobiology, University of Illinois at Urbana-ChampaignUrbana, IL 61802, USA
| |
Collapse
|
43
|
Bobrov AG, Kirillina O, Forman S, Mack D, Perry RD. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 2008; 10:1419-32. [DOI: 10.1111/j.1462-2920.2007.01554.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 2007; 282:36777-81. [PMID: 17981795 DOI: 10.1074/jbc.r700036200] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hyaluronan synthases (HASs) are glycosyltransferases that catalyze polymerization of hyaluronan found in vertebrates and certain microbes. HASs transfer two distinct monosaccharides in different linkages and, in certain cases, participate in polymer transfer out of the cell. In contrast, the vast majority of glycosyltransferases form only one sugar linkage. Although our understanding of HAS biochemistry is still incomplete, very good progress has been made since the first genetic identification of a HAS in 1993. New enzymes have been discovered, and some molecular details have emerged. Important findings are the lipid dependence of Class I HASs, the function of HASs as protein monomers, and the elucidation of mechanisms of synthesis by Class II HAS. We propose three classes of HASs based on differences in protein sequences, predicted membrane topologies, potential architectures, mechanisms, and direction of polymerization.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|
45
|
Weigel PH, Kyossev Z, Torres LC. Phospholipid Dependence and Liposome Reconstitution of Purified Hyaluronan Synthase. J Biol Chem 2006; 281:36542-51. [PMID: 16984914 DOI: 10.1074/jbc.m606529200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous radiation inactivation and enzyme characterization studies demonstrated that the Streptococcus equisimilis hyaluronan synthase (seHAS) is phospholipid-dependent and that cardiolipin (CL) is the best phospholipid for enzyme activation. Here we investigated the ability of seHAS, purified in the absence of added lipid, to be activated by synthetic phosphatidic acid (PA), phosphatidylserine, or CL lipids containing fatty acyl chains of different length or different numbers of double bonds. The most effective lipid was tetraoleoyl CL (TO-CL), whereas tetramyristoyl CL (TM-CL) was ineffective. None of the phosphatidylserine species tested gave significant activation. PAs containing C10 to C18 saturated acyl chains were not effective activators, and neither were oleoyl lyso PA, dilinoleoyl PA, or PA containing one oleoyl chain and either a palmitoyl or stearoyl chain. In contrast, dioleoyl PA stimulated seHAS approximately 10-fold, to approximately 20% of the activity observed with TO-CL. The tested acidic lipids such as PA and CL activated the enzyme most efficiently if they contained only oleic acid. Mixing experiments showed that the enzyme interacts preferentially with TO-CL in the presence of TM-CL. Similarly, seHAS incorporated into phosphotidylcholine-based liposomes showed increasing activity with increasing TO-CL, but not TM-CL, content. Inactivation of membrane-bound seHAS by solubilization with Nonidet P-40 was prevented by TO-CL, but not TM-CL. The pH dependence of seHAS in the presence of synthetic or naturally occurring CLs showed the same pattern of lipid preference between pH 6 and 10.5. Unexpectedly, HAS showed lipid-independent activity at pH 11.5. The results suggest that Class I HAS enzymes are lipid-dependent and that assembly of active seHAS-lipid complexes has high specificity for the phospholipid head group and the nature of the fatty acyl chains.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, the Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
46
|
Pummill PE, Kane TA, Kempner ES, DeAngelis PL. The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer. Biochim Biophys Acta Gen Subj 2006; 1770:286-90. [PMID: 17095162 PMCID: PMC1847639 DOI: 10.1016/j.bbagen.2006.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 11/18/2022]
Abstract
Hyaluronan (HA), a linear polysaccharide composed of beta1,3-GlcNAc-beta1,4-GlcUA repeats, is found in the extracellular matrix of vertebrate tissues as well as the capsule of several pathogenic bacteria. All known HA synthases (HASs) are dual-action glycosyltransferases that catalyze the addition of two different sugars from UDP-linked precursors to the growing HA chain. The bacterial hyaluronan synthase, PmHAS from Gram-negative Pasteurella multocida, is a 972-residue membrane-associated protein. Previously, the Gram-positive Streptococcus pyogenes enzyme, SpHAS (419 residues), and the vertebrate enzyme, XlHAS1 (588 residues), were found to function as monomers of protein, but the PmHAS is not similar at the protein sequence level and has quite different enzymological properties. We have utilized radiation inactivation to measure the target size of recombinant full-length and truncated PmHAS. The target size of HAS activity was confirmed using internal enzyme standards of known molecular weight. We found that the Pasteurella HA synthase protein functions catalytically as a monomer. Functional truncated soluble PmHAS also behaves as a polypeptide monomer as assessed by gel filtration chromatography and light scattering.
Collapse
Affiliation(s)
- Philip E. Pummill
- Hyalose L.L.C., 655 Research Parkway, Suite 525, Oklahoma City, Oklahoma 73104, USA
| | - Tasha A. Kane
- Hyalose L.L.C., 655 Research Parkway, Suite 525, Oklahoma City, Oklahoma 73104, USA
| | - Ellis S. Kempner
- Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
47
|
Goentzel B, Weigel P, Steinberg R. Recombinant human hyaluronan synthase 3 is phosphorylated in mammalian cells. Biochem J 2006; 396:347-54. [PMID: 16522194 PMCID: PMC1462723 DOI: 10.1042/bj20051782] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyaluronan is a ubiquitous component of vertebrate extracellular and cell-associated matrices that serves as a key structural component of skin, cartilage, eyes and joints, and plays important roles in dynamic cellular processes, including embryogenesis, inflammation, wound healing and metastasis. Hyaluronan is synthesized by three homologous hyaluronan synthases designated HAS1, HAS2 and HAS3 that differ in their tissue distribution, regulation and enzymatic characteristics. Some progress has been made in characterizing regulation of HAS transcripts and in distinguishing the enzymatic properties of the various HAS isoforms, but essentially nothing is known about their possible regulation by posttranslational modification. Using [32P]P(i) radiolabelling of a recombinant FLAG (DYKDDDDK) epitope-tagged version of human HAS3 expressed in COS-7 cells, we show that HAS3 is serine-phosphorylated and that this phosphorylation can be enhanced by a number of effectors--most significantly by a membrane-permeable analogue of cAMP. By employing a novel FLAG-tagged phosphorylated reference protein derived from EGFP (enhanced green fluorescent protein), we were able to estimate the stoichiometry of FLAG-HAS3 phosphorylation. It was approx. 0.11 in unstimulated cells and increased to as much as 0.32 in cells stimulated with 8-(4-chlorophenylthio)-cAMP.
Collapse
Affiliation(s)
- Brian J. Goentzel
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, U.S.A
| | - Paul H. Weigel
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, U.S.A
| | - Robert A. Steinberg
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Kumari K, Baggenstoss BA, Parker AL, Weigel PH. Mutation of Two Intramembrane Polar Residues Conserved within the Hyaluronan Synthase Family Alters Hyaluronan Product Size. J Biol Chem 2006; 281:11755-60. [PMID: 16505475 DOI: 10.1074/jbc.m600727200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified two conserved polar amino acids within different membrane domains (MD) of Streptococcus equisimilis hyaluronan synthase (seHAS), Lys48 in MD2 and Glu327 in MD4. In eukaryotic HASs, the position of the Glu is very similar and the Lys is replaced by a conserved polar Gln. To assess whether Lys48 and Glu327 interact or influence seHAS activity, we investigated the effects of changing Lys48 to Arg or Glu and Glu327 to Lys, Asp, or Gln. Mutants, including a double switch variant with Lys48 and Glu327 exchanged, were expressed and assayed in Escherichia coli membranes. SeHASE327Q and seHASE327K were expressed at low levels, whereas seHASE327D and the Lys48 mutants were expressed well. The specific enzyme activities (relative to wild type) were 17 and 7% for the K48R and K48E mutants and 26 and 38% for the E327Q and E327D mutants, respectively. In contrast, seHAS(E327K) showed only 0.16% of wild-type activity but was rescued over 46-fold by changing Lys48 to Glu. Expression of the seHASE327K,K48E protein was also rescued to near wild-type levels. Based on size exclusion chromatography coupled to multiangle laser light scattering analysis, all the variants synthesized hyaluronan (HA) of smaller weight-average molar mass than wild-type enzyme (3.6 MDa); the smallest HA (approximately 0.6 MDa) was made by seHASE327K,K48E and seHASK48E. The results indicate that Glu327 within MD4 is a critical residue for the stability of seHAS, that it may interact with Lys48 within MD2, and that these residues are involved in the ability of HAS to synthesize very large HA.
Collapse
Affiliation(s)
- Kshama Kumari
- Department of Biochemistry and Molecular Biology and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
49
|
Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 2005; 71:3747-52. [PMID: 16000785 PMCID: PMC1168996 DOI: 10.1128/aem.71.7.3747-3752.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in B. subtilis and that overexpressing the hasA gene along with the endogenous tuaD gene is sufficient for high-level production of HA. In addition, the B. subtilis-derived material was shown to be secreted and of high quality, comparable to commercially available sources of HA.
Collapse
Affiliation(s)
- Bill Widner
- Novozymes, Inc., 1445 Drew Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rilla K, Siiskonen H, Spicer AP, Hyttinen JMT, Tammi MI, Tammi RH. Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 2005; 280:31890-7. [PMID: 16014622 DOI: 10.1074/jbc.m504736200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan is a multifunctional glycosaminoglycan up to 10(7) Da molecular mass produced by the integral membrane glycosyltransferase, hyaluronan synthase (HAS). When expressed in keratinocytes, N-terminally tagged green fluorescent protein-HAS2 and -HAS3 isoenzymes were found to travel through endoplasmic reticulum (ER), Golgi, plasma membrane, and endocytic vesicles. A distinct enrichment of plasma membrane HAS was found in cell protrusions. The total turnover time of HAS3 was 4-5 h as judged by the green fluorescent protein signal decay and hyaluronan synthesis inhibition in cycloheximide-treated cells. The transfer from ER to Golgi took about 1 h, and the dwell time on the plasma membrane was less than 2 h in experiments with a relief and introduction, respectively, of brefeldin A. Constructs of HAS3 with 16- and 45-amino-acid C-terminal deletions mostly stayed within the ER, whereas a D216A missense mutant was localized within the Golgi complex but not the plasma membrane. Both types of mutations were almost or completely inactive, similar to the wild type enzyme that had its entry to the plasma membrane experimentally blocked by brefeldin A. Inhibition of hyaluronan synthesis by UDP-glucuronic acid starvation using 4-methyl-umbelliferone also prevented HAS access to the plasma membrane. The results demonstrate that 1) a latent pool of HAS exists within the ER-Golgi pathway; 2) this pool can be rapidly mobilized and activated by insertion into the plasma membrane; and 3) inhibition of HAS activity through mutation or substrate starvation results in exclusion of HAS from the plasma membrane.
Collapse
Affiliation(s)
- Kirsi Rilla
- Department of Anatomy, University of Kuopio, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|