1
|
Yilmaz-Aydogan H, Kanca-Demirci D, Gul N, Aydogan C, Poyrazoglu S, Tutuncu Y, Malikova F, Ozturk O, Satman I. Target gene variations of PPAR isoforms may contribute to MODY heterogeneity: A preliminary comparative study with type 2 diabetes. Diabetes Res Clin Pract 2024; 218:111932. [PMID: 39551189 DOI: 10.1016/j.diabres.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS The objective of this study was to evaluate the associations of several genetic variants of peroxisome proliferator-activated receptors (PPARs) on clinical and laboratory parameters in patients with maturity-onset diabetes of the young (MODY), and possible contribution to heterogeneity of the disease. METHODS The study groups comprised patients with MODY (genetically confirmed (n = 28), clinically relevant but genetically unconfirmed; MODYX (n = 56)), type 2 diabetes mellitus (T2DM; n = 94) and healthy controls (n = 153). PPARA-L162V-(rs1800206), PPARG-C161T-(rs3856806), P12A-(rs1801282), and PPARB/D + 294 T/C-(rs2016520) polymorphisms were genotyped by real-time-PCR. RESULTS The results demonstrated that the frequencies of PPARA-LL162 (p = 0.002), PPARG-CC161 (p = 0.002), and PPARG-ProPro (p = 0.012) genotypes were significantly higher in the MODY group compared to the controls. Furthermore, total-MODY and MODYX groups had a higher frequency of PPARA-LL162 genotype than T2DM (p = 0.005 and p = 0.006, respectively). The frequency of the PPARB/D + 294 T allele was significantly higher in individuals with T2DM than in genetically-determined MODY group (p = 0.019). The PPARA-LL162 genotype was associated with early-onset diabetes in total-MODY (p = 0.022) and T2DM (p < 0.05) groups. CONCLUSIONS The association of PPARA-L162V polymorphism with early-onset diabetes in both T2DM and MODY is a noteworthy finding. Considering these results, we suggested that genetic polymorphisms in PPAR isoforms may contribute to the clinical and metabolic heterogeneity of MODY.
Collapse
Affiliation(s)
- Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Deniz Kanca-Demirci
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Türkiye.
| | - Nurdan Gul
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Sukran Poyrazoglu
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Yıldız Tutuncu
- Department of KUTTAM Immunology, Faculty of Medicine, Koc University, Istanbul, Türkiye.
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Mansoor H, Lee IXY, Lin MTY, Ang HP, Xue YC, Krishaa L, Patil M, Koh SK, Tan HC, Zhou L, Liu YC. Topical and oral peroxisome proliferator-activated receptor-α agonist ameliorates diabetic corneal neuropathy. Sci Rep 2024; 14:13435. [PMID: 38862650 PMCID: PMC11167005 DOI: 10.1038/s41598-024-64451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal β-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased β-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.
Collapse
Affiliation(s)
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Heng Pei Ang
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Yao Cong Xue
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - L Krishaa
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Moushmi Patil
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomic Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Lei Zhou
- Department of Applied Biology and Chemical Technology, School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore.
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore.
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore.
- Eye-Academic Clinical Program, Singapore Graduate Medical School, Duke-National University, Singapore, Singapore.
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
4
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
5
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
6
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
7
|
Sugawara R, Sugiyama H, Nakamura K, Tohgi K, Hongo T, Tsuchiya M, Momoki N, Nose S, Yutani C, Ikeda Y, Ikeda T, Ito H. Electron Microscopy Revealed Massive Lipid Droplets in Cardiomyocytes in a Patient with Cardiogenic Shock Following a Fulminant Type 1 Diabetes Mellitus. Int Heart J 2021; 62:197-200. [PMID: 33518659 DOI: 10.1536/ihj.20-537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 52-year-old man with consciousness disorder following a 2-day history of general fatigue, diarrhea, vomiting and excessive thirst was admitted to our hospital. Severe hyperglycemia (1,739 mg/dL) with a slightly elevated HbA1c level (6.9%), ketonuria and low C-peptide level (0.07 ng/mL) confirmed the diagnosis of fulminant type 1 diabetes mellitus (FT1DM). Following sudden unexplained cardiogenic shock shortly after the initiation of insulin therapy with no evidence of myocardial ischemia assessed by coronary angiography, the patient was supported with percutaneous venoarterial extracorporeal membrane oxygenation. Electron microscopic analysis of the myocardium revealed massive lipid droplets without the infiltration of inflammatory cells. His left ventricular function began to recover during the following days and returned to a normal level on day 14. Currently, the impact of FT1DM on intramyocardial lipid deposition is poorly understood. However, this case suggests that even short-term exposure to high concentrations of glucose can be responsible for lipotoxicity followed by severe cardiac dysfunction.
Collapse
Affiliation(s)
- Ryosuke Sugawara
- Department of Internal Medicine, Okayama Saiseikai General Hospital
| | - Hiroki Sugiyama
- Department of Internal Medicine, Okayama Saiseikai General Hospital.,Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kiyotaka Tohgi
- Department of Cardiology, The Sakakibara Heart Institute of Okayama
| | - Takashi Hongo
- Department of Emergency Medicine, Okayama Saiseikai General Hospital
| | - Midori Tsuchiya
- Department of Emergency Medicine, Okayama Saiseikai General Hospital
| | - Noriya Momoki
- Department of Internal Medicine, Okayama Saiseikai General Hospital
| | - Soichiro Nose
- Department of Pathology, Okayama Saiseikai General Hospital
| | | | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center
| | - Tetsuya Ikeda
- Department of Internal Medicine, Okayama Saiseikai General Hospital
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
8
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
9
|
Matlock HG, Qiu F, Malechka V, Zhou K, Cheng R, Benyajati S, Whelchel A, Karamichos D, Ma JX. Pathogenic Role of PPARα Downregulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes. Diabetes 2020; 69:1279-1291. [PMID: 32213513 PMCID: PMC7243299 DOI: 10.2337/db19-0898] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/15/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to investigate the protective role of peroxisome proliferator-activated receptor α (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from human donors with and without diabetes. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was downregulated in the corneas of humans with diabetes and diabetic rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which were partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα -/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα -/- mice relative to wild-type mice by 21 months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects the corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy.
Collapse
Affiliation(s)
- H Greg Matlock
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Fangfang Qiu
- Department of Ophthalmology, Tufts Medical Center, Boston, MA
| | - Volha Malechka
- National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kelu Zhou
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Siribhinya Benyajati
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy Whelchel
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dimitrios Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
10
|
Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes 2020; 69:279-290. [PMID: 32079704 DOI: 10.2337/dbi19-0014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022]
Abstract
Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493-1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress."
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S R Murthy Madiraju
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| |
Collapse
|
11
|
Maturing iPSC-Derived Cardiomyocytes. Cells 2020; 9:cells9010213. [PMID: 31952196 PMCID: PMC7016692 DOI: 10.3390/cells9010213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
|
12
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors with a key role in glucose and lipid metabolism. PPARs are expressed in many cell types including pancreatic beta cells and immune cells, where they regulate insulin secretion and T cell differentiation, respectively. Moreover, various PPAR agonists prevent diabetes in the non-obese diabetic (NOD) mouse model of type 1 diabetes. PPARs are thus of interest in type 1 diabetes (T1D) as they represent a novel approach targeting both the pancreas and the immune system. In this review, we examine the role of PPARs in immune responses and beta cell biology and their potential as targets for treatment of T1D.
Collapse
|
13
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
14
|
Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, Virzì A, Bandiera S, Jamey C, Meszaros G, Brumaru D, Mukherji A, Durand SC, Heydmann L, Verrier ER, El Saghire H, Hamdane N, Bartenschlager R, Fereshetian S, Ramberger E, Sinha R, Nabian M, Everaert C, Jovanovic M, Mertins P, Carr SA, Chayama K, Dali-Youcef N, Ricci R, Bardeesy NM, Fujiwara N, Gevaert O, Zeisel MB, Hoshida Y, Pochet N, Baumert TF. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology 2019; 157:537-551.e9. [PMID: 30978357 PMCID: PMC8318381 DOI: 10.1053/j.gastro.2019.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of hepatitis C virus (HCV) infection, liver disease progression, and hepatocarcinogenesis are only partially understood. We performed genomic, proteomic, and metabolomic analyses of HCV-infected cells and chimeric mice to learn more about these processes. METHODS Huh7.5.1dif (hepatocyte-like cells) were infected with culture-derived HCV and used in RNA sequencing, proteomic, metabolomic, and integrative genomic analyses. uPA/SCID (urokinase-type plasminogen activator/severe combined immunodeficiency) mice were injected with serum from HCV-infected patients; 8 weeks later, liver tissues were collected and analyzed by RNA sequencing and proteomics. Using differential expression, gene set enrichment analyses, and protein interaction mapping, we identified pathways that changed in response to HCV infection. We validated our findings in studies of liver tissues from 216 patients with HCV infection and early-stage cirrhosis and paired biopsy specimens from 99 patients with hepatocellular carcinoma, including 17 patients with histologic features of steatohepatitis. Cirrhotic liver tissues from patients with HCV infection were classified into 2 groups based on relative peroxisome function; outcomes assessed included Child-Pugh class, development of hepatocellular carcinoma, survival, and steatohepatitis. Hepatocellular carcinomas were classified according to steatohepatitis; the outcome was relative peroxisomal function. RESULTS We quantified 21,950 messenger RNAs (mRNAs) and 8297 proteins in HCV-infected cells. Upon HCV infection of hepatocyte-like cells and chimeric mice, we observed significant changes in levels of mRNAs and proteins involved in metabolism and hepatocarcinogenesis. HCV infection of hepatocyte-like cells significantly increased levels of the mRNAs, but not proteins, that regulate the innate immune response; we believe this was due to the inhibition of translation in these cells. HCV infection of hepatocyte-like cells increased glucose consumption and metabolism and the STAT3 signaling pathway and reduced peroxisome function. Peroxisomes mediate β-oxidation of very long-chain fatty acids; we found intracellular accumulation of very long-chain fatty acids in HCV-infected cells, which is also observed in patients with fatty liver disease. Cells in livers from HCV-infected mice had significant reductions in levels of the mRNAs and proteins associated with peroxisome function, indicating perturbation of peroxisomes. We found that defects in peroxisome function were associated with outcomes and features of HCV-associated cirrhosis, fatty liver disease, and hepatocellular carcinoma in patients. CONCLUSIONS We performed combined transcriptome, proteome, and metabolome analyses of liver tissues from HCV-infected hepatocyte-like cells and HCV-infected mice. We found that HCV infection increases glucose metabolism and the STAT3 signaling pathway and thereby reduces peroxisome function; alterations in the expression levels of peroxisome genes were associated with outcomes of patients with liver diseases. These findings provide insights into liver disease pathogenesis and might be used to identify new therapeutic targets.
Collapse
Affiliation(s)
- Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Armando Andres Roca Suarez
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Alessia Virzì
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Carole Jamey
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gergö Meszaros
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Daniel Brumaru
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Atish Mukherji
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Nourdine Hamdane
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shaunt Fereshetian
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Evelyn Ramberger
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Rileen Sinha
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mohsen Nabian
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Celine Everaert
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marko Jovanovic
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Department of Biological Sciences, Columbia University, New York, New York
| | - Philipp Mertins
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nassim Dali-Youcef
- Université de Strasbourg, Strasbourg, France; Laboratoire de Biochimie et de Biologie Moléculaire, Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Romeo Ricci
- Université de Strasbourg, Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | | | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olivier Gevaert
- Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, California
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, Massachusetts; Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hopitalo-Universitaire, Strasbourg, France.
| |
Collapse
|
15
|
Gal-Tanamy M. Multi-omic Analyses Reveal Complex Interactions Between HCV and Hepatocytes Demonstrating That the Red Queen Is Up and Running. Gastroenterology 2019; 157:300-302. [PMID: 31255661 DOI: 10.1053/j.gastro.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Meital Gal-Tanamy
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
16
|
Krishna MS, Revathy VM, Jaleel A. Adipocytes utilize sucrose as an energy source—Effect of different carbohydrates on adipocyte differentiation. J Cell Physiol 2019; 235:891-899. [DOI: 10.1002/jcp.29003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Mahesh S. Krishna
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| | - V. M. Revathy
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| | - Abdul Jaleel
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| |
Collapse
|
17
|
Ye R, Onodera T, Scherer PE. Lipotoxicity and β Cell Maintenance in Obesity and Type 2 Diabetes. J Endocr Soc 2019; 3:617-631. [PMID: 30834357 PMCID: PMC6391718 DOI: 10.1210/js.2018-00372] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity and diabetes are often associated with lipotoxic conditions in multiple tissues. The insulin-producing β cells are susceptible to elevated lipid levels and the ensuing lipotoxicity. The preservation of β cell mass and function is one of the main goals of diabetes management under these metabolically stressful conditions. However, the adverse effects from the adaptive signaling pathways that β cells use to counteract lipotoxic stress have secondary negative effects in their own right. Antilipotoxic signaling cascades in β cells can contribute to their eventual failure. Such dual roles are seen for many other biological adaptive processes as well.
Collapse
Affiliation(s)
- Risheng Ye
- Department of Medical Education, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, Texas
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toshiharu Onodera
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
19
|
Lamichane S, Dahal Lamichane B, Kwon SM. Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis. Int J Mol Sci 2018; 19:ijms19040949. [PMID: 29565812 PMCID: PMC5979443 DOI: 10.3390/ijms19040949] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor superfamily, are important in whole-body energy metabolism. PPARs are classified into three isoforms, namely, PPARα, β/δ, and γ. They are collectively involved in fatty acid oxidation, as well as glucose and lipid metabolism throughout the body. Importantly, the three isoforms of PPARs have complementary and distinct metabolic activities for energy balance at a cellular and whole-body level. PPARs also act with other co-regulators to maintain energy homeostasis. When endogenous ligands bind with these receptors, they regulate the transcription of genes involved in energy homeostasis. However, the exact molecular mechanism of PPARs in energy metabolism remains unclear. In this review, we summarize the importance of PPAR signals in multiple organs and focus on the pivotal roles of PPAR signals in cellular and whole-body energy homeostasis.
Collapse
Affiliation(s)
- Shreekrishna Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Babita Dahal Lamichane
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea.
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| |
Collapse
|
20
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Shen P, Yue Y, Kim KH, Park Y. Piceatannol Reduces Fat Accumulation in Caenorhabditis elegans. J Med Food 2017; 20:887-894. [PMID: 28514198 DOI: 10.1089/jmf.2016.0179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excess fat accumulation and abnormal metabolism are involved in numerous diseases and thus the research on identification of compounds that can regulate energy homeostasis could significantly facilitate the current effort to prevent and/or treat metabolic disorders. Piceatannol, one of the natural stilbenes, was previously found to decrease lipid accumulation of 3T3-L1 adipocytes. However, its role in fat metabolism in vivo is not known. Thus, Caenorhabditis elegans as an animal model was used in the current study to determine the effect of piceatannol on fat accumulation and its underlying mechanisms. The results showed that 50 and 100 μM piceatannol significantly reduced fat accumulation of wild-type worms grown in normal and high-glucose conditions without altering the growth rate, worm length, pumping rate, or moving speed. The current study further indicated that piceatannol decreased the expression of sbp-1 (encodes an ortholog of mammalian sterol regulatory element-binding protein) and its target gene fasn-1 (encodes an ortholog of fatty acid synthase) as well as increased the expression of hosl-1 (encodes an ortholog of hormone-sensitive lipase) in glucose-treated worms. These data suggested that piceatannol reduced fat accumulation in C. elegans by suppression of genes involved in lipid synthesis and possibly through stimulation of lipolysis. Given that piceatannol exerts similar effects in both C. elegans and 3T3-L1 cells, our finding could provide a mechanistic insight into the role of piceatannol in lipid metabolism in mammals.
Collapse
Affiliation(s)
- Peiyi Shen
- 1 Department of Food Science, University of Massachusetts , Amherst, Massachusetts, USA
| | - Yiren Yue
- 1 Department of Food Science, University of Massachusetts , Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- 2 Department of Food Science, Purdue University , West Lafayette, Indiana, USA .,3 Center for Cancer Research, Purdue University , West Lafayette, Indiana, USA
| | - Yeonhwa Park
- 1 Department of Food Science, University of Massachusetts , Amherst, Massachusetts, USA
| |
Collapse
|
22
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
23
|
Sharma PR, Mackey AJ, Dejene EA, Ramadan JW, Langefeld CD, Palmer ND, Taylor KD, Wagenknecht LE, Watanabe RM, Rich SS, Nunemaker CS. An Islet-Targeted Genome-Wide Association Scan Identifies Novel Genes Implicated in Cytokine-Mediated Islet Stress in Type 2 Diabetes. Endocrinology 2015; 156:3147-56. [PMID: 26018251 PMCID: PMC4541617 DOI: 10.1210/en.2015-1203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genome-wide association studies in human type 2 diabetes (T2D) have renewed interest in the pancreatic islet as a contributor to T2D risk. Chronic low-grade inflammation resulting from obesity is a risk factor for T2D and a possible trigger of β-cell failure. In this study, microarray data were collected from mouse islets after overnight treatment with cytokines at concentrations consistent with the chronic low-grade inflammation in T2D. Genes with a cytokine-induced change of >2-fold were then examined for associations between single nucleotide polymorphisms and the acute insulin response to glucose (AIRg) using data from the Genetics Underlying Diabetes in Hispanics (GUARDIAN) Consortium. Significant evidence of association was found between AIRg and single nucleotide polymorphisms in Arap3 (5q31.3), F13a1 (6p25.3), Klhl6 (3q27.1), Nid1 (1q42.3), Pamr1 (11p13), Ripk2 (8q21.3), and Steap4 (7q21.12). To assess the potential relevance to islet function, mouse islets were exposed to conditions modeling low-grade inflammation, mitochondrial stress, endoplasmic reticulum (ER) stress, glucotoxicity, and lipotoxicity. RT-PCR revealed that one or more forms of stress significantly altered expression levels of all genes except Arap3. Thapsigargin-induced ER stress up-regulated both Pamr1 and Klhl6. Three genes confirmed microarray predictions of significant cytokine sensitivity: F13a1 was down-regulated 3.3-fold by cytokines, Ripk2 was up-regulated 1.5- to 3-fold by all stressors, and Steap4 was profoundly cytokine sensitive (167-fold up-regulation). Three genes were thus closely associated with low-grade inflammation in murine islets and also with a marker for islet function (AIRg) in a diabetes-prone human population. This islet-targeted genome-wide association scan identified several previously unrecognized candidate genes related to islet dysfunction during the development of T2D.
Collapse
Affiliation(s)
- Poonam R Sharma
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Aaron J Mackey
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Eden A Dejene
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - James W Ramadan
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Carl D Langefeld
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Nicholette D Palmer
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Kent D Taylor
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Lynne E Wagenknecht
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Richard M Watanabe
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Stephen S Rich
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Craig S Nunemaker
- Department of Medicine (P.R.S., E.A.D., J.W.R., C.S.N.), Center for Public Health Genomics (A.J.M., S.S.R.), and Department of Chemistry (E.A.D.), University of Virginia, Charlottesville, Virginia 22904; Department of Biochemistry (N.D.P.), Center for Genomics and Personalized Medicine Research (N.D.P.), Center for Diabetes Research (N.D.P.), Center for Public Health Genomics (C.D.L., N.D.P., L.E.W.), Department of Biostatistical Sciences (C.D.L.), and Division of Public Health Sciences (L.E.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Physiology and Biophysics (R.M.W.), Department of Preventive Medicine, and USC Diabetes and Obesity Research Institute (R.M.W.), Keck School of Medicine of University of Southern California, Los Angeles, California 90033; and Institute for Translational Genomics and Population Sciences (K.D.T.) and Department of Pediatrics (K.D.T.), Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| |
Collapse
|
24
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
25
|
Kim-Muller JY, Zhao S, Srivastava S, Mugabo Y, Noh HL, Kim YR, Madiraju SRM, Ferrante AW, Skolnik EY, Prentki M, Accili D. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metab 2014; 20:593-602. [PMID: 25264246 PMCID: PMC4192072 DOI: 10.1016/j.cmet.2014.08.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/25/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022]
Abstract
Pancreatic β cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of β cell mass. It's unclear how one begets the other. We have shown that loss of β cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature β cells results in early-onset, maturity-onset diabetes of the young (MODY)-like diabetes, with abnormalities of the MODY networks Hnf4α, Hnf1α, and Pdx1. FoxO-deficient β cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as an energy source. This results in impaired ATP generation and reduced Ca(2+)-dependent insulin secretion. The present findings demonstrate a secretory defect caused by impaired FoxO activity that antedates dedifferentiation. We propose that defects in both pancreatic β cell function and mass arise through FoxO-dependent mechanisms during diabetes progression.
Collapse
Affiliation(s)
- Ja Young Kim-Muller
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Shangang Zhao
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Shekhar Srivastava
- Division of Nephrology, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Yves Mugabo
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hye-Lim Noh
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - YoungJung R Kim
- Department of Genetics and Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - S R Murthy Madiraju
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Anthony W Ferrante
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Edward Y Skolnik
- Division of Nephrology, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center at the CRCHUM and Departments of Nutrition and Biochemistry, and Molecular Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Matsunaga T, Li S, Adachi T, Joo E, Gu N, Yamazaki H, Yasuda K, Kondoh T, Tsuda K. Hyperoxia reverses glucotoxicity-induced inhibition of insulin secretion in rat INS-1 β cells. Biosci Biotechnol Biochem 2014; 78:843-50. [PMID: 25035988 DOI: 10.1080/09168451.2014.905175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic hyperglycemia has deleterious effects on pancreatic β-cell function, a process known as glucotoxicity. This study examined whether chronic high glucose (CHG) induces cellular hypoxia in rat INS-1 β cells, and whether hyperoxia (35% O2) can reverse glucotoxicity-induced inhibition of insulin secretion. CHG (33.3 mm, 96 h) reduced insulin secretion, and down-regulated insulin and pancreatic duodenal homeobox factor 1 gene expression. CHG also increased intracellular pimonidazole-protein adducts, a marker for hypoxia. CHG also enhanced hypoxia-inducible factor 1α (HIF-1α) protein expression and its DNA-binding activity, which was accompanied by a decrease in mRNA expression of glucose transporter 2 (GLUT2), glucokinase and uncoupling protein-2 and an increase in mRNA expression of GLUT1 and pyruvate dehydrogenase kinase 1. Hyperoxia restored the decrease in insulin secretion and the gene expression except for GLUT2, and suppressed intracellular hypoxia and HIF-1α activation. These results suggest that glucotoxicity may cause β-cell hypoxia. Hyperoxia might prevent glucotoxicity-induced β-cell dysfunction and improve insulin secretion.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- a Faculty of Health and Living Sciences Education , Naruto University of Education , Naruto , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guay C, Joly É, Pepin É, Barbeau A, Hentsch L, Pineda M, Madiraju SRM, Brunengraber H, Prentki M. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells. PLoS One 2013; 8:e77097. [PMID: 24130841 PMCID: PMC3795013 DOI: 10.1371/journal.pone.0077097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.
Collapse
Affiliation(s)
- Claudiane Guay
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Érik Joly
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Émilie Pepin
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Annie Barbeau
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Lisa Hentsch
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Marco Pineda
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - S. R. Murthy Madiraju
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Henri Brunengraber
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United State of America
| | - Marc Prentki
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
O'Neill CM, Lu C, Corbin KL, Sharma PR, Dula SB, Carter JD, Ramadan JW, Xin W, Lee JK, Nunemaker CS. Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 2013; 154:3077-88. [PMID: 23836031 PMCID: PMC3749476 DOI: 10.1210/en.2012-2138] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated levels of circulating proinflammatory cytokines are associated with obesity and increased risk of type 2 diabetes, but the mechanism is unknown. We tested whether proinflammatory cytokines IL-1B+IL-6 at low picogram per milliliter concentrations (consistent with serum levels) could directly trigger pancreatic islet dysfunction. Overnight exposure to IL-1B+IL-6 in islets isolated from normal mice and humans disrupted glucose-stimulated intracellular calcium responses; cytokine-induced effects were more severe among islets from prediabetic db/db mice that otherwise showed no signs of dysfunction. IL-1B+IL-6 exposure reduced endoplasmic reticulum (ER) calcium storage, activated ER stress responses (Nos2, Bip, Atf4, and Ddit3 [CHOP]), impaired glucose-stimulated insulin secretion, and increased cell death only in islets from prediabetic db/db mice. Furthermore, we found increased serum levels of IL-1B and IL-6 in diabetes-prone mice at an age before hyperglycemia was exhibited, suggesting that low-grade systemic inflammation develops early in the disease process. In addition, we implanted normal outbred and inbred mice with subcutaneous osmotic mini-pumps containing IL-1B+IL-6 to mimic the serum increases found in prediabetic db/db mice. Both IL-1B and IL-6 were elevated in serum from cytokine-pump mice, but glucose tolerance and blood glucose levels did not differ from controls. However, when compared with controls, isolated islets from cytokine-pump mice showed deficiencies in calcium handling and insulin secretion that were similar to observations with islets exposed to cytokines in vitro. These findings provide proof of principle that low-grade systemic inflammation is present early in the development of type 2 diabetes and can trigger ER stress-mediated islet dysfunction that can lead to islet failure.
Collapse
Affiliation(s)
- Christina M O'Neill
- University of Virginia, Department of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology 2012; 55:1727-37. [PMID: 22183976 DOI: 10.1002/hep.25537] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/04/2011] [Indexed: 12/26/2022]
Abstract
UNLABELLED Nutrient homeostasis is tightly regulated by the balance between energy production and utilization. During fasting, production of ketone bodies as an alternative energy source is critical to maintain nutrient homeostasis. An important component in the nutrient-sensitive signaling pathway is S6 kinase 2 (S6K2), a downstream effector of mammalian target of rapamycin. Here, we show that mice lacking S6K2 exhibit elevated levels of ketone bodies and enhanced peroxisome proliferator-activated receptor alpha (PPARα) activity upon nutrient availability. Consistent with this, knockdown of S6K2 increases the transcriptional activity of PPARα. S6K2 suppresses PPARα by associating with its corepressor, nuclear receptor corepressor 1 (NCoR1), and by inducing the recruitment of NCoR1 to the nucleus. Moreover, ob/ob mice, a genetic model of obesity, have markedly elevated S6K2 activity, and S6K2 was strongly associated with NCoR1 in the nucleus of liver cells. CONCLUSION Our findings suggest that S6K2 regulates hepatic energy homeostasis by repressing PPARα activity and point to its potential relevance for therapeutic strategies designed to modulate S6K2 activity as a treatment for deregulated ketone body production.
Collapse
Affiliation(s)
- Kyeongjin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | |
Collapse
|
31
|
Havula E, Hietakangas V. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin Cell Dev Biol 2012; 23:640-7. [PMID: 22406740 DOI: 10.1016/j.semcdb.2012.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 01/02/2023]
Abstract
The paralogous transcription factors ChREBP and MondoA, together with their common binding partner Mlx, have emerged as key mediators of intracellular glucose sensing. By regulating target genes involved in glycolysis and lipogenesis, they mediate metabolic adaptation to changing glucose levels. As disturbed glucose homeostasis plays a central role in human metabolic diseases and as cancer cells often display altered glucose metabolism, better understanding of cellular glucose sensing will likely uncover new therapeutic opportunities. Here we review the regulation, function and evolutionary conservation of the ChREBP/MondoA-Mlx glucose sensing system and discuss possible directions for future research.
Collapse
Affiliation(s)
- Essi Havula
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | | |
Collapse
|
32
|
Poulsen LLC, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 2012; 23:631-9. [PMID: 22273692 DOI: 10.1016/j.semcdb.2012.01.003] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/09/2012] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator activated receptors (PPARs) are nuclear receptors that play key roles in the regulation of lipid metabolism, inflammation, cellular growth, and differentiation. The receptors bind and are activated by a broad range of fatty acids and fatty acid derivatives and they thereby serve as major transcriptional sensors of fatty acids. Here we review the function, regulation, and mechanism of the different PPAR subtypes with special emphasis on their role in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Lars la Cour Poulsen
- University of Southern Denmark, Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230, Odense M, Denmark.
| | | | | |
Collapse
|
33
|
Kölsch H, Lehmann DJ, Ibrahim-Verbaas CA, Combarros O, van Duijn CM, Hammond N, Belbin O, Cortina-Borja M, Lehmann MG, Aulchenko YS, Schuur M, Breteler M, Wilcock GK, Brown K, Kehoe PG, Barber R, Coto E, Alvarez V, Deloukas P, Mateo I, Maier W, Morgan K, Warden DR, Smith AD, Heun R. Interaction of insulin and PPAR-α genes in Alzheimer's disease: the Epistasis Project. J Neural Transm (Vienna) 2011; 119:473-9. [PMID: 22065208 DOI: 10.1007/s00702-011-0732-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/26/2011] [Indexed: 11/25/2022]
Abstract
Altered glucose metabolism has been described in Alzheimer's disease (AD). We re-investigated the interaction of the insulin (INS) and the peroxisome proliferator-activated receptor alpha (PPARA) genes in AD risk in the Epistasis Project, including 1,757 AD cases and 6,294 controls. Allele frequencies of both SNPs (PPARA L162V, INS intron 0 A/T) differed between Northern Europeans and Northern Spanish. The PPARA 162LL genotype increased AD risk in Northern Europeans (p = 0.04), but not in Northern Spanish (p = 0.2). There was no association of the INS intron 0 TT genotype with AD. We observed an interaction on AD risk between PPARA 162LL and INS intron 0 TT genotypes in Northern Europeans (Synergy factor 2.5, p = 0.016), but not in Northern Spanish. We suggest that dysregulation of glucose metabolism contributes to the development of AD and might be due in part to genetic variations in INS and PPARA and their interaction especially in Northern Europeans.
Collapse
Affiliation(s)
- Heike Kölsch
- Department of Psychiatry, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang L, Yang G, Tang G, Wu L, Wang R. Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia 2011; 54:2615-25. [PMID: 21618058 DOI: 10.1007/s00125-011-2187-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/19/2011] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS Cystathionine γ-lyase (CSE) catalyses the endogenous production of hydrogen sulphide (H(2)S) in pancreatic beta cells, and H(2)S has been shown to inhibit insulin release from these cells. As altered pancreatic H(2)S production modulated by glucose has been previously shown, we hypothesised that the Cse gene could be regulated by glucose level in insulin-secreting cells. METHODS The effects of glucose on CSE protein level and mRNA level were analysed in INS-1E cells. Glucose effect on Cse promoter activity was tested by constructing a proximal Cse promoter vector including specificity protein 1 (Sp1) consensus sequence. RESULTS High glucose (20 mmol/l) inhibited H(2)S production in INS-1E cells and freshly isolated rat pancreatic islets. Cse mRNA expression, CSE activity and protein abundance were also profoundly reduced by high glucose. The involvement of SP1 in basal and high-glucose-regulated CSE production was demonstrated. Sp1-knockdown abolished a large portion of CSE production at basal glucose. Phosphorylation of SP1 stimulated by high glucose was inhibited by p38 mitogen-activated protein kinase (MAPK) inhibitors SB203580 and SB202190. After blocking p38 MAPK phosphorylation, the inhibitive effects of high glucose on CSE protein production and promoter activity in INS-1E cells were also virtually abolished. CONCLUSIONS/INTERPRETATION Glucose stimulates the phosphorylation of SP1 via p38 MAPK activation, which leads to decreased Cse promoter activity and subsequent downregulation of Cse gene expression. Inhibited H(2)S production through glucose-mediated CSE activity and production alterations may be involved in the fine control of glucose-induced insulin secretion.
Collapse
Affiliation(s)
- L Zhang
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada, P7B 5E1
| | | | | | | | | |
Collapse
|
35
|
Guri AJ, Bassaganya-Riera J. Systemic effects of white adipose tissue dysregulation and obesity-related inflammation. Obesity (Silver Spring) 2011; 19:689-700. [PMID: 20930712 DOI: 10.1038/oby.2010.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amir J Guri
- Nutritional Immunology and Molecular Medicine Laboratory, CyberInfrastructure Division, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
36
|
Boergesen M, Poulsen LLC, Schmidt SF, Frigerio F, Maechler P, Mandrup S. ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells. J Biol Chem 2011; 286:13214-25. [PMID: 21282101 DOI: 10.1074/jbc.m110.215467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metabolism and has been shown to protect against lipid-induced β-cell dysfunction. We and others have previously shown that expression of the PPARα gene in β-cells is rapidly repressed by glucose. Here we show that the PPARα gene is transcribed from five alternative transcription start sites, resulting in three alternative first exons that are spliced to exon 2. Expression of all PPARα transcripts is repressed by glucose both in insulinoma cells and in isolated pancreatic islets. The observation that the dynamics of glucose repression of PPARα transcription are very similar to those of glucose activation of target genes by the carbohydrate response element-binding protein (ChREBP) prompted us to investigate the potential role of ChREBP in the regulation of PPARα expression. We show that a constitutively active ChREBP lacking the N-terminal domain efficiently represses PPARα expression in insulinoma cells and in rodent and human islets. In addition, we demonstrate that siRNA-mediated knockdown of ChREBP abrogates glucose repression of PPARα expression as well as induction of well established ChREBP target genes in insulinoma cells. In conclusion, this work shows that ChREBP is a critical and direct mediator of glucose repression of PPARα gene expression in pancreatic β-cells, suggesting that ChREBP may be important for glucose suppression of the fatty acid oxidation capacity of β-cells.
Collapse
Affiliation(s)
- Michael Boergesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Maehira F, Ishimine N, Miyagi I, Eguchi Y, Shimada K, Kawaguchi D, Oshiro Y. Anti-diabetic effects including diabetic nephropathy of anti-osteoporotic trace minerals on diabetic mice. Nutrition 2010; 27:488-95. [PMID: 20708379 DOI: 10.1016/j.nut.2010.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/01/2009] [Accepted: 04/20/2010] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In our previous study to evaluate the effects of soluble silicon (Si) on bone metabolism, Si and coral sand (CS) as a natural Si-containing material suppressed peroxisome proliferator-activated receptor γ (PPARγ), which regulates both glucose and bone metabolism and increases adipogenesis at the expense of osteogenesis, leading to bone loss. In this study, we investigated the anti-diabetic effects of bone-seeking elements, Si and stable strontium (Sr), and CS as a natural material containing these elements using obese diabetic KKAy mice. METHODS Weanling male mice were fed diets containing 1% Ca supplemented with CaCO(3) as the control and CS, and diets supplemented with 50 ppm Si or 750 ppm Sr to control diet for 56 d. The mRNA expressions related to energy expenditure in the pancreas and kidney were quantified by real-time polymerase chain reaction. RESULTS At the end of feeding, plasma glucose, insulin, leptin, and adiponectin levels decreased significantly in three test groups, while pancreatic PPARγ and adiponectin mRNA expression levels increased significantly toward the normal level, improving the glucose sensitivity of β-cells and inducing a significant decrease in insulin expression. The renal PPARγ, PPARα, and adiponectin expression levels, histologic indices of diabetic glomerulopathy, and plasma indices of renal function were also improved significantly in the test groups. CONCLUSION Taken together, anti-osteoporotic trace minerals, Si and Sr, and CS containing them showed novel anti-diabetic effects of lowering blood glucose level, improving the tolerance to insulin, leptin, and adiponectin, and reducing the risk of glomerulopathy through modulation of related gene expression in the pancreas and kidney.
Collapse
Affiliation(s)
- Fusako Maehira
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, Pepin E, Zhao S, Iglesias J, Roche E, Prentki M. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010; 151:3061-73. [PMID: 20444946 DOI: 10.1210/en.2009-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wagner JD, Shadoan MK, Zhang L, Ward GM, Royer LJ, Kavanagh K, Francone OL, Auerbach BJ, Harwood HJ. A selective peroxisome proliferator-activated receptor alpha agonist, CP-900691, improves plasma lipids, lipoproteins, and glycemic control in diabetic monkeys. J Pharmacol Exp Ther 2010; 333:844-53. [PMID: 20190014 DOI: 10.1124/jpet.110.166736] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of lipid and glucose metabolism. PPARgamma agonists improve insulin sensitivity and hyperglycemia and are effective in treating type 2 diabetes mellitus (T2DM), whereas PPARalpha agonists are used to treat dyslipidemia and atherosclerosis. The goal here was to examine the efficacy of a selective PPARalpha agonist {(S)-3-[3-(1-carboxy-1-methyl-ethoxy)-phenyl]-piperidine-1-carboxylic acid 4-trifluoromethyl-benzyl ester; CP-900691} on lipid, glycemic, and inflammation indices in 14 cynomolgus monkeys with spontaneous T2DM maintained on daily insulin therapy. Monkeys were dosed orally with either vehicle (n = 7) or CP-900691 (3 mg/kg, n = 7) daily for 6 weeks. CP-900691 treatment increased plasma high-density lipoprotein cholesterol (HDLC) (33 +/- 3 to 60 +/- 4 mg/dL, p < 0.001) and apolipoprotein A1 (96 +/- 5 to 157 +/- 5 mg/dL, p < 0.001), reduced plasma triglycerides (547 +/- 102 to 356 +/- 90 mg/dL, p < 0.01), and apolipoprotein B (62 +/- 3 to 45 +/- 3 mg/dL, p < 0.01), improved the lipoprotein index (HDL to non-HDLC ratio; 0.28 +/- 0.06 to 0.79 +/- 0.16, p < 0.001), decreased body weight (p < 0.01) and C-reactive protein (CRP) (1700 +/- 382 to 304 +/- 102 ng/ml, p < 0.01), and increased adiponectin (1697 +/- 542 to 4242 +/- 1070 ng/ml, p < 0.001) compared with baseline. CP-900691 treatment reduced exogenous insulin requirements by approximately 25% (p < 0.04) while lowering plasma fructosamine from 2.87 +/- 0.09 to 2.22 +/- 0.17 mM (p < 0.05), indicative of improved glycemic control. There were no changes in any of the aforementioned parameters in the vehicle group. Because low HDLC and high triglycerides are well established risk factors for cardiovascular disease, the marked improvements in these parameters, and in glycemic control, body weight, and CRP, suggest that CP-900691 may be of benefit in diabetic and obese or hyperlipidemic populations.
Collapse
Affiliation(s)
- Janice D Wagner
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lack of glucose recycling between endoplasmic reticulum and cytoplasm underlies cellular dysfunction in glucose-6-phosphatase-beta-deficient neutrophils in a congenital neutropenia syndrome. Blood 2010; 116:2783-92. [PMID: 20498302 DOI: 10.1182/blood-2009-12-258491] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G6PC3 deficiency, characterized by neutropenia and neutrophil dysfunction, is caused by deficiencies in the endoplasmic reticulum (ER) enzyme glucose-6-phosphatase-β (G6Pase-β or G6PC3) that converts glucose-6-phosphate (G6P) into glucose, the primary energy source of neutrophils. Enhanced neutrophil ER stress and apoptosis underlie neutropenia in G6PC3 deficiency, but the exact functional role of G6Pase-β in neutrophils remains unknown. We hypothesized that the ER recycles G6Pase-β-generated glucose to the cytoplasm, thus regulating the amount of available cytoplasmic glucose/G6P in neutrophils. Accordingly, a G6Pase-β deficiency would impair glycolysis and hexose monophosphate shunt activities leading to reductions in lactate production, adenosine-5'-triphosphate (ATP) production, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Using annexin V-depleted neutrophils, we show that glucose transporter-1 translocation is impaired in neutrophils from G6pc3(-/-) mice and G6PC3-deficient patients along with impaired glucose uptake in G6pc3(-/-) neutrophils. Moreover, levels of G6P, lactate, and ATP are markedly lower in murine and human G6PC3-deficient neutrophils, compared with their respective controls. In parallel, the expression of NADPH oxidase subunits and membrane translocation of p47(phox) are down-regulated in murine and human G6PC3-deficient neutrophils. The results establish that in nonapoptotic neutrophils, G6Pase-β is essential for normal energy homeostasis. A G6Pase-β deficiency prevents recycling of ER glucose to the cytoplasm, leading to neutrophil dysfunction.
Collapse
|
41
|
Wang W, Zhang D, Zhao H, Chen Y, Liu Y, Cao C, Han L, Liu G. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. REGULATORY PEPTIDES 2010; 161:43-50. [PMID: 20079380 DOI: 10.1016/j.regpep.2009.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/20/2009] [Accepted: 12/30/2009] [Indexed: 02/08/2023]
Abstract
Lipotoxicity plays an important role in underlying mechanism of type 2 diabetes. Prolonged exposure of pancreatic beta-cells to elevated levels of fatty acid is associated with beta-cell apoptosis. Ghrelin is a 28-amino acid peptide, mainly secreted from X/A like cells of gastric fungus. The effects of ghrelin are considered to be broadly including cell protection. However, the mechanism of ghrelin protecting pancreatic beta-cells against lipotoxicity is unknown. Our study showed that ghrelin promoted cell survival and attenuated palmitate-induced apoptosis in pancreatic beta-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which could be protected by ghrelin. Exposure of MIN6 cells to ghrelin caused a rapid activation of protein kinase B (PKB) and inhibition of c-Jun N-terminal kinase (JNK) under lipotoxic state. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of ghrelin, as well as ghrelin-induced inhibition of JNK, while JNK inhibitor, SP600125 enhanced protective effect of ghrelin on MIN6 cells. Ghrelin also inhibited the mitochondrial pathway of apoptosis and it down-regulated Bax in MIN6 cells. For secretion experiment, ghrelin suppressed insulin release under palmitate-incubated state. Our findings suggest that ghrelin may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB, inhibition of JNK and mitochondrial pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang W, Liu Y, Chen Y, Cao C, Xiang Y, Zhang D, Han L, Zhao H, Liu G. Inhibition of Foxo1 mediates protective effects of ghrelin against lipotoxicity in MIN6 pancreatic beta-cells. Peptides 2010; 31:307-14. [PMID: 19944124 DOI: 10.1016/j.peptides.2009.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/08/2023]
Abstract
Ghrelin is a 28-amino-acid peptide secreted predominantly by X/A-like cells of the gastric fundus. Ghrelin increases pancreatic beta-cell proliferation and survival via sequential activation of phosphatidylinositol-3 kinase (PI3K) and Akt. The transcription regulator Foxo1 is a prominent effector of PI3K/Akt; when it is inhibited, pancreatic beta-cells are protected against fatty-acid-induced apoptosis. We investigated the role of Foxo1 in the protective effect of ghrelin under lipotoxic conditions in the MIN6 pancreatic beta-cell line. Results showed that ghrelin promoted cell proliferation and attenuated palmitate-induced apoptosis in cultured MIN6 cells. Nuclear exclusion of Foxo1 was necessary for the function of ghrelin. Treatment of MIN6 cells with palmitate and ghrelin-induced rapid nuclear exclusion and phosphorylation of Foxo1. Unlike the JNK inhibitor SP600125, Akt inhibitor IV blocked the anti-lipotoxic effect of ghrelin and stimulated Foxo1 nuclear translocation. In addition, treatment with ghrelin combined with SP600125 showed a synergistic antiapoptotic effect in palmitate-treated MIN6 cells. Ghrelin also inhibited the endoplasmic reticulum stress pathway of apoptosis in MIN6 cells, decreased expression of cytoplasmic triglyceride, and downregulated gene expression of Bcl-2-associated X (BAX), sterol-response element-binding protein 1c (SREBP1c), and C/EBP homologous protein (CHOP-10). These findings suggest that ghrelin protects pancreatic beta-cells from lipotoxicity by inhibiting the nuclear translocation of Foxo1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, First Hospital of China Medical University, No. 155, Nanjingbei Street, Heping District, Shenyang 110001, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Joly E, Roduit R, Peyot ML, Habinowski SA, Ruderman NB, Witters LA, Prentki M. Glucose represses PPARα gene expression via AMP-activated protein kinase but not via p38 mitogen-activated protein kinase in the pancreatic β-cell. J Diabetes 2009; 1:263-72. [PMID: 20923527 DOI: 10.1111/j.1753-0407.2009.00043.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor α (PPARα) regulates the expression of fatty acid metabolism genes and is thought to play a role in the regulation of insulin secretion and lipid detoxification. We have examined the mechanism whereby glucose decreases PPARα gene expression in the pancreatic β-cell. METHODS INS832/13 β-cell and isolated rat islets were incubated at 3 and 20 mM glucose for 18 h in the absence or presence of adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators and inhibitors, as well as p38 mitogen-activated protein kinase (p38 MAPK) inhibitors. In another set of experiments, INS832/13 were infected with an adenovirus expressing a dominant-negative form of AMPK. PPARα expression levels were measured by reverse transcription polymerase chain reaction and Western blot. RESULTS Elevated glucose reduced the abundance of the PPARα transcript and protein, and its target genes acyl-coenzyme A (CoA) oxidase (ACO) and uncoupling protein 2 (UCP-2) in INS832/13 β-cell and isolated rat islets. Glucose reduced AMPK activity, while the AMPK activators 5-amino-4-imidazolecarboxamide riboside and metformin increased PPARα expression and suppressed the action of glucose. By contrast, the AMPK inhibitor compound C mimicked the glucose effect. A dominant negative form of AMPKα reduced the PPARα, ACO and UCP-2 transcripts to the same extent as elevated glucose. Pharmacological evidence indicated that glucose-regulated PPARα expression does not involve p38 MAPK, a target of AMPK in several cell types. CONCLUSIONS The results indicate that glucose represses PPARα gene expression via AMPK, but not via p38 MAPK in the β-cell.
Collapse
Affiliation(s)
- Erik Joly
- Montreal Diabetes Research Center and CRCHUM, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ravnskjaer K, Frigerio F, Boergesen M, Nielsen T, Maechler P, Mandrup S. PPARdelta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J Lipid Res 2009; 51:1370-9. [PMID: 19965574 DOI: 10.1194/jlr.m001123] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptor delta (PPARdelta) is implicated in regulation of mitochondrial processes in a number of tissues, and PPARdelta activation is associated with decreased susceptibility to ectopic lipid deposition and metabolic disease. Here, we show that PPARdelta is the PPAR subtype expressed at the highest level in insulinoma cells and rat pancreatic islets. Furthermore, PPARdelta displays high transcriptional activity and acts in pronounced synergy with retinoid-X-receptor (RXR). Interestingly, unsaturated fatty acids mimic the effects of synthetic PPARdelta agonists. Using short hairpin RNA-mediated knockdown, we demonstrate that the ability of unsaturated fatty acids to stimulate fatty acid metabolism is dependent on PPARdelta. Activation of PPARdelta increases the fatty acid oxidation capacity in INS-1E beta-cells, enhances glucose-stimulated insulin secretion (GSIS) from islets, and protects GSIS against adverse effects of prolonged fatty acid exposure. The presented results indicate that the nuclear receptor PPARdelta is a fatty acid sensor that adapts beta-cell mitochondrial function to long-term changes in unsaturated fatty acid levels. As maintenance of mitochondrial metabolism is essential to preserve beta-cell function, these data indicate that dietary or pharmacological activation of PPARdelta and RXR may be beneficial in the prevention of beta-cell dysfunction.
Collapse
Affiliation(s)
- Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Ramsey HE, Da Silva CG, Longo CR, Csizmadia E, Studer P, Patel VI, Damrauer SM, Siracuse JJ, Daniel S, Ferran C. A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-alpha expression. Liver Transpl 2009; 15:1613-21. [PMID: 19877201 PMCID: PMC2976064 DOI: 10.1002/lt.21879] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB inhibitory protein A20 demonstrates hepatoprotective abilities through combined antiapoptotic, anti-inflammatory, and pro-proliferative functions. Accordingly, overexpression of A20 in the liver protects mice from toxic hepatitis and lethal radical hepatectomy, whereas A20 knockout mice die prematurely from unfettered liver inflammation. The effect of A20 on oxidative liver damage, as seen in ischemia/reperfusion injury (IRI), is unknown. In this work, we evaluated the effects of A20 upon IRI using a mouse model of total hepatic ischemia. Hepatic overexpression of A20 was achieved by recombinant adenovirus (rAd.)-mediated gene transfer. Although only 10%-25% of control mice injected with saline or the control rAd.beta galactosidase survived IRI, the survival rate reached 67% in mice treated with rAd.A20. This significant survival advantage in rAd.A20-treated mice was associated with improved liver function, pathology, and repair potential. A20-treated mice had significantly lower bilirubin and aminotransferase levels, decreased hemorrhagic necrosis and steatosis, and increased hepatocyte proliferation. A20 protected against liver IRI by increasing hepatic expression of peroxisome proliferator-activated receptor alpha (PPARalpha), a regulator of lipid homeostasis and of oxidative damage. A20-mediated protection of hepatocytes from hypoxia/reoxygenation and H(2)O(2)-mediated necrosis was reverted by pretreatment with the PPARalpha inhibitor MK886. In conclusion, we demonstrate that PPARalpha is a novel target for A20 in hepatocytes, underscoring its novel protective effect against oxidative necrosis. By combining hepatocyte protection from necrosis and promotion of proliferation, A20-based therapies are well-poised to protect livers from IRI, especially in the context of small-for-size and steatotic liver grafts. Liver Transpl 15:1613-1621, 2009. (c) 2009 AASLD.
Collapse
Affiliation(s)
- Haley E. Ramsey
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cleide G. Da Silva
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christopher R. Longo
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter Studer
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Virendra I. Patel
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Scott M. Damrauer
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jeffrey J. Siracuse
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Soizic Daniel
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, Transplant Center, Departments of Surgery and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
|
47
|
Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE, Shirihai OS. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 2009; 58:2303-15. [PMID: 19581419 PMCID: PMC2750232 DOI: 10.2337/db07-1781] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Previous studies have reported that beta-cell mitochondria exist as discrete organelles that exhibit heterogeneous bioenergetic capacity. To date, networking activity, and its role in mediating beta-cell mitochondrial morphology and function, remains unclear. In this article, we investigate beta-cell mitochondrial fusion and fission in detail and report alterations in response to various combinations of nutrients. RESEARCH DESIGN AND METHODS Using matrix-targeted photoactivatable green fluorescent protein, mitochondria were tagged and tracked in beta-cells within intact islets, as isolated cells and as cell lines, revealing frequent fusion and fission events. Manipulations of key mitochondrial dynamics proteins OPA1, DRP1, and Fis1 were tested for their role in beta-cell mitochondrial morphology. The combined effects of free fatty acid and glucose on beta-cell survival, function, and mitochondrial morphology were explored with relation to alterations in fusion and fission capacity. RESULTS beta-Cell mitochondria are constantly involved in fusion and fission activity that underlies the overall morphology of the organelle. We find that networking activity among mitochondria is capable of distributing a localized green fluorescent protein signal throughout an isolated beta-cell, a beta-cell within an islet, and an INS1 cell. Under noxious conditions, we find that beta-cell mitochondria become fragmented and lose their ability to undergo fusion. Interestingly, manipulations that shift the dynamic balance to favor fusion are able to prevent mitochondrial fragmentation, maintain mitochondrial dynamics, and prevent apoptosis. CONCLUSIONS These data suggest that alterations in mitochondrial fusion and fission play a critical role in nutrient-induced beta-cell apoptosis and may be involved in the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Anthony J.A. Molina
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jakob D. Wikstrom
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Linsey Stiles
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts
| | - Guy Las
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Hibo Mohamed
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts
| | - Alvaro Elorza
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Gil Walzer
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts
| | - Gilad Twig
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Steve Katz
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts
| | - Barbara E. Corkey
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Orian S. Shirihai
- Department of Molecular Medicine, Obesity Research Center, Boston University School of Medicine, Boston, Massachusetts
- Corresponding author: Orian S. Shirihai,
| |
Collapse
|
48
|
Venugopal B, Wong KT, Goto YI, Bhattacharjee MB. Mitochondrial Disorder, Diabetes Mellitus, and Findings in Three Muscles, Including the Heart. Ultrastruct Pathol 2009; 30:135-41. [PMID: 16825114 DOI: 10.1080/01913120600689624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The authors describe the case of a 50-year-old man with chronic progressive external ophthalmoplegia (CPEO), diabetes mellitus (DM), and coronary artery disease. The patient had no cardiac conduction abnormalities. During coronary artery bypass surgery, his heart and two skeletal muscles were biopsied. All three muscles showed ragged red fibers. The heart muscle showed significant glycogen accumulation. Analysis of mitochondrial DNA (mtDNA) showed a 5019-base-pair deletion, with no duplications. There were morphologically abnormal mitochondria in all 3 muscles, with clinically apparent difference in preservation of function. The combination of diabetes mellitus and mtDNA deletion is fortuitous, as they can be causally linked. The cardiac pathology allows speculation about the possible adaptive processes that may occur in the heart in DM. There are few reported cases with CPEO and excess glycogen in the heart. Most show deposition of fat and poorer clinical outcomes as compared to those with glycogen deposition. This observation may lend support to the hypothesis that in the myocardium, adaptive responses are mediated via changes in glucose handling, whereas alterations in fat metabolism likely represent maladaptation.
Collapse
MESH Headings
- Chromosome Deletion
- Coronary Artery Bypass
- Coronary Artery Disease/complications
- DNA, Mitochondrial/genetics
- Diabetes Mellitus, Type 2/complications
- Glycogen/metabolism
- Humans
- Male
- Middle Aged
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/ultrastructure
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Myopathies/complications
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Myocardium/enzymology
- Myocardium/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/ultrastructure
- Ophthalmoplegia, Chronic Progressive External/complications
Collapse
Affiliation(s)
- B Venugopal
- National Heart Institute, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
49
|
Peyot ML, Guay C, Latour MG, Lamontagne J, Lussier R, Pineda M, Ruderman NB, Haemmerle G, Zechner R, Joly É, Madiraju SRM, Poitout V, Prentki M. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J Biol Chem 2009; 284:16848-16859. [PMID: 19389712 DOI: 10.1074/jbc.m109.006650] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.
Collapse
Affiliation(s)
- Marie-Line Peyot
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Claudiane Guay
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Martin G Latour
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Julien Lamontagne
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Roxane Lussier
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Marco Pineda
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Neil B Ruderman
- Departments of Medicine and Physiology and Biophysics, Boston University School of Medicine and Diabetes Unit, Section of Endocrinology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz 8010, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz 8010, Austria
| | - Érik Joly
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - S R Murthy Madiraju
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada
| | - Vincent Poitout
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada; Departments of Nutrition, Montreal, Quebec H1W 4A4, Canada; Medicine, University of Montreal, Montreal, Quebec H1W 4A4, Canada
| | - Marc Prentki
- From the Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H1W 4A4, Canada; Departments of Nutrition, Montreal, Quebec H1W 4A4, Canada.
| |
Collapse
|
50
|
Veluthakal R, Suresh MV, Kowluru A. Down-regulation of expression and function of nucleoside diphosphate kinase in insulin-secreting beta-cells under in vitro conditions of glucolipotoxicity. Mol Cell Biochem 2009; 329:121-9. [PMID: 19367376 DOI: 10.1007/s11010-009-0113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 02/05/2023]
Abstract
Previously, we reported a significant reduction in expression and the activity of nucleoside diphosphate kinase (NDP kinase) in islets derived from the Goto-Kakizaki rat (GK rat), an animal model for type 2 diabetes. Herein, we examined the effects of chronic exposure of insulin-secreting beta-(INS 832/13) cells to high glucose (a model for glucotoxicity), palmitate (a model for lipotoxicity), or glucose plus palmitate (a model for glucolipotoxicity) on the expression and activity of nm23-H1 (NDP kinase A) and nm23-H2 (NDP kinase B). Our findings indicate a marked reduction in the expression of both nm23-H1 and nm23-H2 and the associated NDP kinase activity under each of these conditions. A cell-permeable analog of ceramide (CER) also mimicked the effects of palmitate in significantly reducing the expression of nm23-H1 and nm23-H2 and NDP kinase activity in these cells. These findings suggest that de novo generation of intracellular CER from palmitate might represent at least one of the signaling steps involved in lipid-induced effects on NDP kinase expression and function in beta-cells. Based on these data, we conclude that glucolipotoxic conditions significantly impair expression and function of NDP kinase in pancreatic beta-cells. Potential significance of these findings, specifically at the level of abnormal G-protein activation and impaired insulin secretion under glucolipotoxic conditions is discussed.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Wayne State University and Beta Cell Biochemistry Research Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | |
Collapse
|