1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Wu Z, Peng Y, Xiong L, Wang J, Li Z, Ning K, Deng M, Wang N, Wei W, Li Z, Dong P, Yu C, Zhou F, Zhang Z. Role of Sam68 in Sunitinib induced renal cell carcinoma apoptosis. Cancer Med 2022; 11:3674-3686. [PMID: 35476809 PMCID: PMC9554455 DOI: 10.1002/cam4.4743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sunitinib is one of the first-line targeted drugs for metastatic renal cell carcinoma (RCC) with dual effects of antiangiogensis and proapoptosis. Sam68 (Src-associated in mitosis, 68 KDa), is found being involved in cell apoptosis. This article reveals that Sam68 impacts the sensitivity to sunitinib by mediating the apoptosis of RCC cells. Immunohistochemical staining indicated that the Sam68 expression levels in sunitinib sensitive tumor tissues were markedly higher than those in sunitinib resistant tumor tissues. Sunitinib induced RCC cell apoptosis in a concentration-dependent manner and inhibited the expression of total and phosphorylated Sam68 (p-Sam68). Downregulation of Sam68 expression inhibited RCC cell apoptosis induced by sunitinib. While upregulation of Sam68 expression could enhance apoptosis induced by sunitinib. Xenograft models showed that tumors in the Sam68-knockdown group did not shrink as much as those in the control group after treatment with sunitinib for 4 weeks. Together, our results suggest that Sam68 expression is associated with the sensitivity of ccRCC patients to sunitinib. Sam68 may promote cell apoptosis induced by sunitinib, and the Sam68 expression level may be a biomarker for predicting sunitinib sensitivity in ccRCC patients.
Collapse
Affiliation(s)
- Zeshen Wu
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yulu Peng
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Longbin Xiong
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jun Wang
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Zhen Li
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Kang Ning
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Minhua Deng
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ning Wang
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wensu Wei
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Zhiyong Li
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Pei Dong
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Chunping Yu
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Fangjian Zhou
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Zhiling Zhang
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
3
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
4
|
Vasileva E, Shuvalov O, Petukhov A, Fedorova O, Daks A, Nader R, Barlev N. KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochem Biophys Res Commun 2020; 525:1018-1024. [PMID: 32178870 DOI: 10.1016/j.bbrc.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Lysine-specific methyltransferase Set7/9 (KMT7) belongs to the SET domain family of proteins. Besides the SET domain, Set7/9 also contains a so-called MORN (Membrane Occupation and Recognition Nexus) domain whose function in high eukaryotes is largely unknown. Set7/9 has been shown to specifically methylate both histones H1 and H3 as well as a number of non-histone substrates, including p53, E2F1, RelA, AR, and other important transcription factors. However, despite the ever growing list of potential substrates of Set7/9, the question of its substrate specificity is still debatable. To gain a better understanding of the Set7/9 substrate specificity and to clarify the importance of structural domains of Set7/9 for protein-protein interactions (PPIs) we determined interactomes for both MORN and SET domains of Set7/9 by pull-down assay coupled with mass-spectrometry. Importantly, we demonstrated that most of PPIs of Set7/9 are mediated via its MORN domain. The latter has preference towards positively charged amino acids that are often found in RNA-binding proteins. One of the Set7/9-interacting proteins was identified as Sam68, an RNA splicing protein with a KH (heterogeneous nuclear ribonucleoprotein K (hnRNP K) homology) domain. Importantly, the RG-rich domain of Sam68 that is also present in many splicing factors was found to interact with Set7/9. We revealed that Set7/9 not only co-immunoprecipitated with Sam68, but also methylated the latter on K208. Functionally, knockout of Set7/9 decreased the protein level of Sam68 in cells resulting in altered regulation of cell cycle and apoptosis. Finally, the bioinformatics analysis established a correlation between the high levels of Sam68/Set7/9 co-expression and better survival rates of patients with colon cancer.
Collapse
Affiliation(s)
- Elena Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation; Almazov National Medical Research Centre, Institute of Hematology, 197341, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Rahimi Nader
- Department of Pathology & Laboratory Medicine, Boston University, 72 East Concord St., Boston, MA, 02118, USA
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russian Federation.
| |
Collapse
|
5
|
Maroni P. Leptin, Adiponectin, and Sam68 in Bone Metastasis from Breast Cancer. Int J Mol Sci 2020; 21:ijms21031051. [PMID: 32033341 PMCID: PMC7037668 DOI: 10.3390/ijms21031051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Paola Maroni
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
6
|
Li N, Ngo CTA, Aleynikova O, Beauchemin N, Richard S. The p53 status can influence the role of Sam68 in tumorigenesis. Oncotarget 2018; 7:71651-71659. [PMID: 27690217 PMCID: PMC5342108 DOI: 10.18632/oncotarget.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023] Open
Abstract
The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor. We demonstrate that in mice expressing wild type p53, Sam68-deficiency resulted in a higher incidence and malignancy of carcinogen-induced tumors, suggesting a tumor suppressive role for Sam68. In marked contrast, Sam68-haploinsufficiency significantly delayed the onset of tumors in mice lacking p53 and prolonged their survival, indicating that Sam68 accelerates the development of p53-deficient tumors. These findings provide considerable insight into a previously unknown relationship between Sam68 and the p53 tumor suppressor in tumorigenesis.
Collapse
Affiliation(s)
- Naomi Li
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Chau Tuan-Anh Ngo
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Olga Aleynikova
- Department of Pathology, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Nicole Beauchemin
- Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada.,Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada.,Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
7
|
Abstract
Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.
Collapse
|
8
|
Khalaj K, Miller JE, Fenn CR, Ahn S, Luna RL, Symons L, Monsanto SP, Koti M, Tayade C. RNA-Binding Proteins in Female Reproductive Pathologies. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1200-1210. [PMID: 28408123 DOI: 10.1016/j.ajpath.2017.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Christian R Fenn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - SooHyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rayana L Luna
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Brazil
| | - Lindsey Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
9
|
Wang Y, Zhang W, Wang X, Wang D, Xie J, Tang C, Xi Q, Zhong J, Deng Y. Expression of Sam68 Correlates With Cell Proliferation and Survival in Epithelial Ovarian Cancer. Reprod Sci 2016; 24:97-108. [PMID: 27222230 DOI: 10.1177/1933719116650757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Src associated in mitosis, 68 kDa (Sam68) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family. It is a multifunctional protein known to regulate cellular signal transduction, transcription, RNA metabolism, proliferation, and apoptosis, thus implicated in tumor growth. Herein, we investigated the clinical significance of Sam68 in human epithelial ovarian cancer (EOC). Western blot and immunohistochemical staining demonstrated that Sam68 expression was upregulated in EOC tissues and cell lines. Statistical analysis showed that high expression of Sam68 correlated with poor prognosis of patients with EOC. In vitro, serum starvation-refeeding experiment was primarily performed to confirm that Sam68 participated in the cell cycle progression of EOC cell lines. Then knocking down Sam68 level with small interfering RNA, cell cycle was arrested at G1 phase and cell proliferation impaired. Furthermore, we demonstrated that the antiproliferative effect of silencing Sam68 in EOC cells was associated with the upregulation of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, along with the downregulation of p-FOXO3a, p-Akt, and p-GSK-3β. Taken together, our findings uncovered that Sam68 played an important role in promoting the proliferation of human ovarian cancer, thereby might be a novel therapeutic target for EOC.
Collapse
Affiliation(s)
- Yingying Wang
- 1 Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Department of Pathogen Biology, Medical College, Nantong University, Nantong, People's Republic of China
| | - Weiwei Zhang
- 2 Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xia Wang
- 3 Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Di Wang
- 3 Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Juan Xie
- 3 Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Chunhui Tang
- 2 Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Qinghua Xi
- 2 Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Jianxin Zhong
- 2 Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yan Deng
- 2 Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
10
|
Li N, Richard S. Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res 2016; 44:8726-8741. [PMID: 27365047 PMCID: PMC5062974 DOI: 10.1093/nar/gkw582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/18/2016] [Indexed: 02/07/2023] Open
Abstract
Sam68 is a known sequence-specific RNA binding protein that regulates alternative splicing events during the cell cycle and apoptosis. Sam68 has also been shown to influence transcription, but the molecular mechanism remains undefined. Herein we identify Sam68 as a transcriptional coactivator of the p53 tumor suppressor in response to DNA damage. Using CRISPR/Cas9 generated isogenic HCT116 Sam68−/− cell lines wild type or deficient for p53, we show that Sam68 is required for the efficient transactivation of p53 target genes. Consistently, Sam68 depletion caused defects in DNA damage-induced cell cycle arrest and apoptosis mediated by p53. Mechanistically, we demonstrate that Sam68 physically interacted with p53 in an RNA-dependent manner, and that this interaction was essential for the coactivator function of Sam68. Furthermore, we show that both Sam68 and p53 were recruited to promoters of p53-responsive genes, suggesting interdependence. Finally, Sam68 acted in concert with the p53 long noncoding RNA (lncRNA) target PR-lncRNA-1 for p53 recruitment, implicating a positive-feedback mechanism in which lncRNAs induced by the Sam68/p53 complex can enhance p53 transcriptional activity. These findings define a hitherto novel mechanism of action for Sam68 in governing p53 transcriptional activation, and represent the first report of Sam68 in the regulation of tumor suppressor activities.
Collapse
Affiliation(s)
- Naomi Li
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
11
|
Wu Y, Xu X, Miao X, Zhu X, Yin H, He Y, Li C, Liu Y, Chen Y, Lu X, Wang Y, He S. Sam68 regulates cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway in non-Hodgkin's lymphoma. Cell Prolif 2015; 48:682-90. [PMID: 26478515 DOI: 10.1111/cpr.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Sam68 (Src-associated in mitosis 68 kDa), a substrate for tyrosine kinase c-Src during mitosis, is up-regulated in a variety of human cancers and acts oncogenically promoting tumour progression. This study has explored biological function and clinical significance of Sam68 in non-Hodgkin's lymphoma (NHL). MATERIALS AND METHODS To examine Sam68 expression in NHL, clinically, eight diffuse large B-cell lymphomas and four reactive lymphoid hyperplasia fresh-frozen tissues were obtained for western blot and quantitative real-time PCR analyses. Using immunohistochemical staining, paraffin wax embedded sections from 164 cases of NHL patients were used to evaluate prognostic value of Sam68. Cell Counting Kit-8 (CCK-8) and soft agar colony assays were conducted to investigate the role of Sam68 in cell viability and cell proliferation respectively. Furthermore, effects of Sam68 on cell adhesion-mediated drug resistance (CAM-DR) was determined by CCK-8 assay and flow cytometric analysis. RESULTS Expression status of Sam68 inversely correlated with clinical outcomes of patients with NHL, and it was also an independent prognostic factor for the outcomes. In addition, Sam68 was associated with proliferation of NHL cells. Knock-down of its gene inhibited cell proliferation and colony formation by delaying cell cycle progression. Furthermore, OCI-Ly8 and Jeko-1 cells adhering to FN and HS-5 expressed higher Sam68 protein, compared to their suspension counterparts. Sam68 promoted cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway. CONCLUSIONS Increased Sam68 expression in NHL resulted in poor prognosis, and it promoted CAM-DR in NHL via AKT.
Collapse
Affiliation(s)
- Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Haibing Yin
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yushan Liu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yali Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| |
Collapse
|
12
|
The RNA-binding protein Sam68 regulates tumor cell viability and hepatic carcinogenesis by inhibiting the transcriptional activity of FOXOs. J Mol Histol 2015; 46:485-97. [PMID: 26438629 DOI: 10.1007/s10735-015-9639-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
Src associated in mitosis (Sam68; 68 kDa) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family, and has been implicated in the oncogenesis and progression of several human cancers. Our study aimed to investigated the clinicopathologic significance of Sam68 expression and its role in cell proliferation and the underlying molecular mechanism in hepatocellular carcinoma (HCC). We demonstrated that Sam68 expression was significantly increased in HCC and high expression of Sam68 was significantly associated with Edmondson grade, tumor size, tumor nodule number, HBsAg status and Ki-67 expression. The Kaplan-Meier survival curves showed that increased expression of Sam68 was correlated with poor prognosis in HCC patients and served as an independent prognostic marker of overall survival in a multivariable analysis. In addition, through serum starvation and refeeding assay, we demonstrated that Sam68 was lowly expressed in serum-starved HCC cells, and was progressively increased after serum-additioning. Furthermore, siRNA knockdown of endogenous Sam68 inhibited cell proliferation and tumourigenicity of HCC cells in vitro, through blocking the G1 to S phase transition. Moreover, we reported that the anti-proliferative effect of silencing Sam68 was accompanied with up-regulated expression of cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), enhanced transactivation of FOXO factors (FOXO4), and dysreuglation of Akt/GSK-3β signaling. Taken together, these findings provide a rational framework for the progression of HCC and thereby indicated that Sam68 might be a novel and useful prognostic marker and a potential target for human HCC treatment.
Collapse
|
13
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
14
|
Zhang Z, Yu C, Li Y, Jiang L, Zhou F. Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer 2015; 15:364. [PMID: 25944080 PMCID: PMC4425873 DOI: 10.1186/s12885-015-1367-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Muscle invasive bladder cancer (MIBC) is often lethal and non-MIBC (NMIBC) can recur and progress, yet prognostic markers are currently inadequate. SAM68, a member of RNA-binding proteins, has been reported to contribute to progression of other cancers. The aim of this study is to investigate the potential utility of SAM68 in the progression and prognosis of bladder cancer. Methods Quantitative PCR and immunohistochemistry were utilized to examine the expression of SAM68 in ten pairs of MIBC and adjacent normal bladder urothelium, and eight pairs of MIBC and non-MIBC (NMIBC) tissues from the same patient. Moreover, SAM68 protein expression level and localization were examined by immunohistochemistry in 129 clinicopathologically characterized MIBC samples. Prognostic associations were determined by multivariable analysis incorporating standard prognostic factors. Results SAM68 expression was elevated in MIBC tissues compared with adjacent normal bladder urothelium, and was increased at both transcriptional and translational levels in MIBC tissues compared with NMIBC tissues of the same patient. For MIBC, high expression and nucleus-cytoplasm co-expression of SAM68 were associated with higher T-stage, higher N-stage and worse recurrence-free survival. Five-year recurrence-free survival was 80% and 52.9% for MIBC patients with low and high SAM68 expression, respectively (p = 0.001). SAM68 nucleus-cytoplasm co-expression associated with worse 5-year recurrence-free survival rate (49.2%) than SAM68 expression confined to the nucleus (82.5%) or cytoplasm (75.5%) alone. On multivariable analysis SAM68 expression level, SAM68 nucleus-cytoplasm co-expression, T-stage, and N-stage were all independent prognostic factors for recurrence-free survival of MIBC patients. Conclusions SAM68 expression is increased in MIBC when compared to normal urothelium and NMIBC, and appears to be a potentially useful prognostic marker for MIBC.
Collapse
Affiliation(s)
- Zhiling Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Chunping Yu
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yonghong Li
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Lijuan Jiang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Fangjian Zhou
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Wang Q, Li Y, Zhou J, Liu J, Qin J, Xing F, Zhang J, Cheng J. Clinical significance of Sam68 expression in endometrial carcinoma. Tumour Biol 2015; 36:4509-18. [PMID: 25874492 DOI: 10.1007/s13277-015-3095-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Sam68 (Src-associated in mitosis of 68 kDa) is a substrate for tyrosine kinase c-Src during mitosis. The nuclear protein level has been found to be associated with progression and prognosis in various human malignant tumors. The aim of this study is to investigate the clinical value of Sam68 in endometrial carcinoma (EC). Sam68 expression was confirmed by real-time PCR, Western blot, and immunofluorescent assay in primary normal endometrial epithelial cells, endometrial carcinoma cell lines, as well as seven pairs of EC and matched adjacent noncancerous endometrial tissues. Moreover, the protein level of Sam68 was evaluated by immunohistochemistry in a cohort of surgical specimens derived from 131 patients including primary endometrial carcinoma (n = 95), endometrial atypical hyperplasia (precancerous lesions, n = 26), and normal endometria (n = 10). In endometrial cancer cell lines, RNA interfering approach was employed to downregulate Sam68 expression to determine its role in proliferation. Clinicopathological relevance and prognostic associations were examined by statistical analyses. Compared with normal endometrial and endometrial atypical hyperplasia tissues, Sam68 significantly elevated in endometrial cancer samples (P < 0.01), which was negative or low in 37 cases (38.9 %) and high in 58 cases (61.1 %). The high expression of Sam68 was associated with histological grade (P < 0.001), FIGO stage (P = 0.039), and myometrial invasion (P = 0.002). Kaplan-Meier analysis demonstrated that overexpression of Sam68 correlated with shorter overall survival. It is confirmed by univariate and multivariate analysis (P < 0.001 and P = 0.048, respectively). Additionally, we found that Sam68 was highly expressed at both the transcriptional and translational levels in endometrial cancer cell lines (Ishikawa, HEC-1B, AN3CA, KLE, and RL95-2) and siRNA knockdown of Sam68 remarkably inhibited cellular proliferation in in vitro models. Sam68 may be useful prognostic marker for EC, and it plays an important role in promoting the cellular proliferation. Further investigation of Sam68 as a potential therapeutic target for EC patients could be of interest.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol Reprod Dev 2014; 81:1064-79. [PMID: 25359157 DOI: 10.1002/mrd.22430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
17
|
High Sam68 expression predicts poor prognosis in non-small cell lung cancer. Clin Transl Oncol 2014; 16:886-91. [PMID: 24522888 DOI: 10.1007/s12094-014-1160-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND The nuclear protein Sam68 has been implicated in the oncogenesis and tumor growth. The aim of this study was to explore the clinical value of Sam68 in patients with non-small cell lung cancer (NSCLC). METHODS We examined Sam68 expression in 50 NSCLC tissues and matched adjacent noncancerous tissues by quantitative RT-PCR (qRT-PCR) and Western blotting. Furthermore, the Sam68 protein expression was analyzed by immunohistochemistry in 208 NSCLC samples. Kaplan-Meier method and multivariate Cox regression model were used to evaluate the prognostic value of nuclear Sam68 expression in NSCLC for disease survival. RESULTS The expression of Sam68 was significantly elevated in NSCLC tissues as compared with adjacent non-cancerous tissues (P < 0.01). The high expression of Sam68 in NSCLC was significantly correlated with lymph node metastasis and tumor TNM stage. Kaplan-Meier survival analysis revealed that high expression of Sam68 correlated with poor prognosis of NSCLC patients (P < 0.01). Multivariate analysis showed that Sam68 expression was an independent prognostic marker for overall survival of NSCLC patients (HR 2.73, 95 % CI 1.549-4.315, P = 0.002). CONCLUSION Our results suggest that high Sam68 expression predicts poor prognosis of NSCLC patients, and Sam68 may be potentially a prognostic biomarker for NSCLC.
Collapse
|
18
|
Zhao X, Li Z, He B, Liu J, Li S, Zhou L, Pan C, Yu Z, Xu Z. Sam68 is a novel marker for aggressive neuroblastoma. Onco Targets Ther 2013; 6:1751-60. [PMID: 24324342 PMCID: PMC3855102 DOI: 10.2147/ott.s52643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Neuroblastoma (NB) is the most common solid extracranial tumor in children. However, the molecular mechanism and progression of NB is largely unknown, and unfortunately, the prognosis is poor. Src-associated in mitosis with a molecular weight of 68 kDa (Sam68) is associated with carcinogenesis and neurogenesis. The present study aimed to investigate the clinical and prognostic significance of Sam68 in NB. Methods The expression of Sam68 in immortalized normal epithelial cells, NB cell lines, and in four cases of paired NB tissue and adjacent normal tissue from the same patient was examined using Western blotting, reverse transcription-polymerase chain reaction (PCR) and real-time reverse transcription-PCR. The proliferation of NB cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Sam68 protein expression was analyzed in 90 NB cases characterized as clinicopathological using immunohistochemistry. Statistical analyses were applied to evaluate the diagnostic value and associations of Sam68 with clinical parameters. Results Western blotting and reverse transcription-PCR showed that the expression level of Sam68 was markedly higher in NB cell lines than in the immortalized normal epithelial cells at both messenger RNA and protein levels. The MTT assay revealed that Sam68 expression supported proliferation of NB cells. Sam68 expression levels were significantly up-regulated in tumor tissues in comparison to the matched adjacent normal tissues from the same patient. Sam68 protein level was positively correlated with clinical stage (P<0.001), tumor histology (P<0.001), and distant metastasis (P=0.029). Patients with higher Sam68 expression had shorter overall survival time, whereas those with lower tumor Sam68 expression had longer survival time. Conclusion Our results suggest that Sam68 expression is associated with neuroblastoma progression and may represent a novel and valuable predictor for prognostic evaluation of neuroblastoma patients.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-23419. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| |
Collapse
|
20
|
Liao WT, Liu JL, Wang ZG, Cui YM, Shi L, Li TT, Zhao XH, Chen XT, Ding YQ, Song LB. High expression level and nuclear localization of Sam68 are associated with progression and poor prognosis in colorectal cancer. BMC Gastroenterol 2013; 13:126. [PMID: 23937454 PMCID: PMC3751151 DOI: 10.1186/1471-230x-13-126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-associated in mitosis (Sam68; 68 kDa) has been implicated in the oncogenesis and progression of several human cancers. The aim of this study was to investigate the clinicopathologic significance of Sam68 expression and its subcellular localization in colorectal cancer (CRC). METHODS Sam68 expression was examined in CRC cell lines, nine matched CRC tissues and adjacent noncancerous tissues using reverse transcription (RT)-PCR, quantitative RT-PCR and Western blotting. Sam68 protein expression and localization were determined in 224 paraffin-embedded archived CRC samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. RESULTS Sam68 was upregulated in CRC cell lines and CRC, as compared with normal tissues; high Sam68 expression was detected in 120/224 (53.6%) of the CRC tissues. High Sam68 expression correlated significantly with poor differentiation (P = 0.033), advanced T stage (P < 0.001), N stage (P = 0.023) and distant metastasis (P = 0.033). Sam68 nuclear localization correlated significantly with poor differentiation (P = 0.002) and T stage (P =0.021). Patients with high Sam68 expression or Sam68 nuclear localization had poorer overall survival than patients with low Sam68 expression or Sam68 cytoplasmic localization. Patients with high Sam68 expression had a higher risk of recurrence than those with low Sam68 expression. CONCLUSIONS Overexpression of Sam68 correlated highly with cancer progression and poor differentiation in CRC. High Sam68 expression and Sam68 nuclear localization were associated with poorer overall survival.
Collapse
|
21
|
Vogel G, Richard S. Emerging roles for Sam68 in adipogenesis and neuronal development. RNA Biol 2012; 9:1129-33. [PMID: 23018781 DOI: 10.4161/rna.21409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sam68, the Src-associated substrate during mitosis of 68 kDa, belongs to the large class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) domain family of RNA-binding proteins. Sam68 contains a single KH domain harboring conserved N- and C-terminal sequences required for RNA binding and homodimerization. The KH domain is one of the most prevalent RNA binding domains that directly contacts single-stranded RNA. Sam68 has been implicated in numerous aspects of RNA metabolism including alternative splicing and polysomal recruitment of mRNAs. Studies in mice have revealed physiological roles linking Sam68 to osteoporosis, obesity, cancer, infertility and ataxia. Recent publications have greatly enhanced our understanding of Sam68 mechanism of action in addition to its cellular role. Herein, we will discuss the latest advances in the literature pertaining to obesity and neuronal development.
Collapse
Affiliation(s)
- Gillian Vogel
- Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, QC Canada
| | | |
Collapse
|
22
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
23
|
Kaida D, Schneider-Poetsch T, Yoshida M. Splicing in oncogenesis and tumor suppression. Cancer Sci 2012; 103:1611-6. [PMID: 22691055 DOI: 10.1111/j.1349-7006.2012.02356.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional modifications, such as 5' end capping, 3' end polyadenylation and splicing, are necessary for the precise regulation of gene expression and transcriptome integrity. Therefore, it is not surprising that abnormalities of these post-transcriptional modifications prompt numerous diseases, including cancer. In fact, many studies revealed that misregulation of mRNA processing, especially splicing, are observed in a variety of cancer cells. In this review we describe how changes within RNA splicing regulatory elements or mutations in the processing factors alter the expression of tumor suppressors or oncogenes with pathological consequences. In addition, we show how several small molecules that bind to spliceosomal components and splicing regulators inhibit or modulate splicing activity. These compounds have anticancer activity and further development of small molecule modulators has potential in next generation cancer therapy.
Collapse
Affiliation(s)
- Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Japan
| | | | | |
Collapse
|
24
|
Asbach B, Ludwig C, Saksela K, Wagner R. Comprehensive analysis of interactions between the Src-associated protein in mitosis of 68 kDa and the human Src-homology 3 proteome. PLoS One 2012; 7:e38540. [PMID: 22745667 PMCID: PMC3379994 DOI: 10.1371/journal.pone.0038540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6) as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85) and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family), as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down) and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins). Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68's interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.
Collapse
Affiliation(s)
- Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christine Ludwig
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Abstract
Numerous studies
report splicing alterations in a multitude of
cancers by using gene-by-gene analysis. However,
understanding of the role of alternative
splicing in cancer is now reaching a new level,
thanks to the use of novel technologies allowing
the analysis of splicing at a large-scale level.
Genome-wide analyses of alternative splicing
indicate that splicing alterations can affect
the products of gene networks involved in key
cellular programs. In addition, many splicing
variants identified as being misregulated in
cancer are expressed in normal tissues. These
observations suggest that splicing programs
contribute to specific cellular programs that
are altered during cancer initiation and
progression. Supporting this model, recent
studies have identified splicing factors
controlling cancer-associated splicing programs.
The characterization of splicing programs and
their regulation by splicing factors will allow
a better understanding of the genetic mechanisms
involved in cancer initiation and progression
and the development of new therapeutic
targets.
Collapse
|
26
|
Bielli P, Busà R, Paronetto MP, Sette C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18:R91-R102. [PMID: 21565971 DOI: 10.1530/erc-11-0041] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Src associated in mitosis, of 68 kDa (Sam68) is a KH domain RNA-binding protein that belongs to the signal transduction and activation of RNA family. Although ubiquitously expressed, Sam68 plays very specialized roles in different cellular environments. In most cells, Sam68 resides in the nucleus and is involved in several steps of mRNA processing, from transcription, to alternative splicing, to nuclear export. In addition, Sam68 translocates to the cytoplasm upon cell stimulation, cell cycle transitions or viral infections, where it takes part to signaling complexes and associates with the mRNA translation machinery. Recent evidence has linked Sam68 function to the onset and progression of endocrine tumors, such as prostate and breast carcinomas. Notably, all the biochemical activities reported for Sam68 seem to be implicated in carcinogenesis. Herein, we review the recent advancement in the knowledge of Sam68 function and regulation and discuss it in the frame of its participation to neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
- Pamela Bielli
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Italy
| | | | | | | |
Collapse
|
27
|
Locatelli A, Lange CA. Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J Biol Chem 2011; 286:21062-72. [PMID: 21489997 DOI: 10.1074/jbc.m110.211409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hepatocyte growth factor (HGF)/Met receptor signaling pathway is deregulated in diverse human malignancies and plays a central role in oncogenesis, tumor progression, and invasive cancer growth. Similarly, altered expression and splicing (i.e. inclusion of variant exon 5, "v5") of the cell adhesion marker, CD44, is associated with advanced cancer phenotypes. We sought to further understand how HGF regulates CD44v5 expression. Immortalized nontumorigenic keratinocyte (HaCaT) cells abundantly express both Met receptors and CD44v5 transmembrane glycoproteins. HGF stimulated CD44v5 protein expression and HaCaT cell migration; these events required activation of the ERK1/2 MAPK module and Sam68, a protein involved in RNA processing, splicing, and v5 inclusion. Similar to HaCaT cells, highly migratory MDA-MB-231 breast cancer cells also required Sam68 expression for HGF-induced migration. However, MDA-MB-231 cell migration occurred independently of ERK1/2 and CD44v5 expression and instead required ERK5 signaling to Sam68. Phospho-mutant, but not WT-Sam68, blocked HGF-induced cell migration in both cell types; MDA-MB-435 cells behaved similarly. These results suggest that Sam68 acts as a convergence point for ERK signaling to cell migration; blockade of phospho-Sam68 may provide a new avenue for therapeutic inhibition of metastatic cancers.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
28
|
A functional mouse retroposed gene Rps23r1 reduces Alzheimer's beta-amyloid levels and tau phosphorylation. Neuron 2009; 64:328-40. [PMID: 19914182 DOI: 10.1016/j.neuron.2009.08.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/25/2009] [Accepted: 08/29/2009] [Indexed: 01/01/2023]
Abstract
Senile plaques consisting of beta-amyloid (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau are major pathological hallmarks of Alzheimer's disease (AD). Elucidation of factors that modulate Abeta generation and tau hyperphosphorylation is crucial for AD intervention. Here, we identify a mouse gene Rps23r1 that originated through retroposition of ribosomal protein S23. We demonstrate that RPS23R1 protein reduces the levels of Abeta and tau phosphorylation by interacting with adenylate cyclases to activate cAMP/PKA and thus inhibit GSK-3 activity. The function of Rps23r1 is demonstrated in cells of various species including human, and in transgenic mice overexpressing RPS23R1. Furthermore, the AD-like pathologies of triple transgenic AD mice were improved and levels of synaptic maker proteins increased after crossing them with Rps23r1 transgenic mice. Our studies reveal a new target/pathway for regulating AD pathologies and uncover a retrogene and its role in regulating protein kinase pathways.
Collapse
|
29
|
Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu Z, Li M, Zeng M, Zhou F, Song L. Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18:2685-93. [PMID: 19755649 DOI: 10.1158/1055-9965.epi-09-0097] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This retrospective study aimed to examine the expression and localization of SAM68 (Src-associated in mitosis, 68 kDa) in a larger cohort of surgical specimens of renal cell carcinoma and their correlation with the progression of human renal cell carcinoma. EXPERIMENTAL DESIGN The protein and mRNA expression levels of SAM68 in normal renal tubular epithelial cells, renal cell carcinoma cell lines, as well as nine pairs of renal cell carcinoma and matched tumor-adjacent renal tissues were examined using reverse transcription-PCR and Western blot. Moreover, SAM68 protein expression and localization in 241 clinicopathologically characterized renal cell carcinoma samples were examined by immunohistochemistry. Prognostic and diagnostic associations were examined by statistical analyses. RESULTS SAM68 was markedly overexpressed in renal cell carcinoma cell lines and renal cell carcinoma tissues at both the transcriptional and translational levels. Immunohistochemical analysis revealed high SAM68 protein expression in 129 of the 241 (53.5%) paraffin-embedded archival renal cell carcinoma specimens. Moreover, there was a significant correlation between SAM68 expression and pathologic stage (P < 0.001), T classification (P = 0.003), N classification (P = 0.001), M classification (P = 0.006), and Fuhrman grade (P < 0.001). Patients with higher SAM68 expression had shorter overall survival time than patients with lower SAM68 expression, and the cytoplasmic localization of SAM68 significantly correlated with clinicopathologic grade and outcome. Multivariate analysis indicated that SAM68 protein overexpression and cytoplasmic localization were independent predictors for poor survival of renal cell carcinoma patients. CONCLUSIONS Our results suggest that SAM68 could represent a novel and useful prognostic marker for renal cell carcinoma. High SAM68 expression and cytoplasmic localization are associated with poor overall survival in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Zhiling Zhang
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lukong KE, Richard S. Targeting the RNA-binding protein Sam68 as a treatment for cancer? Future Oncol 2008; 3:539-44. [PMID: 17927519 DOI: 10.2217/14796694.3.5.539] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contradictory properties of RNA-binding proteins (RBPs) have mystified their roles in human diseases including cancer. Are certain RBPs oncogenes or tumor suppressors? In the case of the signal transduction activator of RNA metabolism (STAR) family of hnRNP K homology (KH)-domain-containing RBPs, the dominant view with loose experimental evidence is that these proteins are tumor suppressors. However, recent developments support a pro-oncogenic role for archetypical STAR protein Sam68. Sam68-null mice are not prone to cancer, but instead display pronounced defects in mammary gland ductal development, and haploinsufficiency of Sam68 impedes mammary tumor onset and tumor multiplicity in mouse models expressing the mammary-targeted polyoma middle T antigen oncogene. These advances have increased the interest in the role of Sam68 as a positive regulator of cancer progression and position Sam68 as a viable therapeutic target. Retrospective and perspective implications of Sam68 in cancer are discussed.
Collapse
Affiliation(s)
- Kiven E Lukong
- Lady Davis Institute, 3755 Côte Ste.-Catherine Road, Montréal, Québec H3T 1E2, Canada.
| | | |
Collapse
|
31
|
Lazer G, Pe'er L, Schapira V, Richard S, Katzav S. The association of Sam68 with Vav1 contributes to tumorigenesis. Cell Signal 2007; 19:2479-86. [PMID: 17855053 DOI: 10.1016/j.cellsig.2007.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Vav1 functions in the hematopoietic system as a specific GDP/GTP nucleotide exchange factor regulated by tyrosine phosphorylation. An intact C-terminal SH3 domain of Vav1 (Vav1SH3C) was shown to be necessary for Vav1-induced transformation, yet the associating protein(s) necessary for this activity have not yet been identified. Using a proteomics approach, we identified Sam68 as a Vav1SH3C-associating protein. Sam68 (Src-associated in mitosis of 68 kD) belongs to the heteronuclear ribonucleoprotein particle K (hnRNP-K) homology (KH) domain family of RNA-binding proteins. The Vav1/Sam68 interaction was observed in vitro and in vivo. Mutants of Vav1SH3C previously shown to lose their transforming potential did not associate with Sam68. Co-expression of Vav1 and Sam68 in Jurkat T cells led to increased localization of Vav1 in the nucleus and changes in cell morphology. We then tested the contribution of Sam68 to known functions of Vav1, such as focus-forming in NIH3T3 fibroblasts and NFAT stimulation in T cells. Co-expression of oncogenic Vav1 with Sam68 in NIH3T3 fibroblasts resulted in a dose-dependent increase in foci, yet no further enhancement of NFAT activity was observed in Jurkat T cells, as compared to cells overexpressing only Vav1 or Sam68. Our results strongly suggest that Sam68 contributes to transformation by oncogenic Vav1.
Collapse
Affiliation(s)
- Galit Lazer
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
32
|
Richard S, Vogel G, Huot ME, Guo T, Muller WJ, Lukong KE. Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene 2007; 27:548-56. [PMID: 17621265 DOI: 10.1038/sj.onc.1210652] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Src-associated substrate in mitosis Sam68 is a KH type RNA-binding protein known to be a substrate of numerous tyrosine kinases, and often referred to as a STAR (signal transduction activator of RNA) protein. Herein, we observed that Sam68-null mice display mammary gland and the uterine development defects. Moreover, we report that Sam68 haploinsufficiency impedes mammary tumor onset in vivo driven by the potent mammary-targeted polyoma middle T-antigen (MMTV-PyMT) oncogene. The effect was cell autonomous as the Sam68 knockdown in PyMT-transformed cell lines also delayed tumorigenesis and metastasis formation in nude mice. Interestingly, tumor extracts isolated from PyMT/Sam68(+/-) mice compared with PyMT/Sam68(+/+) mice contained activated Src and FAK kinases. These findings suggest that Sam68 may be a modulator of tyrosine kinase activity in vivo and a signaling requirement for mammary tumorigenesis and metastasis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Antigens, Viral, Tumor/genetics
- CSK Tyrosine-Protein Kinase
- Cell Proliferation
- Enzyme Activation/genetics
- Female
- Focal Adhesion Kinase 2/metabolism
- Heterozygote
- Lung Neoplasms/secondary
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/growth & development
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Knockout
- Neoplasm Metastasis
- Polyomavirus/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/physiology
- Signal Transduction/genetics
- Time Factors
- Tumor Burden/genetics
- Tumor Cells, Cultured
- Uterus/abnormalities
- Uterus/growth & development
- src-Family Kinases
Collapse
Affiliation(s)
- S Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Mamidipudi V, Dhillon NK, Parman T, Miller LD, Lee KC, Cartwright CA. RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene 2006; 26:2914-24. [PMID: 17072338 DOI: 10.1038/sj.onc.1210091] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we showed that Src tyrosine kinases are activated early in the development of human colon cancer and are suppressed as intestinal cells differentiate. We identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src. Here we show (by overexpressing RACK1, depleting Src or RACK1 and utilizing cell-permeable peptides that perturb RACK1's interaction with Src) that RACK1 regulates growth of colon cells by suppressing Src activity at G(1) and mitotic checkpoints, and consequently delaying cell cycle progression. Activated Src rescues RACK1-inhibited growth of HT-29 cells. Conversely, inhibiting Src abolishes growth promoted by RACK1 depletion in normal cells. Two potential mechanisms whereby RACK1 regulates mitotic exit are identified: suppression of Src-mediated Sam68 phosphorylation and maintenance of the cyclin-dependent kinase (CDK) 1-cyclin B complex in an active state. Our results reveal novel mechanisms of cell cycle control in G(1) and mitosis of colon cells. The significance of this work lies in the discovery of a mechanism by which the growth of colon cancer cells can be slowed, by RACK1 suppression of an oncogenic kinase at critical cell cycle checkpoints. Small molecules that mimic RACK1 function may provide a powerful new approach to the treatment of colon cancer.
Collapse
Affiliation(s)
- V Mamidipudi
- Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
34
|
Babic I, Cherry E, Fujita DJ. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 2006; 25:4955-64. [PMID: 16568089 DOI: 10.1038/sj.onc.1209504] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sam68 (Src associated in mitosis; 68 kDa) is an RNA-binding protein and substrate of Src family kinases. It is thought to play a role in cell cycle progression. Overexpression of Sam68 in fibroblasts was reported to have two separable functions dependent on its ability to bind RNA--cell cycle arrest or the induction of apoptosis. Post-translational modification with SUMO (small ubiquitin-like modifier) is common to many transcription factors and can regulate protein localization, stability and function. Here we show Sam68 to be modified by SUMO, and demonstrate that the SUMO E3 ligase (PIAS1) (protein inhibitor of activated STAT1) can enhance Sam68 sumoylation. Lysine 96, the first lysine in the amino-terminal region of Sam68, was found to be the major SUMO acceptor site. Mutation of the SUMO acceptor lysine to arginine enhanced the ability of Sam68 to induce apoptosis but inhibited its ability to act as a transcriptional inhibitor of cyclin D1 expression. A SUMO-1 Sam68 fusion protein, on the other hand, inhibited the ability of Sam68 to induce apoptosis but was a strong repressor of cyclin D1 expression. Thus, SUMO may be an important regulator of Sam68 function in cell cycle progression.
Collapse
Affiliation(s)
- I Babic
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
35
|
Badri KR, Modem S, Gerard HC, Khan I, Bagchi M, Hudson AP, Reddy TR. Regulation of Sam68 activity by small heat shock protein 22. J Cell Biochem 2006; 99:1353-62. [PMID: 16795043 DOI: 10.1002/jcb.21004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sam68 associates with c-Src kinase during mitosis. We previously demonstrated that Sam68 functionally replaces and/or synergizes with HIV-1 Rev in rev response element (RRE)-mediated gene expression and virus production. Furthermore, we reported that knockdown of Sam68 inhibited Rev-mediated RNA export and it is absolutely required for HIV-1 production. In the present study, we identified small heat shock protein, hsp22, as a novel interacting partner of Sam68. Hsp22 binds to Sam68 in vitro and in vivo. Overexpression of hsp22 significantly inhibits Sam68-mediated RRE- as well as CTE (constitutive transport element)-dependent reporter gene expression. Furthermore, exposing 293T cells to heat shock inhibits Sam68/RRE function by virtue of elevating hsp22. The critical domain of hsp22 that interacts with Sam68 resides between amino acids 62 and 133. Our studies provide evidence for the first time that hsp22 specifically binds to Sam68 and modulates its activity, thus playing a role in the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Kameswara R Badri
- Department of Immunology and Microbiology, Wayne State University-School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Lukong KE, Larocque D, Tyner AL, Richard S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem 2005; 280:38639-47. [PMID: 16179349 DOI: 10.1074/jbc.m505802200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA-binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.
Collapse
Affiliation(s)
- Kiven Erique Lukong
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Department of Oncology, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
37
|
Modem S, Badri KR, Holland TC, Reddy TR. Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 2005; 33:873-9. [PMID: 15701759 PMCID: PMC549398 DOI: 10.1093/nar/gki231] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/27/2004] [Accepted: 01/19/2005] [Indexed: 11/12/2022] Open
Abstract
Sam68 functionally complements for, as well as synergizes with, HIV-1 Rev in Rev response element (RRE)-mediated gene expression and virus production. Furthermore, C-terminal deletion/point mutants of Sam68 (Sam68DeltaC/Sam68-P21) exert a transdominant negative phenotype for Rev function and HIV-1 production. However, the relevance of Sam68 in Rev/RRE function is not well defined. To gain more insight into the mechanism of Sam68 in Rev function, we used an RNAi (RNA interference) strategy to create stable Sam68 knockdown HeLa (SSKH) cells. In SSKH cells, Rev failed to activate both RRE-mediated reporter gene [chloramphenicol acetyltransferase (CAT) and/or gag] expressions. Importantly, reduction of Sam68 expression led to a dramatic inhibition of HIV-1 production. Inhibition of the reporter gene expression and HIV production correlated with the failure to export RRE-containing CAT mRNA and unspliced viral mRNAs to the cytoplasm, confirming that SSKH cells are defective for Rev-mediated RNA export. Taken together, these results suggest that Sam68 is involved in Rev-mediated RNA export and is absolutely required for HIV production.
Collapse
Affiliation(s)
- Suhasini Modem
- Department of Immunology and Microbiology, Wayne State University-School of MedicineDetroit, MI 48201, USA
| | - Kameswara R. Badri
- Department of Immunology and Microbiology, Wayne State University-School of MedicineDetroit, MI 48201, USA
| | - Thomas C. Holland
- Department of Immunology and Microbiology, Wayne State University-School of MedicineDetroit, MI 48201, USA
| | - Thipparthi R. Reddy
- Department of Immunology and Microbiology, Wayne State University-School of MedicineDetroit, MI 48201, USA
| |
Collapse
|
38
|
Haegebarth A, Heap D, Bie W, Derry JJ, Richard S, Tyner AL. The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2. J Biol Chem 2004; 279:54398-404. [PMID: 15471878 DOI: 10.1074/jbc.m409579200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the intracellular tyrosine kinase BRK/Sik is epithelial-specific and regulated during differentiation. Only a few substrates have been identified for BRK/Sik, including the KH domain containing RNA-binding protein Sam68 and the novel adaptor protein BKS. Although the physiological role of Sam68 is unknown, it has been shown to regulate mRNA transport, pre-mRNA splicing, and polyadenylation. Here we demonstrate that the Sam68-like mammalian proteins SLM-1 and SLM-2 but not the related KH domain containing heterogeneous nuclear ribonucleoprotein K are novel substrates of BRK/Sik. The expression of active BRK/Sik results in increased SLM-1 and SLM-2 phosphorylation and increased retention of BRK/Sik within the nucleus. The phosphorylation of SLM-1 and SLM-2 has functional relevance and leads to inhibition of their RNA-binding abilities. We show that SLM-1, SLM-2, and BRK/Sik have restricted patterns of expression unlike the ubiquitously expressed Sam68. Moreover, BRK/Sik, SLM-1, and Sam68 transcripts were coexpressed in the mouse gastrointestinal tract and skin, suggesting that SLM-1 and Sam68 could be physiologically relevant BRK/Sik targets in vivo. The ability of BRK/Sik to negatively regulate the RNA-binding activities of the KH domain RNA binding proteins SLM-1 and Sam68 may have an impact on the posttranscriptional regulation of epithelial cell gene expression.
Collapse
Affiliation(s)
- Andrea Haegebarth
- Departments of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
39
|
Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R, Rossi P, Sette C. Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1243-51. [PMID: 15039213 PMCID: PMC1615360 DOI: 10.1016/s0002-9440(10)63212-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A truncated form of the c-Kit tyrosine kinase receptor, originally identified in mouse haploid germ cells, is aberrantly expressed in human cancer cell lines of various origin. This alternative transcript originates in the 15th intron of the human c-kit gene. We have previously demonstrated that sperm-carried mouse truncated c-Kit (tr-Kit) is a strong activator of the Src-family tyrosine kinases both in transfected cells and in mouse oocytes. In the present work, we report that human tr-Kit mRNA and protein are expressed in LNCaP prostatic cancer cells. We have identified two regions in the 15th and 16th introns of the human c-kit gene that show homology with sequences in the spermatid-specific tr-Kit promoter within the 16th intron of mouse c-kit. We also show that nuclear factors present in LNCaP cells bind to discrete sequences of the mouse tr-Kit promoter. Moreover, Western blot analysis of 23 primary prostate cancers indicated that tr-Kit was expressed in approximately 28% of the tumors at less advanced stages (Gleason grade 4 to 6) and in 66% of those at more advanced stages (Gleason grade 7 to 9), whereas it was not expressed in benign prostatic hypertrophies. Sequencing of the cDNA for the truncated c-Kit, amplified from both LNCaP cells and neoplastic tissues, confirmed the existence in prostate cancer cells of a transcript arising from the 15th intron of human c-kit. We also show that tr-Kit-expressing LNCaP cells and prostatic tumors have higher levels of phosphorylated/activated Src than tr-Kit-negative PC3 cells or prostatic tumors, and that transfection of tr-Kit in PC3 cells caused a dramatic increase in Src activity. Interestingly, we found that Sam68, a RNA-binding protein phosphorylated by Src in mitosis, is phosphorylated only in prostate tumors expressing tr-Kit. Indeed, both activation of Src and phosphorylation of Sam68 were observed in all of the three grade 7 to 9 tumors analyzed that expressed tr-Kit. Our data describe for the first time the existence of a truncated c-Kit protein in primary tumors and show a correlation between tr-Kit expression and activation of the Src pathway in the advanced stages of the disease. Thus, these results might pave the way for the elucidation of a novel pathway in neoplastic transformation of prostate cells.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Dipartimento di Sanità Pubblica e Biologia Cellulare, Facoltà di Medicina e Chirurgia, Università di Roma "Tor Vergata," Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Taylor SJ, Resnick RJ, Shalloway D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 2004; 5:5. [PMID: 14736338 PMCID: PMC331397 DOI: 10.1186/1471-2121-5-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 01/22/2004] [Indexed: 11/24/2022] Open
Abstract
Background The RNA-binding protein Sam68 has been implicated in a number of cellular processes, including transcription, RNA splicing and export, translation, signal transduction, cell cycle progression and replication of the human immunodeficiency virus and poliovirus. However, the precise impact it has on essential cellular functions remains largely obscure. Results In this report we show that conditional overexpression of Sam68 in fibroblasts results in both cell cycle arrest and apoptosis. Arrest in G1 phase of the cell cycle is associated with decreased levels of cyclins D1 and E RNA and protein, resulting in dramatically reduced Rb phosphorylation. Interestingly, cell cycle arrest does not require the specific RNA binding ability of Sam68. In marked contrast, induction of apoptosis by Sam68 absolutely requires a fully-functional RNA binding domain. Moreover, the anti-cancer agent trichostatin A potentiates Sam68-driven apoptosis. Conclusions For the first time we have shown that Sam68, an RNA binding protein with multiple apparent functions, exerts functionally separable effects on cell proliferation and survival, dependent on its ability to bind specifically to RNA. These findings shed new light on the ability of signal transducing RNA binding proteins to influence essential cell function. Moreover, the ability of a class of anti-cancer therapeutics to modulate its ability to promote apoptosis suggests that Sam68 status may impact some cancer treatments.
Collapse
Affiliation(s)
- Stephen J Taylor
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ross J Resnick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
41
|
Abstract
Sam68 is one of the most studied members of the STAR family of RNA-binding proteins since its identification over a decade ago. Since its ascension into prominence, enormous progress has been made to unmask the link between the RNA-binding properties of Sam68 and the regulation of cellular processes including signal transduction, cell cycle regulation and tumorigenesis and RNA biogenesis in general. In this review we provide a detailed description of the functional domains of Sam68 and the possible biological roles that justify its superSTAR status.
Collapse
Affiliation(s)
- Kiven E Lukong
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, H3T 1E2 Québec, Canada
| | | |
Collapse
|
42
|
El Mabrouk M, Diep QN, Benkirane K, Touyz RM, Schiffrin EL. SAM68: a downstream target of angiotensin II signaling in vascular smooth muscle cells in genetic hypertension. Am J Physiol Heart Circ Physiol 2003; 286:H1954-62. [PMID: 14693677 DOI: 10.1152/ajpheart.00134.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether phosphatidylinositol 3-kinase (PI3K) and 68-kDa Src associated during mitosis (SAM68) are involved in angiotensin II (ANG II) growth signaling in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). PI3K activity was assessed by measuring the phosphorylation of the regulatory subunit p85alpha and kinase activity of the catalytic 110-kDa subunit of PI3K. The PI3K-SAM68 interaction was assessed by coimmunoprecipitation, and SAM68 activity was evaluated by poly(U) binding. SAM68 expression was manipulated by SAM68 antisense oligonucleotide transfection. VSMC growth was evaluated by measuring [3H]leucine and [3H]thymidine incorporation as indexes of protein and DNA synthesis, respectively. ANG II increased the phosphorylation of p85alpha and kinase activity of the 110-kDa PI3K subunit in VSMCs from SHR and transiently increased p85alpha-SAM68 association. In Wistar-Kyoto (WKY) rat cells, ANG II increased SAM68 phosphorylation without influencing poly(U) binding. In SHR, ANG II did not influence SAM68 phosphorylation but increased SAM68 binding to poly(U). ANG II stimulated phosphoinositol phosphate synthesis by PI3K in SAM68 immunoprecipitates in both groups, with significantly enhanced effects in SHR. Inhibition of PI3K, using the selective inhibitor LY-294002, and downregulation of SAM68, by antisense oligonucleotides, significantly decreased ANG II-stimulated incorporation of [3H]leucine and [3H]thymidine in VSMCs, showing the functional significance of PI3K and SAM68. Our data demonstrate that PI3K and SAM68 are involved in ANG II signaling and that SAM68 is differentially regulated in VSMCs from SHR. These processes may contribute to the enhanced ANG II signaling and altered VSMC growth in SHR.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Cell Division/drug effects
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Hypertension/genetics
- Hypertension/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotides, Antisense/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Poly U/metabolism
- Protein Isoforms/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction/drug effects
- Tissue Distribution
Collapse
Affiliation(s)
- Mohammed El Mabrouk
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
43
|
Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P, Sette C. tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCγ1 and Sam68. Oncogene 2003; 22:8707-15. [PMID: 14647465 DOI: 10.1038/sj.onc.1207016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tr-kit is a truncated form of the tyrosine kinase receptor c-kit expressed in the haploid phase of spermatogenesis. Upon microinjection, tr-kit triggers metaphase-to-anaphase transition in mouse eggs by the sequential activation of Fyn and PLCgamma1. Here, we show that tr-kit promotes the interaction of several tyrosine-phosphorylated proteins with the SH3 domain of PLCgamma1. Western blot analysis indicates that one of these proteins is Sam68, an RNA-binding protein that is known to interact with and be phosphorylated by Src-like kinases in mitosis. tr-kit promotes the association of Sam68 with PLCgamma1 and Fyn in a multimolecular complex, as demonstrated by co-immunoprecipitation of the phosphorylated forms of these proteins using antibodies directed to anyone of the partners of the complex. Expression of tr-kit potentiates the interaction of endogenous Sam68 also with the SH3 domain of Fyn. Furthermore, the subcellular localization of Sam68 is affected by tr-kit through activation of Fyn in live cells. Lastly, we show that interaction with the SH3 domain of Fyn triggers the release of Sam68 from bound RNA. Thus, our data suggest that tr-kit promotes the formation of a multimolecular complex composed of Fyn, PLCgamma1 and Sam68, which allows phosphorylation of PLCgamma1 by Fyn, and may modulate RNA metabolism.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, Osteen K, Lessey BA, Giudice LC. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology 2003; 144:2870-81. [PMID: 12810542 DOI: 10.1210/en.2003-0043] [Citation(s) in RCA: 483] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endometriosis is clinically associated with pelvic pain and infertility, with implantation failure strongly suggested as an underlying cause for the observed infertility. Eutopic endometrium of women with endometriosis provides a unique experimental paradigm for investigation into molecular mechanisms of reproductive dysfunction and an opportunity to identify specific markers for this disease. We applied paralleled gene expression profiling using high-density oligonucleotide microarrays to investigate differentially regulated genes in endometrium from women with vs. without endometriosis. Fifteen endometrial biopsy samples (obtained during the window of implantation from eight subjects with and seven subjects without endometriosis) were processed for expression profiling on Affymetrix Hu95A microarrays. Data analysis was conducted with GeneChip Analysis Suite, version 4.01, and GeneSpring version 4.0.4. Nonparametric testing was applied, using a P value of 0.05, to assess statistical significance. Of the 12,686 genes analyzed, 91 genes were significantly increased more than 2-fold in their expression, and 115 genes were decreased more than 2-fold. Unsupervised clustering demonstrated down-regulation of several known cell adhesion molecules, endometrial epithelial secreted proteins, and proteins not previously known to be involved in the pathogenesis of endometriosis, as well as up-regulated genes. Selected dysregulated genes were randomly chosen and validated with RT-PCR and/or Northern/dot-blot analyses, and confirmed up-regulation of collagen alpha2 type I, 2.6-fold; bile salt export pump, 2.0-fold; and down-regulation of N-acetylglucosamine-6-O-sulfotransferase (important in synthesis of L-selectin ligands), 1.7-fold; glycodelin, 51.5-fold; integrin alpha2, 1.8-fold; and B61 (Ephrin A1), 4.5-fold. Two-way overlapping layer analysis used to compare endometrial genes in the window of implantation from women with and without endometriosis further identified three unique groups of target genes, which differ with respect to the implantation window and the presence of disease. Group 1 target genes are up-regulated during the normal window of implantation but significantly decreased in women with endometriosis: IL-15, proline-rich protein, B61, Dickkopf-1, glycodelin, N-acetylglucosamine-6-O-sulfotransferase, G0S2 protein, and purine nucleoside phosphorylase. Group 2 genes are normally down-regulated during the window of implantation but are significantly increased with endometriosis: semaphorin E, neuronal olfactomedin-related endoplasmic reticulum localized protein mRNA and Sam68-like phosphotyrosine protein alpha. Group 3 consists of a single gene, neuronal pentraxin II, normally down-regulated during the window of implantation and further decreased in endometrium from women with endometriosis. The data support dysregulation of select genes leading to an inhospitable environment for implantation, including genes involved in embryonic attachment, embryo toxicity, immune dysfunction, and apoptotic responses, as well as genes likely contributing to the pathogenesis of endometriosis, including aromatase, progesterone receptor, angiogenic factors, and others. Identification and validation of selected genes and their functions will contribute to uncovering previously unknown mechanism(s) underlying implantation failure in women with endometriosis and infertility, mechanisms underlying the pathogenesis of endometriosis and providing potential new targets for diagnostic screening and intervention.
Collapse
Affiliation(s)
- L C Kao
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305-5317, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Coyle JH, Guzik BW, Bor YC, Jin L, Eisner-Smerage L, Taylor SJ, Rekosh D, Hammarskjöld ML. Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol 2003; 23:92-103. [PMID: 12482964 PMCID: PMC140664 DOI: 10.1128/mcb.23.1.92-103.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60- to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.
Collapse
Affiliation(s)
- John H Coyle
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Itoh M, Haga I, Li QH, Fujisawa JI. Identification of cellular mRNA targets for RNA-binding protein Sam68. Nucleic Acids Res 2002; 30:5452-64. [PMID: 12490714 PMCID: PMC140046 DOI: 10.1093/nar/gkf673] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sam68 (Src-associated in mitosis, 68 kDa), a nuclear RNA-binding protein, has been postulated to play a role in cell-growth control as a modulator of signal transduction and activation of RNA metabolism. Although Sam68 was demonstrated to bind to the UAAA sequences in synthetic oligoribonucleotides and poly(U) homopolymers in vitro, the legitimate cellular mRNA target remained unclear. By using the differential display and cDNA-representational difference analysis techniques, followed by reverse transcription polymerase chain reaction of RNAs co-immunoprecipitated with Sam68 from a HeLa cell lysate, we identified 10 mRNA species that bind in vivo to Sam68 in an RNA-binding domain-dependent manner. Among them, the mRNA species for hnRNP A2/B1 and beta-actin were found to bind prominently in vivo as well as in vitro, suggesting the possible involvement of Sam68 in the post- transcriptional regulation of these genes. Mapping of the Sam68-binding sequence revealed that Sam68 associates with these mRNAs through different nucleotide motifs, UAAA for hnRNP A2/B1 mRNA and UUUUUU for beta-actin mRNA, and that both binding sequences must reside in a loop structure for recognition by Sam68. The results indicated that Sam68 recognizes both the UAAA motif and poly(U) sequences in vivo for binding to cellular target mRNAs.
Collapse
Affiliation(s)
- Michiyasu Itoh
- Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8506, Japan
| | | | | | | |
Collapse
|
47
|
Li QH, Haga I, Shimizu T, Itoh M, Kurosaki T, Fujisawa JI. Retardation of the G2-M phase progression on gene disruption of RNA binding protein Sam68 in the DT40 cell line. FEBS Lett 2002; 525:145-50. [PMID: 12163178 DOI: 10.1016/s0014-5793(02)03103-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sam68 is an RNA binding protein that is tyrosine-phosphorylated by Src during mitosis and has been postulated to have a role in cell cycle control by modulating RNA metabolism. To elucidate the function of this protein, we isolated a Sam68-deficient DT40 cell line by gene disruption. The Sam68-deficient cells exhibited markedly decreased growth and the growth retardation was due to elongation of the G2-M phase, however, the kinase activity associated with Cdc2 remained unaltered. Our results indicate that Sam68 may play a critical role in G2-M progression in a manner independent of the control of Cyclin/Cdc2 kinase activity.
Collapse
Affiliation(s)
- Qing-Hua Li
- Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, 570-8506, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Chen T, Côté J, Carvajal HV, Richard S. Identification of Sam68 arginine glycine-rich sequences capable of conferring nonspecific RNA binding to the GSG domain. J Biol Chem 2001; 276:30803-11. [PMID: 11395494 DOI: 10.1074/jbc.m102247200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sam68 is an RNA-binding protein that contains a heterogeneous nuclear ribonucleoprotein K homology domain embedded in a larger RNA binding domain called the GSG (GRP33, Sam68, GLD-1) domain. This family of proteins is often referred to as the STAR (signal transduction and activators of RNA metabolism) proteins. It is not known whether Sam68 is a general nonspecific RNA-binding protein or whether it recognizes specific response elements in mRNAs with high affinity. Sam68 has been shown to bind homopolymeric RNA and a synthetic RNA sequence called G8-5 that has a core UAAA motif. Here we performed a structure function analysis of Sam68 and identified two arginine glycine (RG)-rich regions that confer nonspecific RNA binding to the Sam68 GSG domain. In addition, by using chimeric proteins between Sam68 and QKI-7, we demonstrated that one of the Sam68 RG-rich sequences of 26 amino acids was sufficient to confer homopolymeric RNA binding to the GSG domain of QKI-7, another STAR protein. Furthermore, that minimal sequence can also give QKI-7 the ability (as Sam68) to functionally substitute for HIV-1 REV to facilitate the nuclear export of RNAs. Our studies suggest that neighboring RG-rich sequences may impose nonspecific RNA binding to GSG domains. Because the Sam68 RNA binding activity is negatively regulated by tyrosine phosphorylation, our data lead us to propose that Sam68 might be a specific RNA-binding protein when tyrosine phosphorylated.
Collapse
Affiliation(s)
- T Chen
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Canada
| | | | | | | |
Collapse
|