1
|
Orellana AMM, Mazucanti CH, Andreotti DZ, de Sá Lima L, Kawamoto EM, Scavone C. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur J Pharmacol 2025; 997:177587. [PMID: 40187598 DOI: 10.1016/j.ejphar.2025.177587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in Klotho have been associated with premature ageing and cognitive dysfunction. Although highly expressed in specific regions of the brain, the actions of Klotho in the central nervous system (CNS) remain largely unknown. Here, we show that animals with a mutated hypomorphic Klotho gene have altered glycaemic regulation, suggesting higher insulin sensitivity. In the CNS, pathways related to insulin intracellular signalling were found to be up-regulated in the hippocampus, with higher activation of protein kinase B and mammalian target of rapamycin and inactivation of the transcription factors forkhead box O (FOXO)-1 and FOXO-3a. In addition, the present study showed that in the hippocampi of wild-type aged mice, where Klotho is naturally downregulated, the levels of some proteins related to energy metabolism and metabolic coupling between neurones and astrocytes, such as monocarboxylate transporter 2 and 4, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 and lactate dehydrogenase enzymes isoforms A and B were altered. These findings suggest that Klotho plays an essential role in regulating proteins and genes related to metabolic coupling in the brain.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Diana Zukas Andreotti
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Perez MF. CelEst: a unified gene regulatory network for estimating transcription factor activities in C. elegans. Genetics 2025; 229:iyae189. [PMID: 39705007 PMCID: PMC11912867 DOI: 10.1093/genetics/iyae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024] Open
Abstract
Transcription factors (TFs) play a pivotal role in orchestrating critical intricate patterns of gene regulation. Although gene expression is complex, differential expression of hundreds of genes is often due to regulation by just a handful of TFs. Despite extensive efforts to elucidate TF-target regulatory relationships in Caenorhabditis elegans, existing experimental datasets cover distinct subsets of TFs and leave data integration challenging. Here, I introduce CelEst, a unified gene regulatory network designed to estimate the activity of 487 distinct C. elegans TFs-∼58% of the total-from gene expression data. To integrate data from ChIP-seq, DNA-binding motifs, and eY1H screens, optimal processing of each data type was benchmarked against a set of TF perturbation RNA-seq experiments. Moreover, I showcase how leveraging TF motif conservation in target promoters across genomes of related species can distinguish highly informative interactions, a strategy which can be applied to many model organisms. Integrated analyses of data from commonly studied conditions including heat shock, bacterial infection, and sex differences validates CelEst's performance and highlights overlooked TFs that likely play major roles in coordinating the transcriptional response to these conditions. CelEst can infer TF activity on a standard laptop computer within minutes. Furthermore, an R Shiny app with a step-by-step guide is provided for the community to perform rapid analysis with minimal coding required. I anticipate that widespread adoption of CelEsT will significantly enhance the interpretive power of transcriptomic experiments, both present and retrospective, thereby advancing our understanding of gene regulation in C. elegans and beyond.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Parc Científic de Barcelona, C. Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Lee JD, Lee J, Vang J, Pan X. Sodium Benzoate Induces Fat Accumulation and Reduces Lifespan via the SKN-1/Nrf2 Signaling Pathway: Evidence from the Caenorhabditis elegans Model. Nutrients 2024; 16:3753. [PMID: 39519584 PMCID: PMC11547805 DOI: 10.3390/nu16213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sodium benzoate (SB) is widely used in food products, cosmetics, and medical solutions due to its antimicrobial properties. While it is generally considered safe and has potential neuroprotective benefits, SB has also been linked to adverse effects, including hepatic oxidative stress and inflammation. However, the potential effects of SB on obesity and lifespan remain poorly understood. OBJECTIVES In this study, we investigated the effects of SB on fat accumulation and lifespan using the nematode Caenorhabditis elegans (C. elegans) as a model system. METHODS Wild-type worms were exposed to various SB concentrations (0%, 0.0004%, 0.0008%, 0.004%, and 0.1%) and 0.016% glucose as a positive control for 72 h in liquid or on NGM agar plates. RESULT Fat accumulation was assessed through the Oil Red O staining, which revealed that SB induced more fat accumulation compared to vehicle control, even at low concentrations, including the dosage of 0.0004%. Lifespan analysis also demonstrated that SB significantly reduced lifespan in wild-type worms, even at low concentrations. Further investigations found that SKN-1 (an Nrf2 homolog) is necessary for SB-induced fat accumulation and lifespan reduction. Moreover, SB inhibited the nuclear localization of SKN-1 under oxidative stress conditions. CONCLUSION These findings suggest that SB may induce fat accumulation and reduce lifespan by inhibiting the oxidative stress-mediated SKN-1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; (J.D.L.); (J.L.); (J.V.)
| |
Collapse
|
5
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
6
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
7
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
8
|
Dong Z, Guo Z, Li H, Han D, Xie W, Cui S, Zhang W, Huang S. FOXO3a-interacting proteins' involvement in cancer: a review. Mol Biol Rep 2024; 51:196. [PMID: 38270719 DOI: 10.1007/s11033-023-09121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zongming Guo
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Hui Li
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Dequan Han
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Xie
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Shaoning Cui
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Zhang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
| | - Shuhong Huang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
9
|
Park E, Jeon H, Lee N, Yu J, Park H, Satoh T, Akira S, Furuyama T, Lee C, Choi J, Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS-induced inflammatory responses. EMBO J 2023; 42:e111867. [PMID: 37203866 PMCID: PMC10308371 DOI: 10.15252/embj.2022111867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Eui‐Soon Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Nari Lee
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Jiyeon Yu
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Hye‐Won Park
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| | - Takashi Satoh
- Department of Immune Regulation, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research CenterOsaka UniversityOsakaJapan
| | - Tatsuo Furuyama
- Department of Clinical ExaminationKagawa Prefectural University of Health SciencesKagawaJapan
| | - Chul‐Ho Lee
- Laboratory Animal CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jong‐Soon Choi
- Division of Life ScienceKorea Basic Science Institute (KBSI)DaejeonKorea
| | - Jaerang Rho
- Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonKorea
| |
Collapse
|
10
|
Aoussim A, Légaré C, Roussel MP, Madore AM, Morissette MC, Laprise C, Duchesne E. Towards the Identification of Biomarkers for Muscle Function Improvement in Myotonic Dystrophy Type 1. J Neuromuscul Dis 2023; 10:1041-1053. [PMID: 37694373 PMCID: PMC10657677 DOI: 10.3233/jnd-221645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. In DM1 patients, skeletal muscle is severely impaired, even atrophied and patients experience a progressive decrease in maximum strength. Strength training for these individuals can improve their muscle function and mass, however, the biological processes involved in these improvements remain unknown. OBJECTIVE This exploratory study aims at identifying the proteomic biomarkers and variables associated with the muscle proteome changes induced by training in DM1 individuals. METHODS An ion library was developed from liquid chromatography-tandem mass spectrometry proteomic analyses of Vastus Lateralis muscle biopsies collected in 11 individuals with DM1 pre-and post-training. RESULTS The proteomic analysis showed that the levels of 44 proteins were significantly modulated. A literature review (PubMed, UniProt, PANTHER, REACTOME) classified these proteins into biological sub-classes linked to training-induced response, including immunity, energy metabolism, apoptosis, insulin signaling, myogenesis and muscle contraction. Linear models identified key variables explaining the proteome modulation, including atrophy and hypertrophy factors. Finally, six proteins of interest involved in myogenesis, muscle contraction and insulin signaling were identified: calpain-3 (CAN3; Muscle development, positive regulation of satellite cell activation), 14-3-3 protein epsilon (1433E; Insulin/Insulin-like growth factor, PI3K/Akt signaling), myosin-binding protein H (MYBPH; Regulation of striated muscle contraction), four and a half LIM domains protein 3 (FHL3; Muscle organ development), filamin-C (FLNC; Muscle fiber development) and Cysteine and glycine-rich protein 3 (CSRP3). CONCLUSION These findings may lead to the identification for DM1 individuals of novel muscle biomarkers for clinical improvement induced by rehabilitation, which could eventually be used in combination with a targeted pharmaceutical approach to improving muscle function, but further studies are needed to confirm those results.
Collapse
Affiliation(s)
- Amira Aoussim
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
| | - Cécilia Légaré
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, USA
| | - Marie-Pier Roussel
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Anne-Marie Madore
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Mathieu C. Morissette
- Department of Medicine, Université Laval, Québec, Canada
- Quebec Heart and Lung Institute – Université Laval, Québec, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Québec, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Québec, Canada
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay– Lac-Saint-Jean, Hôpital de Jonquière, Québec, Canada
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Québec, Canada
| |
Collapse
|
11
|
Kohoutova K, Dočekal V, Ausserlechner MJ, Kaiser N, Tekel A, Mandal R, Horvath M, Obsilova V, Vesely J, Hagenbuchner J, Obsil T. Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS OMEGA 2022; 7:34632-34646. [PMID: 36188303 PMCID: PMC9521028 DOI: 10.1021/acsomega.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Collapse
Affiliation(s)
- Klara Kohoutova
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | | | - Nora Kaiser
- Department
of Pediatrics I, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Andrej Tekel
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Raju Mandal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Matej Horvath
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Veronika Obsilova
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Jan Vesely
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Judith Hagenbuchner
- Department
of Pediatrics II, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
12
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, Burgering BMT. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 2021; 36:109446. [PMID: 34320339 DOI: 10.1016/j.celrep.2021.109446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator β-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds β-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of β-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the β-catenin inhibitor protein ICAT is compatible with FOXO4 binding to β-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tianshu Gui
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Diana Hoogeboom
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Henry G Hocking
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Martin Viertler
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Klaus Richter
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Boudewijn M T Burgering
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
14
|
Zhang X, Jiang L, Liu H. Forkhead Box Protein O1: Functional Diversity and Post-Translational Modification, a New Therapeutic Target? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1851-1860. [PMID: 33976536 PMCID: PMC8106445 DOI: 10.2147/dddt.s305016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Forkhead box protein O1 (FoXO1) is a transcription factor involved in the regulation of a wide variety of physiological process including glucose metabolism, lipogenesis, bone mass, apoptosis, and autophagy. FoXO1 dysfunction is involved in the pathophysiology of various diseases including metabolic diseases, atherosclerosis, and tumors. FoXO1 activity is regulated in response to different physiological or pathogenic conditions by changes in protein expression and post-translational modifications. Various modifications cooperate to regulate FoXO1 activity and FoXO1 target gene transcription. In this review, we summarize how different post-translational modifications regulate FoXO1 physiological function, which may provide new insights for drug design and development.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Cardiology, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Lusheng Jiang
- Department of Emergency, Shandong Rongjun General Hospital, Jinan, 250013, People's Republic of China
| | - Huimin Liu
- Blood Purification Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| |
Collapse
|
15
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
16
|
Zhang H, Lin F, Zhao J, Wang Z. Expression Regulation and Physiological Role of Transcription Factor FOXO3a During Ovarian Follicular Development. Front Physiol 2020; 11:595086. [PMID: 33250784 PMCID: PMC7674958 DOI: 10.3389/fphys.2020.595086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, developing ovarian follicles transform from primordial follicles to primary follicles, secondary follicles, and mature follicles, accompanied by changes in follicular secretory functions. FoxO3a is a member of the forkhead transcription factor family (FoxO), which plays an important role in the cell cycle, DNA damage repair, apoptosis, oxidative stress, and energy metabolism. Recent studies have shown that FOXO3a is involved in the physiological regulation of follicular development and pathological progression of related ovarian diseases, which will provide useful concepts and strategies for retarding ovarian aging, prolonging the ovarian life span, and treating ovarian diseases. Therefore, the regulation of FOXO3a expression, as well as the physiological contribution during ovarian follicular development are detailed in this paper, presenting an important reference for the further study of ovarian biology.
Collapse
Affiliation(s)
- Hong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fengping Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiuhua Zhao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,West Anhui Health Vocational College, Lu'an, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Yang Y, Gao L, Niu Y, Li X, Liu W, Jiang X, Liu Y, Zhao Q. Kukoamine A Protects against NMDA-Induced Neurotoxicity Accompanied with Down-Regulation of GluN2B-Containing NMDA Receptors and Phosphorylation of PI3K/Akt/GSK-3β Signaling Pathway in Cultured Primary Cortical Neurons. Neurochem Res 2020; 45:2703-2711. [PMID: 32892226 DOI: 10.1007/s11064-020-03114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Kukoamine (KuA) is a spermine alkaloid present in traditional Chinese medicine Cortex Lycii radices, which possesses various pharmacological properties. Our previous studies have demonstrated that KuA exerts neuroprotective effects against H2O2-induced oxidative stress, radiation-induced neuroinflammation, oxidative stress and neuronal apoptosis, as well as neurotoxin-induced Parkinson's disease through apoptosis inhibition and autophagy enhancement. The present study aimed to investigate the neuroprotective effects of KuA against NMDA-induced neuronal injury in cultured primary cortical neurons and explore the underlying mechanism. Incubation with 200 μM NMDA for 30 min induced excitotoxicity in primary cultured cortical neurons. The results demonstrated that pretreatment with KuA attenuated NMDA induced cell injury, LDH leakage and neuronal apoptosis. KuA also regulated apoptosis-related proteins. Thus, incubation with the alkaloid decreased the ratio of Bax/Bcl-2, and inhibited the release of cytochrome C, the expression of p53 and the cleavage of caspase-3. Moreover, KuA prevented the upregulation of GluN2B-containing NMDA receptors (NMDAR). Additionally, pretreatment with KuA reversed NMDA-induced dephosphorylation of Akt and GSK-3β and the protective effect of KuA on NMDA-induced cytotoxicity was abolished by wortmannin, a PI3K inhibitor. Taken together, these results indicated that KuA exerted neuroprotective effects against NMDA-induced neurotoxicity in cultural primary cortical neurons and caused the down-regulation of GluN2B-containing NMDARs as well as the phosphorylation of proteins belonging to the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yue Yang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Lingyue Gao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yixuan Niu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xiang Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Wenwu Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yaqian Liu
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China. .,Department of Pharmacy, General Hospital of Northern Military Area, 83 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
18
|
Effect of oral magnesium sulfate administration on blood glucose hemostasis via inhibition of gluconeogenesis and FOXO1 gene expression in liver and muscle in diabetic rats. Biomed Pharmacother 2019; 109:1819-1825. [DOI: 10.1016/j.biopha.2018.10.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
|
19
|
Long S, Guo W, Hu S, Su F, Zeng Y, Zeng J, Tan EK, Ross CA, Pei Z. G2019S LRRK2 Increases Stress Susceptibility Through Inhibition of DAF-16 Nuclear Translocation in a 14-3-3 Associated-Manner in Caenorhabditis elegans. Front Neurosci 2018; 12:782. [PMID: 30464741 PMCID: PMC6234837 DOI: 10.3389/fnins.2018.00782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are common causes of familial Parkinson’s disease (PD). Oxidative stress plays a key role in the pathogenesis of PD. Mutations in LRRK2 have been shown to increase susceptibility to oxidative stress. To explore mechanisms underlying susceptibility to oxidative stress in LRRK2 mutants, we generated stable Caenorhabditis elegans (C. elegans) strains in which human LRRK2 proteins including wild type LRRK2 (WT), G2019S LRRK2 (G2019S), and G2019S-D1994A kinase-dead LRRK2 (KD) were expressed in all neurons. Human 14-3-3 β was injected into LRRK2 transgenic worms to allow co-expression of 14-3-3 β and LRRK2 proteins. We found that G2019S transgenic worms had increased sensitivity to stress (heat and juglone treatment) and impaired stress-induced nuclear translocation of DAF-16. In addition, G2019S inhibited ftt2 (a 14-3-3 gene homolog in C. elegans) knockdown-associated nuclear translocation of DAF-16. Comparably, overexpression of human 14-3-3 β could attenuate G2019S-associated toxicity in response to stress and rescued G2019S-mediated inhibition of sod-3 and dod-3 expression. Taken together, our study provides evidence suggesting that 14-3-3-associated inhibition of DAF-16 nuclear translocation could be a mechanism for G2019S LRRK2-induced oxidative stress and cellular toxicity. Our findings may give a hint that the potential of 14-3-3 proteins as neuroprotective targets in PD patients carrying LRRK2 mutations.
Collapse
Affiliation(s)
- Simei Long
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sophie Hu
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fengjuan Su
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Zeng
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinsheng Zeng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry-Departments of Neuroscience, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Yang C, Tsaih SW, Lemke A, Flister MJ, Thakar MS, Malarkannan S. mTORC1 and mTORC2 differentially promote natural killer cell development. eLife 2018; 7:35619. [PMID: 29809146 PMCID: PMC5976438 DOI: 10.7554/elife.35619] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that are essential for innate and adaptive immunity. Mechanistic target of rapamycin (mTOR) is critical for NK cell development; however, the independent roles of mTORC1 or mTORC2 in regulating this process remain unknown. Ncr1iCre-mediated deletion of Rptor or Rictor in mice results in altered homeostatic NK cellularity and impaired development at distinct stages. The transition from the CD27+CD11b− to the CD27+CD11b+ stage is impaired in Rptor cKO mice, while, the terminal maturation from the CD27+CD11b+ to the CD27−CD11b+ stage is compromised in Rictor cKO mice. Mechanistically, Raptor-deficiency renders substantial alteration of the gene expression profile including transcription factors governing early NK cell development. Comparatively, loss of Rictor causes more restricted transcriptome changes. The reduced expression of T-bet correlates with the terminal maturation defects and results from impaired mTORC2-AktS473-FoxO1 signaling. Collectively, our results reveal the divergent roles of mTORC1 and mTORC2 in NK cell development.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Shirng-Wern Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States.,Departments of Medicine, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
21
|
Schubert F, Rapp J, Brauns-Schubert P, Schlicher L, Stock K, Wissler M, Weiß M, Charvet C, Borner C, Maurer U. Requirement of GSK-3 for PUMA induction upon loss of pro-survival PI3K signaling. Cell Death Dis 2018; 9:470. [PMID: 29686375 PMCID: PMC5913275 DOI: 10.1038/s41419-018-0502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Growth factor withdrawal induces rapid apoptosis via mitochondrial outer membrane permeabilization. We had previously observed that cell death of IL-3-dependent Ba/F3 cells, induced by removal of the growth factor, required the activity of the kinase GSK-3. Employing CRISPR/Cas9-mediated gene knockout, we aimed to identify pro-apoptotic GSK-3 regulated factors in this process. Knockout of either Puma or Bim demonstrated that the induction of Puma, but not Bim, was crucial for apoptosis induced by IL-3 deprivation. Thus, we aimed at identifying the GSK-3-dependent PUMA regulator. Loss of FOXO3A reduced the induction of Puma, while additional loss of p53 completely repressed induction upon growth factor withdrawal. A constitutively active mutant of FOXO3A, which cannot be controlled by AKT directly, still required active GSK-3 for the full transcriptional induction of Puma and cell death upon IL-3 withdrawal. Thus, the suppression of GSK-3 is the key function of PI3K signaling in order to prevent the induction of Puma by FOXO3A and p53 and thereby apoptosis upon growth factor withdrawal.
Collapse
Affiliation(s)
- Florian Schubert
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Juliane Rapp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Lisa Schlicher
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Kerstin Stock
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Weiß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Céline Charvet
- Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Freiburg, Germany. .,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104, Freiburg, Germany.
| |
Collapse
|
22
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
23
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
24
|
Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR. Chlorogenic Acid Extends the Lifespan of Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway. J Gerontol A Biol Sci Med Sci 2017; 72:464-472. [PMID: 27378235 DOI: 10.1093/gerona/glw105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 05/16/2016] [Indexed: 01/11/2023] Open
Abstract
Coffee and tea, two of the most popular drinks around the world, share many in common from chemical components to beneficial effects on human health. One of their shared components, the polyphenols, most notably chlorogenic acid (CGA), was supposed to account for many of the beneficial effects on ameliorating diseases occurred accompanying people aging, such as the antioxidant effect and against diabetes and cardiovascular disease. CGA is also present in many traditional Chinese medicines. However, the mechanism of these effects was vague. The aging signaling pathways were conservative from yeast and worms to mammals. So, we tested if CGA had an effect on aging in Caenorhabditis elegans. We found that CGA could extend the lifespan of C. elegans by up to 20.1%, delay the age-related decline of body movement, and improve stress resistance. We conducted genetic analysis with a series of worm mutants and found that CGA could extend the lifespan of the mutants of eat-2, glp-1, and isp-1, but not of daf-2, pdk-1, akt-1, akt-2, sgk-1, and clk-1. CGA could activate the FOXO transcription factors DAF-16, HSF-1, SKN-1, and HIF-1, but not SIR-2.1. Taken together, CGA might extend the lifespan of C. elegans mainly via DAF-16 in insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| |
Collapse
|
25
|
Lok JB, Shao H, Massey HC, Li X. Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing. Parasitology 2017; 144:327-342. [PMID: 27000743 PMCID: PMC5364836 DOI: 10.1017/s0031182016000391] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.
Collapse
Affiliation(s)
- J B Lok
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H Shao
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - H C Massey
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| | - X Li
- Department of Pathobiology,School of Veterinary Medicine,University of Pennsylvania,3800 Spruce Street,Philadelphia,PA 19104,USA
| |
Collapse
|
26
|
Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis. Acta Trop 2016; 164:125-136. [PMID: 27619188 DOI: 10.1016/j.actatropica.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/15/2022]
Abstract
Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans.
Collapse
|
27
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
28
|
Wang W, Lv J, Wang L, Wang X, Ye L. The impact of heterogeneity in phosphoinositide 3-kinase pathway in human cancer and possible therapeutic treatments. Semin Cell Dev Biol 2016; 64:116-124. [PMID: 27582428 DOI: 10.1016/j.semcdb.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) plays a crucial role in the initiation and progress of cancerous tumors through the overexpression of the PI3K pathway promoting uncontrollable levels of cell proliferation. In addition only Class I PI3K has been discovered to be involved in human cancer due to its unique ability to produce phosphoinositide 3,4,5 trisphosphate (PIP3), which has been discovered to play a crucial role in human oncogenesis. The role of PIK3CA is lucubrated in breast cancer and gastric cancer, but is not well characterized in lung diseases. In this review, we summarized the common biology and mutations in PIK3CA with its related signaling pathways. Furthermore, we elucidated the PIK3CA heterogeneity in different domains, between various cancers and in different lung cancers. We also take a look at current inhibitors such as KP-372-1 (KP-1), KP-372-2 (KP-2), GSK690693, etc. in order to highlight potential treatment of PIK3CA mutations in human cancer and what directions future research should focus on.
Collapse
Affiliation(s)
- William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| | - Jiapei Lv
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| | - Lingyan Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| | - Ling Ye
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| |
Collapse
|
29
|
Zhang Y, Aguilar OA, Storey KB. Transcriptional activation of muscle atrophy promotes cardiac muscle remodeling during mammalian hibernation. PeerJ 2016; 4:e2317. [PMID: 27602284 PMCID: PMC4991874 DOI: 10.7717/peerj.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background. Mammalian hibernation in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is characterized by dramatic changes on a physiological and molecular level. During hibernation, mammalian hearts show a propensity to hypertrophy due to the need for increasing contractility to pump colder and more viscous blood. While cardiac hypertrophy is quite often a process characterized by decompensation, the ground squirrel studied is an excellent model of cardiac plasticity and cardioprotection under conditions of hypothermia and ischemia. The forkhead box O (Foxo) family of proteins and myogenin (MyoG) are transcription factors that control protein degradation and muscle atrophy by regulating the expression of the E3 ubiquitin ligases, MAFbx and MuRF1. These ligases are part of the ubiquitin proteasome system by transferring ubiquitin to proteins and targeting these proteins for degradation. Regulation of Foxo1 and 3a occurs through phosphorylation at different residues. The threonine-24 (Thr-24) and serine-319 (Ser-319) residues on Foxo1, and the Thr-32 residue on Foxo3a are phosphorylated by Akt, leading to cytoplasmic localization of Foxo. We propose that the described mechanism contributes to the changes taking place in cardiac muscle throughout hibernation. Methods. Total and phosphorylated protein levels of Foxo1 and Foxo3a, as well as total protein levels of MyoG, MAFbx, and MuRF1, were studied using immunoblotting. Results. Immunoblotting results demonstrated upregulations in Foxo1 and Foxo3a total protein levels (1.3- and 4.5-fold increases relative to euthermic control, for Foxo1 and 3a respectively) during late torpor, and protein levels remained elevated throughout the rest of torpor and at interbout arousal. We also observed decreases in inactive, phosphorylated Foxo1 and 3a proteins during throughout torpor, where levels of p-Foxo1 Ser319 and Thr24, as well as p-Foxo3a Thr32 decreased by at least 45% throughout torpor. MyoG was upregulated only during late torpor by 2.4-fold. Protein levels of MAFbx and MuRF1 increased in late torpor as well as during early arousal by as much as 2.8-fold, and MAFbx levels remained elevated during interbout arousal, whereas MuRF1 levels returned to control levels. Discussion. The present results indicate that upregulation and activation of Foxo1 and 3a, in addition to the increase in MyoG levels at late torpor, may be upregulating the expression of MAFbx and MuRF1. These findings suggest that there is activation of the ubiquitin proteasome system (UPS) as ground squirrels arouse from torpor. Therefore, the signalling pathway involving MyoG, and the E3 ligases MAFbx and MuRF1, plays a significant role in cardiac muscle remodelling during hibernation. These findings provide insights into the regulation of protein degradation and turnover in the cardiac muscle of a hibernator model.
Collapse
Affiliation(s)
- Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Oscar A Aguilar
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University , Ottawa , ON , Canada
| |
Collapse
|
30
|
Seo M, Park S, Nam HG, Lee SJV. RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans. Cell Cycle 2016; 15:1821-9. [PMID: 27153157 DOI: 10.1080/15384101.2016.1183845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1.
Collapse
Affiliation(s)
- Mihwa Seo
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea
| | - Sangsoon Park
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea
| | - Hong Gil Nam
- d Center for Plant Aging Research, Institute for Basic Science, DGIST , Daegu , Korea.,e Department of New Biology , DGIST , Daegu , Korea
| | - Seung-Jae V Lee
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea.,b School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology , Pohang , Korea.,c Information Technology Convergence Engineering, Pohang University of Science and Technology , Pohang , Korea
| |
Collapse
|
31
|
Negative regulation of the FOXO3a transcription factor by mTORC2 induces a pro-survival response following exposure to ultraviolet-B irradiation. Cell Signal 2016; 28:798-809. [PMID: 27058291 DOI: 10.1016/j.cellsig.2016.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022]
Abstract
Exposure to ultraviolet-B (UVB) irradiation, the principal cause of non-melanoma skin cancer (NMSC), activates both the rapamycin-sensitive mammalian target of rapamycin complex 1 (mTORC1) and the rapamycin-resistant mTORC2. We have previously reported that UVB-induced keratinocyte survival is dependent on mTORC2, though the specific mechanism is not well understood. FOXO3a is an important transcription factor involved in regulating cell survival. The activity of FOXO3a is reduced as a result of protein kinase B (AKT/PKB) activation, which is downstream of mTORC2; however, the specific function of FOXO3a during UVB-induced apoptosis is unclear. In this study, we establish that in cells with wild-type mTORC2 activity, FOXO3a is quickly phosphorylated in response to UVB and sequestered in the cytoplasm. In contrast, loss of mTORC2 causes FOXO3a to be localized to the nucleus and sensitizes cells to UVB-induced apoptosis. Furthermore, this sensitization is rescued by knockdown of FOXO3a. Taken together, these studies provide strong evidence that inhibition of mTORC2 enhances UVB-induced apoptosis in a FOXO3a-dependent manner, and suggest that FOXO3a activation by mTORC2 inhibitors may be a valuable chemopreventive target in NMSC.
Collapse
|
32
|
Gelmedin V, Delaney A, Jennelle L, Hawdon JM. Expression profile of heat shock response factors during hookworm larval activation and parasitic development. Mol Biochem Parasitol 2015; 202:1-14. [PMID: 26296769 DOI: 10.1016/j.molbiopara.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/19/2023]
Abstract
When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock protein expression, slightly down regulated both genes under similar conditions. Both modulators inhibited activation-associated feeding, but neither had an effect on hsp-1 levels in activated L3 at 16h. Both celastrol and KNK437 prevent the up-regulation of daf-21 and hsf-1 seen in non-activated control larvae during activation, and significantly down regulated expression of the HSF-1 negative regulator Aca-hsb-1 in activated larvae. Expression levels of heat shock response factors were examined in developing Ancylostoma ceylanicum larvae recovered from infected hosts and found to differ significantly from the expression profile of activated L3, suggesting that feeding during in vitro activation is regulated differently than parasitic development. Our results indicate that a classical heat shock response is not induced at host temperature and is suppressed during larval recovery and parasitic development in the host, but a partial heat shock response is induced after extended incubation at host temperature in the absence of a developmental signal, possibly to protect against heat stress.
Collapse
Affiliation(s)
- Verena Gelmedin
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Angela Delaney
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Lucas Jennelle
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - John M Hawdon
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States.
| |
Collapse
|
33
|
The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metab 2015; 22:151-63. [PMID: 26154057 PMCID: PMC4502596 DOI: 10.1016/j.cmet.2015.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/05/2015] [Accepted: 06/02/2015] [Indexed: 01/27/2023]
Abstract
FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity.
Collapse
|
34
|
Arai T, Kano F, Murata M. Translocation of forkhead box O1 to the nuclear periphery induces histone modifications that regulate transcriptional repression of PCK1 in HepG2 cells. Genes Cells 2015; 20:340-57. [PMID: 25736587 DOI: 10.1111/gtc.12226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022]
Abstract
Forkhead box O1 (FOXO1) is an important target for insulin. It is widely accepted that insulin-induced phosphorylation of FOXO1 by Akt leads to its nuclear exclusion and results in the inhibition of FOXO1-mediated transcription of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1 (PCK1) in hepatocytes. However, many results that contradict this model have accumulated. Here, we provide a new mechanism for insulin-dependent repression of FOXO1-mediated transcription. We showed insulin-induced translocation of endogenous Ser256-phosphorylated FOXO1, which is essential for regulation of FOXO1-mediated transcription, from nuclear speckles to the nuclear periphery. This insulin-dependent translocation of FOXO1 regulated transcriptional repression of PCK1 concomitant with the formation of the FOXO1-euchromatic histone-lysine N-methyltransferase2 (EHMT2) complex and histone modifications of the PCK1 promoter region. Notably, our results suggest that FOXO1 uses nucleoporin 98 kDa NUP98 for this transcriptional regulation. These results provide a new insight into various FOXO1-mediated transcriptional regulation and FOXO1-mediated essential biological pathways.
Collapse
Affiliation(s)
- Tamaki Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | |
Collapse
|
35
|
Ramakrishnan G, Davaakhuu G, Chung WC, Zhu H, Rana A, Filipovic A, Green AR, Atfi A, Pannuti A, Miele L, Tzivion G. AKT and 14-3-3 regulate Notch4 nuclear localization. Sci Rep 2015; 5:8782. [PMID: 25740432 PMCID: PMC4350099 DOI: 10.1038/srep08782] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
Members of the Notch family of transmembrane receptors, Notch1-4 in mammals, are involved in the regulation of cell fate decisions and cell proliferation in various organisms. The Notch4 isoform, which is specific to mammals, was originally identified as a viral oncogene in mice, Int3, able to initiate mammary tumors. In humans, Notch4 expression appears to be associated with breast cancer stem cells and endocrine resistance. Following ligand binding, the Notch4 receptor undergoes cleavage at the membrane and the Notch4-intracellular domain (ICD), translocates to the nucleus and regulates gene transcription. Little is known on the mechanisms regulating Notch4-ICD and its nuclear localization. Here, we describe the identification of four distinct AKT phosphorylation sites in human Notch4-ICD and demonstrate that AKT binds Notch4-ICD and phosphorylates all four sites in vitro and in vivo. The phosphorylation in cells is regulated by growth factors and is sensitive to phosphatidyl inositol-3 kinase (PI3K) inhibitors. This phosphorylation generates binding sites to the 14-3-3 regulatory proteins, which are involved in the regulation of nucleocytoplasmic shuttling of target proteins, restricting phosphorylated Notch4-ICD to the cytoplasm. Our findings provide a novel mechanism for Notch4-ICD regulation, suggesting a negative regulatory role for the PI3K-AKT pathway in Notch4 nuclear signaling.
Collapse
Affiliation(s)
| | - Gantulga Davaakhuu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wen Cheng Chung
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - He Zhu
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ajay Rana
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153
| | - Aleksandra Filipovic
- Imperial College London, Division of Surgery and Cancer, Department of Oncology, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew R Green
- Department of Histopathology and School of Molecular Medical Sciences, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK
| | - Azeddine Atfi
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Antonio Pannuti
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216
| | - Guri Tzivion
- 1] Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216 [2] Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
36
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
37
|
Nussinov R, Jang H. Dynamic multiprotein assemblies shape the spatial structure of cell signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:158-64. [PMID: 25046855 PMCID: PMC4250281 DOI: 10.1016/j.pbiomolbio.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
38
|
Niedan S, Kauer M, Aryee DNT, Kofler R, Schwentner R, Meier A, Pötschger U, Kontny U, Kovar H. Suppression of FOXO1 is responsible for a growth regulatory repressive transcriptional sub-signature of EWS-FLI1 in Ewing sarcoma. Oncogene 2014; 33:3927-38. [PMID: 23995784 PMCID: PMC4114138 DOI: 10.1038/onc.2013.361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/17/2013] [Accepted: 07/26/2013] [Indexed: 11/09/2022]
Abstract
The Ewing sarcoma (ES) EWS-FLI1 chimeric oncoprotein is a prototypic aberrant ETS transcription factor with activating and repressive regulatory functions. We report that EWS-FLI1-repressed promoters are enriched in forkhead box (FOX) recognition motifs, and identify FOXO1 as a EWS-FLI1-suppressed regulator orchestrating a major subset of EWS-FLI1-repressed genes. In addition to FOXO1 regulation by direct promoter binding of EWS-FLI1, its subcellular localization and activity is regulated by cyclin-dependent kinase 2- and AKT-mediated phosphorylation downstream of EWS-FLI1. Restoration of nuclear FOXO1 expression in ES cells impaired proliferation and significantly reduced clonogenicity. Gene-expression profiling revealed a significant overlap between EWS-FLI1-repressed and FOXO1-activated genes. As a proof of principle for a potential therapeutic application of our findings, the treatment of ES cell lines with methylseleninic acid (MSA) reactivated endogenous FOXO1 in the presence of EWS-FLI1 in a dose- and time-dependent manner and induced massive cell death dependent on FOXO1. In an orthotopic xenograft mouse model, MSA increased FOXO1 expression in the tumor paralleled by a significant decrease in ES tumor growth. FOXO1 reactivation by small molecules may therefore serve as a promising strategy for a future ES-specific therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Base Sequence
- Binding Sites
- Bone Neoplasms/drug therapy
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Consensus Sequence
- Cyclin-Dependent Kinase 2/metabolism
- Forkhead Box Protein O1
- Forkhead Box Protein O3
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Organoselenium Compounds/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Protein Transport
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Transcription, Genetic
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- S Niedan
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - M Kauer
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - D N T Aryee
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University, Vienna, Austria
| | - R Kofler
- Division of Molecular Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - R Schwentner
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - A Meier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - U Pötschger
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - U Kontny
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - H Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University, Vienna, Austria
| |
Collapse
|
39
|
Sanchez AMJ, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 2014; 71:1657-71. [PMID: 24232446 PMCID: PMC11113648 DOI: 10.1007/s00018-013-1513-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
Abstract
Forkhead box class O family member proteins (FoxOs) are highly conserved transcription factors with important roles in cellular homeostasis. The four FoxO members in humans, FoxO1, FoxO3, FoxO4, and FoxO6, are all expressed in skeletal muscle, but the first three members are the most studied in muscle. In this review, we detail the multiple modes of FoxO regulation and discuss the central role of these proteins in the control of skeletal muscle plasticity. FoxO1 and FoxO3 are key factors of muscle energy homeostasis through the control of glycolytic and lipolytic flux, and mitochondrial metabolism. They are also key regulators of protein breakdown, as they modulate the activity of several actors in the ubiquitin–proteasome and autophagy–lysosomal proteolytic pathways, including mitochondrial autophagy, also called mitophagy. FoxO proteins have also been implicated in the regulation of the cell cycle, apoptosis, and muscle regeneration. Depending of their activation level, FoxO proteins can exhibit ambivalent functions. For example, a basal level of FoxO factors is necessary for cellular homeostasis and these proteins are required for adaptation to exercise. However, exacerbated activation may occur in the course of several diseases, resulting in metabolic disorders and atrophy. A better understanding of the precise functions of these transcriptions factors should thus lead to the development of new therapeutic approaches to prevent or limit the muscle wasting that prevails in numerous pathological states, such as immobilization, denervated conditions, neuromuscular disease, aging, AIDS, cancer, and diabetes.
Collapse
Affiliation(s)
- Anthony M. J. Sanchez
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Robin B. Candau
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
- Faculté des Sciences du Sport, Université Montpellier 1, 700 avenue du Pic Saint Loup, 34090 Montpellier, France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier 1, 2 Place Viala, 34060 Montpellier, France
| |
Collapse
|
40
|
Brejning J, Nørgaard S, Schøler L, Morthorst TH, Jakobsen H, Lithgow GJ, Jensen LT, Olsen A. Loss of NDG-4 extends lifespan and stress resistance in Caenorhabditis elegans. Aging Cell 2014; 13:156-64. [PMID: 24286221 PMCID: PMC3919970 DOI: 10.1111/acel.12165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 11/26/2022] Open
Abstract
NDG-4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg-4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long-chain omega-6 polyunsaturated fatty acid dihommogamma-linolenic acid (DGLA). Two other proteins, NRF-5 and NRF-6, a homolog of a mammalian secreted lipid binding protein and a NDG-4 homolog, respectively, have previously been shown to function in the same lipid transport pathway. Here, we report that mutation of the NDG-4 protein results in increased organismal stress resistance and lifespan. When NDG-4 function and insulin/IGF-1 signaling are reduced simultaneously, maximum lifespan is increased almost fivefold. Thus, longevity conferred by mutation of ndg-4 is partially overlapping with insulin signaling. The nuclear hormone receptor NHR-80 (HNF4 homolog) is required for longevity in germline less animals. We find that NHR-80 is also required for longevity of ndg-4 mutants. Moreover, we find that nrf-5 and nrf-6 mutants also have extended lifespan and increased stress resistance, suggesting that altered lipid transport and metabolism play key roles in determining lifespan.
Collapse
Affiliation(s)
- Jeanette Brejning
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Steffen Nørgaard
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Lone Schøler
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Tine H. Morthorst
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Helle Jakobsen
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Louise T. Jensen
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| | - Anders Olsen
- Department of Molecular Biology and Genetics Aarhus University Gustav Wieds Vej 10C Aarhus 8000‐DK Denmark
| |
Collapse
|
41
|
14-3-3 proteins in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
42
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
43
|
Yu M, Guo HX, Hui-Chen, Wang XH, Li CY, Zhan YQ, Ge CH, Yang XM. 14-3-3ζ interacts with hepatocyte nuclear factor 1α and enhances its DNA binding and transcriptional activation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:970-9. [PMID: 23603156 DOI: 10.1016/j.bbagrm.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/31/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Abstract
14-3-3 proteins regulate numerous cellular processes through interaction with a variety of proteins, and have been identified as HNF1α binding partner by mass spectrometry analysis in our previous study. In the present study, the interaction between 14-3-3ζ and HNF1α has been further validated by in vivo and in vitro assays. Moreover, we have found that overexpression of 14-3-3ζ potentiated the transcriptional activity of HNF1α in cultured cells, and silencing of 14-3-3ζ by RNA interference in HepG2 cells specifically affected the HNF1α-dependent gene expression. Furthermore, we have demonstrated that 14-3-3ζ is recruited to endogenous HNF1α responsive promoters and enhances HNF1α binding to its cognate DNA sequences. In addition, we have also provided evidence that the association between HNF1α and 14-3-3ζ is phosphorylation-dependent. Taken together, these results suggest that 14-3-3ζ may be an endogenous physiologic regulator of HNF1α.
Collapse
Affiliation(s)
- Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2. Int J Parasitol 2013; 43:515-20. [PMID: 23500073 DOI: 10.1016/j.ijpara.2013.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
Abstract
We hypothesise that developmental arrest in infectious larvae of parasitic nematodes is regulated by signalling pathways homologous to Caenorhabditis elegans DAF (dauer formation) pathways. Alignment of Strongyloides stercoralis (Ss) DAF-2 with DAF-2 of C. elegans and homologs of other species shows that most structural motifs in these insulin-like receptors are conserved. However, the catalytic domain of Ss-DAF-2 contains two substitutions (Q1242 and Q1256), that would result in constitutive dauer formation in C. elegans or diabetes in vertebrate animals. Ss-daf-2 also shows two alternately spliced isoforms, the constitutively expressed Ss-daf-2a, and Ss-daf-2b, which is only expressed in stages leading to parasitism.
Collapse
|
45
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) accounts for 30% to 40% of newly diagnosed lymphomas and has an overall cure rate of approximately 60%. Previously, we observed FOXO1 mutations in non-Hodgkin lymphoma patient samples. To explore the effects of FOXO1 mutations, we assessed FOXO1 status in 279 DLBCL patient samples and 22 DLBCL-derived cell lines. FOXO1 mutations were found in 8.6% (24/279) of DLBCL cases: 92.3% (24/26) of mutations were in the first exon, 46.2% (12/26) were recurrent mutations affecting the N-terminal region, and another 38.5% (10/26) affected the Forkhead DNA binding domain. Recurrent mutations in the N-terminal region resulted in diminished T24 phosphorylation, loss of interaction with 14-3-3, and nuclear retention. FOXO1 mutation was associated with decreased overall survival in patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (P = .037), independent of cell of origin (COO) and the revised International Prognostic Index (R-IPI). This association was particularly evident (P = .003) in patients in the low-risk R-IPI categories. The independent relationship of mutations in FOXO1 to survival, transcending the prognostic influence of the R-IPI and COO, indicates that FOXO1 mutation is a novel prognostic factor that plays an important role in DLBCL pathogenesis.
Collapse
|
46
|
Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 2012; 6:e1854. [PMID: 23145190 PMCID: PMC3493385 DOI: 10.1371/journal.pntd.0001854] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023] Open
Abstract
The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Samuel Minot
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Nakdimon I, Walser M, Fröhli E, Hajnal A. PTEN negatively regulates MAPK signaling during Caenorhabditis elegans vulval development. PLoS Genet 2012; 8:e1002881. [PMID: 22916028 PMCID: PMC3420937 DOI: 10.1371/journal.pgen.1002881] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/19/2012] [Indexed: 11/20/2022] Open
Abstract
Vulval development in Caenorhabditis elegans serves as an excellent model to examine the crosstalk between different conserved signaling pathways that are deregulated in human cancer. The concerted action of the RAS/MAPK, NOTCH, and WNT pathways determines an invariant pattern of cell fates in three vulval precursor cells. We have discovered a novel form of crosstalk between components of the Insulin and the RAS/MAPK pathways. The insulin receptor DAF-2 stimulates, while DAF-18 PTEN inhibits, RAS/MAPK signaling in the vulval precursor cells. Surprisingly, the inhibitory activity of DAF-18 PTEN on the RAS/MAPK pathway is partially independent of its PIP3 lipid phosphatase activity and does not involve further downstream components of the insulin pathway, such as AKT and DAF-16 FOXO. Genetic and biochemical analyses indicate that DAF-18 negatively regulates vulval induction by inhibiting MAPK activation. Thus, mutations in the PTEN tumor suppressor gene may result in the simultaneous hyper-activation of two oncogenic signaling pathways. The human tumor suppressor PTEN is mutated in many different types of cancer. Using the roundworm C. elegans as a model to study how cells communicate during animal development, we discovered a new mechanism by which PTEN inhibits the activity of the oncogenic RAS/MAPK signaling pathway. Focusing on the development of the vulva, the egg-laying organ of the hermaphrodite, as a model to investigate the regulation of RAS/MAPK signaling, we could distinguish between two distinct inhibitory activities of PTEN on the RAS/MAPK signaling pathway. On the one hand, PTEN acts as a lipid phosphatase that inhibits the production of PIP3, which in turn stimulates RAS/MAPK signaling. On the other hand, PTEN acts as a protein phosphatase that negatively regulates RAS/MAPK signaling by inhibiting signal transduction at the level of the MAPK, which is a key component in the pathway. Understanding the detailed molecular mechanism by which the PTEN tumor suppressor homolog regulates signal transduction in C. elegans can help predict the consequences of mutations in human PTEN for cancer development in humans.
Collapse
Affiliation(s)
- Itay Nakdimon
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Cancer Network Zürich PhD Program, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Sciences PhD Program, Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Erika Fröhli
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Stoltzfus JD, Massey HC, Nolan TJ, Griffith SD, Lok JB. Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS One 2012; 7:e38587. [PMID: 22701676 PMCID: PMC3368883 DOI: 10.1371/journal.pone.0038587] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/13/2023] Open
Abstract
Infective third-stage larvae (L3i) of the human parasite Strongyloides stercoralis share many morphological, developmental, and behavioral attributes with Caenorhabditis elegans dauer larvae. The ‘dauer hypothesis’ predicts that the same molecular genetic mechanisms control both dauer larval development in C. elegans and L3i morphogenesis in S. stercoralis. In C. elegans, the phosphatidylinositol-3 (PI3) kinase catalytic subunit AGE-1 functions in the insulin/IGF-1 signaling (IIS) pathway to regulate formation of dauer larvae. Here we identify and characterize Ss-age-1, the S. stercoralis homolog of the gene encoding C. elegans AGE-1. Our analysis of the Ss-age-1 genomic region revealed three exons encoding a predicted protein of 1,209 amino acids, which clustered with C. elegans AGE-1 in phylogenetic analysis. We examined temporal patterns of expression in the S. stercoralis life cycle by reverse transcription quantitative PCR and observed low levels of Ss-age-1 transcripts in all stages. To compare anatomical patterns of expression between the two species, we used Ss-age-1 or Ce-age-1 promoter::enhanced green fluorescent protein reporter constructs expressed in transgenic animals for each species. We observed conservation of expression in amphidial neurons, which play a critical role in developmental regulation of both dauer larvae and L3i. Application of the PI3 kinase inhibitor LY294002 suppressed L3i in vitro activation in a dose-dependent fashion, with 100 µM resulting in a 90% decrease (odds ratio: 0.10, 95% confidence interval: 0.08–0.13) in the odds of resumption of feeding for treated L3i in comparison to the control. Together, these data support the hypothesis that Ss-age-1 regulates the development of S. stercoralis L3i via an IIS pathway in a manner similar to that observed in C. elegans dauer larvae. Understanding the mechanisms by which infective larvae are formed and activated may lead to novel control measures and treatments for strongyloidiasis and other soil-transmitted helminthiases.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Holman C. Massey
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sandra D. Griffith
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Tsigkari KK, Acevedo SF, Skoulakis EMC. 14-3-3ε Is required for germ cell migration in Drosophila. PLoS One 2012; 7:e36702. [PMID: 22666326 PMCID: PMC3364263 DOI: 10.1371/journal.pone.0036702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells) in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.
Collapse
Affiliation(s)
- K. Kirki Tsigkari
- Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | - Summer F. Acevedo
- Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| | | |
Collapse
|
50
|
The role of phosphoinositide 3-kinase signaling in intestinal inflammation. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:358476. [PMID: 22570785 PMCID: PMC3337621 DOI: 10.1155/2012/358476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/29/2011] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase signaling pathway plays a central role in regulating the host inflammatory response. The net effect can either be pro- or anti-inflammatory depending on the system and cellular context studied. This paper focuses on phosphatidylinositol 3-kinase signaling in innate and adaptive immune cells of the intestinal mucosa. The role of phosphatidylinositol 3-kinase signaling in mouse models of inflammatory bowel disease is also discussed. With the development of new isoform specific inhibitors, we are beginning to understand the specific role of this complex pathway, in particular the role of the γ isoform in intestinal inflammation. Continued research on this complex pathway will enhance our understanding of its role and provide rationale for the design of new approaches to intervention in chronic inflammatory conditions such as inflammatory bowel disease.
Collapse
|