1
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
2
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
3
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
4
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
5
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
6
|
Bader G, Enkler L, Araiso Y, Hemmerle M, Binko K, Baranowska E, De Craene JO, Ruer-Laventie J, Pieters J, Tribouillard-Tanvier D, Senger B, di Rago JP, Friant S, Kucharczyk R, Becker HD. Assigning mitochondrial localization of dual localized proteins using a yeast Bi-Genomic Mitochondrial-Split-GFP. eLife 2020; 9:56649. [PMID: 32657755 PMCID: PMC7358010 DOI: 10.7554/elife.56649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022] Open
Abstract
A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.
Collapse
Affiliation(s)
- Gaétan Bader
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Ludovic Enkler
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Yuhei Araiso
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Marine Hemmerle
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Krystyna Binko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Johan-Owen De Craene
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Bruno Senger
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, Bordeaux, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Dominique Becker
- Université de Strasbourg, CNRS UMR7156, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
7
|
Markovitz R, Ghosh R, Kuo ME, Hong W, Lim J, Bernes S, Manberg S, Crosby K, Tanpaiboon P, Bharucha-Goebel D, Bonnemann C, Mohila CA, Mizerik E, Woodbury S, Bi W, Lotze T, Antonellis A, Xiao R, Potocki L. GARS-related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment. Am J Med Genet A 2020; 182:1167-1176. [PMID: 32181591 PMCID: PMC8297662 DOI: 10.1002/ajmg.a.61544] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA-like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl-tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile-onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease-associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss-of-function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients' clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot-Marie-Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS-associated disease and support that severe early-onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.
Collapse
Affiliation(s)
- Rebecca Markovitz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rajarshi Ghosh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Molly E. Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan
| | - William Hong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Jaehyung Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Saunder Bernes
- Division of Child Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
| | - Stephanie Manberg
- Division of Child Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
| | - Kathleen Crosby
- Division of Genetics and Metabolism, Children’s National Hospital, Rare Disease Institute, Washington, District of Columbia
| | - Pranoot Tanpaiboon
- Division of Genetics and Metabolism, Children’s National Hospital, Rare Disease Institute, Washington, District of Columbia
| | - Diana Bharucha-Goebel
- Division of Neurology, Children’s National Hospital, Washington, District of Columbia
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, Maryland
| | - Carsten Bonnemann
- Division of Neurology, Children’s National Hospital, Washington, District of Columbia
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, Maryland
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Suzanne Woodbury
- Texas Children’s Hospital, Houston, Texas
- Baylor College of Medicine, Department of Physical Medicine and Rehabilitation, Houston, Texas
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Timothy Lotze
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
8
|
Monteuuis G, Miścicka A, Świrski M, Zenad L, Niemitalo O, Wrobel L, Alam J, Chacinska A, Kastaniotis AJ, Kufel J. Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins. Nucleic Acids Res 2019; 47:5777-5791. [PMID: 31216041 PMCID: PMC6582344 DOI: 10.1093/nar/gkz301] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Utilization of non-AUG alternative translation start sites is most common in bacteria and viruses, but it has been also reported in other organisms. This phenomenon increases proteome complexity by allowing expression of multiple protein isoforms from a single gene. In Saccharomyces cerevisiae, a few described cases concern proteins that are translated from upstream near-cognate start codons as N-terminally extended variants that localize to mitochondria. Using bioinformatics tools, we provide compelling evidence that in yeast the potential for producing alternative protein isoforms by non-AUG translation initiation is much more prevalent than previously anticipated and may apply to as many as a few thousand proteins. Several hundreds of candidates are predicted to gain a mitochondrial targeting signal (MTS), generating an unrecognized pool of mitochondrial proteins. We confirmed mitochondrial localization of a subset of proteins previously not identified as mitochondrial, whose standard forms do not carry an MTS. Our data highlight the potential of non-canonical translation initiation in expanding the capacity of the mitochondrial proteome and possibly also other cellular features.
Collapse
Affiliation(s)
- Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Anna Miścicka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Lounis Zenad
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Olli Niemitalo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Lidia Wrobel
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Jahangir Alam
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014 Finland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|
10
|
Eberlein C, Nielly-Thibault L, Maaroufi H, Dubé AK, Leducq JB, Charron G, Landry CR. The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species. Mol Biol Evol 2017; 34:2173-2186. [PMID: 28482005 DOI: 10.1093/molbev/msx153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identifying the molecular changes that lead to ecological specialization during speciation is one of the major goals of molecular evolution. One question that remains to be thoroughly investigated is whether ecological specialization derives strictly from adaptive changes and their associated trade-offs, or from conditionally neutral mutations that accumulate under relaxed selection. We used whole-genome sequencing, genome annotation and computational analyses to identify genes that have rapidly diverged between two incipient species of Saccharomyces paradoxus that occupy different climatic regions along a south-west to north-east gradient. As candidate loci for ecological specialization, we identified genes that show signatures of adaptation and accelerated rates of amino acid substitutions, causing asymmetric evolution between lineages. This set of genes includes a glycyl-tRNA-synthetase, GRS2, which is known to be transcriptionally induced under heat stress in the model and sister species S. cerevisiae. Molecular modelling, expression analysis and fitness assays suggest that the accelerated evolution of this gene in the Northern lineage may be caused by relaxed selection. GRS2 arose during the whole-genome duplication (WGD) that occurred 100 million years ago in the yeast lineage. While its ohnolog GRS1 has been preserved in all post-WGD species, GRS2 has frequently been lost and is evolving rapidly, suggesting that the fate of this ohnolog is still to be resolved. Our results suggest that the asymmetric evolution of GRS2 between the two incipient S. paradoxus species contributes to their restricted climatic distributions and thus that ecological specialization derives at least partly from relaxed selection rather than a molecular trade-off resulting from adaptive evolution.
Collapse
Affiliation(s)
- Chris Eberlein
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Lou Nielly-Thibault
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada.,Big Data Research Center (CRDM), Université Laval, Québec, QC, Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Alexandre K Dubé
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Jean-Baptiste Leducq
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Guillaume Charron
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada.,Big Data Research Center (CRDM), Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Segev N, Gerst JE. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J Cell Biol 2017; 217:117-126. [PMID: 29118025 PMCID: PMC5748985 DOI: 10.1083/jcb.201706059] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins exist mainly as paralog pairs in eukaryotes, yet the reasons for maintaining duplication are unclear. By using a novel proteomic approach, Segev and Gerst show paralog-specific regulation of the translation of mitochondrial proteins using specialized ribosomes. Genome duplication in eukaryotes created paralog pairs of ribosomal proteins (RPs) that show high sequence similarity/identity. However, individual paralogs can confer vastly different effects upon cellular processes, e.g., specific yeast paralogs regulate actin organization, bud site selection, and mRNA localization, although how specificity is conferred is unknown. Changes in the RP composition of ribosomes might allow for specialized translation of different subsets of mRNAs, yet it is unclear whether specialized ribosomes exist and if paralog specificity controls translation. Using translatome analyses, we show that the translation of mitochondrial proteins is highly down-regulated in yeast lacking RP paralogs required for normal mitochondrial function (e.g., RPL1b). Although RPL1a and RPL1b encode identical proteins, Rpl1b-containing ribosomes confer more efficient translation of respiration-related proteins. Thus, ribosomes varying in RP composition may confer specialized functions, and RP paralog specificity defines a novel means of translational control.
Collapse
Affiliation(s)
- Nadav Segev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat 2017; 38:1412-1420. [PMID: 28675565 DOI: 10.1002/humu.23287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.
Collapse
Affiliation(s)
| | - Xenia Chepa-Lotrea
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gretchen Golas
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas C Markello
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David R Adams
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Camilo Toro
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - May Christine V Malicdan
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Cynthia J Tifft
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
14
|
Yeast Population Genomics Goes Wild: The Case of Saccharomyces paradoxus. POPULATION GENOMICS: MICROORGANISMS 2017. [DOI: 10.1007/13836_2017_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Chang CY, Chien CI, Chang CP, Lin BC, Wang CC. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase. J Biol Chem 2016; 291:16567-75. [PMID: 27298321 DOI: 10.1074/jbc.m116.730812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 11/06/2022] Open
Abstract
WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme.
Collapse
Affiliation(s)
- Chih-Yao Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chin-I Chien
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Pei Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Bo-Chun Lin
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Chia Wang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
17
|
Malissovas N, Griffin LB, Antonellis A, Beis D. Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease. Hum Mol Genet 2016; 25:1528-42. [PMID: 27008886 DOI: 10.1093/hmg/ddw031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of peripheral neuropathies. Mutations in several aminoacyl-tRNA synthetase (ARS) genes have been implicated in inherited CMT disease. There are 12 reported CMT-causing mutations dispersed throughout the primary sequence of the human glycyl-tRNA synthetase (GARS). While there is strong genetic evidence linking GARS mutations to CMT disease, the molecular pathology underlying the neuromuscular and sensory phenotypes is still not fully understood. In particular, it is unclear whether the mutations result in a toxic gain of function, a partial loss of activity related to translation, or a combination of these mechanisms. We identified a zebrafish allele of gars (gars(s266)). Homozygous mutant embryos carry a C->A transversion, that changes a threonine to a lysine, in a residue next to a CMT-associated human mutation. We show that the neuromuscular phenotype observed in animals homozygous for T209K Gars (T130K in GARS) is due to a loss of dimerization of the mutated protein. Furthermore, we show that the loss of function, dimer-deficient and human disease-associated G319R Gars (G240R in GARS) mutant protein is unable to rescue the above phenotype. Finally, we demonstrate that another human disease-associated mutant G605R Gars (G526 in GARS) dimerizes with the remaining wild-type protein in animals heterozygous for the T209K Gars and reduces the function enough to elicit a neuromuscular phenotype. Our data indicate that dimerization is required for the dominant neurotoxicity of disease-associated GARS mutations and provide a rapid, tractable model for studying newly identified GARS variants for a role in human disease.
Collapse
Affiliation(s)
- Nikos Malissovas
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece, Medical School, University of Crete, Greece
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, Medical Scientist Training Program
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, Department of Human Genetics, and Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece,
| |
Collapse
|
18
|
Lee JY, Ishida Y, Kuge S, Naganuma A, Hwang GW. Identification of substrates of F-box protein involved in methylmercury toxicity in yeast cells. FEBS Lett 2015; 589:2720-5. [PMID: 26297823 DOI: 10.1016/j.febslet.2015.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
We previously reported that some of the substrate proteins recognized by Hrt3 or Ucc1, a component of Skp1/Cdc53/F-box protein ubiquitin ligase, may include proteins that are involved in the methylmercury toxicity and degraded by the proteasome. In this study, we found that Dld3 and Grs1 bound to Hrt3 and that Eno2 bound to Ucc1 using a yeast two-hybrid screening. We demonstrated that Dld3 and Grs1 are substrates that are ubiquitinated by Hrt3, and Eno2 is a substrate that is ubiquitinated by Ucc1. Moreover, any yeast showing overexpression of Dld3, Grs1, and Eno2 demonstrated higher methylmercury sensitivity. This indicates that Hrt3 and Ucc1 are involved in alleviating the methylmercury toxicity by promoting proteasomal degradation through the ubiquitination of Dld3, Grs1, and Eno2.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yosuke Ishida
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shusuke Kuge
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Department of Microbiology, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
19
|
Chang CP, Chang CY, Lee YH, Lin YS, Wang CC. Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution. Mol Cell Biol 2015; 35:2242-53. [PMID: 25896914 PMCID: PMC4456443 DOI: 10.1128/mcb.00018-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic and mitochondrial forms of a eukaryotic aminoacyl-tRNA synthetase (aaRS) are generally encoded by two distinct nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. However, in most known yeasts, only the mitochondrial-origin alanyl-tRNA synthetase (AlaRS) gene is retained and plays a dual-functional role. Here, we present a novel scenario of AlaRS evolution in the yeast Vanderwaltozyma polyspora. V. polyspora possesses two significantly diverged AlaRS gene homologues, one encoding the cytoplasmic form and the other its mitochondrial counterpart. Clever selection of transcription and translation initiation sites enables the two isoforms to be localized and thus functional in their respective cellular compartments. However, the two isoforms can also be stably expressed and function in the reciprocal compartments by insertion or removal of a mitochondrial targeting signal. Synteny and phylogeny analyses revealed that the AlaRS homologues of V. polyspora arose from a dual-functional common ancestor through whole-genome duplication (WGD). Moreover, the mitochondrial form had higher synonymous (1.6-fold) and nonsynonymous (2.8-fold) substitution rates than did its cytoplasmic counterpart, presumably due to a lesser constraint imposed on components of the mitochondrial translational apparatus. Our study suggests that asymmetric evolution confers the divergence between the AlaRS paralogues of V. polyspora.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Chih-Yao Chang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Yi-Hsueh Lee
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| |
Collapse
|
20
|
Griffin LB, Sakaguchi R, McGuigan D, Gonzalez MA, Searby C, Züchner S, Hou YM, Antonellis A. Impaired function is a common feature of neuropathy-associated glycyl-tRNA synthetase mutations. Hum Mutat 2015; 35:1363-71. [PMID: 25168514 DOI: 10.1002/humu.22681] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 11/09/2022]
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal-dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.
Collapse
Affiliation(s)
- Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gile GH, Moog D, Slamovits CH, Maier UG, Archibald JM. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes. Genome Biol Evol 2015; 7:1728-42. [PMID: 25994931 PMCID: PMC4494062 DOI: 10.1093/gbe/evv095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid’s red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes.
Collapse
Affiliation(s)
- Gillian H Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Present address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Germany Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Simon M, Richard EM, Wang X, Shahzad M, Huang VH, Qaiser TA, Potluri P, Mahl SE, Davila A, Nazli S, Hancock S, Yu M, Gargus J, Chang R, Al-sheqaih N, Newman WG, Abdenur J, Starr A, Hegde R, Dorn T, Busch A, Park E, Wu J, Schwenzer H, Flierl A, Florentz C, Sissler M, Khan SN, Li R, Guan MX, Friedman TB, Wu DK, Procaccio V, Riazuddin S, Wallace DC, Ahmed ZM, Huang T, Riazuddin S. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. PLoS Genet 2015; 11:e1005097. [PMID: 25807530 PMCID: PMC4373692 DOI: 10.1371/journal.pgen.1005097] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/23/2015] [Indexed: 12/31/2022] Open
Abstract
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. Mitochondrial respiratory chain (MRC) disease represents a large and heterogeneous group of energy deficiency disorders. Here we report three mutations in NARS2, a mitochondrial asparaginyl-tRNA synthetase, associated with non-syndromic hearing loss (NSHL) and Leigh syndrome in two independent families. Located in the predicted catalytic domain of the protein, missense mutation p.(Val213Phe) results in NSHL (DFNB94) while compound heterozygous mutation (p.Tyr323*; p.Asn381Ser) is leading to Leigh syndrome with auditory neuropathy. In vivo analysis deemed p.Tyr323* mutant protein to be unstable. Co-immunoprecipitation assays show that p.Asn381Ser mutant disrupts the dimerization ability of NARS2. Leigh syndrome patient fibroblasts exhibit a decreased steady-state level of mt-tRNAAsn. In addition, in these cells, the mitochondrial respiratory chain is deficient, including significantly decreased oxygen consumption rates and electron transport chain activities. These functions can be partially restored with over-expression of wild-type NARS2 but not with p.Val213Phe mutant protein. Our study provides new insights into the genes that are necessary for the function of brain and inner ear sensory cells in humans.
Collapse
Affiliation(s)
- Mariella Simon
- Department of Developmental and Cellular Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, United States of America
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Vincent H. Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tanveer A. Qaiser
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Mahl
- Division of Pediatric Otolaryngology Head & Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Antonio Davila
- Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sabiha Nazli
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saege Hancock
- Trovagene, San Diego, California, United States of America
| | - Margret Yu
- Marshall B Ketchum University, Fullerton, California, United States of America
| | - Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, United States of America
| | - Richard Chang
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Nada Al-sheqaih
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
| | - William G. Newman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), Manchester, United Kingdom
| | - Jose Abdenur
- CHOC Childrens’, Division of Metabolics, Orange, California, United States of America
| | - Arnold Starr
- Department of Neurology and Neurobiology, University of California, Irvine, Irvine, California, United States of America
| | - Rashmi Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Anke Busch
- Institute of Molecular Biology, Mainz, Germany
| | - Eddie Park
- Department of Developmental and Cellular Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Jie Wu
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California, United States of America
| | - Hagen Schwenzer
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Adrian Flierl
- Parkinson’s Institute and Clinical Center, Sunnyvale, California, United States of America
| | - Catherine Florentz
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Marie Sissler
- Architecture et Réactivité de l’ARN, CNRS, University of Strasbourg, IBMC, Strasbourg, France
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ronghua Li
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Doris K. Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Procaccio
- Biochemistry and Genetics Department, UMR CNRS 6214–INSERM U1083, CHU Angers, Angers, France
| | - Sheikh Riazuddin
- Jinnah Hospital Complex, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- University of Lahore, Lahore, Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (TH); (SR)
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail: (TH); (SR)
| |
Collapse
|
23
|
Vanderwaltozyma polyspora possesses two glycyl-tRNA synthetase genes: one constitutive and one inducible. Fungal Genet Biol 2015; 76:47-56. [PMID: 25683380 DOI: 10.1016/j.fgb.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein synthesis. We herein present evidence that the yeast Vanderwaltozyma polyspora possesses two paralogous glycyl-tRNA synthetase (GlyRS) genes-GRS1 and GRS2. Paradoxically, GRS1 provided functions in both the cytoplasm and mitochondria, while GRS2 was essentially silent under normal growth conditions. Expression of GRS2 could be activated by stresses such as high pH or ethanol and most effectively by high temperature. The expressed GlyRS2 protein was exclusively found in the cytoplasm and more stable under heat-shock conditions (37°C) than under normal growth conditions (30°C) in vivo. In addition, GRS2 effectively rescued the cytoplasmic defect of a Saccharomyces cerevisiae GRS1 knockout strain when expressed from a constitutive promoter. Moreover, the purified GlyRS2 enzyme was fairly active at both 30°C and 37°C in glycylation of yeast tRNA in vitro. However, unexpectedly, the purified GlyRS2 enzyme was practically inactive at temperature above 40°C in vitro. Our study suggests that GRS2 is an inducible gene that acts under stress conditions where GlyRS1 may be insufficient, unavailable, or rendered inactive.
Collapse
|
24
|
Bullwinkle T, Lazazzera B, Ibba M. Quality Control and Infiltration of Translation by Amino Acids Outside of the Genetic Code. Annu Rev Genet 2014; 48:149-66. [DOI: 10.1146/annurev-genet-120213-092101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tammy Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - Beth Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
25
|
Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One 2014; 9:e94659. [PMID: 24743154 PMCID: PMC3990555 DOI: 10.1371/journal.pone.0094659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 12/03/2022] Open
Abstract
Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.
Collapse
|
26
|
Idiosyncrasies in decoding mitochondrial genomes. Biochimie 2014; 100:95-106. [PMID: 24440477 DOI: 10.1016/j.biochi.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.
Collapse
|
27
|
Sleigh JN, Grice SJ, Burgess RW, Talbot K, Cader MZ. Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Hum Mol Genet 2013; 23:2639-50. [PMID: 24368416 DOI: 10.1093/hmg/ddt659] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterized by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function GARS mutations to lower motor neuron degeneration remain unidentified. The neuromuscular junction (NMJ) appears to be an early target for pathology in a number of peripheral nerve diseases and becomes denervated at later stages in two mouse models of CMT2D. We therefore performed a detailed longitudinal examination of NMJs in the distal lumbrical muscles and the proximal transversus abdominis (TVA) muscles of wild-type and Gars mutant mice. We determined that mutant lumbrical NMJs display a persistent defect in maturation that precedes a progressive, age-dependent degeneration. Conversely, the TVA remains relatively unaffected, with only a subtle, short-lived impairment in pre- and post-synaptic development and no reduction in lower motor neuron connectivity to muscle. Together, these observations suggest that mutant Gars is associated with compromised development of the NMJ prior to synaptic degeneration and highlight the neuromuscular synapse as an important site of early, selective pathology in CMT2D mice.
Collapse
|
28
|
An insertion peptide in yeast glycyl-tRNA synthetase facilitates both productive docking and catalysis of cognate tRNAs. Mol Cell Biol 2013; 33:3515-23. [PMID: 23816885 DOI: 10.1128/mcb.00122-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme's catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.
Collapse
|
29
|
Chen SJ, Wu YH, Huang HY, Wang CC. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS One 2012; 7:e33363. [PMID: 22438917 PMCID: PMC3306390 DOI: 10.1371/journal.pone.0033363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/13/2012] [Indexed: 12/04/2022] Open
Abstract
Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower KM value for yeast tRNAGly under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37°C, but not at the optimal temperature of 30°C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jung-li, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Hirakawa Y, Burki F, Keeling PJ. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes. J Cell Sci 2012; 125:6176-84. [DOI: 10.1242/jcs.116533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In plants, many nucleus-encoded proteins are targeted to both mitochondria and plastids, and this process is generally mediated by ambiguous N-terminal targeting sequences that are recognized by receptors on both organelles. In many algae, however, plastids were acquired by secondarily engulfing green or red algae, which were retained within the endomembrane system. Protein targeting to these secondary plastids is more complex, and because they do not reside directly in the cytoplasm, dual targeting could not function as it does in plant cells. Here we investigate dual targeting of aminoacyl-tRNA synthetases (aaRSs) in chlorarachniophytes, complex algae that possess secondary plastids and a relict nucleus derived from a green algal endosymbiont. Chlorarachniophytes have four genome-containing compartments, but almost all the aaRSs are nucleus-encoded and present in fewer than four copies (some as few as two), suggesting multiple targeting. We characterized the subcellular localization of two classes, HisRS (three copies) and GlyRS (two copies), using GFP fusion proteins. In both cases, one copy was dually targeted to mitochondria and plastids, but unlike plants this was mediated by translation initiation variants. We also found the periplastidal compartment (the relict green algal cytoplasm) lacks both GlyRS and a cognate tRNA, suggesting pre-charged host tRNAs are imported into this compartment. Leader analysis of other aaRSs suggests alternative translation is a common strategy for dual targeting in these complex cells. Overall, dual targeting to mitochondria and plastids is a shared feature of plastid-bearing organisms, but the increased complexity of trafficking into secondary plastids requires a different strategy.
Collapse
|
31
|
Chen SJ, Lee CY, Lin ST, Wang CC. Rescuing a dysfunctional homologue of a yeast glycyl-tRNA synthetase gene. ACS Chem Biol 2011; 6:1182-7. [PMID: 21877692 DOI: 10.1021/cb200240a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast Saccharomyces cerevisiae contains two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 is dual functional in that possesses both cytoplasmic and mitochondrial activities, whereas GRS2 is pseudogene-like. GlyRS1 and GlyRS2 are highly similar on the whole but are distinguished by a lysine-rich insertion domain of 44 amino acid residues, present only in GlyRS1. We herein present evidence that whereas the insertion domain is dispensable for the complementary activity of GRS1in vivo, deletion of this domain from GlyRS1 reduced its aminoacylation activity by up to 9-fold. On the other hand, fusion of a constitutive ADH promoter to GRS2 failed to confer a functional phenotype to the gene, but further fusion of ARC1 (a yeast gene encoding a tRNA-binding protein, Arc1p) to this hybrid gene successfully rescued its activity. Most intriguingly, purified GlyRS2 retained a substantial level of aminoacylation activity. Fusion of Arc1p to this enzyme further enhanced its activity and stability. These findings highlight not only the structural integrity of the pseudogene-encoded enzyme but also the necessity of obtaining an auxiliary tRNA-binding domain for functioning of a yeast tRNA synthetase.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Department of Life Sciences, National Central University, 300 Jung-da Rd., Jung-li 32001, Taiwan
| | - Chih-Ying Lee
- Department of Life Sciences, National Central University, 300 Jung-da Rd., Jung-li 32001, Taiwan
| | - Szu-Ting Lin
- Department of Life Sciences, National Central University, 300 Jung-da Rd., Jung-li 32001, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, 300 Jung-da Rd., Jung-li 32001, Taiwan
| |
Collapse
|
32
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
33
|
Frechin M, Senger B, Brayé M, Kern D, Martin RP, Becker HD. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 2009; 23:1119-30. [PMID: 19417106 DOI: 10.1101/gad.518109] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is impossible to predict which pathway, direct glutaminylation of tRNA(Gln) or tRNA-dependent transamidation of glutamyl-tRNA(Gln), generates mitochondrial glutaminyl-tRNA(Gln) for protein synthesis in a given species. The report that yeast mitochondria import both cytosolic glutaminyl-tRNA synthetase and tRNA(Gln) has challenged the widespread use of the transamidation pathway in organelles. Here we demonstrate that yeast mitochondrial glutaminyl-tRNA(Gln) is in fact generated by a transamidation pathway involving a novel type of trimeric tRNA-dependent amidotransferase (AdT). More surprising is the fact that cytosolic glutamyl-tRNA synthetase ((c)ERS) is imported into mitochondria, where it constitutes the mitochondrial nondiscriminating ERS that generates the mitochondrial mischarged glutamyl-tRNA(Gln) substrate for the AdT. We show that dual localization of (c)ERS is controlled by binding to Arc1p, a tRNA nuclear export cofactor that behaves as a cytosolic anchoring platform for (c)ERS. Expression of Arc1p is down-regulated when yeast cells are switched from fermentation to respiratory metabolism, thus allowing increased import of (c)ERS to satisfy a higher demand of mitochondrial glutaminyl-tRNA(Gln) for mitochondrial protein synthesis. This novel strategy that enables a single protein to be localized in both the cytosol and mitochondria provides a new paradigm for regulation of the dynamic subcellular distribution of proteins between membrane-separated compartments.
Collapse
Affiliation(s)
- Mathieu Frechin
- UPR 9002, Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
34
|
Turunen O, Seelke R, Macosko J. In silico evidence for functional specialization after genome duplication in yeast. FEMS Yeast Res 2009; 9:16-31. [PMID: 19133069 PMCID: PMC2704937 DOI: 10.1111/j.1567-1364.2008.00451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A fairly recent whole-genome duplication (WGD) event in yeast enables the effects of gene duplication and subsequent functional divergence to be characterized. We examined 15 ohnolog pairs (i.e. paralogs from a WGD) out of c. 500 Saccharomyces cerevisiae ohnolog pairs that have persisted over an estimated 100 million years of evolution. These 15 pairs were chosen for their high levels of asymmetry, i.e. within the pair, one ohnolog had evolved much faster than the other. Sequence comparisons of the 15 pairs revealed that the faster evolving duplicated genes typically appear to have experienced partially--but not fully--relaxed negative selection as evidenced by an average nonsynonymous/synonymous substitution ratio (dN/dS(avg)=0.44) that is higher than the slow-evolving genes' ratio (dN/dS(avg)=0.14) but still <1. Increased number of insertions and deletions in the fast-evolving genes also indicated loosened structural constraints. Sequence and structural comparisons indicated that a subset of these pairs had significant differences in their catalytically important residues and active or cofactor-binding sites. A literature survey revealed that several of the fast-evolving genes have gained a specialized function. Our results indicate that subfunctionalization and even neofunctionalization has occurred along with degenerative evolution, in which unneeded functions were destroyed by mutations.
Collapse
Affiliation(s)
- Ossi Turunen
- Department of Biotechnology and Chemical Technology, Helsinki University of Technology, Espoo, Finland.
| | | | | |
Collapse
|
35
|
Duchêne AM, Pujol C, Maréchal-Drouard L. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 2008; 55:1-18. [PMID: 19083240 DOI: 10.1007/s00294-008-0223-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 12/13/2022]
Abstract
During evolution, most of the bacterial genes from the ancestral endosymbiotic alpha-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. A crucial evolutionary step was the establishment of macromolecule import systems to allow the come back of proteins and RNAs into the organelle. Paradoxically, the few mitochondria-encoded protein genes remain essential and must be translated by a mitochondrial translation machinery mainly constituted by nucleus-encoded components. Two crucial partners of the mitochondrial translation machinery are the aminoacyl-tRNA synthetases and the tRNAs. All mitochondrial aminoacyl-tRNA synthetases and many tRNAs are imported from the cytosol into the mitochondria in eukaryotic cells. During the last few years, their origin and their import into the organelle have been studied in evolutionary distinct organisms and we review here what is known in this field.
Collapse
Affiliation(s)
- Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche du CNRS, Associated with Louis Pasteur University, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
36
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for performing the first step of protein synthesis. Specifically, ARSs attach amino acids to their cognate tRNA molecules in the cytoplasm and mitochondria. Recent studies have demonstrated that mutations in genes encoding ARSs can result in neurodegeneration, raising many questions about the role of these enzymes (and protein synthesis in general) in neuronal function. In this review, we summarize the current knowledge of genetic diseases that are associated with mutations in ARS-encoding genes, discuss the potential pathogenic mechanisms underlying these disorders, and point to likely areas of future research that will advance our understanding about the role of ARSs in genetic diseases.
Collapse
Affiliation(s)
- Anthony Antonellis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Chen SJ, Ko CY, Yen CW, Wang CC. Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem 2008; 284:818-27. [PMID: 19010786 DOI: 10.1074/jbc.m804378200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Earlier studies showed that the redundancy of ACG initiation codons enhanced the efficiency of translation initiation by 3- to 6-fold. Evidence presented here shows that this "redundancy effect" can be attributed to a favorable sequence context and, to a lesser extent, remedial initiation. In the case of redundant ACG initiator codons, the second ACG not only acts as a remedial initiation site for scanning ribosomes that skip the first ACG but also enhances the activity of the preceding initiator by providing a preferable "A" at its relative +4 position. Hence, non-successive ACG codons can be as effective as successive ACG codons in initiation, if positioned within a similar context. In contrast, redundant GUG initiation codons (GUG/GUG) bear an unfavorable "G" nucleotide at both the +4 and -3 positions relative to the first and second GUGs, respectively, such that redundant GUG codons act more poorly as translation initiation sites than does a single GUG with a favorable "A" nucleotide in the +4 position ( approximately 2.5-fold). Thus, the sequence context plays a much more important role than remedial initiation in modulating the efficiency of translational initiation from redundant non-AUG codons.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Department of Life Science, National Central University, Jung-li 320, Taiwan
| | | | | | | |
Collapse
|
38
|
Yao P, Zhou XL, He R, Xue MQ, Zheng YG, Wang YF, Wang ED. Unique residues crucial for optimal editing in yeast cytoplasmic Leucyl-tRNA synthetase are revealed by using a novel knockout yeast strain. J Biol Chem 2008; 283:22591-600. [PMID: 18550527 DOI: 10.1074/jbc.m801181200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) contains an editing domain that discriminates leucine from noncognate amino acids to ensure translational fidelity. In this study, a knock-out strain for Saccharomyces cerevisiae LeuRS was constructed to analyze in vivo the tRNA aminoacylation properties of S. cerevisiae and human cytoplasmic LeuRSs. The activities of several editing-defective mutants of ycLeuRS were determined in vitro and compared with those obtained in vivo in a complementation assay performed in the knock-out strain. The editing activities of these mutants were analyzed in the presence of either norvaline, a leucine analogue, or AN2690, a specific inhibitor that targets the editing active site. In general, the in vivo data are consistent with those obtained in vitro. Our results show that ycLeuRS post-transfer editing plays a crucial role in the establishment of the aminoacylation fidelity. When impaired, the viability of cells bearing editing-defective mutants is drastically decreased in the presence of noncognate amino acid. This study also emphasizes the crucial function of some semi-conserved residues around the editing site in modulating the editing efficiency. The assay system can be used to test the effect of compounds that potentially target the aminoacylation or editing active site of fungal LeuRS.
Collapse
Affiliation(s)
- Peng Yao
- State Key Laboratory of Molecular Biology, Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen SJ, Lin G, Chang KJ, Yeh LS, Wang CC. Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. J Biol Chem 2007; 283:3173-3180. [PMID: 18065417 DOI: 10.1074/jbc.m706968200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that translation of mrna for yeast glycyl-tRNA synthetase is alternatively initiated from UUG and a downstream AUG initiation codon. Evidence presented here shows that unlike an AUG initiation codon, efficiency of this non-AUG initiation codon is significantly affected by its sequence context, in particular the nucleotides at positions -3 to -1 relative to the initiation codon. A/A/R (R represents A Or G) and C/G/C appear to be the most and least favorable sequences at these positions, respectively. Mutation of the native context sequence -3 to -1 from AAA to CGC reduced translation initiation from the UUG codon up to 32-fold and resulted in loss of mitochondrial respiration. although an AUG initiation codon is, in general, unresponsive to context changes in yeast, an AAA (-3 to -1) to CGC mutation still reduced its initiating activity up to 8-fold under similar conditions. these results suggest that sequence context is more important for translation initiation in yeast than previously appreciated.
Collapse
Affiliation(s)
- Shun-Jia Chen
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Grace Lin
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Kuang-Jung Chang
- Department of Life Science, National Central University, Jung-li, Taiwan 32001
| | - Lu-Shu Yeh
- Department of Life Science, Tzu-Chi University, Hua-lien, Taiwan 97041
| | - Chien-Chia Wang
- Department of Life Science, National Central University, Jung-li, Taiwan 32001.
| |
Collapse
|
40
|
Chihara T, Luginbuhl D, Luo L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 2007; 10:828-37. [PMID: 17529987 DOI: 10.1038/nn1910] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/18/2007] [Indexed: 12/16/2022]
Abstract
We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.
Collapse
Affiliation(s)
- Takahiro Chihara
- Howard Hughes Medical Institute, Department of Biological Sciences, 385 Serra Mall, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
41
|
Antonellis A, Lee-Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED. Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J Neurosci 2006; 26:10397-406. [PMID: 17035524 PMCID: PMC6674701 DOI: 10.1523/jneurosci.1671-06.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal neuropathies characterized by a phenotype that is more severe in the upper extremities. We previously implicated mutations in the gene encoding glycyl-tRNA synthetase (GARS) as the cause of CMT2D and dSMA-V. GARS is a member of the family of aminoacyl-tRNA synthetases responsible for charging tRNA with cognate amino acids; GARS ligates glycine to tRNA(Gly). Here, we present functional analyses of disease-associated GARS mutations and show that there are not any significant mutation-associated changes in GARS expression levels; that the majority of identified GARS mutations modeled in yeast severely impair viability; and that, in most cases, mutant GARS protein mislocalizes in neuronal cells. Indeed, four of the five mutations studied show loss-of-function features in at least one assay, suggesting that tRNA-charging deficits play a role in disease pathogenesis. Finally, we detected endogenous GARS-associated granules in the neurite projections of cultured neurons and in the peripheral nerve axons of normal human tissue. These data are particularly important in light of the recent identification of CMT-associated mutations in another tRNA synthetase gene [YARS (tyrosyl-tRNA synthetase gene)]. Together, these findings suggest that tRNA-charging enzymes play a key role in maintaining peripheral axons.
Collapse
Affiliation(s)
| | | | | | - Paul Leo
- Genetic Disease Research Branch, and
| | | | | | - Kyungjae Myung
- Genetics and Molecular Biology Branch, National Human Genome Research Institute
| | | | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
42
|
Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 2006; 51:715-26. [PMID: 16982418 DOI: 10.1016/j.neuron.2006.08.027] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/11/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
Of the many inherited Charcot-Marie-Tooth peripheral neuropathies, type 2D (CMT2D) is caused by dominant point mutations in the gene GARS, encoding glycyl tRNA synthetase (GlyRS). Here we report a dominant mutation in Gars that causes neuropathy in the mouse. Importantly, both sensory and motor axons are affected, and the dominant phenotype is not caused by a loss of the GlyRS aminoacylation function. Mutant mice have abnormal neuromuscular junction morphology and impaired transmission, reduced nerve conduction velocities, and a loss of large-diameter peripheral axons, without defects in myelination. The mutant GlyRS enzyme retains aminoacylation activity, and a loss-of-function allele, generated by a gene-trap insertion, shows no dominant phenotype in mice. These results indicate that the CMT2D phenotype is caused not by reduction of the canonical GlyRS activity and insufficiencies in protein synthesis, but instead by novel pathogenic roles for the mutant GlyRS that specifically affect peripheral neurons.
Collapse
Affiliation(s)
- Kevin L Seburn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | | | | | | | | |
Collapse
|
43
|
Chang KJ, Lin G, Men LC, Wang CC. Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 2006; 281:7775-83. [PMID: 16431919 DOI: 10.1074/jbc.m511265200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was recently shown that ALA1, the only alanyl-tRNA synthetase gene in Saccharomyces cerevisiae, uses two successive ACG triplets as the translation initiators for its mitochondrial form. Evidence presented here argues that the second ACG triplet not only acts as a remedial initiation site for scanning ribosomes that skip the first ACG, but also enhances the activity of the preceding initiator by providing a preferable "A" at its relative position +4. Therefore, ALA1 constructs with redundant ACG initiators exhibit stronger complementing activity and express a higher level of protein than do those with a single ACG initiator. A similar scenario is seen when a single or redundant ACG triplets are placed in the positions of the first and second AUG initiators of VAS1, which serve as the start sites of the mitochondrial and cytoplasmic forms of valyl-tRNA synthetase, respectively. Cumulatively, the results suggest that this feature of redundancy of non-AUG initiators in a single mRNA per se may represent a novel paradigm for improving the efficiency of a poor or otherwise nonproductive initiation event.
Collapse
Affiliation(s)
- Kuang-Jung Chang
- Department of Life Science, National Central University, Jung-li, 32001 Taiwan
| | | | | | | |
Collapse
|
44
|
Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC. Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 2004; 279:49656-63. [PMID: 15358761 DOI: 10.1074/jbc.m408081200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although initiation of translation at non-AUG codons occurs occasionally in prokaryotes and higher eukaryotes, it has not been reported in yeast until very recently. Evidence presented here shows that redundant ACG codons are recognized as alternative translation start sites for ALA1, the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase. ALA1 is shown to be a bifunctional gene that provides both cytoplasmic and mitochondrial activities. Unlike most bifunctional genes that contain alternative in-frame AUG initiators, there is only one AUG codon, designated AUG1, close to the 5'-end of the ALA1 open reading frame. Transcriptional mapping identified three overlapping transcripts, with 5'-ends at positions 54, 105, and 117 nucleotides upstream of AUG1, respectively. Site-specific mutagenesis demonstrated that the cytoplasmic and mitochondrial functions of ALA1 are provided by two protein isoforms with distinct amino termini; that is, a short cytoplasmic form initiated at AUG1 and a longer mitochondrial isoform initiated at two upstream in-frame ACG codons, i.e. ACG(-25) and ACG(-24). These two ACG codons function redundantly in initiation of translation. Either codon can function in the absence of the other. The short transcript appears to serve as the template for the cytoplasmic form, whereas the longer transcripts are likely to code for both isoforms via alternative initiation. Because yeast ribosomes in general cannot efficiently recognize a non-AUG initiator, this unique feature of redundancy of non-AUG initiators in a single mRNA may in itself represent a novel paradigm for translation initiation from poor initiators.
Collapse
Affiliation(s)
- Huei-Lin Tang
- Department of Life Science, National Central University, Jung-li, Taiwan 32054
| | | | | | | | | | | |
Collapse
|
45
|
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004; 428:617-24. [PMID: 15004568 DOI: 10.1038/nature02424] [Citation(s) in RCA: 1024] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.
Collapse
Affiliation(s)
- Manolis Kellis
- The Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
46
|
Chang KJ, Wang CC. Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 2004; 279:13778-85. [PMID: 14734560 DOI: 10.1074/jbc.m311269200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although previous studies have already shown that both cytoplasmic and mitochondrial activities of glycyl-tRNA synthetase are provided by a single gene, GRS1,in the yeast Saccharomyces cerevisiae, the mechanism by which this occurs remains unclear. Evidence presented here indicates that this bifunctional property is actually a result of two distinct translational products alternatively generated from a single transcript of this gene. Except for an amino-terminal 23-amino acid extension, these two isoforms have the same polypeptide sequence and function exclusively in their respective compartments under normal conditions. Reporter gene assays further suggest that this leader peptide can function independently as a mitochondrial targeting signal and plays the major role in the subcellular localization of the isoforms. Additionally, whereas the short protein is translationally initiated from a traditional AUG triplet, the longer isoform is generated from an upstream inframe UUG codon. To our knowledge, GRS1 appears to be the first example in the yeast wherein a functional protein isoform is initiated from a naturally occurring non-AUG codon. The results suggest that non-AUG initiation might be a mechanism existing throughout all kingdoms.
Collapse
Affiliation(s)
- Kuang-Jung Chang
- Department of Life Science, National Central University, 300 Jung-da, Jung-li, Taiwan 32054
| | | |
Collapse
|
47
|
Johanson K, Hoang T, Sheth M, Hyman LE. GRS1, a yeast tRNA synthetase with a role in mRNA 3' end formation. J Biol Chem 2003; 278:35923-30. [PMID: 12855679 DOI: 10.1074/jbc.m304978200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription termination and 3' end formation are essential processes necessary for gene expression. However, the specific mechanisms responsible for these events remain elusive. A screen designed to identify trans-acting factors involved in these mechanisms in Saccharomyces cerevisiae identified a temperature-sensitive mutant that displayed phenotypes consistent with a role in transcription termination. The complementing gene was identified as GRS1, which encodes the S. cerevisiae glycyl-tRNA synthetase. This result, although unusual, is not unprecedented given that the involvement of tRNA synthetases in a variety of cellular processes other than translation has been well established. A direct role for the synthetase in transcription termination was determined through several in vitro assays using purified wild type and mutant enzyme. First, binding to two well characterized yeast mRNA 3' ends was demonstrated by cross-linking studies. In addition, it was found that all three substrates compete with each other for binding to GlyRS enzyme. Next, the affinity of the synthetase for the two mRNA 3' ends was found to be similar to that of its "natural" substrate, glycine tRNA in a nitrocellulose filter binding assay. The effect of the grs1-1 mutation was also examined and found to significantly reduce the affinity of the enzyme for the three RNA substrates. Taken together, these data indicate that not only does this synthetase interact with several different RNA substrates, but also that these substrates bind to the same site. These results establish a direct role for GRS1 in mRNA 3' end formation.
Collapse
Affiliation(s)
- Kelly Johanson
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
48
|
Teyssier E, Hirokawa G, Tretiakova A, Jameson B, Kaji A, Kaji H. Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF). Nucleic Acids Res 2003; 31:4218-26. [PMID: 12853640 PMCID: PMC165964 DOI: 10.1093/nar/gkg449] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast protein Rrf1p encoded by the FIL1 nuclear gene bears significant sequence similarity to Escherichia coli ribosome recycling factor (RRF). Here, we call FIL1 Ribosome Recycling Factor of yeast, RRF1. Its gene product, Rrf1p, was localized in mitochondria. Deletion of RRF1 leads to a respiratory incompetent phenotype and to instability of the mitochondrial genome (conversion to rho(-)/rho(0) cytoplasmic petites). Yeast with intact mitochondria and with deleted genomic RRF1 that harbors a plasmid carrying RRF1 was prepared from spores of heterozygous diploid yeast. Such yeast with a mutated allele of RRF1, rrf1-L209P, grew on a non-fermentable carbon source at 30 but not at 36 degrees C, where mitochondrial but not total protein synthesis was 90% inhibited. We propose that Rrf1p is essential for mitochondrial protein synthesis and acts as a RRF in mitochondria.
Collapse
Affiliation(s)
- Emeline Teyssier
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | |
Collapse
|
49
|
Triglia T, Thompson JK, Cowman AF. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 2001; 116:55-63. [PMID: 11463466 DOI: 10.1016/s0166-6851(01)00303-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plasmodia species can bind to the Duffy blood group antigen (Plasmodium vivax and P. knowlesi) or glycophorin A (P. falciparum) on human erythrocytes as receptors for the invasion of merozoites in the asexual life cycle. A number of proteins have been identified in P. vivax, P. knowlesi and P. falciparum that serve as parasite ligands for these interactions and this group of proteins form the erythrocyte binding protein (EBP) family. The availability of sequence data generated as part of the P. falciparum Genome Project has allowed the identification of other genes related to the known EBP family members. We describe the Psi EBA165 gene and show that it has four exons, a structure identical to that described for EBA175. Analysis using reverse transcriptase-polymerase chain reaction (RT-PCR) has shown that all introns are spliced and that this gene is transcribed. The predicted protein would have the same structure as EBA175 containing the F1/F2 domains, a cysteine-rich region followed by a predicted transmembrane region and a short cytoplasmic tail, but the coding region of Psi EBA165 contains frameshifts. It was possible that the frameshifts may be corrected in the transcript, or alternatively, a mechanism could operate that allowed the translation machinery to read through the frameshifts. Antibodies that recognise EBA165 fusion proteins could not detect this protein in the P. falciparum parasites tested. Additionally, it was possible to disrupt the Psi EBA165 gene without affecting the parasite's ability to invade and grow in erythrocytes. These results suggest that the Psi EBA165 gene is a transcribed pseudogene.
Collapse
Affiliation(s)
- T Triglia
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | | | | |
Collapse
|
50
|
Duchêne AM, Peeters N, Dietrich A, Cosset A, Small ID, Wintz H. Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 2001; 276:15275-83. [PMID: 11278923 DOI: 10.1074/jbc.m011525200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.
Collapse
Affiliation(s)
- A M Duchêne
- Institut de Biologie Moléculaire des Plantes du CNRS, Université, CNRS Université Louis Pasteur, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|