1
|
Bui THD, Labedzka-Dmoch K. RetroGREAT signaling: The lessons we learn from yeast. IUBMB Life 2024; 76:26-37. [PMID: 37565710 DOI: 10.1002/iub.2775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
Collapse
Affiliation(s)
- Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Labedzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
3
|
Azbarova AV, Knorre DA. Role of Mitochondrial DNA in Yeast Replicative Aging. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1997-2006. [PMID: 38462446 DOI: 10.1134/s0006297923120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024]
Abstract
Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Longan ER, Fay JC. Experimental evolution of Saccharomyces uvarum at high temperature yields elevation of maximal growth temperature and loss of the mitochondrial genome. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000831. [PMID: 37334198 PMCID: PMC10276265 DOI: 10.17912/micropub.biology.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
An organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy. Using a selection scheme inspired by Dallinger, we sought to increase the upper thermal limit of Saccharomyces uvarum . This species has a maximum growth temperature of 34-35°C, considerably lower than S. cerevisiae . After 136 passages on solid plates at progressively higher temperatures, we recovered a clone that can grow at 36°C, a gain of ~1.5°C. Additionally, the evolved clone lost its mitochondrial genome and cannot respire. In contrast, an induced rho 0 derivative of the ancestor shows a decrease in thermotolerance. Also, incubation of the ancestor at 34°C for 5 days increased the frequency of petite mutants drastically compared to 22°C, supporting the notion that mutation pressure rather than selection drove loss of mtDNA in the evolved clone. These results demonstrate that S. uvarum 's upper thermal limit can be elevated slightly via experimental evolution and corroborate past observations in S. cerevisiae that high temperature selection schemes can inadvertently lead to production of the potentially undesirable respiratory incompetent phenotype in yeasts.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
5
|
Taylor MB, Skophammer R, Warwick AR, Geck RC, Boyer JM, Walson M, Large CRL, Hickey ASM, Rowley PA, Dunham MJ. yEvo: experimental evolution in high school classrooms selects for novel mutations that impact clotrimazole resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac246. [PMID: 36173330 PMCID: PMC9635649 DOI: 10.1093/g3journal/jkac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Antifungal resistance in pathogenic fungi is a growing global health concern. Nonpathogenic laboratory strains of Saccharomyces cerevisiae are an important model for studying mechanisms of antifungal resistance that are relevant to understanding the same processes in pathogenic fungi. We have developed a series of laboratory modules in which high school students used experimental evolution to study antifungal resistance by isolating azole-resistant S. cerevisiae mutants and examining the genetic basis of resistance. We have sequenced 99 clones from these experiments and found that all possessed mutations previously shown to impact azole resistance, validating our approach. We additionally found recurrent mutations in an mRNA degradation pathway and an uncharacterized mitochondrial protein (Csf1) that have possible mechanistic connections to azole resistance. The scale of replication in this initiative allowed us to identify candidate epistatic interactions, as evidenced by pairs of mutations that occur in the same clone more frequently than expected by chance (positive epistasis) or less frequently (negative epistasis). We validated one of these pairs, a negative epistatic interaction between gain-of-function mutations in the multidrug resistance transcription factors Pdr1 and Pdr3. This high school-university collaboration can serve as a model for involving members of the broader public in the scientific process to make meaningful discoveries in biomedical research.
Collapse
Affiliation(s)
- Matthew Bryce Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | | | - Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Josephine M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - yEvo Students
- Westridge School, Pasadena, CA 91105, USA
- Moscow High School, Moscow, ID 83843, USA
| | - Margaux Walson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- UW Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Angela Shang-Mei Hickey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Genetics, Stanford University, Biomedical Innovations Building, Palo Alto, CA 94304, USA
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Adaptive Response of Saccharomyces Hosts to Totiviridae L-A dsRNA Viruses Is Achieved through Intrinsically Balanced Action of Targeted Transcription Factors. J Fungi (Basel) 2022; 8:jof8040381. [PMID: 35448612 PMCID: PMC9028071 DOI: 10.3390/jof8040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Totiviridae L-A virus is a widespread yeast dsRNA virus. The persistence of the L-A virus alone appears to be symptomless, but the concomitant presence of a satellite M virus provides a killer trait for the host cell. The presence of L-A dsRNA is common in laboratory, industrial, and wild yeasts, but little is known about the impact of the L-A virus on the host’s gene expression. In this work, based on high-throughput RNA sequencing data analysis, the impact of the L-A virus on whole-genome expression in three different Saccharomyces paradoxus and S. cerevisiae host strains was analyzed. In the presence of the L-A virus, moderate alterations in gene expression were detected, with the least impact on respiration-deficient cells. Remarkably, the transcriptional adaptation of essential genes was limited to genes involved in ribosome biogenesis. Transcriptional responses to L-A maintenance were, nevertheless, similar to those induced upon stress or nutrient availability. Based on these data, we further dissected yeast transcriptional regulators that, in turn, modulate the cellular L-A dsRNA levels. Our findings point to totivirus-driven fine-tuning of the transcriptional landscape in yeasts and uncover signaling pathways employed by dsRNA viruses to establish the stable, yet allegedly profitless, viral infection of fungi.
Collapse
|
7
|
Vowinckel J, Hartl J, Marx H, Kerick M, Runggatscher K, Keller MA, Mülleder M, Day J, Weber M, Rinnerthaler M, Yu JSL, Aulakh SK, Lehmann A, Mattanovich D, Timmermann B, Zhang N, Dunn CD, MacRae JI, Breitenbach M, Ralser M. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nat Metab 2021; 3:1521-1535. [PMID: 34799698 PMCID: PMC7612105 DOI: 10.1038/s42255-021-00477-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biognosys AG, Schlieren, Switzerland
| | - Johannes Hartl
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Hans Marx
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Martin Kerick
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Parasitology and Biomedicine 'López-Neyra' (IPBLN, CSIC), Granada, Spain
| | - Kathrin Runggatscher
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Mülleder
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Manuela Weber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Lehmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nianshu Zhang
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Turkey
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, London, UK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Puthanmadhom Narayanan S, O'Brien D, Sharma M, Miller K, Adams P, Passos JF, Eirin A, Ordog T, Bharucha AE. Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy. JCI Insight 2021; 6:143596. [PMID: 33491664 PMCID: PMC7934845 DOI: 10.1172/jci.insight.143596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein-coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE. The promoters of differentially expressed genes were enriched in motifs for transcription factors (e.g., NRF1), which regulate mitochondrial biogenesis. Seventeen of 30 differentially expressed miRNAs targeted differentially expressed mitochondrial genes. Mitochondrial density was reduced and correlated with expression of 9 mtDNA OXPHOS genes. Uncovered by principal component (PC) analysis of 70 OXPHOS genes, PC1 was associated with neuropathy (P = 0.01) and delayed gastric emptying (P < 0.05). In DGE, mtDNA- and nDNA-encoded mitochondrial genes are reduced and increased — associated with reduced mitochondrial density, neuropathy, and delayed gastric emptying — and correlated with cognate miRNAs. These findings suggest that mitochondrial disturbances may contribute to delayed gastric emptying in DGE.
Collapse
Affiliation(s)
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl Miller
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - Peter Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering and
| | - Alfonso Eirin
- Division of Nephrology & Hypertension Research, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Ravoitytė B, Lukša J, Yurchenko V, Serva S, Servienė E. Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content. Microorganisms 2020; 8:microorganisms8121902. [PMID: 33266158 PMCID: PMC7761358 DOI: 10.3390/microorganisms8121902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 01/23/2023] Open
Abstract
Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function. Our work advance studies of transcriptional adaptations of Saccharomyces spp. induced by changes in phenotype and set of dsRNA viruses, reported for the first time.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
- Correspondence: (B.R.); (E.S.)
| | - Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Malaya Pirogovskaya str. 20, 119435 Moscow, Russia
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, Saulėtekio al. 7, 10257 Vilnius, Lithuania;
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania;
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
- Correspondence: (B.R.); (E.S.)
| |
Collapse
|
10
|
Angireddy R, Chowdhury AR, Zielonka J, Ruthel G, Kalyanaraman B, Avadhani NG. Alcohol-induced CYP2E1, mitochondrial dynamics and retrograde signaling in human hepatic 3D organoids. Free Radic Biol Med 2020; 159:1-14. [PMID: 32738395 DOI: 10.1016/j.freeradbiomed.2020.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Alcohol toxicity is a significant health problem with ~3 million estimated deaths per year globally. Alcohol is metabolized to the toxic metabolite, acetaldehyde by alcohol dehydrogenase or CYP2E1 in the hepatic tissue, and also induces reactive oxygen species (ROS), which together play a pivotal role in cell and tissue damage. Our previous studies with COS-7 cells transduced with unique human CYP2E1 variants that mostly localize to either microsomes or mitochondria revealed that mitochondrially-localized CYP2E1 drives alcohol toxicity through the generation of higher levels of ROS, which has a consequent effect on cytochrome c oxidase (CcO) and mitochondrial oxidative function. Alcohol treatment of human hepatocyte cell line, HepaRG, in monolayer cultures increased ROS, affected CcO activity/stability, and induced mitophagy. Alcohol treatment of 3D organoids of HepaRG cells induced higher levels of CYP2E1 mRNA and activated mitochondrial stress-induced retrograde signaling, and also induced markers of hepatic steatosis. Knock down of CYP2E1 mRNA using specific shRNA, FK506, a Calcineurin inhibitor, and Mdivi-1, a DRP1 inhibitor, ameliorated alcohol-induced mitochondrial retrograde signaling, and hepatic steatosis. These results for the first time present a mechanistic link between CYP2E1 function and alcohol mediated mitochondrial dysfunction, retrograde signaling, and activation of hepatic steatosis in a 3D organoid system that closely recapitulates the in vivo liver response.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacek Zielonka
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gordon Ruthel
- Department of Pathobiology, Veterinary Center for Imaging, Hill Pavilion, School of Veterinary Medicine, University of Pennsylvania, PA, 19104, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Evaluation of the Fermentative Capacity of Saccharomyces cerevisiae CAT-1 and BB9 Strains and Pichia kudriavzevii BB2 at Simulated Industrial Conditions. Indian J Microbiol 2020; 60:494-504. [PMID: 33087999 DOI: 10.1007/s12088-020-00891-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023] Open
Abstract
The search for promising yeasts that surpass the fermentative capacity of commercial strains, such as Saccharomyces cerevisiae CAT-1, is of great importance for industrial ethanol processes in the world. Two yeasts, Pichia kudriavzevii BB2 and Saccharomyces cerevisiae BB9, were evaluated in comparison to the industrial yeast S. cerevisiae CAT-1. The objective was to evaluate the performance profile of the three studied strains in terms of growth, substrate consumption, and metabolite formation, aiming to determine their behaviour in different media and pH conditions. The results showed that under cultivation conditions simulating the medium used in the industrial process (must at 22° Brix at pH 3.0) the highest ethanol productivity was 0.41 g L-1 h-1 for S. cerevisiae CAT-1, compared to 0.11 g L-1 h-1 and 0.16 g L-1 h-1 for P. kudriavzevii and S. cerevisiae BB2, respectively. S. cerevisiae CAT-1 produced three times more ethanol in must at pH 3.0 (28.30 g L-1) and in mineral medium at pH 3.0 (29.17 g L-1) and 5.0 (30.70 g L-1) when compared to the value obtained in sugarcane must pH 3.0 (9.89 g L-1). It was concluded that S. cerevisiae CAT-1 was not limited by the variation in pH in the mineral medium due to its nutritional composition, guaranteeing better performance of the yeast even in the presence of stressors. Only S. cerevisiae CAT-1 expressed he constitutive invertase enzyme, which is responsible for hydrolysing the sucrose contained in the must.
Collapse
|
12
|
Sturm L, Geißel B, Martin R, Wagener J. Differentially Regulated Transcription Factors and ABC Transporters in a Mitochondrial Dynamics Mutant Can Alter Azole Susceptibility of Aspergillus fumigatus. Front Microbiol 2020; 11:1017. [PMID: 32528443 PMCID: PMC7264269 DOI: 10.3389/fmicb.2020.01017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Azole resistance of the fungal pathogen Aspergillus fumigatus is an emerging problem. To identify novel mechanisms that could mediate azole resistance in A. fumigatus, we analyzed the transcriptome of a mitochondrial fission/fusion mutant that exhibits increased azole tolerance. Approximately 12% of the annotated genes are differentially regulated in this strain. This comprises upregulation of Cyp51A, the azole target structure, upregulation of ATP-binding cassette (ABC) superfamily and major facilitator superfamily (MFS) transporters and differential regulation of transcription factors. To study their impact on azole tolerance, conditional mutants were constructed of seven ABC transporters and 17 transcription factors. Under repressed conditions, growth rates and azole susceptibility of the mutants were similar to wild type. Under induced conditions, several transcription factor mutants showed growth phenotypes. In addition, four ABC transporter mutants and seven transcription factor mutants exhibited altered azole susceptibility. However, deletion of individual identified ABC transporters and transcription factors did not affect the increased azole tolerance of the fission/fusion mutant. Our results revealed the ability of multiple ABC transporters and transcription factors to modulate the azole susceptibility of A. fumigatus and support a model where mitochondrial dysfunctions trigger a drug resistance network that mediates azole tolerance of this mold.
Collapse
Affiliation(s)
- Laura Sturm
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Bernadette Geißel
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Ronny Martin
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections (NRZMyk), Jena, Germany
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany.,Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections (NRZMyk), Jena, Germany
| |
Collapse
|
13
|
KDM3A Senses Oxygen Availability to Regulate PGC-1α-Mediated Mitochondrial Biogenesis. Mol Cell 2019; 76:885-895.e7. [PMID: 31629659 DOI: 10.1016/j.molcel.2019.09.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 07/22/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Hypoxia, which occurs during tumor growth, triggers complex adaptive responses in which peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) plays a critical role in mitochondrial biogenesis and oxidative metabolism. However, how PGC-1α is regulated in response to oxygen availability remains unclear. We demonstrated that lysine demethylase 3A (KDM3A) binds to PGC-1α and demethylates monomethylated lysine (K) 224 of PGC-1α under normoxic conditions. Hypoxic stimulation inhibits KDM3A, which has a high KM of oxygen for its activity, and enhances PGC-1α K224 monomethylation. This modification decreases PGC-1α's activity required for NRF1- and NRF2-dependent transcriptional regulation of TFAM, TFB1M, and TFB2M, resulting in reduced mitochondrial biogenesis. Expression of PGC-1α K224R mutant significantly increases mitochondrial biogenesis, reactive oxygen species (ROS) production, and tumor cell apoptosis under hypoxia and inhibits brain tumor growth in mice. This study revealed that PGC-1α monomethylation, which is dependent on oxygen availability-regulated KDM3A, plays a critical role in the regulation of mitochondrial biogenesis.
Collapse
|
14
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
15
|
Huang CJ, Lu MY, Chang YW, Li WH. Experimental Evolution of Yeast for High-Temperature Tolerance. Mol Biol Evol 2019; 35:1823-1839. [PMID: 29684163 DOI: 10.1093/molbev/msy077] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thermotolerance is a polygenic trait that contributes to cell survival and growth under unusually high temperatures. Although some genes associated with high-temperature growth (Htg+) have been identified, how cells accumulate mutations to achieve prolonged thermotolerance is still mysterious. Here, we conducted experimental evolution of a Saccharomyces cerevisiae laboratory strain with stepwise temperature increases for it to grow at 42 °C. Whole genome resequencing of 14 evolved strains and the parental strain revealed a total of 153 mutations in the evolved strains, including single nucleotide variants, small INDELs, and segmental duplication/deletion events. Some mutations persisted from an intermediate temperature to 42 °C, so they might be Htg+ mutations. Functional categorization of mutations revealed enrichment of exonic mutations in the SWI/SNF complex and F-type ATPase, pointing to their involvement in high-temperature tolerance. In addition, multiple mutations were found in a general stress-associated signal transduction network consisting of Hog1 mediated pathway, RAS-cAMP pathway, and Rho1-Pkc1 mediated cell wall integrity pathway, implying that cells can achieve Htg+ partly through modifying existing stress regulatory mechanisms. Using pooled segregant analysis of five Htg+ phenotype-orientated pools, we inferred causative mutations for growth at 42 °C and identified those mutations with stronger impacts on the phenotype. Finally, we experimentally validated a number of the candidate Htg+ mutations. This study increased our understanding of the genetic basis of yeast tolerance to high temperature.
Collapse
Affiliation(s)
- Chih-Jen Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, Taiwan.,Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.,Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
16
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
17
|
Weidling I, Swerdlow RH. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. BIOLOGY 2019; 8:biology8020039. [PMID: 31083585 PMCID: PMC6627276 DOI: 10.3390/biology8020039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage. Cells respond to mitochondrial dysfunction through numerous retrograde responses including the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution to brain stress responses.
Collapse
Affiliation(s)
- Ian Weidling
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Druseikis M, Ben-Ari J, Covo S. The Goldilocks effect of respiration on canavanine tolerance in Saccharomyces cerevisiae. Curr Genet 2019; 65:1199-1215. [PMID: 31011791 DOI: 10.1007/s00294-019-00974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022]
Abstract
When glucose is available, Saccharomyces cerevisiae prefers fermentation to respiration. In fact, it can live without respiration at all. Here, we study the role of respiration in stress tolerance in yeast. We found that colony growth of respiratory-deficient yeast (petite) is greatly inhibited by canavanine, the toxic analog of arginine that causes proteotoxic stress. We found lower amounts of the amino acids involved in arginine biosynthesis in petites compared with WT. This finding may be explained by the fact that petite cells exposed to canavanine show reduction in the efficiency of targeting of proteins required for arginine biosynthesis. The retrograde (RTG) pathway signals mitochondrial stress. It positively controls production of arginine precursors. We show that canavanine abrogates RTG signaling especially in petite cells, and mutants in the RTG pathway are extremely sensitive to canavanine. We suggest that petite cells are naturally ineffective in production of some amino acids; combination of this fact with the effect of canavanine on the RTG pathway is the simplest explanation why petite cells are inhibited by canavanine. Surprisingly, we found that canavanine greatly inhibits colony formation when WT cells are forced to respire. Our research proposes a novel connection between respiration and proteotoxic stress.
Collapse
Affiliation(s)
- Marina Druseikis
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Julius Ben-Ari
- Interdepartmental Equipment Unit, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, 76100, Rehovot, Israel.
| |
Collapse
|
19
|
Gurubasavaraj PM, Charantimath JS. Recent Advances in Azole Based Scaffolds as Anticandidal Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180917125916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:The present review aims to explore the development of novel antifungal agents, such as pharmacology, pharmacokinetics, spectrum of activity, safety, toxicity and other aspects that involve drug-drug interactions of the azole antifungal agents.Introduction:Fungal infections in critically ill and immune-compromised patients are increasing at alarming rates, caused mainly by Candida albicans an opportunistic fungus. Despite antifungal annihilators like amphotericin B, azoles and caspofungin, these infections are enormously increasing. The unconventional increase in such patients is a challenging task for the management of antifungal infections especially Candidiasis. Moreover, problem of toxicity associated with antifungal drugs on hosts and rise of drug-resistance in primary and opportunistic fungal pathogens has obstructed the success of antifungal therapy.Conclusion:Hence, to conflict these problems new antifungal agents with advanced efficacy, new formulations of drug delivery and novel compounds which can interact with fungal virulence are developed and used to treat antifungal infections.
Collapse
|
20
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
21
|
Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 2018; 14:e1007744. [PMID: 30388117 PMCID: PMC6241136 DOI: 10.1371/journal.pgen.1007744] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/14/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
Genetically identical cells exhibit extensive phenotypic variation even under constant and benign conditions. This so-called nongenetic heterogeneity has important clinical implications: within tumors and microbial infections, cells show nongenetic heterogeneity in growth rate and in susceptibility to drugs or stress. The budding yeast, Saccharomyces cerevisiae, shows a similar form of nongenetic heterogeneity in which growth rate correlates positively with susceptibility to acute heat stress at the single-cell level. Using genetic and chemical perturbations, combined with high-throughput single-cell assays of yeast growth and gene expression, we show here that heterogeneity in intracellular cyclic AMP (cAMP) levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies this nongenetic heterogeneity. Lower levels of cAMP correspond to slower growth, as shown by direct comparison of cAMP concentration in subpopulations enriched for slower vs. faster growing cells. Concordantly, an endogenous reporter of this pathway’s activity correlates with growth in individual cells. The paralogs Msn2 and Msn4 differ in their roles in nongenetic heterogeneity in a way that demonstrates slow growth and stress tolerance are not inevitably linked. Heterogeneity in growth rate requires each, whereas only Msn2 is required for heterogeneity in expression of Tsl1, a subunit of trehalose synthase that contributes to acute-stress tolerance. Perturbing nongenetic heterogeneity by mutating genes in this pathway, or by culturing wild-type cells with the cell-permeable cAMP analog 8-bromo-cAMP or the PKA inhibitor H89, significantly impacts survival of acute heat stress. Perturbations that increase intracellular cAMP levels reduce the slower-growing subpopulation and increase susceptibility to acute heat stress, whereas PKA inhibition slows growth and decreases susceptibility to acute heat stress. Loss of Msn2 reduces, but does not completely eliminate, the correlation in individual cells between growth rate and acute-stress survival, suggesting a major role for the Msn2 pathway in nongenetic heterogeneity but also a residual benefit of slow growth. Our results shed light on the genetic control of nongenetic heterogeneity and suggest a possible means of defeating bet-hedging pathogens or tumor cells by making them more uniformly susceptible to treatment. Nongenetic heterogeneity exists when a trait differs among individuals that have identical genotypes and environments. A clonal population can maximize its long-term success in an uncertain environment by diversifying its phenotypes via nongenetic heterogeneity: the currently unfavored ones may become the favored ones when conditions change. Nongenetic heterogeneity has clinical relevance. For example, populations of tumor cells or infectious microbes show cell-to-cell differences in growth and in drug or stress tolerance. This heterogeneity hampers efficient treatment and can potentiate harmful evolution of a tumor or pathogen. We show that in budding yeast, heterogeneity in intracellular cyclic AMP levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies the nongenetic heterogeneity of both single-cell growth rate and acute heat-stress tolerance. Perturbations of this pathway significantly affect population survival upon acute heat stress. These results illuminate a mechanism of nongenetic heterogeneity and suggest the potential value of antitumor or antifungal treatment strategies that target nongenetic heterogeneity to render the tumor or pathogen population more uniformly susceptible to a second drug that aims to kill.
Collapse
Affiliation(s)
- Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Daniella M. Giardina
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance. Curr Genet 2018; 65:103-108. [PMID: 30056490 DOI: 10.1007/s00294-018-0870-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/03/2023]
Abstract
The Cys6Zn2 DNA-binding domain transcription factor Pdr1 is a central regulator of drug resistance in the pathogenic yeast Candida glabrata. In this review, I discuss the multiple control mechanisms modulating the function of this positive transcriptional regulator. Available data suggest that Pdr1 activity is restrained by multiple negative inputs that can be lost by either mutagenesis of the protein or loss of trans-acting factors. Although extensive data are available on the C. glabrata transactivator as well as its cognate proteins in Saccharomyces cerevisiae, the physiological rationale underlying the regulation of these factors remains to be understood.
Collapse
|
23
|
Penetrating cations induce pleiotropic drug resistance in yeast. Sci Rep 2018; 8:8131. [PMID: 29802261 PMCID: PMC5970188 DOI: 10.1038/s41598-018-26435-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Substrates of pleiotropic drug resistance (PDR) transporters can induce the expression of corresponding transporter genes by binding to their transcription factors. Penetrating cations are substrates of PDR transporters and theoretically may also activate the expression of transporter genes. However, the accumulation of penetrating cations inside mitochondria may prevent the sensing of these molecules. Thus, whether penetrating cations induce PDR is unclear. Using Saccharomyces cerevisiae as a model, we studied the effects of penetrating cations on the activation of PDR. We found that the lipophilic cation dodecyltriphenylphosphonium (C12TPP) induced the expression of the plasma membrane PDR transporter genes PDR5, SNQ2 and YOR1. Moreover, a 1-hour incubation with C12TPP increased the concentration of Pdr5p and Snq2p and prevented the accumulation of the PDR transporter substrate Nile red. The transcription factor PDR1 was required to mediate these effects, while PDR3 was dispensable. The deletion of the YAP1 or RTG2 genes encoding components of the mitochondria-to-nucleus signalling pathway did not prevent the C12TPP-induced increase in Pdr5-GFP. Taken together, our data suggest (i) that the sequestration of lipophilic cations inside mitochondria does not significantly inhibit sensing by PDR activators and (ii) that the activation mechanisms do not require mitochondria as a signalling module.
Collapse
|
24
|
Deprez MA, Eskes E, Wilms T, Ludovico P, Winderickx J. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity. MICROBIAL CELL 2018; 5:119-136. [PMID: 29487859 PMCID: PMC5826700 DOI: 10.15698/mic2018.03.618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Elja Eskes
- Functional Biology, KU Leuven, Leuven, Belgium
| | | | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
25
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett 2017; 592:663-678. [PMID: 29086414 DOI: 10.1002/1873-3468.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Rachel J Hunt
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| |
Collapse
|
27
|
Weinhouse C. Mitochondrial-epigenetic crosstalk in environmental toxicology. Toxicology 2017; 391:5-17. [PMID: 28855114 DOI: 10.1016/j.tox.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
28
|
Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species. mBio 2017; 8:mBio.00201-17. [PMID: 28720726 PMCID: PMC5516249 DOI: 10.1128/mbio.00201-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae. We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans. Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker’s yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans.
Collapse
|
29
|
Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 2017; 63:895-907. [DOI: 10.1007/s00294-017-0689-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
|
30
|
Dakik P, Titorenko VI. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging. Front Genet 2016; 7:177. [PMID: 27729926 PMCID: PMC5037234 DOI: 10.3389/fgene.2016.00177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Studies employing the budding yeast Saccharomyces cerevisiae as a model organism have provided deep insights into molecular mechanisms of cellular and organismal aging in multicellular eukaryotes and have demonstrated that the main features of biological aging are evolutionarily conserved. Aging in S. cerevisiae is studied by measuring replicative or chronological lifespan. Yeast replicative aging is likely to model aging of mitotically competent human cell types, while yeast chronological aging is believed to mimic aging of post-mitotic human cell types. Emergent evidence implies that various organelle-organelle and organelle-cytosol communications play essential roles in chronological aging of S. cerevisiae. The molecular mechanisms underlying the vital roles of intercompartmental communications in yeast chronological aging have begun to emerge. The scope of this review is to critically analyze recent progress in understanding such mechanisms. Our analysis suggests a model for how temporally and spatially coordinated movements of certain metabolites between various cellular compartments impact yeast chronological aging. In our model, diverse changes in these key metabolites are restricted to critical longevity-defining periods of chronological lifespan. In each of these periods, a limited set of proteins responds to such changes of the metabolites by altering the rate and efficiency of a certain cellular process essential for longevity regulation. Spatiotemporal dynamics of alterations in these longevity-defining cellular processes orchestrates the development and maintenance of a pro- or anti-aging cellular pattern.
Collapse
Affiliation(s)
- Pamela Dakik
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| | - Vladimir I Titorenko
- Department of Biology, Faculty of Arts and Science, Concordia University Montreal, PQ, Canada
| |
Collapse
|
31
|
Abstract
Apart from energy transformation, mitochondria play important signaling roles. In
yeast, mitochondrial signaling relies on several molecular cascades. However, it
is not clear how a cell detects a particular mitochondrial malfunction. The
problem is that there are many possible manifestations of mitochondrial
dysfunction. For example, exposure to the specific antibiotics can either
decrease (inhibitors of respiratory chain) or increase (inhibitors of
ATP-synthase) mitochondrial transmembrane potential. Moreover, even in the
absence of the dysfunctions, a cell needs feedback from mitochondria to
coordinate mitochondrial biogenesis and/or removal by mitophagy during the
division cycle. To cope with the complexity, only a limited set of compounds is
monitored by yeast cells to estimate mitochondrial functionality. The known
examples of such compounds are ATP, reactive oxygen species, intermediates of
amino acids synthesis, short peptides, Fe-S clusters and heme, and also the
precursor proteins which fail to be imported by mitochondria. On one hand, the
levels of these molecules depend not only on mitochondria. On the other hand,
these substances are recognized by the cytosolic sensors which transmit the
signals to the nucleus leading to general, as opposed to mitochondria-specific,
transcriptional response. Therefore, we argue that both ways of
mitochondria-to-nucleus communication in yeast are mostly (if not completely)
unspecific, are mediated by the cytosolic signaling machinery and strongly
depend on cellular metabolic state.
Collapse
Affiliation(s)
- Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia
| | - Anna N Zyrina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia. ; Institute of Mitoengineering, Moscow State University, Leninskiye Gory 1, Moscow 119991, Russia
| |
Collapse
|
32
|
Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 2016; 204:659-673. [PMID: 27474729 DOI: 10.1534/genetics.116.188086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.
Collapse
|
33
|
Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation. Biochim Biophys Acta Gen Subj 2016; 1860:2563-2575. [PMID: 27478089 DOI: 10.1016/j.bbagen.2016.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The maintenance of viability during periods when a glycolytic carbon source is limited (or absent) is a major obstacle for cells whose mitochondrial DNA (mtDNA) has been damaged or lost. METHODS We utilized genome wide transcriptional profiling and in gel mobility analyses to examine the transcriptional response and characterize defects in the phosphorylation dependent signaling events that occur during acute glucose starvation in ρ(0) cells that lack mtDNA. Genetic and pharmacological interventions were employed to clarify the contribution of nutrient responsive kinases to regulation of the transcription factors that displayed abnormal phosphoregulation in ρ(0) cells. RESULTS The transcriptional response to glucose deprivation is dampened but not blocked in ρ(0) cells. Genes regulated by the transcription factors Mig1, Msn2, Gat1, and Ume6 were noticeably affected and phosphorylation of these factors in response to nutrient depletion is abnormal in ρ(0) cells. Regulation of the nutrient responsive kinases PKA and Snf1 remains normal in ρ(0) cells. The phosphorylation defect results from ATP depletion and loss of the activity of kinases including GSK3β, Rim15, and Yak1. Interventions which rescue phosphoregulation of transcription factors bolster maintenance of viability in ρ(0) cells during subsequent glucose deprivation. CONCLUSIONS A subset of nutrient responsive kinases is especially sensitive to ATP levels and their misregulation may underlie regulatory defects presented by ρ(0) cells. GENERAL SIGNIFICANCE Abnormal regulation of mitochondrial function is implicated in numerous human disorders. This work illustrates that some signaling pathways are more sensitive than others to metabolic defects caused by mitochondrial dysfunction.
Collapse
|
34
|
Eisenberg-Bord M, Schuldiner M. Ground control to major TOM: mitochondria-nucleus communication. FEBS J 2016; 284:196-210. [PMID: 27283924 DOI: 10.1111/febs.13778] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/13/2023]
Abstract
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
Collapse
Affiliation(s)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Day M. Yeast petites and small colony variants: for everything there is a season. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:1-41. [PMID: 23942147 DOI: 10.1016/b978-0-12-407672-3.00001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel.
Collapse
Affiliation(s)
- Martin Day
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
36
|
Knorre DA, Besedina E, Karavaeva IE, Smirnova EA, Markova OV, Severin FF. Alkylrhodamines enhance the toxicity of clotrimazole and benzalkonium chloride by interfering with yeast pleiotropic ABC-transporters. FEMS Yeast Res 2016; 16:fow030. [DOI: 10.1093/femsyr/fow030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 11/13/2022] Open
|
37
|
Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome. Cell Cycle 2016; 14:1643-56. [PMID: 25839782 DOI: 10.1080/15384101.2015.1026493] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several "clusters", each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan.
Collapse
Key Words
- D, diauxic growth phase
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- ETC, electron transport chain
- ISC, iron-sulfur clusters
- LCA, lithocholic acid
- MAM, mitochondria-associated membrane
- OS, oxidative stress
- PD, post-diauxic growth phase
- PMD, partial mitochondrial dysfunction
- ROS, reactive oxygen species
- ST, stationary growth phase
- TCA, tricarboxylic acid
- WT, wild type
- anti-aging compounds
- cell metabolism
- cellular aging
- lithocholic bile acid
- longevity
- mitochondria
- mitochondrial proteome
- mitochondrial signaling
- signal transduction
- yeast
Collapse
Affiliation(s)
- Adam Beach
- a Department of Biology; Concordia University ; Montreal , QC , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:482582. [PMID: 26583058 PMCID: PMC4637108 DOI: 10.1155/2015/482582] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review.
Collapse
|
39
|
Verma-Gaur J, Qu Y, Harrison PF, Lo TL, Quenault T, Dagley MJ, Bellousoff M, Powell DR, Beilharz TH, Traven A. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans. PLoS Genet 2015; 11:e1005590. [PMID: 26474309 PMCID: PMC4608769 DOI: 10.1371/journal.pgen.1005590] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. Metabolism is a master regulator of cell biology, including gene regulation, developmental switches and cellular life-death decisions, with the mitochondrion playing a central role in eukaryotes. For the yeast Candida albicans mitochondrial functions have been implicated in host-pathogen interactions, but the regulatory mechanism that control mitochondrial biogenesis are poorly described. We identified the RNA binding protein Puf3 as a new mitochondrial regulator in C. albicans, and show that posttranscriptional regulation and mitochondrial function have important roles during community growth in biofilms. Perturbation of mitochondrial activity or inactivation of a key posttranscriptional regulator, CCR4, led to changes in biofilm maturation, shedding light on the interface between metabolic reprogramming and biofilm developmental pathways. We illuminate a new mechanism that regulates extracellular matrix production, an essential biofilm feature that mediates the notorious drug resistance and immune evasion properties of the biofilm growth mode.
Collapse
Affiliation(s)
- Jiyoti Verma-Gaur
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Paul F. Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, Victoria, Australia
| | - Tricia L. Lo
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tara Quenault
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael J. Dagley
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew Bellousoff
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David R. Powell
- Monash Bioinformatics Platform, Monash University, Clayton, Victoria, Australia
| | - Traude H. Beilharz
- Development and Stem Cells Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (THB); (AT)
| | - Ana Traven
- Infection and Immunity Program, Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (THB); (AT)
| |
Collapse
|
40
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
41
|
Park J, Lai L, Samuel MS, Wax D, Prather RS, Tian X. Disruption of Mitochondrion-To-Nucleus Interaction in Deceased Cloned Piglets. PLoS One 2015; 10:e0129378. [PMID: 26067091 PMCID: PMC4466210 DOI: 10.1371/journal.pone.0129378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Most animals produced by somatic cell nuclear transfer (SCNT) are heteroplasmic for mitochondrial DNA (mtDNA). Oxidative phosphorylation (OXPHOS) in clones therefore requires the coordinated expression of genes encoded by the nuclear DNA and the two sources of mitochondria. Such interaction is rarely studied because most clones are generated using slaughterhouse oocytes of unrecorded origin. Here we traced the maternal lineages of seven diseased and five one-month-old live cloned piglets by sequencing their mtDNA. Additionally by using a 13K oligonucleotide microarray, we compared the expression profiles of nuclear and mtDNA-encoded genes that are involved in mitochondrial functions and regulation between the cloned groups and their age-matched controls (n=5 per group). We found that the oocytes used to generate the cloned piglets were of either the Large White or Duroc background, and oocyte genetic background was not related to the clones’ survival. Expression profiles of mtDNA-encoded genes in clones and controls showed intermixed clustering patterns without treatment or maternal lineage-dependency. In contrast, clones and controls clustered separately for their global and nuclear DNA-encoded mitochondrial genes in the lungs for both the deceased and live groups. Functional annotation of differentially expressed genes encoded by both nuclear and mtDNA revealed abnormal gene expression in the mitochondrial OXPHOS pathway in deceased clones. Among the nine differentially expressed genes of the OXPHOS pathway, seven were down-regulated in deceased clones compared to controls, suggesting deficiencies in mitochondrial functions. Together, these data demonstrate that the coordination of expression of mitochondrial genes encoded by nuclear and mtDNA is disrupted in the lung of diseased clones.
Collapse
Affiliation(s)
- Joonghoon Park
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America, 06269
| | - Liangxue Lai
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri, United States of America, 65211
| | - Melissa S. Samuel
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri, United States of America, 65211
| | - David Wax
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri, United States of America, 65211
| | - Randall S. Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, Missouri, United States of America, 65211
| | - Xiuchun Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America, 06269
- * E-mail:
| |
Collapse
|
42
|
The complex crosstalk between mitochondria and the nucleus: What goes in between? Int J Biochem Cell Biol 2015; 63:10-5. [DOI: 10.1016/j.biocel.2015.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
|
43
|
Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res 2015; 15:fov027. [PMID: 26002841 PMCID: PMC4542695 DOI: 10.1093/femsyr/fov027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 12/23/2022] Open
Abstract
The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy.
Collapse
Affiliation(s)
- Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, 3800 VIC, Australia
| |
Collapse
|
44
|
Špírek M, Poláková S, Jatzová K, Sulo P. Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids. Front Genet 2015; 5:454. [PMID: 25628643 PMCID: PMC4290679 DOI: 10.3389/fgene.2014.00454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Nucleo-mitochondrial interactions, particularly those determining the primary divergence of biological species, can be studied by means of xenomitochondrial cybrids, which are cells where the original mitochondria are substituted by their counterparts from related species. Saccharomyces cerevisiae cybrids are prepared simply by the mating of the ρ(0) strain with impaired karyogamy and germinating spores from other Saccharomyces species and fall into three categories. Cybrids with compatible mitochondrial DNA (mtDNA) from Saccharomyces paradoxus CBS 432 and Saccharomyces cariocanus CBS 7994 are metabolically and genetically similar to cybrids containing mtDNA from various S. cerevisiae. Cybrids with mtDNA from other S. paradoxus strains, S. cariocanus, Saccharomyces kudriavzevii, and Saccharomyces mikatae require a period of adaptation to establish efficient oxidative phosphorylation. They exhibit a temperature-sensitive phenotype, slower growth rate on a non-fermentable carbon source and a long lag phase after the shift from glucose. Their decreased respiration capacity and reduced cytochrome aa3 content is associated with the inefficient splicing of cox1I3β, the intron found in all Saccharomyces species but not in S. cerevisiae. The splicing defect is compensated in cybrids by nuclear gain-of-function and can be alternatively suppressed by overexpression of MRP13 gene for mitochondrial ribosomal protein or the MRS2, MRS3, and MRS4 genes involved in intron splicing. S. cerevisiae with Saccharomyces bayanus mtDNA is unable to respire and the growth on ethanol-glycerol can be restored only after mating to some mit (-) strains. The nucleo-mitochondrial compatibility limit of S. cerevisiae and other Saccharomyces was set between S. kudriavzevii and S. bayanus at the divergence from S. cerevisiae about 15 MYA. The MRS1-cox1 S. cerevisiae/S. paradoxus cytonuclear Dobzhansky-Muller pair has a neglible impact on the separation of species since its imperfection is compensated for by gain-of-function mutation.
Collapse
Affiliation(s)
| | | | | | - Pavol Sulo
- *Correspondence: Pavol Sulo, Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 842 15 Bratislava, Slovakia e-mail:
| |
Collapse
|
45
|
Kamei Y, Tamada Y, Nakayama Y, Fukusaki E, Mukai Y. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. J Biol Chem 2014; 289:32081-32093. [PMID: 25294875 DOI: 10.1074/jbc.m114.600528] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence.
Collapse
Affiliation(s)
- Yuka Kamei
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan and
| | - Yoshihiro Tamada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan and.
| |
Collapse
|
46
|
Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and ρ0 cells. Antimicrob Agents Chemother 2014; 58:6904-12. [PMID: 25199772 DOI: 10.1128/aac.03921-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The fungal pathogen Candida glabrata is an emerging cause of candidiasis in part owing to its robust ability to acquire tolerance to the major clinical antifungal drug fluconazole. Similar to the related species Candida albicans, C. glabrata most typically gains azole tolerance via transcriptional induction of a suite of resistance genes, including a locus encoding an ABCG-type ATP-binding cassette (ABC) transporter that is referred to as CDR1 in Candida species. In C. glabrata, CDR1 expression is controlled primarily by the activity of a transcriptional activator protein called Pdr1. Strains exhibiting reduced azole susceptibility often contain substitution mutations in PDR1 that in turn lead to elevated mRNA levels of target genes with associated azole resistance. Pdr1 activity is also induced upon loss of the mitochondrial genome status and upon challenge by azole drugs. While extensive analyses of the transcriptional effects of Pdr1 have identified a number of genes that are regulated by this factor, we cannot yet separate direct from indirect target genes. Here we used chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) to identify the promoters and associated genes directly regulated by Pdr1. These genes include many that are shared with the yeast Saccharomyces cerevisiae but others that are unique to C. glabrata, including the ABC transporter-encoding locus YBT1, genes involved in DNA repair, and several others. These data provide the outline for understanding the primary response genes involved in production of Pdr1-dependent azole resistance in C. glabrata.
Collapse
|
47
|
Hashim Z, Mukai Y, Bamba T, Fukusaki E. Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites 2014; 4:580-98. [PMID: 25007314 PMCID: PMC4192681 DOI: 10.3390/metabo4030580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022] Open
Abstract
Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH) transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG) pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS) measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.
Collapse
Affiliation(s)
- Zanariah Hashim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yukio Mukai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan.
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
48
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
49
|
Nair S, Traini M, Dawes IW, Perrone GG. Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer's amyloid-β42: importance of lipid homeostasis. Mol Biol Cell 2014; 25:2235-49. [PMID: 24870034 PMCID: PMC4116298 DOI: 10.1091/mbc.e13-04-0216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β (Aβ)-containing plaques are a major neuropathological feature of Alzheimer's disease (AD). The two major isoforms of Aβ peptide associated with AD are Aβ40 and Aβ42, of which the latter is highly prone to aggregation. Increased presence and aggregation of intracellular Aβ42 peptides is an early event in AD progression. Improved understanding of cellular processes affecting Aβ42 aggregation may have implications for development of therapeutic strategies. Aβ42 fused to green fluorescent protein (Aβ42-GFP) was expressed in ∼4600 mutants of a Saccharomyces cerevisiae genome-wide deletion library to identify proteins and cellular processes affecting intracellular Aβ42 aggregation by assessing the fluorescence of Aβ42-GFP. This screening identified 110 mutants exhibiting intense Aβ42-GFP-associated fluorescence. Four major cellular processes were overrepresented in the data set, including phospholipid homeostasis. Disruption of phosphatidylcholine, phosphatidylserine, and/or phosphatidylethanolamine metabolism had a major effect on intracellular Aβ42 aggregation and localization. Confocal microscopy indicated that Aβ42-GFP localization in the phospholipid mutants was juxtaposed to the nucleus, most likely associated with the endoplasmic reticulum (ER)/ER membrane. These data provide a genome-wide indication of cellular processes that affect intracellular Aβ42-GFP aggregation and may have important implications for understanding cellular mechanisms affecting intracellular Aβ42 aggregation and AD disease progression.
Collapse
Affiliation(s)
- S Nair
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - M Traini
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia
| | - I W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, AustraliaRamaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia
| | - G G Perrone
- School of Science and Health, University of Western Sydney, Penrith, NSW 1797, Australia
| |
Collapse
|
50
|
Ba Q, Zhang G, Niu N, Ma S, Wang J. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.). Gene 2014; 549:192-7. [PMID: 24875418 DOI: 10.1016/j.gene.2014.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/24/2013] [Accepted: 01/04/2014] [Indexed: 02/03/2023]
Abstract
Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.
Collapse
Affiliation(s)
- Qingsong Ba
- Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Gaisheng Zhang
- Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, PR China.
| | - Na Niu
- Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Shoucai Ma
- Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| | - Junwei Wang
- Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, PR China
| |
Collapse
|