1
|
Wang G, Liu J, Zhang Y, Xie J, Chen S, Shi Y, Shi F, Zhu SJ. Ginsenoside Rg3 enriches SCFA-producing commensal bacteria to confer protection against enteric viral infection via the cGAS-STING-type I IFN axis. THE ISME JOURNAL 2023; 17:2426-2440. [PMID: 37950067 PMCID: PMC10689736 DOI: 10.1038/s41396-023-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The microbiota-associated factors that influence host susceptibility and immunity to enteric viral infections remain poorly defined. We identified that the herbal monomer ginsenoside Rg3 (Rg3) can shape the gut microbiota composition, enriching robust short-chain fatty acid (SCFA)-producing Blautia spp. Colonization by representative Blautia coccoides and Blautia obeum could protect germ-free or vancomycin (Van)-treated mice from enteric virus infection, inducing type I interferon (IFN-I) responses in macrophages via the MAVS-IRF3-IFNAR signaling pathway. Application of exogenous SCFAs (acetate/propionate) reproduced the protective effect of Rg3 and Blautia spp. in Van-treated mice, enhancing intracellular Ca2+- and MAVS-dependent mtDNA release and activating the cGAS-STING-IFN-I axis by stimulating GPR43 signaling in macrophages. Our findings demonstrate that macrophage sensing of metabolites from specific commensal bacteria can prime the IFN-I signaling that is required for antiviral functions.
Collapse
Affiliation(s)
- Gan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Jingtianyi Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yanan Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Jinyan Xie
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Shuxian Chen
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Yuhua Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Li WW, Fan XX, Zhu ZX, Cao XJ, Zhu ZY, Pei DS, Wang YZ, Zhang JY, Wang YY, Zheng HX. Tyrosine phosphorylation of IRF3 by BLK facilitates its sufficient activation and innate antiviral response. PLoS Pathog 2023; 19:e1011742. [PMID: 37871014 PMCID: PMC10621992 DOI: 10.1371/journal.ppat.1011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Viral infection triggers the activation of transcription factor IRF3, and its activity is precisely regulated for robust antiviral immune response and effective pathogen clearance. However, how full activation of IRF3 is achieved has not been well defined. Herein, we identified BLK as a key kinase that positively modulates IRF3-dependent signaling cascades and executes a pre-eminent antiviral effect. BLK deficiency attenuates RNA or DNA virus-induced ISRE activation, interferon production and the cellular antiviral response in human and murine cells, whereas overexpression of BLK has the opposite effects. BLK-deficient mice exhibit lower serum cytokine levels and higher lethality after VSV infection. Moreover, BLK deficiency impairs the secretion of downstream antiviral cytokines and promotes Senecavirus A (SVA) proliferation, thereby supporting SVA-induced oncolysis in an in vivo xenograft tumor model. Mechanistically, viral infection triggers BLK autophosphorylation at tyrosine 309. Subsequently, activated BLK directly binds and phosphorylates IRF3 at tyrosine 107, which further promotes TBK1-induced IRF3 S386 and S396 phosphorylation, facilitating sufficient IRF3 activation and downstream antiviral response. Collectively, our findings suggest that targeting BLK enhances viral clearance via specifically regulating IRF3 phosphorylation by a previously undefined mechanism.
Collapse
Affiliation(s)
- Wei-Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xu-Xu Fan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zi-Xiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xue-Jing Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhao-Yu Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dan-Shi Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yi-Zhuo Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ji-Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
3
|
Sato H, Hoshi M, Ikeda F, Fujiyuki T, Yoneda M, Kai C. Downregulation of mitochondrial biogenesis by virus infection triggers antiviral responses by cyclic GMP-AMP synthase. PLoS Pathog 2021; 17:e1009841. [PMID: 34648591 PMCID: PMC8516216 DOI: 10.1371/journal.ppat.1009841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress. Viruses exert their pathogenicity by targeting various cellular components in infected cells. In response, host cells have evolved strategies to sense intracellular pathogen-associated molecules, such as nucleic acids derived from infected virus, and trigger subsequent antiviral responses to counteract infection. Measles virus (MeV), the causative agent of human measles, is the most highly contagious virus, killing 300 children per day worldwide; thus MeV has been targeted for eradication by the World Health Organization. In the present study, we found that MeV causes downregulation of mitochondrial biogenesis accompanied with aberrant hyperfusion of mitochondria in the infected cells. Furthermore, we show that cytoplasmic release of mitochondrial DNA activates DNA sensor molecule, cGAS, in addition to the innate immune response induced by the viral component. Importantly, this phenomenon was also observed for viruses, both RNA and DNA, which target mitochondrial biogenesis. Our study provides new insights into the mitochondrial stress by virus infection and an important host defense system to suppress viral propagation.
Collapse
Affiliation(s)
- Hiroki Sato
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Molecular Virology, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Miho Hoshi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fusako Ikeda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Virus Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Pilna H, Hajkova V, Knitlova J, Liskova J, Elsterova J, Melkova Z. Vaccinia Virus Expressing Interferon Regulatory Factor 3 Induces Higher Protective Immune Responses against Lethal Poxvirus Challenge in Atopic Organism. Viruses 2021; 13:1986. [PMID: 34696416 PMCID: PMC8539567 DOI: 10.3390/v13101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) is an enveloped DNA virus from the Orthopoxvirus family, various strains of which were used in the successful eradication campaign against smallpox. Both original and newer VACV-based replicating vaccines reveal a risk of serious complications in atopic individuals. VACV encodes various factors interfering with host immune responses at multiple levels. In atopic skin, the production of type I interferon is compromised, while VACV specifically inhibits the phosphorylation of the Interferon Regulatory Factor 3 (IRF-3) and expression of interferons. To overcome this block, we generated a recombinant VACV-expressing murine IRF-3 (WR-IRF3) and characterized its effects on virus growth, cytokine expression and apoptosis in tissue cultures and in spontaneously atopic Nc/Nga and control Balb/c mice. Further, we explored the induction of protective immune responses against a lethal dose of wild-type WR, the surrogate of smallpox. We demonstrate that the overexpression of IRF-3 by WR-IRF3 increases the expression of type I interferon, modulates the expression of several cytokines and induces superior protective immune responses against a lethal poxvirus challenge in both Nc/Nga and Balb/c mice. Additionally, the results may be informative for design of other virus-based vaccines or for therapy of different viral infections.
Collapse
Affiliation(s)
- Hana Pilna
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vera Hajkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jarmila Knitlova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Liskova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Elsterova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Zora Melkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
5
|
Gao FF, Quan JH, Choi IW, Lee YJ, Jang SG, Yuk JM, Lee YH, Cha GH. FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth. J Cell Mol Med 2021; 25:9460-9472. [PMID: 34464509 PMCID: PMC8500981 DOI: 10.1111/jcmm.16889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/27/2023] Open
Abstract
Fas‐associated factor 1 (FAF1) has gained a reputation as a member of the FAS death‐inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE‐19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii‐induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii‐induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1‐dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - In-Wook Choi
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Yeon-Jae Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Seul-Gi Jang
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Jae-Min Yuk
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Young-Ha Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Guang-Ho Cha
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
6
|
Petro TM. IFN Regulatory Factor 3 in Health and Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:1981-1989. [PMID: 33020188 DOI: 10.4049/jimmunol.2000462] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Immunity to viruses requires an array of critical cellular proteins that include IFN regulatory factor 3 (IRF3). Consequently, most viruses that infect vertebrates encode proteins that interfere with IRF3 activation. This review describes the cellular pathways linked to IRF3 activation and where those pathways are targeted by human viral pathogens. Moreover, key regulatory pathways that control IRF3 are discussed. Besides viral infections, IRF3 is also involved in resistance to some bacterial infections, in anticancer immunity, and in anticancer therapies involving DNA damage agents. A recent finding shows that IRF3 is needed for T cell effector functions that are involved in anticancer immunity and also in T cell autoimmune diseases. In contrast, unregulated IRF3 activity is clearly not beneficial, considering it is implicated in certain interferonopathies, in which heightened IRF3 activity leads to IFN-β-induced disease. Therefore, IRF3 is involved largely in maintaining health but sometimes contributing to disease.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE 68583; and Nebraska Center for Virology, University of Nebraska Medical Center, Lincoln, NE 68583
| |
Collapse
|
7
|
Lee JK, Shin OS. Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response. J Microbiol Biotechnol 2021; 31:226-232. [PMID: 33397830 PMCID: PMC9705905 DOI: 10.4014/jmb.2008.08048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFN-mediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 08308, Republic of Korea,Corresponding author Phone: +82-2-2626-3280 E-mail:
| |
Collapse
|
8
|
Schwanke H, Stempel M, Brinkmann MM. Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression. Viruses 2020; 12:E733. [PMID: 32645843 PMCID: PMC7411613 DOI: 10.3390/v12070733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.S.); (M.S.)
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Spatiotemporal dynamics of innate immune signaling via RIG-I-like receptors. Proc Natl Acad Sci U S A 2020; 117:15778-15788. [PMID: 32571931 DOI: 10.1073/pnas.1921861117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RIG-I, MDA5, and LGP2 comprise the RIG-I-like receptors (RLRs). RIG-I and MDA5 are essential pathogen recognition receptors sensing viral infections while LGP2 has been described as both RLR cofactor and negative regulator. After sensing and binding to viral RNA, including double-stranded RNA (dsRNA), RIG-I and MDA5 undergo cytosol-to-membrane relocalization to bind and signal through the MAVS adaptor protein on intracellular membranes, thus directing downstream activation of IRF3 and innate immunity. Here, we report examination of the dynamic subcellular localization of all three RLRs within the intracellular response to dsRNA and RNA virus infection. Observations from high resolution biochemical fractionation and electron microscopy, coupled with analysis of protein interactions and IRF3 activation, show that, in resting cells, microsome but not mitochondrial fractions harbor the central components to initiate innate immune signaling. LGP2 interacts with MAVS in microsomes, blocking the RIG-I/MAVS interaction. Remarkably, in response to dsRNA treatment or RNA virus infection, LGP2 is rapidly released from MAVS and redistributed to mitochondria, temporally correlating with IRF3 activation. We reveal that IRF3 activation does not take place on mitochondria but instead occurs at endoplasmic reticulum (ER)-derived membranes. Our observations suggest ER-derived membranes as key RLR signaling platforms controlled through inhibitory actions of LGP2 binding to MAVS wherein LGP2 translocation to mitochondria releases MAVS inhibition to facilitate RLR-mediated signaling of innate immunity.
Collapse
|
10
|
Mathavarajah S, Salsman J, Dellaire G. An emerging role for calcium signalling in innate and autoimmunity via the cGAS-STING axis. Cytokine Growth Factor Rev 2019; 50:43-51. [PMID: 30955997 DOI: 10.1016/j.cytogfr.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Type I interferons are effector cytokines essential for the regulation of the innate immunity. A key effector of the type I interferon response that is dysregulated in autoimmunity and cancer is the cGAS-STING signalling axis. Recent work suggests that calcium and associated signalling proteins can regulate both cGAS-STING and autoimmunity. How calcium regulates STING activation is complex and involves both stimulatory and inhibitory mechanisms. One of these is calmodulin-mediated signalling that is necessary for STING activation. The alterations in calcium flux that occur during STING activation can also regulate autophagy, which in turn plays a role in innate immunity through the clearance of intracellular pathogens. Also connected to calcium signalling pathways is the cGAS inhibitor TREX1, a cytoplasmic exonuclease linked to several autoimmune diseases including systemic lupus erythematosus (SLE). In this review, we summarize these and other findings that indicate a regulatory role for calcium signalling in innate and autoimmunity through the cGAS-STING pathway.
Collapse
Affiliation(s)
| | - Jayme Salsman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
11
|
Luo F, Liu H, Yang S, Fang Y, Zhao Z, Hu Y, Jin Y, Li P, Gao T, Cao C, Liu X. Nonreceptor Tyrosine Kinase c-Abl- and Arg-Mediated IRF3 Phosphorylation Regulates Innate Immune Responses by Promoting Type I IFN Production. THE JOURNAL OF IMMUNOLOGY 2019; 202:2254-2265. [PMID: 30842273 DOI: 10.4049/jimmunol.1800461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023]
Abstract
The nonreceptor tyrosine kinase c-Abl plays important roles in T cell development and immune responses; however, the mechanism is poorly understood. IFN regulatory factor 3 (IRF3) is a key transcriptional regulator of type I IFN-dependent immune responses against DNA and RNA viruses. The data in this study show that IRF3 is physically associated with c-Abl in vivo and directly binds to c-Abl in vitro. IRF3 is phosphorylated by c-Abl and c-Abl-related kinase, Arg, mainly at Y292. The inhibitor AMN107 inhibits IFN-β production induced by poly(dA:dT), poly(I:C), and Sendai virus in THP-1 and mouse bone marrow-derived macrophage cells. IRF3-induced transcription of IFN-β is significantly reduced by the mutation of Y292 to F. Moreover, AMN107 suppresses gene expression of absent in melanoma 2 (AIM2) and subsequently reduces inflammasome activation induced by cytosolic bacteria, dsDNA, and DNA viruses. Consistent with this finding, Francisella tularensis subsp. holarctica live vaccine strain (Ft LVS), which is known as an activator of AIM2 inflammasome, induces death in significantly more C57BL/6 mice treated with the Abl inhibitor AMN107 or c-Abl/Arg small interfering RNA than in untreated mice. This study provides new insight into the function of c-Abl and Arg in regulating immune responses and AIM2 inflammasome activation, especially against Ft LVS infection.
Collapse
Affiliation(s)
- Fengyan Luo
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shasha Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; and
| | - Yi Fang
- 307 Hospital, Beijing 100850, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China;
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China;
| |
Collapse
|
12
|
Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses 2019; 11:v11020152. [PMID: 30781790 PMCID: PMC6410008 DOI: 10.3390/v11020152] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion.
Collapse
|
13
|
Wang Z, Sheng C, Yao C, Chen H, Wang D, Chen S. The EF-Hand Protein CALML6 Suppresses Antiviral Innate Immunity by Impairing IRF3 Dimerization. Cell Rep 2019; 26:1273-1285.e5. [PMID: 30699354 DOI: 10.1016/j.celrep.2019.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/09/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor IRF3 is phosphorylated in response to viral infection, and it subsequently forms a homodimer and translocates into the nucleus to induce the transcription of genes important for antiviral immunity, such as type I interferons (IFNs). This multistep process is essential for host defense against viral infection, but its regulation remains elusive. Here, we report that the EF-hand protein calmodulin-like 6 (CALML6) directly bound to the phosphorylated serine-rich (SR) region of IRF3 and impaired its dimerization and nuclear translocation. Enforced CALML6 expression suppressed viral infection-induced production of IFN-β and expression of IFN-stimulated genes (ISGs), whereas CALML6 deficiency had the opposite effect. In addition, impaired IFN-β and ISG expression in bone-marrow-derived macrophages and tissues of CALML6 transgenic mice promoted viral replication. These findings identify a phosphorylation-dependent negative feedback loop that maintains the homeostasis of antiviral innate immunity.
Collapse
Affiliation(s)
- Ziyang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Chunjie Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Chen Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Shuai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
14
|
Exchange Proteins Directly Activated by cAMP and Their Roles in Respiratory Syncytial Virus Infection. J Virol 2018; 92:JVI.01200-18. [PMID: 30185593 DOI: 10.1128/jvi.01200-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.
Collapse
|
15
|
Xin D, Gu H, Liu E, Sun Q. Parkin negatively regulates the antiviral signaling pathway by targeting TRAF3 for degradation. J Biol Chem 2018; 293:11996-12010. [PMID: 29903906 DOI: 10.1074/jbc.ra117.001201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
Chronic neuroinflammation is a characteristic of Parkinson's disease (PD). Previous investigations have shown that Parkin gene mutations are related to the early-onset recessive form of PD and isolated juvenile-onset PD. Further, Parkin plays important roles in mitochondrial quality control and cytokine-induced cell death. However, whether Parkin regulates other cellular events is still largely unknown. In this study, we performed overexpression and knockout experiments and found that Parkin negatively regulates antiviral immune responses against RNA and DNA viruses. Mechanistically, we show that Parkin interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) to regulate stability of TRAF3 protein by promoting Lys48-linked ubiquitination. Our findings suggest that Parkin plays a novel role in innate immune signaling by targeting TRAF3 for degradation and maintaining the balance of innate antiviral immunity.
Collapse
Affiliation(s)
- Di Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyan Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Li J, Lu M, Huang B, Lv Y. Porcine circovirus type 2 inhibits inter-β expression by targeting Karyopherin alpha-3 in PK-15 cells. Virology 2018; 520:75-82. [PMID: 29793076 DOI: 10.1016/j.virol.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Interferon (IFN)-mediated antiviral response is an important part of host defense. Previous studies reported that porcine circovirus type 2 (PCV2) inhibits interferon production, but the mechanism is still poorly understood. In this study, PCV2 suppresses IFN-β and IRF3 promoters and mRNA level of IFN-β induced by ISD or Poly(I:C), but has no effect on the activation of AP-1 and NF-κB. Furthermore, PCV2 decreases the mRNA level of IFN-β and IFN-β promoter activity driven by STING, TBK1, IRF3, and IRF3/5D, and causes a reduction in the protein level of nuclear p-IRF3. In addition, PCV2 interrupts the interaction of KPNA3, rather than KPNA4, with p-IRF3. Overexpression of KPNA3 restores IFN-β promoter activity. These results indicate that PCV2 disrupts the interaction of KPNA3 with p-IRF3 and blocks p-IRF3 translocation to the nucleus, thereby inhibiting IFN-β induction in PK-15 cells.
Collapse
Affiliation(s)
- Jiansheng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingqing Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Jiao S, Guan J, Chen M, Wang W, Li C, Wang Y, Cheng Y, Zhou Z. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J Exp Med 2018; 215:699-718. [PMID: 29339449 PMCID: PMC5789414 DOI: 10.1084/jem.20171116] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022] Open
Abstract
Jiao et al. show that the key player of antiviral immunity IRF3 binds to and promotes the transactivation of the YAP–TEAD4 complex to coregulate transcription of Hippo pathway target genes and that therapeutic targeting of IRF3 suppresses YAP-driven gastric cancer. The Hippo pathway plays a vital role in tissue homeostasis and tumorigenesis. The transcription factor IRF3 is essential for innate antiviral immunity. In this study, we discovered IRF3 as an agonist of Yes-associated protein (YAP). The expression of IRF3 is positively correlated with that of YAP and its target genes in gastric cancer; the expression of both IRF3 and YAP is up-regulated and prognosticates patient survival. IRF3 interacts with both YAP and TEAD4 in the nucleus to enhance their interaction, promoting nuclear translocation and activation of YAP. IRF3 and YAP–TEAD4 are associated genome-wide to cobind and coregulate many target genes of the Hippo pathway. Overexpression of active IRF3 increased, but depletion of IRF3 reduced, the occupancy of YAP on the target genes. Knockdown or pharmacological targeting of IRF3 by Amlexanox, a drug used clinically for antiinflammatory treatment, inhibits gastric tumor growth in a YAP-dependent manner. Collectively, our study identifies IRF3 as a positive regulator for YAP, highlighting a new therapeutic target against YAP-driven cancers.
Collapse
Affiliation(s)
- Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuanchuan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yugong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Cheng
- Department of Hematology and Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Liang HP, Hak H, Ji JM. A study on the relationship between HCV NS3 and endogenous IRF-3. EUR J INFLAMM 2018; 16. [DOI: 10.1177/2058739218784453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This study aims to investigate the relationship between hepatitis C virus (HCV) NS3/4A and endogenous interferon regulatory factor-3 (IRF-3). The localization of endogenous IRF-3 protein before and after virus infection was analyzed by immunofluorescence assay (IFA). IFA results revealed that the synergistic action of transfection and HCV virus infection could more effectively reduce the nuclear translocation of endogenous IRF-3 in HeLa cells, compared to the activation of Sendai virus infection alone. The highest nuclear translocation of endogenous IRF-3 in transfected HeLa cells occurred at 24 h after Sendai virus infection. Our study was consistent with a published paper, which revealed that HCV NS3/4A protease could suppress the activation of IRF-3 and was indispensable in the transcription of interferon (IFN)-α/β.
Collapse
Affiliation(s)
- Hong-Ping Liang
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hotta Hak
- Department of Microbiology and Genomics, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Jian-Min Ji
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
19
|
Wang S, Sun X, Yi C, Zhang D, Lin X, Sun X, Chen H, Jin M. AGO2 Negatively Regulates Type I Interferon Signaling Pathway by Competition Binding IRF3 with CBP/p300. Front Cell Infect Microbiol 2017; 7:195. [PMID: 28589097 PMCID: PMC5438986 DOI: 10.3389/fcimb.2017.00195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viral infection triggers a series of signaling cascades and host innate immune responses, including interferon (IFN) production, which depends on coordinated activity of multiple transcription factors. IFN regulatory factor 3 (IRF3) and transcriptional coactivator CREB binding protein (CBP) and/or p300 are core factors that participate in transcriptional complex formation in the nucleus. In general, cells balance the production of IFNs through suppressive and stimulative mechanisms, but viral infections can disrupt such equilibrium. This study determined that H5N1 viral infection reduced the distribution of human argonaute 2 (AGO2) in A549 cell nucleus. AGO2 did not block phosphorylation, nuclear translocation, and DNA binding ability of IRF3 but inhibited its association with CBP. Therefore, this newly revealed mechanism shows that cellular response leads to transfer of AGO2 from cell nucleus and promotes IFN-β expression to increase host survival during viral infection.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xin Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Chenyang Yi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xiaomei Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig ProductionWuhan, China
| |
Collapse
|
20
|
Durbin J, Doughty L, Nguyen K, Caligiuri M, Van Deusen J, Biron C. The role of STAT1 in viral sensitization to LPS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090050701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenomenon of endotoxin sensitization by virus infection is well documented but not yet well understood. Infection by virtually any viral agent will quickly induce expression of type I interferons (IFN-α/β), and type II IFN-γ production will follow as NK cells and T cells are activated. It has been well established that type II IFN pretreatment can intensify the effects of endotoxin. We have recently demonstrated that type I IFN induction by lymphocytic choriomeningitis virus (LCMV) infection dramatically increases TNF-α production following LPS treatment, and that this sensitization by type I IFN is STAT1 dependent. Taken together these data suggest that the STAT1-mediated, MyD88-independent, arm of the LPS signaling pathway plays an important role in endotoxin toxicity, and that this pathway mediates a major component of virus-enhanced LPS sensitization.
Collapse
Affiliation(s)
- Joan Durbin
- Department of Pediatrics, Columbus Children's Research Institute, The Ohio State University Columbus, Ohio, USA, -state.edu
| | - Leslie Doughty
- Department of Pediatrics, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Ken Nguyen
- Department of Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Michael Caligiuri
- Department of Internal Medicine, Division of Hematology Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Jeff Van Deusen
- Department of Internal Medicine, Division of Hematology Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Christine Biron
- Department of Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Abstract
Among all the E2 ubiquitin-conjugating enzymes, Ubc13, which heterodimerizes with Uev1a, specifically mediates lysine 63 (K63)-linked protein polyubiquitylation, a process that does not lead to proteasomal degradation of its substrates. Instead, it plays a key role in signal transduction. Numerous roles of Lys63-linked polyubiquitylation in immune responses have emerged, indicating the importance of this regulatory strategy. Here, we summarize some of the signaling pathways that depend on Lys63-linked polyubiquitylation during innate and adaptive immune responses, with a focus on the underlying molecular mechanisms. In addition, we describe how Ubc13 itself is regulated and outline its function in transforming growth factor β signaling. We discuss the current progress in pharmacological targeting of Ubc13 in inflammatory and autoimmune diseases as well as cancer therapy.
Collapse
Affiliation(s)
- Xuefeng Wu
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Signal Transduction and Gene Regulation, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Lind K, Svedin E, Domsgen E, Kapell S, Laitinen OH, Moll M, Flodström-Tullberg M. Coxsackievirus counters the host innate immune response by blocking type III interferon expression. J Gen Virol 2016; 97:1368-1380. [PMID: 26935471 DOI: 10.1099/jgv.0.000443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type I IFNs play an important role in the immune response to enterovirus infections. Their importance is underscored by observations showing that many enteroviruses including coxsackie B viruses (CVBs) have developed strategies to block type I IFN production. Recent studies have highlighted a role for the type III IFNs (also called IFNλs) in reducing permissiveness to infections with enteric viruses including coxsackievirus. However, whether or not CVBs have measures to evade the effects of type III IFNs remains unknown. By combining virus infection studies and different modes of administrating the dsRNA mimic poly I : C, we discovered that CVBs target both TLR3- and MDA5/RIG-I-mediated type III IFN expression. Consistent with this, the cellular protein expression levels of the signal transduction proteins TRIF and IPS1 were reduced and no hyperphosphorylation of IRF-3 was observed following infection with the virus. Notably, decreased expression of full-length TRIF and IPS1 and the appearance of cleavage products was observed upon both CVB3 infection and in cellular protein extracts incubated with recombinant 2Apro, indicating an important role for the viral protease in subverting the cellular immune system. Collectively, our study reveals that CVBs block the expression of type III IFNs, and that this is achieved by a similar mechanism as the virus uses to block type I IFN production. We also demonstrate that the virus blocks several intracellular viral recognition pathways of importance for both type I and III IFN production. The simultaneous targeting of numerous arms of the host immune response may be required for successful viral replication and dissemination.
Collapse
Affiliation(s)
- Katharina Lind
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Erna Domsgen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olli H Laitinen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Robitaille AC, Mariani MK, Fortin A, Grandvaux N. A High Resolution Method to Monitor Phosphorylation-dependent Activation of IRF3. J Vis Exp 2016:e53723. [PMID: 26862747 DOI: 10.3791/53723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The IRF3 transcription factor is critical for the first line of defense against pathogens mainly through interferon β and antiviral gene expression. A detailed analysis of IRF3 activation is essential to understand how pathogens induce or evade the innate antiviral response. Distinct activated forms of IRF3 can be distinguished based on their phosphorylation and monomer vs dimer status. In vivo discrimination between the different activated species of IRF3 can be achieved through the separation of IRF3 phosphorylated forms based on their mobility shifts on SDS-PAGE. Additionally, the levels of IRF3 monomer and dimer can be monitored using non-denaturing electrophoresis. Here, we detail a procedure to reach the highest resolution to gain the most information regarding IRF3 activation status. This is achieved through the combination of a high resolution SDS-PAGE and a native-PAGE coupled to immunoblots using multiple total and phosphospecific antibodies. This experimental strategy constitutes an affordable and sensitive approach to acquire all the necessary information for a complete analysis of the phosphorylation-mediated activation of IRF3.
Collapse
Affiliation(s)
- Alexa C Robitaille
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Department of Biochemistry and Molecular Medicine, Université de Montréal; Faculty of Medicine, Université de Montréal
| | - Mélissa K Mariani
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Faculty of Medicine, Université de Montréal
| | - Audray Fortin
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal
| | - Nathalie Grandvaux
- CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Université de Montréal; Department of Biochemistry and Molecular Medicine, Université de Montréal; Faculty of Medicine, Université de Montréal;
| |
Collapse
|
24
|
Remesh SG, Santosh V, Escalante CR. Structural Studies of IRF4 Reveal a Flexible Autoinhibitory Region and a Compact Linker Domain. J Biol Chem 2015; 290:27779-90. [PMID: 26405037 DOI: 10.1074/jbc.m115.678789] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 01/13/2023] Open
Abstract
IRF4 is a unique member of the interferon regulatory factor (IRF) family playing critical regulatory roles in immune cell development, regulation of obesity-induced inflammation, and control of thermogenic gene expression. The ability of IRF4 to control diverse transcriptional programs arises from its proficiency to interact with numerous transcriptional partners. In this study, we present the structural characterization of full-length IRF4. Using a combination of x-ray and small angle x-ray scattering studies, we reveal unique features of the interferon activation domain, including a set of β-sheets and loops that serve as the binding site for PU.1, and also show that unlike other IRF members, IRF4 has a flexible autoinhibitory region. In addition, we have determined the small angle x-ray scattering solution structure of full-length IRF4, which, together with circular dichroism studies, suggests that the linker region is not extended but folds into a domain structure.
Collapse
Affiliation(s)
- Soumya G Remesh
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298
| | - Vishaka Santosh
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298
| | - Carlos R Escalante
- From the Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
25
|
Shah M, Anwar MA, Park S, Jafri SS, Choi S. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. Sci Rep 2015; 5:13446. [PMID: 26289783 PMCID: PMC4542336 DOI: 10.1038/srep13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/03/2015] [Indexed: 02/04/2023] Open
Abstract
The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Seolhee Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Syyada Samra Jafri
- The Center of Excellence in Molecular Biology, University of the Punjab, Lahore, 54890, Pakistan
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
26
|
Measles Virus Infection Inactivates Cellular Protein Phosphatase 5 with Consequent Suppression of Sp1 and c-Myc Activities. J Virol 2015; 89:9709-18. [PMID: 26157124 DOI: 10.1128/jvi.00825-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles virus (MeV) causes several unique syndromes, including transient immunosuppression. To clarify the cellular responses to MeV infection, we previously analyzed a MeV-infected epithelial cell line and a lymphoid cell line by microarray and showed that the expression of numerous genes was up- or downregulated in the epithelial cells. In particular, there was a characteristic comprehensive downregulation of housekeeping genes during late stage infection. To identify the mechanism underlying this phenomenon, we examined the phosphorylation status of transcription factors and kinase/phosphatase activities in epithelial cells after infection. MeV infection inactivated cellular protein phosphatase 5 (PP5) that consequently inactivated DNA-dependent protein kinase, which reduced Sp1 phosphorylation levels, and c-Myc degradation, both of which downregulated the expression of many housekeeping genes. In addition, intracellular accumulation of viral nucleocapsid inactivated PP5 and subsequent downstream responses. These findings demonstrate a novel strategy of MeV during infection, which causes the collapse of host cellular functions. IMPORTANCE Measles virus (MeV) is one of the most important pathogens in humans. We previously showed that MeV infection induces the comprehensive downregulation of housekeeping genes in epithelial cells. By examining this phenomenon, we clarified the molecular mechanism underlying the constitutive expression of housekeeping genes in cells, which is maintained by cellular protein phosphatase 5 (PP5) and DNA-dependent protein kinase. We also demonstrated that MeV targets PP5 for downregulation in epithelial cells. This is the first report to show how MeV infection triggers a reduction in overall cellular functions of infected host cells. Our findings will help uncover unique pathogenicities caused by MeV.
Collapse
|
27
|
Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 2015; 73:181-9. [DOI: 10.1016/j.cyto.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
|
28
|
Mutations of the human interferon alpha-2b gene in brain tumor patients exposed to different environmental conditions. Cancer Gene Ther 2015; 22:246-61. [DOI: 10.1038/cgt.2015.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/24/2023]
|
29
|
Promotion of expression of interferon-stimulated genes in U937 monocytic cells by HIV RNAs, measured using stable isotope labeling with amino acids in cell culture (SILAC). Arch Virol 2015; 160:1249-58. [PMID: 25772570 DOI: 10.1007/s00705-015-2372-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
Abstract
Type I interferon (IFN) exerts strong antiviral activity, particularly against human immunodeficiency virus (HIV), and although several viral proteins have been shown to deregulate IFN induction, little is known about the induction of type I IFNs by HIV RNAs. In the present study, we used the stable isotope labeling with amino acids in cell culture (SILAC) method to determine the proteomic profile in U937 monocytic cells after transfection with viral RNA of HIV. We then used a western blot assay to validate the proteomic results. It was revealed by the SILAC method that there were 1624 non-redundant peptides with quantitative information and 281 proteins with quantitative information in the HIV-RNA-transfected U937 cells when compared to cells transfected with control RNA. In particular, 6, 8 or 12 hours post-transfection, HIV RNA transfection promoted the expression of such interferon stimulated genes (ISGs) as interferon-induced proteins with tetratricopeptide repeats (IFITs), interferon-induced transmembrane proteins (IFITMs), interferon-induced gene 15 protein (ISG15), myxovirus (influenza virus) resistance protein 1 (MX1), and interferon-induced guanylate-binding protein 1 (GBP1), and this was confirmed by western blot assay. In conclusion, HIV RNA is a strong stimulator of IFNs, promoting the expression of such ISGs as IFITs, IFITMs, ISG15, MX1 and GBP1.
Collapse
|
30
|
Chen ZG, Luo H, Wang SC, Xu JY, Li JX. Antiviral effects of Jinxin oral liquid against respiratory syncytial virus infection in the BALB/c mice model. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:287-295. [PMID: 25593018 DOI: 10.1016/j.jep.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinxin oral liquid (JOL) is used in traditional Chinese medicine (TCM) to treat influenza, cough, asthma, and viral pneumonia, on the basis of Ma Xing Shi Gan Tang (MXSGT) and the clinical experience of Professor Wang Shouchuan, one of the most prestigious pediatricians in China. AIM OF STUDY To investigate the anti-inflammatory and antiviral activities of JOL in mice infected with respiratory syncytial virus (RSV). MATERIALS AND METHODS Mice were orally administered JOL at doses of 27.6 g kg(-1) d(-1) and 55.2 g kg(-1) d(-1) for 1, 3, or 6d after RSV challenge. The viral loads in the lung tissue were measured by real-time RT-PCR. The levels of IFN-β in bronchoalveolar lavage fluid (BLAF) and lung tissue were detected by ELISA and real-time RT-PCR, respectively. The mRNA and protein expression of TLR3, IRF3, and SOCS1 were detected by real-time RT-PCR and western blot, respectively. The protein expression of phoshorylated-IRF3 (p-IRF3) was detected by western blot. RESULTS JOL significantly ameliorated lung inflammation in RSV-infected mice, and significantly reduced the viral load in the lung tissues. On days 2 and 4 after infection, the mRNA and protein expression of IFN-β, TLR3, IRF3 (p-IRF3), and SOCS1 were significantly downregulated in RSV-infected mice treated with JOL. However, 7d after infection, JOL significantly upregulated the RSV-induced decrease in IFN-β, TLR3, and IRF3 (p-IRF3), but reduced SOCS1 expression. CONCLUSIONS JOL ameliorated lung inflammation and inhibited virus replication significantly in RSV-infected mice. During early stage infection, the effect of JOL was improved through inhibition of the TLR3-IRF3-IFN-β signaling pathway and the expression of SOCS1, whereas during the later stage of infection, JOL upregulated the expression of key signaling molecules in the TLR3 signaling pathway and downregulated the expression of SOCS1.
Collapse
Affiliation(s)
- Zheng-Guang Chen
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jingsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210029, China
| | - Hui Luo
- Traditional Chinese Medicine Department of Children׳s Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Shou-Chuan Wang
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jingsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210029, China.
| | - Jian-Ya Xu
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jingsu Key Laboratory of Pediatric Respiratory Disease, Nanjing 210029, China
| | - Jia-Xi Li
- Traditional Chinese Medicine Department of Shenzhen Children׳s Hospital, Shenzhen 518000, China
| |
Collapse
|
31
|
Zhao J, Vykoukal J, Abdelsalam M, Recio-Boiles A, Huang Q, Qiao Y, Singhana B, Wallace M, Avritscher R, Melancon MP. Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. NANOTECHNOLOGY 2014; 25:405101. [PMID: 25211057 PMCID: PMC4414337 DOI: 10.1088/0957-4484/25/40/405101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The treatment of liver injuries or hepatocellular carcinoma (HCC) has been hindered by the lack of efficient drug delivery. Even with the help of nanoparticles or other synthetic delivering agents, a large portion of the dose is still sequestered in the reticuloendothelial system. As an alternative, adipose-derived mesenchymal cells (AD-MSCs), which have the capability of homing to the injured liver, can be used as a unique carrier for theranostic agents. Theranostic agents must have the capacity for being non-toxic to host cells during transportation, and for timely activation once they arrive at the injury sites. In this study, we loaded AD-MSCs with superparamagnetic iron oxide-coated gold nanoparticles (SPIO@AuNPs) and tested their effects against liver injury and HCC in cells and in mice. SPIO@AuNP is a non-toxic magnetic resonance (MR)-active contrast agent that can generate heat when irradiated with near-infrared laser. Our results showed that SPIO@AuNPs were successfully transfected into AD-MSCs without compromising either cell viability (P > 0.05) or cell differentiability. In vivo MR imaging and histologic analysis confirmed the active homing of AD-MSCs. Upon laser irradiation, the SPIO@AuNP-loaded AD-MSCs could thermally ablate surrounding HCC tumor cells. SPIO@AuNP-loaded AD-MSCs proved a promising theranostic approach for injured liver and HCC.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Mohamed Abdelsalam
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Alejandro Recio-Boiles
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Yang Qiao
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Burapol Singhana
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Michael Wallace
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Rony Avritscher
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| | - Marites P. Melancon
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1555 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
32
|
Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, Popov V, Yu XJ, García-Sastre A, Aguilar PV. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 2014; 88:4572-85. [PMID: 24478431 PMCID: PMC3993744 DOI: 10.1128/jvi.03021-13] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/20/2014] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Recognition of viral pathogens by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family results in the activation of type I interferon (IFN) responses. To avoid this response, most viruses have evolved strategies that target different essential steps in the activation of host innate immunity. In this study, we report that the nonstructural protein NSs of the newly described severe fever with thrombocytopenia syndrome virus (SFTSV) is a potent inhibitor of IFN responses. The SFTSV NSs protein was found to inhibit the activation of the beta interferon (IFN-β) promoter induced by viral infection and by a RIG-I ligand. Astonishingly, we found that SFTSV NSs interacts with and relocalizes RIG-I, the E3 ubiquitin ligase TRIM25, and TANK-binding kinase 1 (TBK1) into SFTSV NSs-induced cytoplasmic structures. Interestingly, formation of these SFTSV NSs-induced structures occurred in the absence of the Atg7 gene, a gene essential for autophagy. Furthermore, confocal microscopy studies revealed that these SFTSV NSs-induced structures colocalize with Rab5 but not with Golgi apparatus or endoplasmic reticulum markers. Altogether, the data suggest that sequestration of RIG-I signaling molecules into endosome-like structures may be the mechanism used by SFTSV to inhibit IFN responses and point toward a novel mechanism for the suppression of IFN responses. IMPORTANCE The mechanism by which the newly described SFTSV inhibits host antiviral responses has not yet been fully characterized. In this study, we describe the redistribution of RIG-I signaling components into virus-induced cytoplasmic structures in cells infected with SFTSV. This redistribution correlates with the inhibition of host antiviral responses. Further characterization of the interplay between the viral protein and components of the IFN responses could potentially provide targets for the rational development of therapeutic interventions.
Collapse
Affiliation(s)
- Felix W. Santiago
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lina M. Covaleda
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria T. Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesus A. Silvas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Jenish R. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xue-jie Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
33
|
Differential induction of apoptosis, interferon signaling, and phagocytosis in macrophages infected with a panel of attenuated and nonattenuated poxviruses. J Virol 2014; 88:5511-23. [PMID: 24599993 DOI: 10.1128/jvi.00468-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA possesses in comparison to other poxvirus strains.
Collapse
|
34
|
Stahl JA, Chavan SS, Sifford JM, MacLeod V, Voth DE, Edmondson RD, Forrest JC. Phosphoproteomic analyses reveal signaling pathways that facilitate lytic gammaherpesvirus replication. PLoS Pathog 2013; 9:e1003583. [PMID: 24068923 PMCID: PMC3777873 DOI: 10.1371/journal.ppat.1003583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
Lytic gammaherpesvirus (GHV) replication facilitates the establishment of lifelong latent infection, which places the infected host at risk for numerous cancers. As obligate intracellular parasites, GHVs must control and usurp cellular signaling pathways in order to successfully replicate, disseminate to stable latency reservoirs in the host, and prevent immune-mediated clearance. To facilitate a systems-level understanding of phosphorylation-dependent signaling events directed by GHVs during lytic replication, we utilized label-free quantitative mass spectrometry to interrogate the lytic replication cycle of murine gammaherpesvirus-68 (MHV68). Compared to controls, MHV68 infection regulated by 2-fold or greater ca. 86% of identified phosphopeptides - a regulatory scale not previously observed in phosphoproteomic evaluations of discrete signal-inducing stimuli. Network analyses demonstrated that the infection-associated induction or repression of specific cellular proteins globally altered the flow of information through the host phosphoprotein network, yielding major changes to functional protein clusters and ontologically associated proteins. A series of orthogonal bioinformatics analyses revealed that MAPK and CDK-related signaling events were overrepresented in the infection-associated phosphoproteome and identified 155 host proteins, such as the transcription factor c-Jun, as putative downstream targets. Importantly, functional tests of bioinformatics-based predictions confirmed ERK1/2 and CDK1/2 as kinases that facilitate MHV68 replication and also demonstrated the importance of c-Jun. Finally, a transposon-mutant virus screen identified the MHV68 cyclin D ortholog as a viral protein that contributes to the prominent MAPK/CDK signature of the infection-associated phosphoproteome. Together, these analyses enhance an understanding of how GHVs reorganize and usurp intracellular signaling networks to facilitate infection and replication.
Collapse
Affiliation(s)
- James A. Stahl
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shweta S. Chavan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- UALR/UAMS Joint Program in Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Veronica MacLeod
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Daniel E. Voth
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ricky D. Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - J. Craig Forrest
- Dept. of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Novel paradigms of innate immune sensing of viral infections. Cytokine 2013; 63:219-24. [DOI: 10.1016/j.cyto.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
|
36
|
Zhang G, Zhang Z, Liu Z. Interferon regulation factor-3 is a critical regulator of the mature of dendritic cells from mice. Scand J Immunol 2013; 77:13-20. [PMID: 23033912 DOI: 10.1111/sji.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/24/2012] [Indexed: 12/19/2022]
Abstract
Interferon regulatory factor-3 (IRF-3) plays an important role in virus and double-stranded RNA-mediated induction of type I interferon and RANTES (regulated on activation normal T cell expressed and secreted), DNA damage signalling, tumour suppression and virus-induced apoptosis. IRF-3 had recently been shown to contribute to T-cell activation in response to pathogens, which implicated an extensive immunological role for IRF-3. Dendritic cells (DCs) played critical roles as professional APCs in the development of immune responses. However, it was unclear whether IRF-3 had any effect on phenotype or function of DCs. In this study, it was shown that IRF-3 acted as a promoter of DC maturation. The level of IRF-3 expression was transiently upregulated and accumulated in the nucleus in TNF-α-induced immune maturation of mice DC cells. Knockdown of IRF-3 by small interfering RNA in DC cells resulted in both phenotypic and functional immaturation, even without TNF-α treatment. Overall, our data demonstrated for the first time that IRF-3 was a critical regulator of mice DC maturation.
Collapse
Affiliation(s)
- G Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | |
Collapse
|
37
|
Wang FM, Sarmasik A, Hiruma Y, Sun Q, Sammut B, Windle JJ, Roodman GD, Galson DL. Measles virus nucleocapsid protein, a key contributor to Paget's disease, increases IL-6 expression via down-regulation of FoxO3/Sirt1 signaling. Bone 2013; 53:269-76. [PMID: 23262029 PMCID: PMC3552041 DOI: 10.1016/j.bone.2012.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/28/2012] [Accepted: 12/09/2012] [Indexed: 11/20/2022]
Abstract
Measles virus plays an important role as an environmental factor in the pathogenesis of Paget's disease (PD). Previous studies have shown that IL-6 is increased in the bone marrow of Paget's patients and that measles virus nucleocapsid protein (MVNP) induces IL-6 secretion by pagetic osteoclasts. Further, IL-6 plays a critical role in the development of pagetic osteoclasts and bone lesions induced by PD, but the mechanisms regulating IL-6 production by MVNP remain unclear. Our current studies revealed that MVNP expression in osteoclast precursors down-regulated Sirt1 mRNA and protein, a negative regulator of NF-κB activity, which is a key factor for IL-6 expression. MVNP expression in NIH3T3 cells also elevated Il-6 transcription and impaired the expression of Sirt1 mRNA both under basal conditions and upon activation of the Sirt1 upstream regulator FoxO3 by LY294002 (a PI3K/AKT inhibitor). Luciferase activity assays showed that constitutively active FoxO3 abolished the repressive effect of MVNP on reporters driven by either FoxO3 response elements or the Sirt1 promoter. Further, protein stability assays revealed that FoxO3 was degraded more rapidly in MVNP-expressing cells than in control cells following the addition of cycloheximide. Similarly, co-transfection of MVNP and FoxO3 into HEK293 cells demonstrated that MVNP decreased the protein levels of over-expressed FoxO3 in a dose-dependent manner. Treatment with the proteasome inhibitor, MG132, blocked the MVNP-triggered decrease of FoxO3, and the treatment with the serine/threonine phosphatase inhibitor, calyculin A, revealed that MVNP increased phosphorylation of FoxO3. Further, over-expression of Sirt1 or treatment with the Sirt1 activator resveratrol blocked the increase in Il-6 transcription by MVNP. Finally, resveratrol reduced the numbers of TRAP positive multi-nuclear cells in bone marrow cultures from TRAP-MVNP transgenic mice to wild type levels. These results indicate that MVNP decreases FoxO3/Sirt1 signaling to enhance the levels of IL-6, which in part mediate MVNP's contribution to the development of Paget's disease.
Collapse
Affiliation(s)
- Feng-Ming Wang
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
- Department of Medicine/Hematology-Oncology, Indiana University, 980 West Walnut, Suite C312, Indianapolis, IN 46202, USA
| | - Aliye Sarmasik
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
| | - Yuko Hiruma
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
| | - Quanhong Sun
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
| | - Benedicte Sammut
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Molecular Medicine Research Building, 7034, P.O. Box 980033, Richmond, VA 23298, USA
| | - G. David Roodman
- Department of Medicine/Hematology-Oncology, Indiana University, 980 West Walnut, Suite C312, Indianapolis, IN 46202, USA
| | - Deborah L. Galson
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Research Pavilion, Room 1.19b, Pittsburgh, PA 15213, USA
- Address correspondence to: Dr. Deborah L. Galson. Hillman Cancer Center, Research Pavilion, Room 1.19b, 5117 Centre Avenue, Pittsburgh, PA 15213, Tel: 412-623-1112, Fax: 412-623-1415,
| |
Collapse
|
38
|
Garofalo RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal 2013; 18:186-217. [PMID: 22799599 PMCID: PMC3513983 DOI: 10.1089/ars.2011.4307] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes of upper and lower respiratory tract infections in infants and young children, for which no effective treatment is currently available. Although the mechanisms of RSV-induced airway disease remain incompletely defined, the lung inflammatory response is thought to play a central pathogenetic role. In the past few years, we and others have provided increasing evidence of a role of reactive oxygen species (ROS) as important regulators of RSV-induced cellular signaling leading to the expression of key proinflammatory mediators, such as cytokines and chemokines. In addition, RSV-induced oxidative stress, which results from an imbalance between ROS production and airway antioxidant defenses, due to a widespread inhibition of antioxidant enzyme expression, is likely to play a fundamental role in the pathogenesis of RSV-associated lung inflammatory disease, as demonstrated by a significant increase in markers of oxidative injury, which correlate with the severity of clinical illness, in children with RSV infection. Modulation of ROS production and oxidative stress therefore represents a potential novel pharmacological approach to ameliorate RSV-induced lung inflammation and its long-term consequences.
Collapse
Affiliation(s)
- Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | |
Collapse
|
39
|
Phenylmethimazole blocks dsRNA-induced IRF3 nuclear translocation and homodimerization. Molecules 2012; 17:12365-77. [PMID: 23090018 PMCID: PMC6269055 DOI: 10.3390/molecules171012365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022] Open
Abstract
Previous studies revealed that phenylmethimazole (C10) inhibits IRF3 signaling, preventing dsRNA-induction of type 1 interferon gene expression, production, and downstream signaling. In the present study, we investigated the molecular basis for C10 inhibition of dsRNA-stimulated IRF3 signaling. IRF-3 Trans-AM assays were used to measure C10 effects on dsRNA induction of IRF3 DNA binding. Green fluorescent protein-labeled IRF3 was used to measure C10 effects on dsRNA-induced IRF3 nuclear translocation. Native PAGE, SDS PAGE, and western blotting were used to identify effects of C10 on IRF3 homodimer formation and phosphorylation, respectively. There was a significant impairment of dsRNA-induced IRF3 DNA binding activity in human embryonic kidney and pancreatic cancer cells with C10 treatment. C10 also blocked dsRNA-induced IRF3 nuclear translocation and homodimer formation without blocking serine 396 phosphorylation of IRF3. Together, these results indicate that C10 interferes with IRF3 signaling by blocking dsRNA-induced IRF3 homodimer formation, a prerequisite for nuclear translocation and DNA binding activities.
Collapse
|
40
|
Ryzhakov G, Blazek K, Lai CCK, Udalova IA. IL-17 receptor adaptor protein Act1/CIKS plays an evolutionarily conserved role in antiviral signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:4852-8. [PMID: 23066157 DOI: 10.4049/jimmunol.1200428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-β and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Critical role for interferon regulatory factor 3 (IRF-3) and IRF-7 in type I interferon-mediated control of murine norovirus replication. J Virol 2012; 86:13515-23. [PMID: 23035219 DOI: 10.1128/jvi.01824-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection.
Collapse
|
42
|
Liu YP, Zeng L, Tian A, Bomkamp A, Rivera D, Gutman D, Barber GN, Olson JK, Smith JA. Endoplasmic reticulum stress regulates the innate immunity critical transcription factor IRF3. THE JOURNAL OF IMMUNOLOGY 2012; 189:4630-9. [PMID: 23028052 DOI: 10.4049/jimmunol.1102737] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IFN regulatory factor 3 (IRF3) regulates early type I IFNs and other genes involved in innate immunity. We have previously shown that cells undergoing an endoplasmic reticulum (ER) stress response called the unfolded protein response produce synergistically augmented IFN-β when stimulated with pattern recognition receptor agonists such as LPS. Concomitant ER stress and LPS stimulation resulted in greater recruitment of the IRF3 transcription factor to ifnb1 gene regulatory elements. In this study, we used murine cells to demonstrate that both oxygen-glucose deprivation and pharmacologic unfolded protein response inducers trigger phosphorylation and nuclear translocation of IRF3, even in the absence of exogenous LPS. Different ER stressors used distinct mechanisms to activate IRF3: IRF3 phosphorylation due to calcium-mobilizing ER stress (thapsigargin treatment, oxygen-glucose deprivation) critically depended upon stimulator of IFN gene, an ER-resident nucleic acid-responsive molecule. However, calcium mobilization alone by ionomycin was insufficient for IRF3 phosphorylation. In contrast, other forms of ER stress (e.g., tunicamycin treatment) promote IRF3 phosphorylation independently of stimulator of IFN gene and TANK-binding kinase 1. Rather, IRF3 activation by tunicamycin and 2-deoxyglucose was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, a serine protease inhibitor that blocks activating transcription factor 6 processing. Interfering with ER stress-induced IRF3 activation abrogated IFN-β synergy. Together, these data suggest ER stress primes cells to respond to innate immune stimuli by activating the IRF3 transcription factor. Our results also suggest certain types of ER stress accomplish IRF3 phosphorylation by co-opting existing innate immune pathogen response pathways. These data have implications for diseases involving ER stress and type I IFN.
Collapse
Affiliation(s)
- Yi-Ping Liu
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The nuclear factor-κB (NF-κB) pathway is a critical regulator of innate and adaptive immunity. Noncanonical K63-linked polyubiquitination plays a key regulatory role in NF-κB signaling pathways by functioning as a scaffold to recruit kinase complexes containing ubiquitin-binding domains. Ubiquitination is balanced by deubiquitinases that cleave polyubiquitin chains and oppose the function of E3 ubiquitin ligases. Deubiquitinases therefore play an important role in the termination of NF-κB signaling and the resolution of inflammation. In this review, we focus on NF-κB regulation by deubiquitinases with an emphasis on A20 and CYLD. Deubiquitinases and the ubiquitin/proteasome components that regulate NF-κB may serve as novel therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
44
|
van Zuylen WJ, Doyon P, Clément JF, Khan KA, D'Ambrosio LM, Dô F, St-Amant-Verret M, Wissanji T, Emery G, Gingras AC, Meloche S, Servant MJ. Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS Pathog 2012; 8:e1002747. [PMID: 22792062 PMCID: PMC3390413 DOI: 10.1371/journal.ppat.1002747] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 04/30/2012] [Indexed: 01/08/2023] Open
Abstract
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses. In response to pathogens, such as viruses and bacteria, infected cells defend themselves by generating a set of cytokines called type I interferon (IFN). Since Type I IFN (namely IFN alpha and beta) are potent antiviral agents, understanding the cellular mechanisms by which infected cells produce type I IFN is required to identify novel cellular targets for future antiviral therapies. Notably, a protein called Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) was demonstrated to be an essential mediator of this antiviral response. However, how TRAF3 reacts in response to a viral infection is still not totally understood. We now demonstrate that, through its capacity to interact with other proteins (namely Sec16A and p115) that normally control protein secretion, TRAF3 resides close to the nucleus in uninfected cells, in a region called the ER-to-Golgi Intermediate Compartment (ERGIC). Following viral infection, the ERGIC reorganizes into small punctate structures allowing TRAF3 to associate with Mitochondrial AntiViral Signaling (MAVS), an essential adaptor of the anti-viral type I IFN response. Thus, our study reveals an unpredicted role of the protein secretion system for the proper localization of TRAF3 and the antiviral response.
Collapse
Affiliation(s)
| | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Lisa M. D'Ambrosio
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | | | - Tasheen Wissanji
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
| | - Gregory Emery
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Meloche
- Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada
- Departments of Pharmacology and Molecular Biology, Université de Montréal, Montréal, Québec Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec Canada
- * E-mail:
| |
Collapse
|
45
|
Meyer T, Oberg HH, Peters C, Martens I, Adam-Klages S, Kabelitz D, Wesch D. poly(I:C) costimulation induces a stronger antiviral chemokine and granzyme B release in human CD4 T cells than CD28 costimulation. J Leukoc Biol 2012; 92:765-74. [PMID: 22750548 DOI: 10.1189/jlb.0811407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
dsRNA is frequently associated with viral replication. Here, we compared the costimulatory effect of the synthetic analog of dsRNA, poly(I:C), and the agonistic anti-CD28 mAb on anti-CD3 mAb-activated, freshly isolated human CD4 T cells. We tested the hyphothesis that poly(I:C) and anti-CD28 mAb costimulation differ in their effect on the CD4 T cell immune response. Our study shows that costimulation of CD4 T cells by poly(I:C) enhanced CD3-induced production of IP-10, MIP1-α/β, RANTES, and granzyme B involved in antiviral activity more than anti-CD28 mAb. poly(I:C) stimulation, on its own, activated the transcription of IRF7 in human CD4 T cells. Combined CD3 and poly(I:C) stimulation significantly enhanced the transcription of IRF7 and additionally, NF-κBp65 phosphorylation, which might be involved in the induction of antiviral chemokines and the enhanced cytotoxic activity of poly(I:C)-treated CD4 T cells. In comparison with poly(I:C), anti-CD28 mAb as a costimulus induced a stronger proinflammatory response, as indicated by enhanced TNF-α secretion. poly(I:C) had a costimulatory effect on Akt phosphorylation, whereas anti-CD28 mAb only slightly enhanced Akt phosphorylation. In contrast to poly(I:C), anti-CD28 mAb was essential for proliferation of anti-CD3-stimulated CD4 T cells; however, poly(I:C) further increased the anti-CD28/anti-CD3-mediated proliferation. These results indicate that poly(I:C)- and anti-CD28 mAb-induced signaling differ in their costimulatory effect on the CD3-driven, antiviral chemokine release and proinflammatory cytokine secretion in freshly isolated human CD4 T cells.
Collapse
Affiliation(s)
- Tim Meyer
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Listeria monocytogenes strain-specific impairment of the TetR regulator underlies the drastic increase in cyclic di-AMP secretion and beta interferon-inducing ability. Infect Immun 2012; 80:2323-32. [PMID: 22508860 DOI: 10.1128/iai.06162-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Among a number of laboratory strains of Listeria monocytogenes used in experimental infection, strain LO28 is highly capable of inducing robust beta interferon (IFN-β) production in infected macrophages. In this study, we investigated the molecular mechanism of the IFN-β-inducing ability of LO28 by comparing it with that of strain EGD, a low-IFN-β-inducing strain. It was found that LO28 secretes a large amount of IFN-β-inducing factor, which turned out to be cyclic di-AMP. The secretion of cyclic di-AMP was dependent on MdrT, a multidrug resistance transporter, and LO28 exhibited a very high level of mdrT expression. The introduction of a null mutation into mdrT abolished the ability of LO28 to induce IFN-β production. Examination of genes responsible for the regulation of mdrT expression revealed a spontaneous 188-bp deletion in tetR of LO28. By constructing recombinant strains of LO28 and EGD in which tetR from each strain was replaced, it was confirmed that the distinct ability of LO28 is attributable mostly to tetR mutation. We concluded that the strong IFN-β-inducing ability of LO28 is due to a genetic defect in tetR resulting in the overexpression of mdrT and a concomitant increase in the secretion of cyclic di-AMP through MdrT.
Collapse
|
47
|
Abstract
Innate immunity is part of the antiviral response. Interferon (IFN)-beta plays a leading role in this system. To investigate the influence of hepatitis C virus (HCV) on innate immunity, we examined the effect of viral proteins on IFN-beta induction. HepG2 cells were co-transfected with plasmids for seven HCV proteins (core protein, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) and the IFN-beta promoter luciferase. Toll-like receptor (TLR) 3 and Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF) play key roles in dsRNA-mediated activation of interferon regulatory factor (IRF)-3 and IFN-beta; therefore, the participation of TLR3/TRIF in NS5B-mediated IFN induction was examined. Among seven HCV proteins, only NS5B, a viral RNA-dependent RNA polymerase (RdRp), activated the IFN-beta promoter. However, mutant NS5B without RdRp activity or template/primer association did not activate the IFN-beta promoter. Activation of the IFN-beta promoter by NS5B required the positive regulatory domain III, a binding sequence for IRF-3. Moreover, IRF-3 was phosphorylated by NS5B. Both inhibition of TLR3 expression by small interfering RNA and expression of the dominant negative form of TRIF significantly reduced NS5B-induced activation of IFN-beta. Of the six other HCV proteins, NS4A, NS4B, and NS5A efficiently inhibited this activation. HCV NS5B is a potent activator of the host innate immune system, possibly through TLR3/TRIF and synthesis of dsRNA. Meanwhile, NS4A, NS4B, and NS5A block IFN-beta induction by NS5B, which may contribute toward the persistence of this virus.
Collapse
|
48
|
Ren J, Liu T, Pang L, Li K, Garofalo RP, Casola A, Bao X. A novel mechanism for the inhibition of interferon regulatory factor-3-dependent gene expression by human respiratory syncytial virus NS1 protein. J Gen Virol 2011; 92:2153-2159. [PMID: 21632562 DOI: 10.1099/vir.0.032987-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (RSV), a leading cause of respiratory tract infections in infants, inhibits type I interferon (IFN)-dependent signalling, as well as IFN synthesis. RSV non-structural protein NS1 plays a significant role in this inhibition; however, the mechanism(s) responsible is not fully known. The transcription factor interferon regulatory factor (IRF)-3 is essential for viral-induced IFN-β synthesis. In this study, we found that NS1 protein inhibits IRF-3-dependent gene transcription in constitutively active IRF-3 overexpressing cells, demonstrating that NS1 directly targets IRF-3. Our data also demonstrate that NS1 associates with IRF-3 and its transcriptional coactivator CBP, leading to disrupted association of IRF-3 to CBP and subsequent reduced binding of IRF-3 to the IFN-β promoter without blocking viral-induced IRF-3 phosphorylation, nuclear translocation and dimerization, thereby identifying a novel molecular mechanism by which RSV inhibits IFN-β synthesis.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Tianshuang Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Lan Pang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roberto P Garofalo
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
49
|
Vandevenne P, Lebrun M, El Mjiyad N, Ote I, Di Valentin E, Habraken Y, Dortu E, Piette J, Sadzot-Delvaux C. The varicella-zoster virus ORF47 kinase interferes with host innate immune response by inhibiting the activation of IRF3. PLoS One 2011; 6:e16870. [PMID: 21347389 PMCID: PMC3036730 DOI: 10.1371/journal.pone.0016870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/17/2011] [Indexed: 12/24/2022] Open
Abstract
The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15.
Collapse
Affiliation(s)
- Patricia Vandevenne
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Marielle Lebrun
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Nadia El Mjiyad
- Laboratory of Molecular Oncology (LOM), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Isabelle Ote
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Emmanuel Di Valentin
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Yvette Habraken
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Estelle Dortu
- Department of Pathology, University of Liege, Liege, Belgium
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Catherine Sadzot-Delvaux
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|
50
|
Tsushima K, Osawa T, Yanai H, Nakajima A, Takaoka A, Manabe I, Ohba Y, Imai Y, Taniguchi T, Nagai R. IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension. FASEB J 2011; 25:1531-43. [PMID: 21266535 DOI: 10.1096/fj.10-174615] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hypertension is a typical modern lifestyle-related disease that is closely associated with the development of cardiovascular disorders. Elevation of angiotensin II (ANG II) is one of several critical factors for hypertension and heart failure; however, the mechanisms underlying the ANG II-mediated pathogenesis are still poorly understood. Here, we show that ANG II-mediated cardiac fibrosis, but not hypertrophy, is regulated by interferon regulatory factor 3 (IRF3), which until now has been exclusively studied in the innate immune system. In a ANG II-infusion mouse model (3.0 mg/kg/d), we compared IRF3-deficient mice (Irf3(-/-)/Bcl2l12(-/-)) with matched wild-type (WT) controls. The development of cardiac fibrosis [3.95 ± 0.62% (WT) vs. 1.41 ± 0.46% (Irf3(-/-)/Bcl2l12(-/-)); P<0.01] and accompanied reduction in left ventricle end-diastolic dimension [2.89 ± 0.10 mm (WT) vs. 3.51 ± 0.15 mm (Irf3(-/-)/Bcl2l12(-/-)); P=0.012] are strongly suppressed in Irf3(-/-)/Bcl2l12(-/-) mice, whereas hypertrophy still develops. Further, we provide evidence for the activation of IRF3 by ANG II signaling in mouse cardiac fibroblasts. Unlike the activation of IRF3 by innate immune receptors, IRF3 activation by ANG II is unique in that it is activated through the canonical ERK signaling pathway. Thus, our present study reveals a hitherto unrecognized function of IRF3 in cardiac remodeling, providing new insight into the progression of hypertension-induced cardiac pathogenesis.
Collapse
Affiliation(s)
- Kensuke Tsushima
- Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|