1
|
Tartaglia GG, Hollås H, Håvik B, Vedeler A, Pastore A. The RNA-Binding Properties of Annexins. J Mol Biol 2025; 437:168933. [PMID: 39755246 DOI: 10.1016/j.jmb.2024.168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches. Using the catRAPID algorithm, we accurately predicted known RNA-binding partners of Annexins, supported by experimental validation. We then constructed a virtual library of potential mRNA partners for Annexin A2, identifying regions within its structure directly involved in RNA binding. Beyond RNA interaction, some Annexins, notably AnxA7 and AnxA11, exhibit strong phase separation tendencies driven by their N-termini. These biophysical properties likely play roles in RNA trafficking and localization particularly in neurons, where they may influence processes such as synaptic plasticity, learning, and memory. Our predictions contribute to a deeper understanding of the Annexin function, emphasizing their potential impact on RNA regulation and cellular compartmentalization through phase separation and propose a powerful computational tool for the prediction of RNA-binding properties.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy.
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Bjarte Håvik
- Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway
| | - Anni Vedeler
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway.
| | - Annalisa Pastore
- Elettra Sincrotrone Trieste, Strada Statale 14 - km 163, 5 in AREA Science Park 34149 Basovizza, ITALY; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK.
| |
Collapse
|
2
|
Liu SQ, Troy JB, Goldman J, Guillory RJ. Calcium phosphate formation and deposition in ischemic neurons. PLoS One 2025; 20:e0317055. [PMID: 39820937 PMCID: PMC11737781 DOI: 10.1371/journal.pone.0317055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Ischemic stroke causes acute brain calcium phosphate (CaP) deposition, a process involving primarily the injured neurons. Whereas the adverse impact of CaP deposition on the brain structure and function has been recognized, the underlying mechanisms remain poorly understood. This investigation demonstrated that the neuron-expressed, plasma membrane-associated Ca2+-binding proteins annexin (Anx) A2, AnxA5, AnxA6, and AnxA7 contributed to neuronal CaP deposition in the mouse model of ischemic stroke. These Anxs were released from the degraded plasma membrane of the ischemic neurons and were able to form Anx/CaP complexes, a nanostructure capable of binding to the β actin filaments via Anx-actin interaction to cause neuronal CaP deposition prior to brain infarction. Anx administration to the healthy mouse brain caused brain CaP deposition and infarction. Monomeric β actin was able to block competitively Anx binding to β actin filaments and prevent ischemic stroke- and Anx administration-induced brain CaP deposition and infarction. Administration of siRNAs specific to the four Anx mRNAs alleviated brain CaP deposition and infarction. These observations support the role of Anxs in CaP formation and deposition in ischemic neurons.
Collapse
Affiliation(s)
- Shu Q. Liu
- Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America
| | - John B. Troy
- Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - Roger J. Guillory
- Biomedical Engineering Department, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
3
|
Christofidis K, Pergaris A, Fioretzaki R, Charalampakis N, Kapetanakis EΙ, Kavantzas N, Schizas D, Sakellariou S. Annexin A2 in Tumors of the Gastrointestinal Tract, Liver, and Pancreas. Cancers (Basel) 2024; 16:3764. [PMID: 39594718 PMCID: PMC11592865 DOI: 10.3390/cancers16223764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a protein that is involved in many physiological and pathological cellular processes. There is compelling evidence that its dysregulated expression, be it up- or downregulation, contributes to the oncogenesis of various neoplasms, including those of the digestive system. The present review summarizes the current knowledge on the role of ANXA2 in the main tumors of the digestive system. The clinical significance of ANXA2 is primordial, due to its potential use as a diagnostic and prognostic biomarker, and as a part of therapeutic protocols. Certain preclinical studies have shown that inhibiting ANXA2 or disrupting its interactions with key molecules can suppress tumor growth, invasion, and metastasis, as well as increase the cancer cells' sensitivity to treatment in various cancers. Further research is needed to fully elucidate the complex role of ANXA2 in the carcinogenesis of tumors of the digestive system, and to translate these findings into clinical applications for improved diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Konstantinos Christofidis
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Pergaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Rodanthi Fioretzaki
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, 11527 Athens, Greece; (R.F.); (D.S.)
| | - Nikolaos Charalampakis
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 18537 Piraeus, Greece;
| | - Emmanouil Ι. Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Nikolaos Kavantzas
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, 11527 Athens, Greece; (R.F.); (D.S.)
| | - Stratigoula Sakellariou
- Cytopathology Laboratory, Laiko General Hospital of Athens, 11527 Athens, Greece; (K.C.); (N.K.); (S.S.)
| |
Collapse
|
4
|
White ZB, Nair S, Bredel M. The role of annexins in central nervous system development and disease. J Mol Med (Berl) 2024; 102:751-760. [PMID: 38639785 PMCID: PMC11106189 DOI: 10.1007/s00109-024-02443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Annexins, a group of Ca2+-dependent phospholipid-binding proteins, exert diverse roles in neuronal development, normal central nervous system (CNS) functioning, neurological disorders, and CNS tumors. This paper reviews the roles of individual annexins (A1-A13) in these contexts. Annexins possess unique structural and functional features, such as Ca2+-dependent binding to phospholipids, participating in membrane organization, and modulating cell signaling. They are implicated in various CNS processes, including endocytosis, exocytosis, and stabilization of plasma membranes. Annexins exhibit dynamic roles in neuronal development, influencing differentiation, proliferation, and synaptic formation in CNS tissues. Notably, annexins such as ANXA1 and ANXA2 play roles in apoptosis and blood-brain barrier (BBB) integrity. Neurological disorders, including Alzheimer's disease, multiple sclerosis, and depression, involve annexin dysregulation, influencing neuroinflammation, blood-brain barrier integrity, and stress responses. Moreover, annexins contribute to the pathogenesis of CNS tumors, either promoting or suppressing tumor growth, angiogenesis, and invasion. Annexin expression patterns vary across different CNS tumor types, providing potential prognostic markers and therapeutic targets. This review underscores the multifaceted roles of annexins in the CNS, highlighting their importance in normal functioning, disease progression, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Zachary B White
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sindhu Nair
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Markus Bredel
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Gerke V, Gavins FNE, Geisow M, Grewal T, Jaiswal JK, Nylandsted J, Rescher U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat Commun 2024; 15:1574. [PMID: 38383560 PMCID: PMC10882027 DOI: 10.1038/s41467-024-45954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Annexins are cytosolic proteins with conserved three-dimensional structures that bind acidic phospholipids in cellular membranes at elevated Ca2+ levels. Through this they act as Ca2+-regulated membrane binding modules that organize membrane lipids, facilitating cellular membrane transport but also displaying extracellular activities. Recent discoveries highlight annexins as sensors and regulators of cellular and organismal stress, controlling inflammatory reactions in mammals, environmental stress in plants, and cellular responses to plasma membrane rupture. Here, we describe the role of annexins as Ca2+-regulated membrane binding modules that sense and respond to cellular stress and share our view on future research directions in the field.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Michael Geisow
- The National Institute for Medical Research, Mill Hill, London, UK
- Delta Biotechnology Ltd, Nottingham, UK
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jesper Nylandsted
- Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21-25, Odense, Denmark
| | - Ursula Rescher
- Research Group Cellular Biochemistry, Institute of Molecular Virology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| |
Collapse
|
6
|
Lei J, Sun P, Sheng J, Wang H, Xie Y, Song J. The intricate role of annexin A2 in kidney: a comprehensive review. Ren Fail 2023; 45:2273427. [PMID: 37955107 PMCID: PMC10653649 DOI: 10.1080/0886022x.2023.2273427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Annexin A2 (Anxa2) is a calcium (Ca2+)-regulated phospholipid binding protein composed of a variable N-terminus and a conserved core domain. This protein has been widely found in many tissues and fluids, including tubule cells, glomerular epithelial cells, renal vessels, and urine. In acute kidney injury, the expression level of this protein is markedly elevated in response to acute stress. Moreover, Anxa2 is a novel biomarker and potential therapeutic target with prognostic value in chronic kidney disease. In addition, Anxa2 is associated not only with clear-cell renal cell carcinoma differentiation but also the formation of calcium-related nephrolithiasis. In this review, we discuss the characteristics and functions of Anxa2 and focus on recent reports on the role of Anxa2 in the kidney, which may be useful for future research.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
7
|
Qiu Y, Wang H, Guo Q, Liu Y, He Y, Zhang G, Yang C, Du Y, Gao F. CD44s-activated tPA/LRP1-NFκB pathway drives lamellipodia outgrowth in luminal-type breast cancer cells. Front Cell Dev Biol 2023; 11:1224827. [PMID: 37842093 PMCID: PMC10569302 DOI: 10.3389/fcell.2023.1224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Some cancer cells migration and metastasis are characterized by the outgrowth of lamellipodia protrusions in which the underlying mechanism remains unclear. Evidence has confirmed that lamellipodia formation could be regulated by various adhesion molecules, such as CD44, and we previously reported that lamellipodia at the leading edge of luminal type breast cancer (BrCa) were enriched with high expression of CD44. In this study, we found that the overexpression of CD44s could promote lamellipodia formation in BrCa cells through inducing tissue type plasminogen activator (tPA) upregulation, which was achieved by PI3K/Akt signaling pathway activation. Moreover, we revealed that tPA could interact with LDL receptor related protein 1 (LRP1) to activate the downstream NFκB signaling pathway, which in turn facilitate lamellipodia formation. Notably, inhibition of the tPA/LRP1-NFkB signaling cascade could attenuate the CD44s-induced lamellipodia formation. Thus, our findings uncover a novel role of CD44s in driving lamellipodia outgrowth through tPA/LRP1-NFkB axis in luminal BrCa cells that may be helpful for seeking potential therapeutic targets.
Collapse
Affiliation(s)
- Yaqi Qiu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
9
|
Lindsay S, Bartolotti L, Li Y. Ca 2+ ions facilitate the organization of the Annexin A2/S100A10 heterotetramer. Proteins 2023; 91:1042-1053. [PMID: 36965169 PMCID: PMC10518368 DOI: 10.1002/prot.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/27/2023]
Abstract
Annexin A2 (A2) is a member of the Annexin family, which contains Ca2+ -regulated phospholipid-binding proteins. Annexins associate with S100 proteins to form heterotetramers. The A2/S100A10 heterotetramer (A2t) is the most extensively studied of these heterotetramers. It induces membrane microdomain formation, causes membrane budding, and facilitates proliferation of some cancers. In this work, the first molecular dynamics (MD) study on the complete A2t of 868 amino acids was performed. MD trajectories of more than 600 ns each were generated for complete A2t complexes with and without Ca2+ ions. The outward extension of membrane-binding residues A2-K279 and A2-K281 was shown to be inhibited in the absence of Ca2+ as they were captured by Ca2+ -binding residue D322. F-actin binding residue A2-D339 was observed to occupy either an exposed or buried state in the absence of Ca2+ , while it only occupied the buried state in the presence of Ca2+ . The observed motions of the A2t subunits are highly organized with a strongly correlated central region which is negatively correlated with the periphery of the complex. The central region contains the S100A10 (p11) dimer, A2-N, and A2-I, while the periphery contains A2-II, A2-III, and A2-IV. Novel interactions between A2 and p11 were identified. A2 residues outside of A2-N (K80, R77, E82, and R145) had strong interactions with p11. Residue R145 of A2 may have a significant effect on the dynamics of the system, with its interaction resulting in asymmetric motions of A2. The presented results provide novel insights to inform future experimental studies.
Collapse
Affiliation(s)
- Samuel Lindsay
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| | - Libero Bartolotti
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| | - Yumin Li
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
10
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Puerto-Camacho P, Díaz-Martín J, Olmedo-Pelayo J, Bolado-Carrancio A, Salguero-Aranda C, Jordán-Pérez C, Esteban-Medina M, Álamo-Álvarez I, Delgado-Bellido D, Lobo-Selma L, Dopazo J, Sastre A, Alonso J, Grünewald TGP, Bernabeu C, Byron A, Brunton VG, Amaral AT, Álava ED. Endoglin and MMP14 Contribute to Ewing Sarcoma Spreading by Modulation of Cell–Matrix Interactions. Int J Mol Sci 2022; 23:ijms23158657. [PMID: 35955799 PMCID: PMC9369355 DOI: 10.3390/ijms23158657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/26/2023] Open
Abstract
Endoglin (ENG) is a mesenchymal stem cell (MSC) marker typically expressed by active endothelium. This transmembrane glycoprotein is shed by matrix metalloproteinase 14 (MMP14). Our previous work demonstrated potent preclinical activity of first-in-class anti-ENG antibody-drug conjugates as a nascent strategy to eradicate Ewing sarcoma (ES), a devastating rare bone/soft tissue cancer with a putative MSC origin. We also defined a correlation between ENG and MMP14 expression in ES. Herein, we show that ENG expression is significantly associated with a dismal prognosis in a large cohort of ES patients. Moreover, both ENG/MMP14 are frequently expressed in primary ES tumors and metastasis. To deepen in their functional relevance in ES, we conducted transcriptomic and proteomic profiling of in vitro ES models that unveiled a key role of ENG and MMP14 in cell mechano-transduction. Migration and adhesion assays confirmed that loss of ENG disrupts actin filament assembly and filopodia formation, with a concomitant effect on cell spreading. Furthermore, we observed that ENG regulates cell–matrix interaction through activation of focal adhesion signaling and protein kinase C expression. In turn, loss of MMP14 contributed to a more adhesive phenotype of ES cells by modulating the transcriptional extracellular matrix dynamics. Overall, these results suggest that ENG and MMP14 exert a significant role in mediating correct spreading machinery of ES cells, impacting the aggressiveness of the disease.
Collapse
Affiliation(s)
- Pilar Puerto-Camacho
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Juan Díaz-Martín
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Joaquín Olmedo-Pelayo
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Alfonso Bolado-Carrancio
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carmen Salguero-Aranda
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Jordán-Pérez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Marina Esteban-Medina
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inmaculada Álamo-Álvarez
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Daniel Delgado-Bellido
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
| | - Laura Lobo-Selma
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28046 Madrid, Spain
| | - Javier Alonso
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28046 Madrid, Spain
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (IIER-ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Carmelo Bernabeu
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ana Teresa Amaral
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.T.A.); (E.D.Á.)
| | - Enrique De Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Molecular Pathology of Sarcomas, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
- Correspondence: (A.T.A.); (E.D.Á.)
| |
Collapse
|
12
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
13
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
14
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
15
|
Rocha MR, Morgado-Diaz JA. Epithelial-Mesenchymal Transition in colorectal cancer: Annexin A2 is caught in the crosshairs. J Cell Mol Med 2021; 25:10774-10777. [PMID: 34626069 PMCID: PMC8581319 DOI: 10.1111/jcmm.16962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Murilo Ramos Rocha
- Grupo de Estrutura e Dinâmica Celular, Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brasil
| | - Jose Andres Morgado-Diaz
- Grupo de Estrutura e Dinâmica Celular, Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brasil
| |
Collapse
|
16
|
Ying YT, Ren WJ, Tan X, Yang J, Liu R, Du AF. Annexin A2-Mediated Internalization of Staphylococcus aureus into Bovine Mammary Epithelial Cells Requires Its Interaction with Clumping Factor B. Microorganisms 2021; 9:2090. [PMID: 34683411 PMCID: PMC8538401 DOI: 10.3390/microorganisms9102090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of contagious mastitis in dairy cattle. Internalization of S. aureus by bovine mammary gland epithelial cells is thought to be responsible for persistent and chronic intramammary infection, but the underlying mechanisms are not fully understood. METHODS In the present study, we evaluated the role of Annexin A2 (AnxA2), a membrane-binding protein, in S. aureus invasion into bovine mammary epithelial cell line (MAC-T). In vitro binding assays were performed to co-immunoprecipitate the binding proteins of AnxA2 in the lysates of S. aureus. RESULTS AnxA2 mediated the internalization but not adherence of S. aureus. Engagement of AnxA2 stimulated an integrin-linked protein kinase (ILK)/p38 MAPK cascade to induce S. aureus invasion. One of the AnxA2-precipitated proteins was identified as S. aureus clumping factor B (ClfB) through use of mass spectrometry. Direct binding of ClfB to AnxA2 was further confirmed by using a pull-down assay. Pre-incubation with recombinant ClfB protein enhanced S. aureus internalization, an effect that was specially blocked by anti-AnxA2 antibody. CONCLUSION Our results demonstrate that binding of ClfB to AnxA2 has a function in promoting S. aureus internalization. Targeting the interaction of ClfB and AnxA2 may confer protection against S. aureus mastitis.
Collapse
Affiliation(s)
- Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wei-Jia Ren
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jing Yang
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
| | - Ai-Fang Du
- Department of Veterinary Medicine, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (Y.-T.Y.); (W.-J.R.); (J.Y.); (R.L.); (A.-F.D.)
- Veterinary Medical Center, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
17
|
Király N, Thalwieser Z, Fonódi M, Csortos C, Boratkó A. Dephosphorylation of annexin A2 by protein phosphatase 1 regulates endothelial cell barrier. IUBMB Life 2021; 73:1257-1268. [PMID: 34331392 DOI: 10.1002/iub.2538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022]
Abstract
Annexin A2 (ANXA2) is a multifunctional protein expressed in nearly all human tissues and cell types, playing a role in various signaling pathways. It is subjected to phosphorylation, but no specific protein phosphatase has been identified in its posttranslational regulation yet. Using pull-down assay followed by liquid chromatography-mass spectrometry analysis we found that ANXA2 interacts with TIMAP (TGF-beta-inhibited membrane-associated protein) in pulmonary artery endothelial cells. TIMAP is highly expressed in endothelial cells, where it acts as a regulatory and targeting subunit of protein phosphatase 1 (PP1). TIMAP plays an important role in the regulation of the endothelial barrier maintenance through the dephosphorylation of its several substrate proteins. In the present work, phosphorylation of Ser25 side chain in ANXA2 by protein kinase C (PKC) was shown both in vivo and in vitro. Phosphorylation level of ANXA2 at Ser25 increased greatly by inhibition of PP1 and by depletion of its regulatory subunit, TIMAP, implying a role of this PP1 holoenzyme in the dephosphorylation of ANXA2. Immunofluorescence staining and subcellular fractionations revealed a diffuse subcellular localization for the endogenous ANXA2, but phospho-Ser25 ANXA2 was mainly detected in the membrane. ANXA2 depletion lowered the basal endothelial barrier and inhibited cell migration, but had no significant effect on cell proliferation or viability. ANXA2 depleted cells failed to respond to PMA treatment, indicating an intimately involvement of phospho-ANXA2 in PKC signaling. Moreover, phosphorylation of ANXA2 disrupted its interaction with S100A10 suggesting a phosphorylation dependent multiple regulatory role of ANXA2 in endothelial cells. Our results demonstrate the pivotal role of PKC-ANXA2-PP1 pathway in endothelial cell signaling, especially in barrier function and cell migration.
Collapse
Affiliation(s)
- Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Thalwieser
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Fonódi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Csortos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Li Z, Yu L, Hu B, Chen L, Jv M, Wang L, Zhou C, Wei M, Zhao L. Advances in cancer treatment: a new therapeutic target, Annexin A2. J Cancer 2021; 12:3587-3596. [PMID: 33995636 PMCID: PMC8120175 DOI: 10.7150/jca.55173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate therapy that is conceivable for clinical translation.
Collapse
Affiliation(s)
- Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Mingyi Jv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
19
|
Méndez-Barbero N, Gutiérrez-Muñoz C, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:206-216. [PMID: 33622609 DOI: 10.1016/j.arteri.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The annexin superfamily consists of 12 proteins with a highly structural homology that binds to phospholipids depending on the availability of Ca2+-dependent. Different studies of overexpression, inhibition, or using recombinant proteins have linked the main function of these proteins to their dynamic and reversible binding to membranes. Annexins are found in multiple cellular compartments, regulating different functions, such as membrane trafficking, anchoring to the cell cytoskeleton, ion channel regulation, as well as pro- or anti-inflammatory and anticoagulant activities. The use of animals deficient in any of these annexins has established their possible functions in vivo, demonstrating that annexins can participate in relevant functions independent of Ca2+ signalling. This review will focus mainly on the role of different annexins in the pathological vascular remodelling that underlies the formation of the atherosclerotic lesion, as well as in the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Carmen Gutiérrez-Muñoz
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| |
Collapse
|
20
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
21
|
Wang L, Du H, Chen P. Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother 2020; 131:110673. [PMID: 32882585 DOI: 10.1016/j.biopha.2020.110673] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Chlorogenic acid, an important active component of coffee with anti-tumor activities, has been found for a hundred years. However, the lack of understanding about its target proteins greatly limits the exploration of its anti-tumor molecular mechanisms and clinical applications. Here, in vitro and animal experiments showed that chlorogenic acid had a significant inhibitory effect on the proliferation of A549 cells. The ability of chlorogenic acid to naturally emit fluorescence was exploited to screen its target proteins while avoiding false positives brought about by chemical modifications when using fluorescent tags. Consequently, we identified and verified annexin A2 as a covalent binding target of chlorogenic acid in A549 cells. We also discovered that chlorogenic acid inhibits the binding of annexin A2 to p50 subunit thereby inhibiting the expression of downstream anti-apoptotic genes cIAP1 and cIAP2 of the NF-κB signaling pathway in A549 cells in vitro and in vivo. Moreover, we found that chlorogenic acid hindered the binding of annexin A2 to actin possibly causing inhibition of tumor cell cycle and migration. Thus, this work demonstrates that chlorogenic acid binds annexin A2, causing a decrease in the expression of NF-κB downstream anti-apoptotic genes, and inhibiting the proliferation of A549 cells in vivo and in vitro.
Collapse
Affiliation(s)
- Lei Wang
- 112 Lab., School of Chemistry and Biotechnology Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongwu Du
- 112 Lab., School of Chemistry and Biotechnology Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
22
|
Annexin-2, pentraxin-3, and osteopontin expressions in the endometrium of women with idiopathic recurrent pregnancy loss during the implantation window. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.782307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Qin YY, Huang SN, Chen G, Pang YY, Li XJ, Xing WW, Wei DM, He Y, Rong MH, Tang XZ. Clinicopathological value and underlying molecular mechanism of annexin A2 in 992 cases of thyroid carcinoma. Comput Biol Chem 2020; 86:107258. [PMID: 32304977 DOI: 10.1016/j.compbiolchem.2020.107258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is one of the most frequent endocrine cancers and has increasing morbidity. Annexin A2 (ANXA2) has been found to be highly expressed in various cancers; however, its expression level and potential mechanism in THCA remain unknown. This study investigated the clinicopathological value and primary molecular machinery of ANXA2 in THCA. MATERIAL AND METHODS Public RNA-sequencing and microarray data were obtained and analyzed with ANXA2 expression in THCA and corresponding non-cancerous thyroid tissue. A Pearson correlation coefficient calculation was used for the acquisition of ANXA2 coexpressed genes, while edgR, limma, and Robust Rank Aggregation were employed for differentially expressed gene (DEG) in THCA. The probable mechanism of ANXA2 in THCA was predicted by gene ontology and pathway enrichment. A dual-luciferase reporter assay was employed to confirm the targeting relationships between ANXA2 and its predicted microRNA (miRNA). RESULTS Expression of ANXA2 was significantly upregulated in THCA tissues with a summarized standardized mean difference of 1.09 (P < 0.0001) based on 992 THCA cases and 589 cases of normal thyroid tissue. Expression of ANXA2 was related to pathologic stage. Subsequently, 1442 genes were obtained when overlapping 4542 ANXA2 coexpressed genes with 2248 DEGs in THCA; these genes were mostly enriched in pathways of extracellular matrix-receptor interaction, cell adhesion molecules, and complement and coagulation cascades. MiR-23b-3p was confirmed to target ANXA2 by dual-luciferase reporter assay. CONCLUSIONS Upregulated expression of ANXA2 may promote the malignant biological behavior of THCA by affecting the involving pathways or being targeted by miR-23b-3p.
Collapse
Affiliation(s)
- Yong-Ying Qin
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xiao-Jiao Li
- Department of PET/CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wen-Wen Xing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yun He
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
24
|
Zibouche M, Illien F, Ayala-Sanmartin J. Annexin A2 expression and partners during epithelial cell differentiation. Biochem Cell Biol 2019; 97:612-620. [DOI: 10.1139/bcb-2018-0393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The members of the annexin family of calcium- and phospholipid-binding proteins participate in different cellular processes. Annexin A2 binds to S100A10, forming a functional heterotetrameric protein that has been involved in many cellular functions, such as exocytosis, endocytosis, cell junction formation, and actin cytoskeleton dynamics. Herein, we studied annexin A2 cellular movements and looked for its partners during epithelial cell differentiation. By using immunofluorescence, mass spectrometry (MS), and western blot analyses after S100A10 affinity column separation, we identified several annexin A2–S100A10 partner candidates. The association of putative annexin A2–S100A10 partner candidates obtained by MS after column affinity was validated by immunofluorescence and sucrose density gradient separation. The results show that three proteins are clearly associated with annexin A2: E-cadherin, actin, and caveolin 1. Overall, the data show that annexin A2 can associate with molecular complexes containing actin, caveolin 1, and flotillin 2 before epithelial differentiation and with complexes containing E-cadherin, actin, and caveolin 1, but not flotillin 2 after cell differentiation. The results indicate that actin, caveolin 1, and E-cadherin are the principal protein partners of annexin A2 in epithelial cells and that the serine phosphorylation of the N-terminal domain does not play an essential role during epithelial cell differentiation.
Collapse
Affiliation(s)
- Malik Zibouche
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| | - Françoise Illien
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| | - Jesus Ayala-Sanmartin
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
- CNRS, Université Sorbonne, École normale supérieure, Université PSL, Laboratoire des biomolécules, Paris 75005, France
| |
Collapse
|
25
|
He H, Xiao L, Cheng S, Yang Q, Li J, Hou Y, Song F, Su X, Jin H, Liu Z, Dong J, Zuo R, Song X, Wang Y, Zhang K, Duan W, Hou Y. Annexin A2 Enhances the Progression of Colorectal Cancer and Hepatocarcinoma via Cytoskeleton Structural Rearrangements. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:950-960. [PMID: 31172894 DOI: 10.1017/s1431927619000679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.
Collapse
Affiliation(s)
- Huimin He
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Li Xiao
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Sinan Cheng
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Qian Yang
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Jinmei Li
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Yifan Hou
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Fengying Song
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Xiaorong Su
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Huijuan Jin
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Zheng Liu
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Jing Dong
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Ruiye Zuo
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Xigui Song
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Yanyan Wang
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Kun Zhang
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| | - Wei Duan
- School of Medicine, Deakin University,Waurn Ponds, VIC 3216,Australia
| | - Yingchun Hou
- Department of Cell Biology,College of Life Sciences, Shaanxi Normal University,620 West Chang-An Ave, Xi'an, Shaanxi 710119,China
| |
Collapse
|
26
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
27
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
29
|
Shetty P, Patil VS, Mohan R, D’souza LC, Bargale A, Patil BR, Dinesh US, Haridas V, Kulkarni SP. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer. Ann Clin Biochem 2016; 54:463-471. [DOI: 10.1177/0004563216665867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.
Collapse
Affiliation(s)
- Praveenkumar Shetty
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vidya S Patil
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Rajashekar Mohan
- Department of Surgery, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Leonard Clinton D’souza
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Anil Bargale
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| | | | - US Dinesh
- Department of Pathology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Vikram Haridas
- Department of Medicine, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Shrirang P Kulkarni
- Central Research Laboratory/Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
| |
Collapse
|
30
|
Grindheim AK, Hollås H, Raddum AM, Saraste J, Vedeler A. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2. J Cell Sci 2015; 129:314-28. [PMID: 26644180 PMCID: PMC4732284 DOI: 10.1242/jcs.173195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023] Open
Abstract
Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. Summary: Reactive oxygen species cause two opposite and transient Tyr23-based modifications of annexin A2; its dephosphorylation in the nucleus and phosphorylation at the cell cortex, resulting in release of the protein in exosomes.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Aase M Raddum
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|
31
|
Raddum AM, Hollås H, Shumilin IA, Henklein P, Kretsinger R, Fossen T, Vedeler A. The native structure of annexin A2 peptides in hydrophilic environment determines their anti-angiogenic effects. Biochem Pharmacol 2015; 95:1-15. [PMID: 25772737 DOI: 10.1016/j.bcp.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Torgils Fossen
- Centre for Pharmacy and Department of Chemistry, University of Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen.
| |
Collapse
|
32
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
33
|
Liu Y, Myrvang HK, Dekker LV. Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation. Br J Pharmacol 2014; 172:1664-76. [PMID: 25303710 PMCID: PMC4376447 DOI: 10.1111/bph.12978] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022] Open
Abstract
Annexin A2 (AnxA2) was originally identified as a substrate of the pp60v-src oncoprotein in transformed chicken embryonic fibroblasts. It is an abundant protein that associates with biological membranes as well as the actin cytoskeleton, and has been implicated in intracellular vesicle fusion, the organization of membrane domains, lipid rafts and membrane-cytoskeleton contacts. In addition to an intracellular role, AnxA2 has been reported to participate in processes localized to the cell surface including extracellular protease regulation and cell-cell interactions. There are many reports showing that AnxA2 is differentially expressed between normal and malignant tissue and potentially involved in tumour progression. An important aspect of AnxA2 function relates to its interaction with small Ca2+-dependent adaptor proteins called S100 proteins, which is the topic of this review. The interaction between AnxA2 and S100A10 has been very well characterized historically; more recently, other S100 proteins have been shown to interact with AnxA2 as well. The biochemical evidence for the occurrence of these protein interactions will be discussed, as well as their function. Recent studies aiming to generate inhibitors of S100 protein interactions will be described and the potential of these inhibitors to further our understanding of AnxA2 S100 protein interactions will be discussed.
Collapse
Affiliation(s)
- Yidong Liu
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
34
|
Cañas F, Simonin L, Couturaud F, Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res 2014; 135:226-30. [PMID: 25533130 DOI: 10.1016/j.thromres.2014.11.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 01/20/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by arterial, venous or small-vessel thrombotic events, and recurrent miscarriages or fetal loss. APS diagnosis is based on the repeated detection of anti-phospholipid (PL) antibodies (Ab), typically associated with anti-β2 glycoprotein I (β2GPI)-Ab. Recent studies suggest that anti-β2GPI Ab activity involves a protein complex including β2GPI and annexin A2 (ANXA2). Anti-ANXA2 Ab recognizes this complex, and these Ab can effectively promote thrombosis by inhibiting plasmin generation, and by activating endothelial cells. Therefore, anti-ANXA2 Ab represent a new biomarker, which can be detected in up to 25% of APS patients. Moreover, anti-ANXA2 Ab have been detected, in thrombotic associated diseases including pre-eclampsia, in other autoimmune diseases, and in cancer.
Collapse
Affiliation(s)
- Felipe Cañas
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences Universidad del Rosario, Bogotá, Colombia
| | - Laurent Simonin
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France; Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Francis Couturaud
- Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Yves Renaudineau
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France.
| |
Collapse
|
35
|
Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. mBio 2014; 5:mBio.01497-14. [PMID: 25139904 PMCID: PMC4147866 DOI: 10.1128/mbio.01497-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. Host cell susceptibility to bacterial toxins is usually determined by the presence and abundance of appropriate receptors, which provides a molecular basis for toxin target cell specificities. To perform its ADP-ribosylating and vacuolating activities, community-acquired respiratory distress syndrome (CARDS) toxin must bind to host cell surfaces via receptor-mediated events in order to be internalized and trafficked effectively. Earlier, we reported the binding of CARDS toxin to surfactant protein A (SP-A), and here we show how CARDS toxin uses an alternative receptor to execute its pathogenic properties. CARDS toxin binds selectively to annexin A2 (AnxA2), which exists both on the cell surface and intracellularly. Since AnxA2 regulates membrane dynamics at early stages of endocytosis and trafficking, it serves as a distinct receptor for CARDS toxin binding and internalization and enhances CARDS toxin-induced vacuolization in mammalian cells.
Collapse
|
36
|
Leal MF, Calcagno DQ, Chung J, de Freitas VM, Demachki S, Assumpção PP, Chammas R, Burbano RR, Smith MC. Deregulated expression of annexin-A2 and galectin-3 is associated with metastasis in gastric cancer patients. Clin Exp Med 2014; 15:415-20. [PMID: 25034653 DOI: 10.1007/s10238-014-0299-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/17/2014] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is the second highest cause of cancer mortality worldwide. However, nowadays, most of the studies aiming to understand the gastric carcinogenesis analyzed tumors of individuals from Asian population and, thus, may not reflect the distinct biological and clinical behaviors among GC processes. Since several membrane proteins have been implicated in carcinogenesis, we aimed to evaluate ANXA2 and GAL3 role in gastric tumors and GC cell lines of individuals from northern Brazil. The cellular localization of ANXA2 and GAL3 in the GC cell lines was evaluated by immunofluorescence. Gene expression was evaluated by real-time reverse-transcription PCR and protein expression by Western blot in gastric adenocarcinomas and non-neoplastic gastric samples, as well as in GC cell lines. ANXA2 and GAL3 were presented as dots in the plasma membrane and cytoplasm in ACP02 and ACP03 cell lines. ANXA2 mRNA expression was up-regulated in 32.14 % of gastric tumors compared to non-neoplastic tissues. ANXA2 up-regulation was associated with the metastasis process in vivo and with cell line invasive behavior. GAL3 protein expression was at least 1.5-fold reduced in 50 % of gastric tumors. The reduced GAL3 expression was associated with the presence of distant metastasis and with a higher invasive phenotype in vitro. Our study shows that ANXA2 and GAL3 deregulated expression was associated with an invasive phenotype in GC cell lines and may contribute to metastasis in GC patients. Therefore, these proteins may have potential prognostic relevance for GC of individuals from northern Brazil.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, R. Botucatu, 740, São Paulo, SP, CEP 04023-900, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, Xiang Y. Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking. PLoS One 2014; 9:e102407. [PMID: 25019283 PMCID: PMC4097066 DOI: 10.1371/journal.pone.0102407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative "linker" between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Liu S, Zhou R, Zhong J, Nie C, Yuan Z, Zhou L, Luo N, Wang C, Tong A. HepG2.2.15 as a model for studying cell protrusion and migration regulated by S100 proteins. Biochem Biophys Res Commun 2014; 449:175-81. [DOI: 10.1016/j.bbrc.2014.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/05/2014] [Indexed: 01/05/2023]
|
39
|
Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 2014; 8:125-33. [PMID: 24838661 DOI: 10.1007/s12079-014-0231-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Interactions between cells and the extracellular matrix are integral to tissue development, remodelling and pathogenesis. This is underlined by bi-directional flow of information signalling, referred to as dynamic reciprocity. Annexin A2 is a complex and multifunctional protein that belongs to a large family of Ca(2+)-dependent anionic phospholipid and membrane-binding proteins. It has been implicated in diverse cellular processes at the nuclear, cytoplasmic and extracellular compartments including Ca(2+)-dependent regulation of endocytosis and exocytosis, focal adhesion dynamics, transcription and translation, cell proliferation, oxidative stress and apoptosis. Most of these functions are mediated by the annexin A2-S100A10 heterotetramer (AIIt) via its ability to simultaneously interact with cytoskeletal, membrane and extracellular matrix components, thereby mediating regulatory effects of extracellular matrix adhesion on cell behaviour and vice versa. While Src kinase-mediated phosphorylation of filamentous actin-bound AIIt results in membrane-cytoskeletal remodelling events which control cell polarity, cell morphology and cell migration, AIIt at the cell surface can bind to a number of extracellular matrix proteins and catalyse the activation of serine and cysteine proteases which are important in facilitating tissue remodelling during tissue repair, neoangiogenesis and pathological situations. This review will focus on the role of annexin A2 in regulating tissue integrity through intercellular and cell-extracellular matrix interaction. Annexin A2 is differentially expressed in various tissue types as well as in many pathologies, particularly in several types of cancer. These together suggest that annexin A2 acts as a central player during dynamic reciprocity in tissue homeostasis.
Collapse
|
40
|
Grindheim AK, Hollås H, Ramirez J, Saraste J, Travé G, Vedeler A. Effect of serine phosphorylation and Ser25 phospho-mimicking mutations on nuclear localisation and ligand interactions of annexin A2. J Mol Biol 2014; 426:2486-99. [PMID: 24780253 DOI: 10.1016/j.jmb.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
Abstract
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3' untranslated region and β-γ-G-actin with high affinity in a Ca(2+)-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca(2+)-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca(2+)-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein-lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca(2+) levels, while the Ca(2+)-dependent binding of AnxA2 to phospholipids is attenuated.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Juan Ramirez
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Gilles Travé
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| |
Collapse
|
41
|
Annexin A2: its molecular regulation and cellular expression in cancer development. DISEASE MARKERS 2014; 2014:308976. [PMID: 24591759 PMCID: PMC3925611 DOI: 10.1155/2014/308976] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023]
Abstract
Annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical associations, especially in cancer progression. The structure of ANXA2 affects its cellular localization and function. However, posttranslational modification and protease-mediated N-terminal cleavage also play critical roles in regulating ANXA2. ANXA2 expression levels vary among different types of cancers. With some cancers, ANXA2 can be used for the detection and diagnosis of cancer and for monitoring cancer progression. ANXA2 is also required for drug-resistance. This review discusses the feasibility of ANXA2 which is active in cancer development and can be a therapeutic target in cancer management.
Collapse
|
42
|
Quiskamp N, Poeter M, Raabe CA, Hohenester UM, König S, Gerke V, Rescher U. The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles. Cell Mol Life Sci 2014; 71:311-29. [PMID: 23715859 PMCID: PMC11113197 DOI: 10.1007/s00018-013-1375-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 04/17/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
Annexin A10 is the latest identified member of the annexin family of Ca(2+)- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca(2+)- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca(2+)-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca(2+)-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.
Collapse
Affiliation(s)
- Nina Quiskamp
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Michaela Poeter
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Carsten Alexander Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Ulli Martin Hohenester
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
43
|
Domains I and IV of annexin A2 affect the formation and integrity of in vitro capillary-like networks. PLoS One 2013; 8:e60281. [PMID: 23555942 PMCID: PMC3612057 DOI: 10.1371/journal.pone.0060281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.
Collapse
|
44
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
45
|
Madureira PA, Waisman DM. Annexin A2: the importance of being redox sensitive. Int J Mol Sci 2013; 14:3568-94. [PMID: 23434659 PMCID: PMC3588059 DOI: 10.3390/ijms14023568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.
Collapse
Affiliation(s)
- Patrícia A. Madureira
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus of Gambelas, Faro, 8005-139, Portugal; E-Mail:
| | - David M. Waisman
- Departments of Biochemistry & Molecular Biology and Pathology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-902-494-1803; Fax: +1-902-494-1355
| |
Collapse
|
46
|
Ozorowski G, Milton S, Luecke H. Structure of a C-terminal AHNAK peptide in a 1:2:2 complex with S100A10 and an acetylated N-terminal peptide of annexin A2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:92-104. [PMID: 23275167 PMCID: PMC3532133 DOI: 10.1107/s0907444912043429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/18/2012] [Indexed: 01/22/2023]
Abstract
AHNAK, a large 629 kDa protein, has been implicated in membrane repair, and the annexin A2-S100A10 heterotetramer [(p11)(2)(AnxA2)(2))] has high affinity for several regions of its 1002-amino-acid C-terminal domain. (p11)(2)(AnxA2)(2) is often localized near the plasma membrane, and this C2-symmetric platform is proposed to be involved in the bridging of membrane vesicles and trafficking of proteins to the plasma membrane. All three proteins co-localize at the intracellular face of the plasma membrane in a Ca(2+)-dependent manner. The binding of AHNAK to (p11)(2)(AnxA2)(2) has been studied previously, and a minimal binding motif has been mapped to a 20-amino-acid peptide corresponding to residues 5654-5673 of the AHNAK C-terminal domain. Here, the 2.5 Å resolution crystal structure of this 20-amino-acid peptide of AHNAK bound to the AnxA2-S100A10 heterotetramer (1:2:2 symmetry) is presented, which confirms the asymmetric arrangement first described by Rezvanpour and coworkers and explains why the binding motif has high affinity for (p11)(2)(AnxA2)(2). Binding of AHNAK to the surface of (p11)(2)(AnxA2)(2) is governed by several hydrophobic interactions between side chains of AHNAK and pockets on S100A10. The pockets are large enough to accommodate a variety of hydrophobic side chains, allowing the consensus sequence to be more general. Additionally, the various hydrogen bonds formed between the AHNAK peptide and (p11)(2)(AnxA2)(2) most often involve backbone atoms of AHNAK; as a result, the side chains, particularly those that point away from S100A10/AnxA2 towards the solvent, are largely interchangeable. While the structure-based consensus sequence allows interactions with various stretches of the AHNAK C-terminal domain, comparison with other S100 structures reveals that the sequence has been optimized for binding to S100A10. This model adds new insight to the understanding of the specific interactions that occur in this membrane-repair scaffold.
Collapse
Affiliation(s)
- Gabriel Ozorowski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Saskia Milton
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697-3900, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Madureira PA, Hill R, Lee PWK, Waisman DM. Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage. PLoS One 2012; 7:e50591. [PMID: 23226323 PMCID: PMC3511559 DOI: 10.1371/journal.pone.0050591] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/23/2012] [Indexed: 01/08/2023] Open
Abstract
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2′-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.
Collapse
Affiliation(s)
- Patricia A. Madureira
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Richard Hill
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick W. K. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M. Waisman
- Departments of Biochemistry and Molecular Biology and Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: .
| |
Collapse
|
48
|
Munera D, Martinez E, Varyukhina S, Mahajan A, Ayala-Sanmartin J, Frankel G. Recruitment and membrane interactions of host cell proteins during attachment of enteropathogenic and enterohaemorrhagic Escherichia coli. Biochem J 2012; 445:383-92. [PMID: 22587461 PMCID: PMC4568301 DOI: 10.1042/bj20120533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
EPEC (enteropathogenic Escherichia coli) and EHEC (enterohaemorrhagic Escherichia coli) are attaching and effacing pathogens frequently associated with infectious diarrhoea. EPEC and EHEC use a T3SS (type III secretion system) to translocate effectors that subvert different cellular processes to sustain colonization and multiplication. The eukaryotic proteins NHERF2 (Na(+)/H(+) exchanger regulatory factor 2) and AnxA2 (annexin A2), which are involved in regulation of intestinal ion channels, are recruited to the bacterial attachment sites. Using a stable HeLa-NHERF2 cell line, we found partial co-localization of AnxA2 and NHERF2; in EPEC-infected cells, AnxA2 and NHERF2 were extensively recruited to the site of bacterial attachment. We confirmed that NHERF2 dimerizes and found that NHERF2 interacts with AnxA2. Moreover, we found that AnxA2 also binds both the N- and C-terminal domains of the bacterial effector Tir through its C-terminal domain. Immunofluorescence of HeLa cells infected with EPEC showed that AnxA2 is recruited to the site of bacterial attachment in a Tir-dependent manner, but independently of Tir-induced actin polymerization. Our results suggest that AnxA2 and NHERF2 form a scaffold complex that links adjacent Tir molecules at the plasma membrane forming a lattice that could be involved in retention and dissemination of other effectors at the bacterial attachment site.
Collapse
Affiliation(s)
- Diana Munera
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, U.K
| | - Eric Martinez
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, U.K
| | - Svetlana Varyukhina
- CNRS UMR7203, Groupe N. J. Conté, Laboratoire des BioMolécules and Université Pierre et Marie Curie, 75005 Paris, France
| | - Arvind Mahajan
- Cellular Microbiology Group, Division of Infection and Immunity, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, U.K
| | - Jesus Ayala-Sanmartin
- CNRS UMR7203, Groupe N. J. Conté, Laboratoire des BioMolécules and Université Pierre et Marie Curie, 75005 Paris, France
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
49
|
Garrido-Gómez T, Dominguez F, Quiñonero A, Estella C, Vilella F, Pellicer A, Simon C. Annexin A2 is critical for embryo adhesiveness to the human endometrium by RhoA activation through F-actin regulation. FASEB J 2012; 26:3715-27. [PMID: 22645245 DOI: 10.1096/fj.12-204008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is present in vivo in the mid- and late-secretory endometria and is mainly localized in the luminal epithelium. Our aim was to evaluate its function in regulating the human implantation process. With an in vitro adhesion model, constructed to evaluate how the mouse embryo and JEG-3 spheroids attach to human endometrial epithelial cells, we demonstrated that ANXA2 inhibition significantly diminishes embryo adhesiveness. ANXA2 is also implicated in endometrial epithelial cell migration and trophoblast outgrowth. ANXA2 was seen to be linked to the RhoA/ROCK pathway and to regulate cell adhesion. We noted that ANXA2 inhibition significantly reduces active RhoA, although RhoA inactivation does not alter the ANXA2 levels. RhoA inactivation and ROCK inhibition also moderate embryo adhesiveness to endometrial epithelial cells. We corroborated that the induction of constitutively active RhoA partially reverses the effects of ANXA2 inhibition on endometrial adhesiveness. These molecules colocalize on the plasma membrane of endometrial epithelial cells, and a large proportion of ANXA2 and RhoA are colocalized in the F-actin networks. The functional effects of ANXA2 inhibition and RhoA/ROCK inactivation are associated with significant alterations in F-actin organization and its depolymerization. ANXA2 may act upstream of the RhoA/ROCK pathway by regulating F-actin remodeling and is a key factor in human endometrial adhesiveness.
Collapse
Affiliation(s)
- Tamara Garrido-Gómez
- Fundación IVI, Instituto Universitario IVI, Universidad de Valencia, Fundación Investigación Clínico de Valencia Instituto de Investigacion Sanitaria, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Li Q, Laumonnier Y, Syrovets T, Simmet T. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2. Acta Pharmacol Sin 2011; 32:1411-8. [PMID: 21963895 DOI: 10.1038/aps.2011.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To identify proteins that interact with the C-terminal fragment of annexin A2 (A2IC), generated by plasmin cleavage of the plasmin receptor, a heterotetramer (AA2t) containing annexin A2. METHODS The gene that encodes the A2IC fragment was obtained from PCR-amplified cDNA isolated from human monocytes, and was ligated into the pBTM116 vector using a DNA ligation kit. The resultant plasmid (pBTM116-A2IC) was sequenced with an ABI PRISM 310 Genetic Analyzer. The expression of an A2IC bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis. The identification of proteins that interact with A2IC and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening. The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit. Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov). Confirmation of the interaction between the protein LexA-A2IC and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay. RESULTS The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach. After screening 1×10(7) clones, 23 independent β-Gal-positive clones were identified. Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17, ProCathepsin S, RPS2, ZBTB4, OGDH, CCDC32, PAPD4, and actin which was already known to interact with annexin A2). CONCLUSION A2IC A2IC interacts with various proteins to form protein complexes, which may contribute to the molecular mechanism of monocyte activation induced by plasmin. The yeast two-hybrid system is an efficient approach for investigating protein interactions.
Collapse
|