1
|
Komori T. Regulation of Skeletal Development and Maintenance by Runx2 and Sp7. Int J Mol Sci 2024; 25:10102. [PMID: 39337587 PMCID: PMC11432631 DOI: 10.3390/ijms251810102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
2
|
Angioni MM, Floris A, Cangemi I, Congia M, Chessa E, Naitza MR, Piga M, Cauli A. Molecular profiling of clinical remission in psoriatic arthritis reveals dysregulation of FOS and CCDC50 genes: a gene expression study. Front Immunol 2023; 14:1274539. [PMID: 37965313 PMCID: PMC10641465 DOI: 10.3389/fimmu.2023.1274539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background In psoriatic arthritis (PsA), the primary goal of treatment is clinical remission. This study aimed to characterize the molecular profile underlying the induced clinical remission in patients with PsA, comparing the remission state and the healthy condition. Methods Whole blood transcriptomic analysis was performed on groups of 14 PsA patients in TNFi-induced clinical remission (DAPSA ≤ 4), 14 PsA patients with active disease (DAPSA > 14), and 14 healthy controls (HCs). Then, all differentially expressed genes (DEGs) derived from remission vs. HC comparison were analyzed for functional and biological characteristics by bioinformatics software. The gene expression of 12 genes was then validated by RT-qPCR in an extended cohort of 39 patients in clinical remission, 40 with active disease, and 40 HCs. Results The transcriptomic analysis of PsA remission vs. HCs highlighted the presence of 125 DEGs, and out of these genes, 24 were coding genes and showed a great involvement in immune system processes and a functional network with significant interactions. The RT-qPCR validation confirming the down- and upregulation of FOS (FC -2.0; p 0.005) and CCDC50 (FC +1.5; p 0.005) genes, respectively, in line with their role in orchestrating inflammation and bone metabolism processes, may be related to PsA pathophysiology. Conclusion The transcriptomic profile of clinical remission in PsA is similar to a healthy condition, but not identical, differing for the expression of FOS and CCDC50 genes, which appears to play a key role in its achievement.
Collapse
Affiliation(s)
- Maria Maddalena Angioni
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| | - Alberto Floris
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| | - Ignazio Cangemi
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Mattia Congia
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| | - Elisabetta Chessa
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| | - Micaela Rita Naitza
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Matteo Piga
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
- Rheumatology Unit, Azienda Ospedaliero - Universitaria di Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Trifloroside Induces Bioactive Effects on Differentiation, Adhesion, Migration, and Mineralization in Pre-Osteoblast MC3T3E-1 Cells. Cells 2022; 11:cells11233887. [PMID: 36497145 PMCID: PMC9738977 DOI: 10.3390/cells11233887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Gentianae Scabrae Radix is used in traditional medicine and is known to possess bioactive compounds, including secoiridoid glycosides, flavonoids, lignans, and triterpenes. Trifloroside (TriFs) is a secoiridoid glycoside known for its antioxidant activity; however, its other effects have not been studied. In the present study, we investigated the biological effects of TriFs isolated from the roots of Gentianae Scabrae Radix using pre-osteoblast MC3T3E-1 cells. No cellular toxicity was observed with 1 μM TriFs, whereas 5-100 μM TriFs showed a gradual increase in cell viability. Alkaline phosphatase staining and microscopic observations revealed that 1-10 μM TriFs stimulated osteogenic activity during early osteoblast differentiation. Trifloroside also increased mineral apposition during osteoblast maturation. Biochemical analyses revealed that TriFs promoted nuclear RUNX2 expression and localization by stimulating the major osteogenic BMP2-Smad1/5/8-RUNX2 pathway. Trifloroside also increased p-GSK3β, β-catenin, p-JNK, and p-p38, but not Wnt3a, p-AKT, and p-ERK. Moreover, TriFs increased the MMP13 levels and promoted cell migration and adhesion. In contrast, TriFs-induced osteoblast differentiation and maturation had negligible effects on autophagy and necrosis. Our findings suggest that TriFs induces osteogenic effects through differentiation, adhesion, migration, and mineral apposition. Therefore, TriFs is suggested as a potential drug target in osteoblast-mediated bone diseases.
Collapse
|
4
|
Park KR, Leem HH, Kwon YJ, Kwon IK, Hong JT, Yun HM. Sec-O-glucosylhamaudol promotes the osteogenesis of pre-osteoblasts via BMP2 and Wnt3a signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Pandit A, Das Mahapatra P, Saha P, Srivastava AK, Swarnakar S. Interleukin-1β activated c-FOS transcription factor binds preferentially to a specific allele of the matrix metalloproteinase-13 promoter and increases susceptibility to endometriosis. J Cell Physiol 2022; 237:3095-3108. [PMID: 35621221 DOI: 10.1002/jcp.30773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Endometriosis is a benign gynecological condition characterized by increased growth, inflammation, invasion, and angiogenesis, partly regulated by a class of enzymes called matrix metalloproteinases (MMPs). The importance of a few MMPs, e.g., MMP-9, -3, and -7 has been studied in endometriosis progression. Although MMP-13 plays an essential role in bone regeneration and cancer, no report has been found on the part of MMP-13 and endometriosis progression. We found the upregulation of MMP-13 expression and activity in patients having endometriosis in the eastern Indian population. In addition, the -77A/G polymorphism of the MMP13 promoter (rs: 2252070) is associated with regulating transcription and subsequent susceptibility to disease. In eastern Indian case-control groups, the effect of the -77A/G single-nucleotide polymorphism on MMP13 promoter activity and its relationship with endometriosis susceptibility was studied. The AG genotype was shown to be more predisposed to endometriosis risk than the GG genotype (p: 0.02; odds ratio [OR]: 1.65, 95% confidence interval [CI]: 1.10-2.49), also AG genotype was more frequent in late-stage patients compared to early-stage (p: 0.03, OR: 2.0, 95% CI: 1.09-3.66). Furthermore, the MMP13 gene levels were greater in AA compared to GG individuals. Additionally, MMP13 promoter-reporter experiments in cultured endometrial epithelial cells and in silico analyses both demonstrated increased transcriptional activity near the G to A transition under basal/IL-1β -induced/c-FOS overexpressed condition. Overall, c-FOS tighter binding to the A allele-carrying promoter enhances MMP13 transcription, which is further amplified by IL-1β due to increased c-FOS phosphorylation, promoting MMP-13 production and endometriosis risk.
Collapse
Affiliation(s)
- Anuradha Pandit
- Division of Infectious Diseases & Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Pramathes Das Mahapatra
- Department of Obstetrics and Gynecology, Spectrum Clinic and Endoscopy Research Institute, Kolkata, West Bengal, India
| | - Priyanka Saha
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Amit Kumar Srivastava
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- Division of Infectious Diseases & Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Whole Aspect of Runx2 Functions in Skeletal Development. Int J Mol Sci 2022; 23:ijms23105776. [PMID: 35628587 PMCID: PMC9144571 DOI: 10.3390/ijms23105776] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) is a fundamental transcription factor for bone development. In endochondral ossification, Runx2 induces chondrocyte maturation, enhances chondrocyte proliferation through Indian hedgehog (Ihh) induction, and induces the expression of vascular endothelial growth factor A (Vegfa), secreted phosphoprotein 1 (Spp1), integrin-binding sialoprotein (Ibsp), and matrix metallopeptidase 13 (Mmp13) in the terminal hypertrophic chondrocytes. Runx2 inhibits the apoptosis of the terminal hypertrophic chondrocytes and induces their transdifferentiation into osteoblasts and osteoblast progenitors. The transdifferentiation is required for trabecular bone formation during embryonic and newborn stages but is dispensable for acquiring normal bone mass in young and adult mice. Runx2 enhances the proliferation of osteoblast progenitors and induces their commitment to osteoblast lineage cells through the direct regulation of the expressions of a hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathway genes and distal-less homeobox 5 (Dlx5), which all regulate Runx2 expression and/or protein activity. Runx2, Sp7, and Wnt signaling further induce osteoblast differentiation. In immature osteoblasts, Runx2 regulates the expression of bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and bone gamma carboxyglutamate protein (Bglap)/Bglap2, and induces osteoblast maturation. Osteocalcin (Bglap/Bglap2) is required for the alignment of apatite crystals parallel to the collagen fibers; however, it does not physiologically work as a hormone that regulates glucose metabolism, testosterone synthesis, or muscle mass. Thus, Runx2 exerts multiple functions essential for skeletal development.
Collapse
|
7
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
8
|
Park KR, Kwon YJ, Jeong YH, Hong JT, Yun HM. Thelephoric acid, p-terphenyl, induces bone-forming activities in pre-osteoblasts. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
10
|
Watson AW, Grant AD, Parker SS, Hill S, Whalen MB, Chakrabarti J, Harman MW, Roman MR, Forte BL, Gowan CC, Castro-Portuguez R, Stolze LK, Franck C, Cusanovich DA, Zavros Y, Padi M, Romanoski CE, Mouneimne G. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep 2021; 35:109293. [PMID: 34192535 PMCID: PMC8312405 DOI: 10.1016/j.celrep.2021.109293] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/26/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential. Watson et al. demonstrate that mechanical conditioning by stiff microenvironments in breast tumors is maintained in cancer cells after dissemination to softer microenvironments, including bone marrow. They show that mechanical conditioning promotes invasion and osteolysis and establish a mechanical conditioning (MeCo) score, associated with bone metastasis in patients.
Collapse
Affiliation(s)
- Adam W Watson
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; MeCo Diagnostics, Tucson, AZ 85718, USA
| | - Adam D Grant
- University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Hill
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jayati Chakrabarti
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michael W Harman
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | - Cody C Gowan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darren A Cusanovich
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Yana Zavros
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Megha Padi
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Casey E Romanoski
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
11
|
Xu L, Li Y. A Molecular Cascade Underlying Articular Cartilage Degeneration. Curr Drug Targets 2021; 21:838-848. [PMID: 32056522 DOI: 10.2174/1389450121666200214121323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Preserving of articular cartilage is an effective way to protect synovial joints from becoming osteoarthritic (OA) joints. Understanding of the molecular basis of articular cartilage degeneration will provide valuable information in the effort to develop cartilage preserving drugs. There are currently no disease-modifying OA drugs (DMOADs) available to prevent articular cartilage destruction during the development of OA. Current drug treatments for OA focus on the reduction of joint pain, swelling, and inflammation at advanced stages of the disease. However, based on discoveries from several independent research laboratories and our laboratory in the past 15 to 20 years, we believe that we have a functional molecular understanding of articular cartilage degeneration. In this review article, we present and discuss experimental evidence to demonstrate a sequential chain of the molecular events underlying articular cartilage degeneration, which consists of transforming growth factor beta 1, high-temperature requirement A1 (a serine protease), discoidin domain receptor 2 (a cell surface receptor tyrosine kinase for native fibrillar collagens), and matrix metalloproteinase 13 (an extracellularmatrix degrading enzyme). If, as we strongly suspect, this molecular pathway is responsible for the initiation and acceleration of articular cartilage degeneration, which eventually leads to progressive joint failure, then these molecules may be ideal therapeutic targets for the development of DMOADs.
Collapse
Affiliation(s)
- Lin Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| | - Yefu Li
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02115 & Faculty of Medicine, Harvard Medical School 25 Shattuck St. Boston, MA 02115, United States
| |
Collapse
|
12
|
Tissue Engineering of Cartilage Using a Random Positioning Machine. Int J Mol Sci 2020; 21:ijms21249596. [PMID: 33339388 PMCID: PMC7765923 DOI: 10.3390/ijms21249596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.
Collapse
|
13
|
Komori T. Molecular Mechanism of Runx2-Dependent Bone Development. Mol Cells 2020; 43:168-175. [PMID: 31896233 PMCID: PMC7057844 DOI: 10.14348/molcells.2019.0244] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.
Collapse
Affiliation(s)
- Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
14
|
Liu Z, Ramachandran J, Vokes SA, Gray RS. Regulation of terminal hypertrophic chondrocyte differentiation in Prmt5 mutant mice modeling infantile idiopathic scoliosis. Dis Model Mech 2019; 12:dmm.041251. [PMID: 31848143 PMCID: PMC6955203 DOI: 10.1242/dmm.041251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Idiopathic scoliosis (IS) is the most common type of musculoskeletal defect affecting children worldwide, and is classified by age of onset, location and degree of spine curvature. Although rare, IS with onset during infancy is the more severe and rapidly progressive form of the disease, associated with increased mortality due to significant respiratory compromise. The pathophysiology of IS, in particular for infantile IS, remains elusive. Here, we demonstrate the role of PRMT5 in the infantile IS phenotype in mouse. Conditional genetic ablation of PRMT5 in osteochondral progenitors results in impaired terminal hypertrophic chondrocyte differentiation and asymmetric defects of endochondral bone formation in the perinatal spine. Analysis of these several markers of endochondral ossification revealed increased type X collagen (COLX) and Ihh expression, coupled with a dramatic reduction in Mmp13 and RUNX2 expression, in the vertebral growth plate and in regions of the intervertebral disc in the Prmt5 conditional mutant mice. We also demonstrate that PRMT5 has a continuous role in the intervertebral disc and vertebral growth plate in adult mice. Altogether, our results establish PRMT5 as a critical promoter of terminal hypertrophic chondrocyte differentiation and endochondral bone formation during spine development and homeostasis. This article has an associated First Person interview with the first author of the paper. Summary: Loss of Prmt5 in osteochondral progenitors impairs terminal hypertrophic chondrocyte differentiation, leading to defects in endochondral bone formation and models infantile idiopathic scoliosis in mouse.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, TX 78723, USA
| | - Janani Ramachandran
- Department of Molecular Biosciences, 2500 Speedway, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, 2500 Speedway, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan S Gray
- Department of Pediatrics, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, The University of Texas at Austin, Dell Medical School, Austin, TX 78723, USA .,Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
Macdonald CD, Falconer AMD, Chan CM, Wilkinson DJ, Skelton A, Reynard L, Litherland GJ, Europe-Finner GN, Rowan AD. Cytokine-induced cysteine- serine-rich nuclear protein-1 (CSRNP1) selectively contributes to MMP1 expression in human chondrocytes. PLoS One 2018; 13:e0207240. [PMID: 30440036 PMCID: PMC6237337 DOI: 10.1371/journal.pone.0207240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023] Open
Abstract
Irreversible cartilage collagen breakdown by the collagenolytic matrix metalloproteinases (MMPs)-1 and MMP-13 represents a key event in pathologies associated with tissue destruction such as arthritis. Inflammation is closely associated with such pathology and occurs in both rheumatoid and osteoarthritis making it highly relevant to the prevailing tissue damage that characterises these diseases. The inflammation-induced activating protein-1 (AP-1) transcription factor is an important regulator of both MMP1 and MMP13 genes with interplay between signalling pathways contributing to their expression. Here, we have examined the regulation of MMP1 expression, and using in vivo chromatin immunoprecipitation analyses we have demonstrated that cFos bound to the AP-1 cis element within the proximal MMP1 promoter only when the gene was transcriptionally silent as previously observed for MMP13. Subsequent small interfering RNA-mediated silencing confirmed however, that cFos significantly contributes to MMP1 expression. In contrast, silencing of ATF3 (a prime MMP13 modulator) did not affect MMP1 expression whilst silencing of the Wnt-associated regulator cysteine- serine-rich nuclear protein-1 (CSRNP1) resulted in substantial repression of MMP1 but not MMP13. Furthermore, following an early transient peak in expression of CSRNP1 at the mRNA and protein levels similar to that seen for cFOS, CSRNP1 expression subsequently persisted unlike cFOS. Finally, DNA binding assays indicated that the binding of CSRNP1 to the AP-1 consensus-like sequences within the proximal promoter regions of MMP1 and MMP13 was preferentially selective for MMP1 whilst activating transcription factor 3 (ATF3) binding was exclusive to MMP13. These data further extend our understanding of the previously reported differential regulation of these MMP genes, and strongly indicate that although cFos modulates the expression of MMP1/13, downstream factors such as CSRNP1 and ATF3 ultimately serve as transcriptional regulators in the context of an inflammatory stimulus for these potent collagenolytic MMPs.
Collapse
Affiliation(s)
- Christopher D. Macdonald
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Adrian M. D. Falconer
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Chun Ming Chan
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - David J. Wilkinson
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Skelton
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Louise Reynard
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gary J. Litherland
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - G. Nicholas Europe-Finner
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew D. Rowan
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 2018; 149:313-323. [DOI: 10.1007/s00418-018-1640-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
|
17
|
Thiagarajan L, Abu‐Awwad HAM, Dixon JE. Osteogenic Programming of Human Mesenchymal Stem Cells with Highly Efficient Intracellular Delivery of RUNX2. Stem Cells Transl Med 2017; 6:2146-2159. [PMID: 29090533 PMCID: PMC5702512 DOI: 10.1002/sctm.17-0137] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being exploited in regenerative medicine due to their tri-lineage differentiation and immunomodulation activity. Currently, there are two major challenges when directing the differentiation of MSCs for therapeutic applications. First, chemical and growth factor strategies to direct osteogenesis in vivo lack specificity for targeted delivery with desired effects. Second, MSC differentiation by gene therapy is difficult as transfection with existing approaches is clinically impractical (viral transfection) or have low efficacy (lipid-mediated transfection). These challenges can be avoided by directly delivering nonvirally derived recombinant protein transcription factors with the glycosaminoglycan-binding enhanced transduction (GET) delivery system (P21 and 8R peptides). We used the osteogenic master regulator, RUNX2 as a programming factor due to its stage-specific role in osteochondral differentiation pathways. Herein, we engineered GET-fusion proteins and compared sequential osteogenic changes in MSCs, induced by exposure to GET fusion proteins or conventional stimulation methods (dexamethasone and Bone morphogenetic protein 2). By assessing loss of stem cell-surface markers, upregulation of osteogenic genes and matrix mineralization, we demonstrate that GET-RUNX2 efficiently transduces MSCs and triggers osteogenesis by enhancing target gene expression directly. The high transduction efficiency of GET system holds great promise for stem cell therapies by allowing reproducible transcriptional control in stem cells, potentially bypassing problems observed with high-concentration growth-factor or pleiotropic steroid therapies. Stem Cells Translational Medicine 2017;6:2146-2159.
Collapse
Affiliation(s)
- Lalitha Thiagarajan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| | - Hosam Al‐Deen M. Abu‐Awwad
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| | - James E. Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of PharmacyUniversity of NottinghamNottinghamUnited Kingdom
| |
Collapse
|
18
|
Tsuru M, Sata M, Tanaka M, Umeyama H, Kodera Y, Shiwa M, Aoyagi N, Yasuda K, Matsuoka K, Fukuda T, Yamana H, Nagata K. Retrospective Proteomic Analysis of a Novel, Cancer Metastasis-Promoting RGD-Containing Peptide. Transl Oncol 2017; 10:998-1007. [PMID: 29096248 PMCID: PMC5671418 DOI: 10.1016/j.tranon.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Patients who undergo surgical extirpation of a primary liver carcinoma followed by radiotherapy and chemotherapy leading to complete remission are nevertheless known to develop cancerous metastases 3-10 years later. We retrospectively examined the blood sera collected over 8 years from 30 patients who developed bone metastases after the complete remission of liver cancer to identify serum proteins showing differential expression compared to patients without remission. We detected a novel RGD (Arg-Gly-Asp)-containing peptide derived from the C-terminal portion of fibrinogen in the sera of metastatic patients that appeared to control the EMT (epithelial-mesenchymal transition) of cancer cells, in a process associated with miR-199a-3p. The RGD peptide enhanced new blood vessel growth and increased vascular endothelial growth factor levels when introduced into fertilized chicken eggs. The purpose of this study was to enable early detection of metastatic cancer cells using the novel RGD peptide as a biomarker, and thereby develop new drugs for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Michiyo Tsuru
- Clinical Proteomics and Gene Therapy Laboratory, Kurume University, Kurume, Japan; Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Japan.
| | - Michio Sata
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maki Tanaka
- Department of Surgery, Kurume General Hospital, Kurume, Japan
| | - Hideaki Umeyama
- Department of Biological Science, Chuo University, Tokyo, Japan
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, Kanagawa, Japan
| | - Mieko Shiwa
- Life Science Division, Bio-Rad Laboratories K.K., Tokyo, Japan
| | - Norikazu Aoyagi
- Life Science Division, Bio-Rad Laboratories K.K., Tokyo, Japan
| | | | - Kei Matsuoka
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Urology, Kurume University, Kurume, Japan
| | - Takaaki Fukuda
- Center for Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hideaki Yamana
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Center for Multidisciplinary Treatment of Cancer, Kurume University School of Medicine, Kurume, Japan
| | - Kensei Nagata
- Clinical Proteomics and Gene Therapy Laboratory, Kurume University, Kurume, Japan; Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Nakatani T, Partridge NC. MEF2C Interacts With c-FOS in PTH-Stimulated Mmp13 Gene Expression in Osteoblastic Cells. Endocrinology 2017; 158:3778-3791. [PMID: 28973134 PMCID: PMC5695834 DOI: 10.1210/en.2017-00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
Parathyroid hormone (PTH) regulates the transcription of many genes in the osteoblast. One of these genes is Mmp13, which is involved in bone remodeling and early stages of endochondral bone formation. Previously, we reported that PTH induces Mmp13 transcription by regulating the dissociation of histone deacetylase 4 (HDAC4) from runt-related transcription factor 2 (Runx2), and the association of the HATs, p300, and p300/CREB binding protein (CBP)-associated factor. It is known that, in addition to Runx2, HDAC4 binds to the transcription factor, myocyte-specific enhancer factor 2c (MEF2C), and represses its activity. In this work, we investigated whether MEF2C participates in PTH-stimulated Mmp13 gene expression in osteoblastic cells and how it does so. Knockdown of Mef2c in UMR 106-01 cells repressed Mmp13 messenger RNA expression and promoter activity with or without PTH treatment. Chromatin immunoprecipitation (ChIP) assays showed that MEF2C associated with the Mmp13 promoter; this increased after 4 hours of PTH treatment. ChIP-reChIP results indicate that endogenous MEF2C associates with HDAC4 on the Mmp13 promoter; after PTH treatment, this association decreased. From gel shift, ChIP, and promoter-reporter assays, MEF2C was found to associate with the activator protein-1 (AP-1) site without directly binding to DNA and had its stimulatory effect through interaction with c-FOS. In conclusion, MEF2C is necessary for Mmp13 gene expression at the transcriptional level and participates in PTH-stimulated Mmp13 gene expression by increased binding to c-FOS at the AP-1 site in the Mmp13 promoter. The observation of MEF2C interacting with a member of the AP-1 transcription factor family provides knowledge of the functions of HDAC4, c-FOS, and MEF2C.
Collapse
Affiliation(s)
- Teruyo Nakatani
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
20
|
Liao L, Zhang S, Gu J, Takarada T, Yoneda Y, Huang J, Zhao L, Oh CD, Li J, Wang B, Wang M, Chen D. Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Sci Rep 2017; 7:2371. [PMID: 28539595 PMCID: PMC5443810 DOI: 10.1038/s41598-017-02490-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Runx2 may play an important role in development of osteoarthritis (OA). However, the specific role of Runx2 in articular chondrocyte function and in OA development in adult mice has not been fully defined. In this study, we performed the destabilization of the medial meniscus (DMM) surgery at 12-week-old mice to induce OA in adult Runx2Agc1CreER mice, in which Runx2 was specifically deleted in Aggrecan-expressing chondrocytes by administering tamoxifen at 8-weeks of age. Knee joint samples were collected 8- and 12-weeks post-surgery and analyzed through histology, histomorphometry and micro-computed tomography (μCT). Our results showed that severe OA-like defects were observed after DMM surgery in Cre-negative control mice, including articular cartilage degradation and subchondral sclerosis, while the defects were significantly ameliorated in Runx2Agc1CreER KO mice. Immunohistochemical (IHC) results showed significantly reduced expression of MMP13 in Runx2Agc1CreER KO mice compared to that in Cre-negative control mice. Results of quantitative reverse-transcription PCR (qRT-PCR) demonstrated that expression of the genes encoding for matrix degradation enzymes was significantly decreased in Runx2Agc1CreER KO mice. Thus, our findings suggest that inhibition of Runx2 in chondrocytes could at least partially rescue DMM-induced OA-like defects in adult mice.
Collapse
Affiliation(s)
- Lifan Liao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Gu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Venture Business Laboratory, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jun Li
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Baoli Wang
- Key Lab of Hormones and Development (Ministry of Health), Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University, Tianjin, 300070, China
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Qu L, Yu Y, Qiu L, Yang D, Yan L, Guo J, Jahan R. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts. J Oral Microbiol 2017; 9:1317578. [PMID: 28473882 PMCID: PMC5405711 DOI: 10.1080/20002297.2017.1317578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.
Collapse
Affiliation(s)
- Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lu Yan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | | |
Collapse
|
22
|
Role of Runx2 in breast cancer-mediated bone metastasis. Int J Biol Macromol 2017; 99:608-614. [PMID: 28268169 DOI: 10.1016/j.ijbiomac.2017.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Breast cancer is one of the most prevalent forms of cancer in women. The currently available treatment for breast cancer is mostly curative except when it becomes metastatic. One of the major sites for metastasis of breast cancer is the bone. Homing of the circulating tumor cells is tightly regulated including a number of factors present in the cells and their microenvironment. Runx2, a transcription factor plays an important role in osteogenesis and breast cancer mediated bone metastases. One of the recent advances in molecular therapy includes the discovery of the small, non-coding microRNAs (miRNAs) and they target specific genes to reduce their expression at the post-transcriptional level. This review provides an outline of breast cancer mediated bone metastasis and summarizes the recent development on the regulation of Runx2 expression by miRNAs which can lead to novel molecular therapeutics for the same.
Collapse
|
23
|
Chan CM, Macdonald CD, Litherland GJ, Wilkinson DJ, Skelton A, Europe-Finner GN, Rowan AD. Cytokine-induced MMP13 Expression in Human Chondrocytes Is Dependent on Activating Transcription Factor 3 (ATF3) Regulation. J Biol Chem 2017; 292:1625-1636. [PMID: 27956552 PMCID: PMC5290940 DOI: 10.1074/jbc.m116.756601] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/29/2016] [Indexed: 12/18/2022] Open
Abstract
Irreversible breakdown of cartilage extracellular matrix (ECM) by the collagenase matrix metalloproteinase 13 (MMP13) represents a key event in osteoarthritis (OA) progression. Although inflammation is most commonly associated with inflammatory joint diseases, it also occurs in OA and is thus relevant to the prevalent tissue destruction. Here, inflammation generates a cFOS AP-1 early response that indirectly affects MMP13 gene expression. To ascertain a more direct effect on prolonged MMP13 production we examined the potential molecular events occurring between the rapid, transient expression of cFOS and the subsequent MMP13 induction. Importantly, we show MMP13 mRNA expression is mirrored by nascent hnRNA transcription. Employing ChIP assays, cFOS recruitment to the MMP13 promoter occurs at an early stage prior to gene transcription and that recruitment of transcriptional initiation markers also correlated with MMP13 expression. Moreover, protein synthesis inhibition following early FOS expression resulted in a significant decrease in MMP13 expression thus indicating a role for different regulatory factors modulating expression of the gene. Subsequent mRNA transcriptome analyses highlighted several genes induced soon after FOS that could contribute to MMP13 expression. Specific small interfering RNA-mediated silencing highlighted that ATF3 was as highly selective for MMP13 as cFOS. Moreover, ATF3 expression was AP-1(cFOS/cJUN)-dependent and expression levels were maintained after the early transient cFOS response. Furthermore, ATF3 bound the proximal MMP13 AP-1 motif in stimulated chondrocytes at time points that no longer supported binding of FOS Consequently, these findings support roles for both cFOS (indirect) and ATF3 (direct) in effecting MMP13 transcription in human chondrocytes.
Collapse
Affiliation(s)
- Chun Ming Chan
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christopher D Macdonald
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Gary J Litherland
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - David J Wilkinson
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Andrew Skelton
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - G Nicholas Europe-Finner
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Andrew D Rowan
- From the Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
24
|
Haseeb A, Ansari MY, Haqqi TM. Harpagoside suppresses IL-6 expression in primary human osteoarthritis chondrocytes. J Orthop Res 2017; 35:311-320. [PMID: 27082319 PMCID: PMC5065736 DOI: 10.1002/jor.23262] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 02/04/2023]
Abstract
There is growing evidence in support of the involvement of inflammatory response in the pathogenesis of osteoarthritis (OA). Harpagoside, one of the bioactive components of Harpagophytum procumbens (Hp), has been shown to possess anti-inflammatory properties. Here we used an in vitro model of inflammation in OA to investigate the potential of harpagoside to suppress the production of inflammatory cytokines/chemokines such as IL-6 and matrix degrading proteases. We further investigated the likely targets of harpagoside in primary human OA chondrocytes. OA chondrocytes were pre-treated with harpagoside before stimulation with IL-1β. mRNA expression profile of 92 cytokines/chemokines was determined using TaqMan Human Chemokine PCR Array. Expression levels of selected mRNAs were confirmed using TaqMan assays. Protein levels of IL-6 and MMP-13 were assayed by ELISA and immunoblotting. Total protein levels and phosphorylation of signaling proteins were determined by immunoblotting. Cellular localization of IL-6 and c-Fos was performed by immunofluorescence and confocal microscopy. DNA binding activity of c-FOS/AP-1 was determined by ELISA. Harpagoside significantly altered the global chemokine expression profile in IL-1β-stimulated OA chondrocytes. Expression of IL-6 was highly induced by IL-1β, which was significantly inhibited by pre-treatment of OA chondrocytes with harpagoside. Harpagoside did not inhibit the IL-1β-induced activation of NF-κB and C/EBPβ transcription factors but suppressed the IL-1β-triggered induction, phosphorylation, and DNA binding activity of c-FOS, one of the main components of AP-1 transcription factors. Further, harpagoside significantly inhibited the expression of MMP-13 in OA chondrocytes under pathological conditions. siRNA-mediated knockdown of IL-6 resulted in suppressed expression and secretion of MMP-13 directly linking the role of IL-6 with MMP-13 expression. Taken together, the present study suggests that harpagoside exerts a significant anti-inflammatory effect by inhibiting the inflammatory stimuli mediated by suppressing c-FOS/AP-1 activity in OA chondrocytes under pathological conditions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:311-320, 2017.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Anatomy and Neurobiology, North East Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA
| | - Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, North East Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA
| | - Tariq M. Haqqi
- Department of Anatomy and Neurobiology, North East Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH 44272, USA,Address for correspondence: Tariq M Haqqi, PhD, Department of Anatomy and Neurobiology, 4209 St. Rt. 44, Room 144, Rootstown, OH 44272, USA, , Phone: 330-325-6704, Fax: 330-325-5916
| |
Collapse
|
25
|
Abstract
Runx2 is the most upstream transcription factor essential for osteoblast differentiation. It regulates the expression of Sp7, the protein of which is a crucial transcription factor for osteoblast differentiation, as well as that of bone matrix genes including Spp1, Ibsp, and Bglap2. Runx2 is also required for chondrocyte maturation, and Runx3 has a redundant function with Runx2 in chondrocyte maturation. Runx2 regulates the expression of Col10a1, Spp1, Ibsp, and Mmp13 in chondrocytes. It also inhibits chondrocytes from acquiring the phenotypes of permanent cartilage chondrocytes. It regulates chondrocyte proliferation through the regulation of Ihh expression. Runx2 enhances osteoclastogenesis by regulating Rankl. Cbfb, which is a co-transcription factor for Runx family proteins, plays an important role in skeletal development by stabilizing Runx family proteins. In Cbfb isoforms, Cbfb1 is more potent than Cbfb2 in Runx2-dependent transcriptional regulation; however, the expression level of Cbfb2 is three-fold higher than that of Cbfb1, demonstrating the requirement of Cbfb2 in skeletal development. The expression of Runx2 in osteoblasts is regulated by a 343-bp enhancer located upstream of the P1 promoter. This enhancer is activated by an enhanceosome composed of Dlx5/6, Mef2, Tcf7, Ctnnb1, Sox5/6, Smad1, and Sp7. Thus, Runx2 is a multifunctional transcription factor that is essential for skeletal development, and Cbfb regulates skeletal development by modulating the stability and transcriptional activity of Runx family proteins.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
26
|
Nakatani T, Chen T, Partridge NC. MMP-13 is one of the critical mediators of the effect of HDAC4 deletion on the skeleton. Bone 2016; 90:142-51. [PMID: 27320207 PMCID: PMC4970950 DOI: 10.1016/j.bone.2016.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Abstract
Histone deacetylase 4 (Hdac4) regulates chondrocyte hypertrophy. Hdac4(-/-) mice are runted in size and do not survive to weaning. This phenotype is primarily due to the acceleration of onset of chondrocyte hypertrophy and, as a consequence, inappropriate endochondral mineralization. Previously, we reported that Hdac4 is a repressor of matrix metalloproteinase-13 (Mmp13) transcription, and the absence of Hdac4 leads to increased expression of MMP-13 both in vitro (osteoblastic cells) and in vivo (hypertrophic chondrocytes and trabecular osteoblasts). MMP-13 is thought to be involved in endochondral ossification and bone remodeling. To identify whether the phenotype of Hdac4(-/-) mice is due to up-regulation of MMP-13, we generated Hdac4/Mmp13 double knockout mice and determined the ability of deletion of MMP-13 to rescue the Hdac4(-/-) mouse phenotype. Mmp13(-/-) mice have normal body size. Hdac4(-/-)/Mmp13(-/-) double knockout mice are significantly heavier and larger than Hdac4(-/-) mice, they survive longer, and they recover the thickness of their growth plate zones. In Hdac4(-/-)/Mmp13(-/-) double knockout mice, alkaline phosphatase (ALP) expression and TRAP-positive osteoclasts were restored (together with an increase in Mmp9 expression) but osteocalcin (OCN) was not. Micro-CT analysis of the tibiae revealed that Hdac4(-/-) mice have significantly decreased cortical bone area compared with the wild type mice. In addition, the bone architectural parameter, bone porosity, was significantly decreased in Hdac4(-/-) mice. Hdac4(-/-)/Mmp13(-/-) double knockout mice recover these cortical parameters. Likewise, Hdac4(-/-) mice exhibit significantly increased Tb.Th and bone mineral density (BMD) while the Hdac4(-/-)/Mmp13(-/-) mice significantly recovered these parameters toward normal for this age. Taken together, our findings indicate that the phenotype seen in the Hdac4(-/-) mice is partially derived from elevation in MMP-13 and may be due to a bone remodeling disorder caused by overexpression of this enzyme.
Collapse
Affiliation(s)
- Teruyo Nakatani
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Tiffany Chen
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
27
|
Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood 2015; 127:233-42. [PMID: 26546158 DOI: 10.1182/blood-2015-03-626671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
The AML1/ETO fusion protein is essential to the development of t(8;21) acute myeloid leukemia (AML) and is well recognized for its dominant-negative effect on the coexisting wild-type protein AML1. However, the genome-wide interplay between AML1/ETO and wild-type AML1 remains elusive in the leukemogenesis of t(8;21) AML. Through chromatin immunoprecipitation sequencing and computational analysis, followed by a series of experimental validations, we report here that wild-type AML1 is able to orchestrate the expression of AML1/ETO targets regardless of being activated or repressed; this is achieved via forming a complex with AML1/ETO and via recruiting the cofactor AP-1 on chromatin. On chromatin occupancy, AML1/ETO and wild-type AML1 largely overlap and preferentially bind to adjacent and distinct short and long AML1 motifs on the colocalized regions, respectively. On physical interaction, AML1/ETO can form a complex with wild-type AML1 on chromatin, and the runt homology domain of both proteins are responsible for their interactions. More importantly, the relative binding signals of AML1 and AML1/ETO on chromatin determine which genes are repressed or activated by AML1/ETO. Further analysis of coregulators indicates that AML1/ETO transactivates gene expression through recruiting AP-1 to the AML1/ETO-AML1 complex. These findings enrich our knowledge of understanding the significance of the interplay between the wild-type protein and the oncogenic fusion protein in the development of leukemia.
Collapse
|
28
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
29
|
Zhang X, Wu H, Dobson JR, Browne G, Hong D, Akech J, Languino LR, Stein JL, Stein GS, Lian JB. Expression of the IL-11 Gene in Metastatic Cells Is Supported by Runx2-Smad and Runx2-cJun Complexes Induced by TGFβ1. J Cell Biochem 2015; 116:2098-108. [PMID: 25808168 PMCID: PMC4515199 DOI: 10.1002/jcb.25167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
Abstract
In tumor cells, two factors are abnormally increased that contribute to metastatic bone disease: Runx2, a transcription factor that promotes expression of metastasis related and osteolytic genes; and IL-11, a secreted osteolytic cytokine. Here, we addressed a compelling question: Does Runx2 regulate IL-11 gene expression? We find a positive correlation between Runx2, IL-11 and TGFβ1, a driver of the vicious cycle of metastatic bone disease, in prostate cancer (PC) cell lines representing early (LNCaP) and late (PC3) stage disease. Further, like Runx2 knockdown, IL-11 knockdown significantly reduced expression of several osteolytic factors. Modulation of Runx2 expression results in corresponding changes in IL-11 expression. The IL-11 gene has Runx2, AP-1 sites and Smad binding elements located on the IL-11 promoter. Here, we demonstrated that Runx2-c-Jun as well as Runx2-Smad complexes upregulate IL-11 expression. Functional studies identified a significant loss of IL-11 expression in PC3 cells in the presence of the Runx2-HTY mutant protein, a mutation that disrupts Runx2-Smad signaling. In response to TGFβ1 and in the presence of Runx2, we observed a 30-fold induction of IL-11 expression, accompanied by increased c-Jun binding to the IL-11 promoter. Immunoprecipitation and in situ co-localization studies demonstrated that Runx2 and c-Jun form nuclear complexes in PC3 cells. Thus, TGFβ1 signaling induces two independent transcriptional pathways - AP-1 and Runx2. These transcriptional activators converge on IL-11 as a result of Runx2-Smad and Runx2-c-Jun interactions to amplify IL-11 gene expression that, together with Runx2, supports the osteolytic pathology of cancer induced bone disease.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
- Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hai Wu
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| | - Jason R. Dobson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gillian Browne
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| | - Jacqueline Akech
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lucia R. Languino
- Prostate Cancer Discovery and Development Program and Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine Burlington, VT, USA
| |
Collapse
|
30
|
Niebler S, Schubert T, Hunziker EB, Bosserhoff AK. Activating enhancer binding protein 2 epsilon (AP-2ε)-deficient mice exhibit increased matrix metalloproteinase 13 expression and progressive osteoarthritis development. Arthritis Res Ther 2015; 17:119. [PMID: 25964075 PMCID: PMC4453098 DOI: 10.1186/s13075-015-0648-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
Introduction The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e−/− mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. Methods Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e−/− mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. Results Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants. OA progression was significantly enhanced in the Tfap2e−/− mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e−/− articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. Conclusions We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany. .,Institute of Pathology, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Thomas Schubert
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Ernst B Hunziker
- Department of Orthopedic Surgery, University Hospital of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany.
| |
Collapse
|
31
|
Chen Z, Yue SX, Zhou G, Greenfield EM, Murakami S. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J Bone Miner Res 2015; 30:765-74. [PMID: 25401279 PMCID: PMC4487783 DOI: 10.1002/jbmr.2409] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/29/2022]
Abstract
Chondrocytes in the epiphyseal cartilage undergo terminal differentiation prior to their removal through apoptosis. To examine the role of ERK1 and ERK2 in chondrocyte terminal differentiation, we generated Osterix (Osx)-Cre; ERK1(-/-) ; ERK2(flox/flox) mice (conditional knockout Osx [cKOosx]), in which ERK1 and ERK2 were deleted in hypertrophic chondrocytes. These cKOosx mice were grossly normal in size at birth, but by 3 weeks of age exhibited shorter long bones. Histological analysis in these mice revealed that the zone of hypertrophic chondrocytes in the growth plate was markedly expanded. In situ hybridization and quantitative real-time PCR analyses demonstrated that Matrix metalloproteinase-13 (Mmp13) and Osteopontin expression was significantly decreased, indicating impaired chondrocyte terminal differentiation. Moreover, Egr1 and Egr2, transcription factors whose expression is restricted to the last layers of hypertrophic chondrocytes in wild-type mice, were also strongly downregulated in these cKOosx mice. In transient transfection experiments in the RCS rat chondrosarcoma cell line, the expression of Egr1, Egr2, or a constitutively active mutant of MEK1 increased the activity of an Osteopontin promoter, whereas the MEK1-induced activation of the Osteopontin promoter was inhibited by the coexpression of Nab2, an Egr1 and Egr2 co-repressor. These results suggest that MEK1-ERK signaling activates the Osteopontin promoter in part through Egr1 and Egr2. Finally, our histological analysis of cKOosx mice demonstrated enchondroma-like lesions in the bone marrow that are reminiscent of human metachondromatosis, a skeletal disorder caused by mutations in PTPN11. Our observations suggest that the development of enchondromas in metachondromatosis may be caused by reduced extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK MAPK) signaling.
Collapse
Affiliation(s)
- Zhijun Chen
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Susan X. Yue
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Edward M. Greenfield
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Division of General Medical Sciences, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shunichi Murakami
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, Ohio 44106
- Division of General Medical Sciences, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Murakami Geka Iin, Kawasaki, 210-0834 Japan
- Corresponding author: Shunichi Murakami, 11100 Euclid Avenue, Hanna House 6th floor, Cleveland, Ohio 44106, phone: 216-368-3965, fax: 216-368-1332,
| |
Collapse
|
32
|
Qin X, Jiang Q, Matsuo Y, Kawane T, Komori H, Moriishi T, Taniuchi I, Ito K, Kawai Y, Rokutanda S, Izumi S, Komori T. Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res 2015; 30:706-14. [PMID: 25262822 DOI: 10.1002/jbmr.2379] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 01/13/2023]
Abstract
Runx family proteins, Runx1, Runx2, and Runx3, play important roles in skeletal development. Runx2 is required for osteoblast differentiation and chondrocyte maturation, and haplodeficiency of RUNX2 causes cleidocranial dysplasia, which is characterized by open fontanelles and sutures and hypoplastic clavicles. Cbfb forms a heterodimer with Runx family proteins and enhances their DNA-binding capacity. Cbfb-deficient (Cbfb(-/-) ) mice die at midgestation because of the lack of fetal liver hematopoiesis. We previously reported that the partial rescue of hematopoiesis in Cbfb(-/-) mice revealed the requirement of Cbfb in skeletal development. However, the precise functions of Cbfb in skeletal development still remain to be clarified. We deleted Cbfb in mesenchymal cells giving rise to both chondrocyte and osteoblast lineages by mating Cbfb(fl/fl) mice with Dermo1 Cre knock-in mice. Cbfb(fl/fl/Cre) mice showed dwarfism, both intramembranous and endochondral ossifications were retarded, and chondrocyte maturation and proliferation and osteoblast differentiation were inhibited. The differentiation of chondrocytes and osteoblasts were severely inhibited in vitro, and the reporter activities of Ihh, Col10a1, and Bglap2 promoter constructs were reduced in Cbfb(fl/fl/Cre) chondrocytes or osteoblasts. The proteins of Runx1, Runx2, and Runx3 were reduced in the cartilaginous limb skeletons and calvariae of Cbfb(fl/fl/Cre) embryos compared with the respective protein in the respective tissue of Cbfb(fl/fl) embryos at E15.5, although the reduction of Runx2 protein in calvariae was much milder than that in cartilaginous limb skeletons. All of the Runx family proteins were severely reduced in Cbfb(fl/fl/Cre) primary osteoblasts, and Runx2 protein was less stable in Cbfb(fl/fl/Cre) osteoblasts than Cbfb(fl/fl) osteoblasts. These findings indicate that Cbfb is required for skeletal development by regulating chondrocyte differentiation and proliferation and osteoblast differentiation; that Cbfb plays an important role in the stabilization of Runx family proteins; and that Runx2 protein stability is less dependent on Cbfb in calvariae than in cartilaginous limb skeletons.
Collapse
Affiliation(s)
- Xin Qin
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
34
|
Zhou W, Yin H, Wang T, Liu T, Li Z, Yan W, Song D, Chen H, Chen J, Xu W, Yang X, Wu Z, Xiao J. MiR-126-5p regulates osteolysis formation and stromal cell proliferation in giant cell tumor through inhibition of PTHrP. Bone 2014; 66:267-76. [PMID: 24973691 DOI: 10.1016/j.bone.2014.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been identified to play a crucial role in osteolysis formation and stromal cell (GCTSC) proliferation in giant cell tumor (GCT). MiR-126-5p is an intronic miRNA identified as tumor suppressor in many tumors, but its role in GCT is poorly understood. We found that miR-126-5p was decreased in GCT and could directly regulate PTHrP expression. Furthermore, miR-126-5p could control osteoclast (OC) differentiation, GCTSC proliferation and osteolysis formation in GCT through negative regulation of PTHrP. Thus, these results suggest that miR-126-5p could directly target PTHrP and have a tumor suppressor function in GCT.
Collapse
Affiliation(s)
- Wang Zhou
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huabin Yin
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ting Wang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxi Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wangjun Yan
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dianwen Song
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haiyan Chen
- Division of Rheumatology, Zhongda Hospital, Dongnan University, Nanjing, China
| | - Jia Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
35
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
37
|
Spyropoulou A, Basdra EK. Mechanotransduction in bone: Intervening in health and disease. World J Exp Med 2013; 3:74-86. [DOI: 10.5493/wjem.v3.i4.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction has been proven to be one of the most significant variables in bone remodeling and its alterations have been shown to result in a variety of bone diseases. Osteoporosis, Paget’s disease, orthopedic disorders, osteopetrosis as well as hyperparathyroidism and hyperthyroidism all comprise conditions which have been linked with deregulated bone remodeling. Although the significance of mechanotransduction for bone health and disease is unquestionable, the mechanisms behind this important process have not been fully understood. This review will discuss the molecules that have been found to be implicated in mechanotransduction, as well as the mechanisms underlying bone health and disease, emphasizing on what is already known as well as new molecules potentially taking part in conveying mechanical signals from the cell surface towards the nucleus under physiological or pathologic conditions. It will also focus on the model systems currently used in mechanotransduction studies, like osteoblast-like cells as well as three-dimensional constructs and their applications among others. It will also examine the role of mechanostimulatory techniques in preventing and treating bone degenerative diseases and consider their applications in osteoporosis, craniofacial development, skeletal deregulations, fracture treatment, neurologic injuries following stroke or spinal cord injury, dentistry, hearing problems and bone implant integration in the near future.
Collapse
|
38
|
Lotem J, Levanon D, Negreanu V, Leshkowitz D, Friedlander G, Groner Y. Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLoS One 2013; 8:e80467. [PMID: 24236182 PMCID: PMC3827420 DOI: 10.1371/journal.pone.0080467] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/02/2013] [Indexed: 12/03/2022] Open
Abstract
The transcription factor Runx3 is highly expressed in CD8+ T and NK cytotoxic lymphocytes and is required for their effective activation and proliferation but molecular insights into the transcription program regulated by Runx3 in these cells are still missing. Using Runx3-ChIP-seq and transcriptome analysis of wild type vs. Runx3-/- primary cells we have now identified Runx3-regulated genes in the two cell types at both resting and IL-2-activated states. Runx3-bound genomic regions in both cell types were distantly located relative to gene transcription start sites and were enriched for RUNX and ETS motifs. Bound genomic regions significantly overlapped T-bet and p300-bound enhancer regions in Runx3-expressing Th1 helper cells. Compared to resting cells, IL-2-activated CD8+ T and NK cells contain three times more Runx3-regulated genes that are common to both cell types. Functional annotation of shared CD8+ T and NK Runx3-regulated genes revealed enrichment for immune-associated terms including lymphocyte activation, proliferation, cytotoxicity, migration and cytokine production, highlighting the role of Runx3 in CD8+ T and NK activated cells.
Collapse
MESH Headings
- Animals
- Core Binding Factor Alpha 3 Subunit/genetics
- Enhancer Elements, Genetic
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Histones/metabolism
- Interleukin-2/metabolism
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
- Nucleotide Motifs
- Position-Specific Scoring Matrices
- Protein Binding
- Resting Phase, Cell Cycle/genetics
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transcription Factor AP-1/metabolism
- Transcription Initiation Site
- Transcription, Genetic
Collapse
Affiliation(s)
- Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Israel National Center for Personalized Medicine Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Gilgi Friedlander
- Israel National Center for Personalized Medicine Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
39
|
Cheng HC, Liu YP, Shan YS, Huang CY, Lin FC, Lin LC, Lee L, Tsai CH, Hsiao M, Lu PJ. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer. Carcinogenesis 2013; 34:2452-2459. [PMID: 23774402 DOI: 10.1093/carcin/bgt218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.
Collapse
Affiliation(s)
- Hui-Chuan Cheng
- Institute of Clinical Medicine, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Burdach J, Funnell APW, Mak KS, Artuz CM, Wienert B, Lim WF, Tan LY, Pearson RCM, Crossley M. Regions outside the DNA-binding domain are critical for proper in vivo specificity of an archetypal zinc finger transcription factor. Nucleic Acids Res 2013; 42:276-89. [PMID: 24106088 PMCID: PMC3874204 DOI: 10.1093/nar/gkt895] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription factors (TFs) are often regarded as being composed of a DNA-binding domain (DBD) and a functional domain. The two domains are considered separable and autonomous, with the DBD directing the factor to its target genes and the functional domain imparting transcriptional regulation. We examined an archetypal zinc finger (ZF) TF, Krüppel-like factor 3 with an N-terminal domain that binds the corepressor CtBP and a DBD composed of three ZFs at its C-terminus. We established a system to compare the genomic occupancy profile of wild-type Krüppel-like factor 3 with two mutants affecting the N-terminal functional domain: a mutant unable to contact the cofactor CtBP and a mutant lacking the entire N-terminal domain, but retaining the ZFs intact. Chromatin immunoprecipitation followed by sequencing was used to assess binding across the genome in murine embryonic fibroblasts. Unexpectedly, we observe that mutations in the N-terminal domain generally reduced binding, but there were also instances where binding was retained or even increased. These results provide a clear demonstration that the correct localization of TFs to their target genes is not solely dependent on their DNA-contact domains. This informs our understanding of how TFs operate and is of relevance to the design of artificial ZF proteins.
Collapse
Affiliation(s)
- Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia and School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Duansak N, Schmid-Schönbein GW. The oxygen free radicals control MMP-9 and transcription factors expression in the spontaneously hypertensive rat. Microvasc Res 2013; 90:154-61. [PMID: 24060804 DOI: 10.1016/j.mvr.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Oxygen free radical and matrix metalloproteinases-9 (MMP-9) play an important pathophysiological role in the development of chronic hypertension. MMP-9 activities are regulated at different levels. We hypothesize that as mediators of the expression of MMP-9 the transcription factors like nuclear factor kappa B (NF-κB), c-fos and retinoic acid receptors-α (RAR-α) with binding sites to the MMP-9 promoter are overexpressed in the spontaneously hypertensive rat (SHR) in a process that is regulated by oxygen free radicals. Transcription factor NF-κB, c-fos and RAR-α expression levels were determined by immunohistochemistry in renal, cardiac and mesentery microcirculation of the SHR and its normotensive control, the Wistar Kyoto (WKY) rat. The animals were treated with a superoxide scavenger (Tempol) for eight weeks. The elevated plasma levels of thiobarbituric acid reactive substances and MMP-9 levels in the SHR were significantly decreased by Tempol treatment (P<0.05). The NF-κB, c-fos and RAR-α expression levels in renal glomerular, heart and mesentery microvessels were enhanced in the SHR and could also be reduced by Tempol compared to untreated animals (P<0.05). The enhanced MMP-9 levels in SHR microvessels co-express with transcription factors. These results suggest that elevated NF-κB, c-fos and RAR-α expressions and MMP-9 activity in the SHR are superoxide-dependent.
Collapse
Affiliation(s)
- Naphatsanan Duansak
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0412, USA; Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand
| | | |
Collapse
|
42
|
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus. J Virol 2013; 87:6221-31. [PMID: 23536657 DOI: 10.1128/jvi.00396-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral infections of the central nervous system (CNS) are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes have served as a model in CNS studies. NPCs can be nonproductively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain, in which JCV replicates, and lymphocytes, in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.
Collapse
|
43
|
Barnes VM, Xu T, Shimizu E, Nakatani T, Jefcoat S, Vasilov A, Qin L, Partridge NC. Triclosan blocks MMP-13 expression in hormone-stimulated osteoblasts. J Periodontol 2013; 84:1683-9. [PMID: 23368947 DOI: 10.1902/jop.2013.120154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Matrix metalloproteinase-13 (MMP-13) is an important enzyme for the modulation of bone turnover and gingival recession. Elevated levels of MMP-13 are associated with alveolar bone resorption, periodontal ligament breakdown, and gingival attachment loss, which are the clinical symptoms of periodontal disease. Evidence continues to suggest that periodontal disease contributes to oral tissue breakdown and is linked to numerous systemic conditions. Triclosan (TCN) is a long-standing, proven antibacterial and anti-inflammatory agent found in the only Food and Drug Administration-approved dentifrice for the treatment of plaque and gingivitis. METHODS This study examines the inhibitory effects of TCN on lipopolysaccharide-, parathyroid hormone (PTH)-, and prostaglandin E2 (PGE2)-induced expression of MMP-13 in UMR 106-01 cells, an osteoblastic osteosarcoma cell line. The cells were stimulated with PTH or PGE2 to induce MMP-13 mRNA expression, and real-time reverse transcription-polymerase chain reaction was performed to determine gene expression levels. Western blot analysis assessed the presence or absence of protein degradation or inhibition of protein synthesis. MMP-13 promoter reporter assay was used to explore possible direct effects of TCN on the MMP-13 promoter. RESULTS TCN significantly reduced PTH or PGE2 elevated expression of MMP-13 in osteoblastic cells without affecting basal levels of the mRNA. Surprisingly, TCN enhanced the expression of c-fos and amphiregulin mRNA. A promoter assay indicated that TCN directly inhibits the activation of the PTH-responsive minimal promoter of MMP-13. CONCLUSION The present study appears to have identified a nuclear mechanism of action of TCN that accounts for the ability of TCN to inhibit PTH- or PGE2-induced MMP-13 expression in osteoblastic cells.
Collapse
|
44
|
Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 2013; 45:308-13. [PMID: 23354439 DOI: 10.1038/ng.2539] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022]
Abstract
The extracellular signal-related kinases 1 and 2 (ERK1/2) are key proteins mediating mitogen-activated protein kinase signaling downstream of RAS: phosphorylation of ERK1/2 leads to nuclear uptake and modulation of multiple targets. Here, we show that reduced dosage of ERF, which encodes an inhibitory ETS transcription factor directly bound by ERK1/2 (refs. 2,3,4,5,6,7), causes complex craniosynostosis (premature fusion of the cranial sutures) in humans and mice. Features of this newly recognized clinical disorder include multiple-suture synostosis, craniofacial dysmorphism, Chiari malformation and language delay. Mice with functional Erf levels reduced to ∼30% of normal exhibit postnatal multiple-suture synostosis; by contrast, embryonic calvarial development appears mildly delayed. Using chromatin immunoprecipitation in mouse embryonic fibroblasts and high-throughput sequencing, we find that ERF binds preferentially to elements away from promoters that contain RUNX or AP-1 motifs. This work identifies ERF as a novel regulator of osteogenic stimulation by RAS-ERK signaling, potentially by competing with activating ETS factors in multifactor transcriptional complexes.
Collapse
|
45
|
Zhu W, Yang ML, Yang GY, Boden G, Li L. Changes in serum runt-related transcription factor 2 levels after a 6-month treatment with recombinant human parathyroid hormone in patients with osteoporosis. J Endocrinol Invest 2012; 35:602-6. [PMID: 22104703 DOI: 10.3275/8110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mechanisms regulating the anabolic response of the skeleton for recombinant human PTH (1- 34) [rhPTH (1-34)] administration has not been fully elucidated. AIM The aim of this study was to evaluate the effect of rhPTH (1-34) on serum levels of runt-related transcription factor 2 (Runx2) in women with osteoporosis. METHODS Sixty post-menopausal women with osteoporosis (EO group) and 45 control subjects (NC group) were enrolled in this study. The EO group received daily injection of 20 μg rhPTH (1-34) plus oral 500 mg elemental calcium and 400 IU vitamin D3 for 6 months. Runx2 and Matrix metalloproteinase 13 (MMP-13) were measured with commercially available enzyme-linked immunosorbent assay kits. Bone mineral density (BMD) was also measured before and 6 months after rhPTH (1-34) treatment. RESULTS Serum total Ca2+, phosphate, and bone-specific alkaline phosphatase were significantly increased (p<0.05 or p<0.01), and the lumbar spine BMD (LS-BMD) was also increased by 4% in patients with osteoporosis after treatment with rhPTH (1-34) (p<0.05). On the contrary, serum Runx2 and MMP-13 were significantly decreased at post treatment (13.1% and 36.6%, respectively, p<0.05 and p<0.01). At baseline, serum Runx2 positively correlated with MMP-13 (r=0.74, p<0.01), the correction remained after adjusting for age and body mass index. CONCLUSION The daily injection of rhPTH (1-34) was able to stimulate bone formation. The therapy of 20 μg rhPTH (1- 34) for 6 months resulted in decrease of serum Runx2 and MMP-13. These changes might reflect the increase of active osteoblasts and the better bone homeostasis.
Collapse
Affiliation(s)
- W Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education and Department of Clinical Biochemistry, Chongqing Medical University College of Laboratory Medicine, Chongqing, China
| | | | | | | | | |
Collapse
|
46
|
Cowan RW, Ghert M, Singh G. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone. Biochem Biophys Res Commun 2012; 419:719-23. [DOI: 10.1016/j.bbrc.2012.02.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/11/2022]
|
47
|
Acuña Sanhueza GA, Faller L, George B, Koffler J, Misetic V, Flechtenmacher C, Dyckhoff G, Plinkert PP, Angel P, Simon C, Hess J. Opposing function of MYBBP1A in proliferation and migration of head and neck squamous cell carcinoma cells. BMC Cancer 2012; 12:72. [PMID: 22339894 PMCID: PMC3342895 DOI: 10.1186/1471-2407-12-72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. Methods We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. Results One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFκB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. Conclusion We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
Collapse
Affiliation(s)
- Gustavo A Acuña Sanhueza
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Michikami I, Fukushi T, Tanaka M, Egusa H, Maeda Y, Ooshima T, Wakisaka S, Abe M. Krüppel-like factor 4 regulates membranous and endochondral ossification. Exp Cell Res 2011; 318:311-25. [PMID: 22206865 DOI: 10.1016/j.yexcr.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 12/10/2011] [Accepted: 12/12/2011] [Indexed: 01/04/2023]
Abstract
Krüppel-like factor 4 (KLF4/GKLF/EZF) is a zinc finger type of transcription factor highly expressed in the skin, intestine, testis, lung and bone. The role played by Klf4 has been studied extensively in normal epithelial development and maintenance; however, its role in bone cells is unknown. Previous reports showed that Klf4 is expressed in the developing flat bones but its expression diminishes postnatally. We now show that in the developing long bones, Klf4 is expressed in the perichondrium, trabecular osteoblasts and prehypertrophic chondrocytes. In contrast, osteoblasts lining at the surface of the bone collar showed extremely low levels of Klf4 expression. To investigate the possible roles played by Klf4 during skeletal development, we generated transgenic mice expressing Klf4 under mouse type I collagen regulatory sequence. Transgenic mice exhibited severe skeletal deformities and died soon after birth. Transgenic mice showed delayed formation of the calvarial bones; and over-expressing Klf4 in primary mouse calvarial osteoblasts in culture resulted in strong repression of mineralization indicating that this regulation of Klf4 is through an osteoblast-autonomous effect. Surprisingly, long bones of the transgenic mice exhibited delayed marrow cavity formation. Even at E18.5, the presumptive marrow space was occupied by cartilage anlage and invasion of the vascular endothelial cells and osteoclasts were seldom observed. Instead of entering the cartilage anlage, osteoclasts accumulated at the periosteum in the transgenic mice. Significantly, osteocalcin, which is known to chemotact osteoclasts, was up-regulated at the perichindrium as early as E14.5 in the mutants. In vitro studies showed that this induction of osteocalcin by Klf4 was regulated at its transcriptional level. Our results demonstrate that Klf4 regulates normal skeletal development through coordinating the differentiation and migration of osteoblasts, chondrocytes, vascular endothelial cells and osteoclasts.
Collapse
Affiliation(s)
- Ikumi Michikami
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Yamadaoka 1-8, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fraczek LA, Martin CB, Martin BK. c-Jun and c-Fos regulate the complement factor H promoter in murine astrocytes. Mol Immunol 2011; 49:201-10. [PMID: 21920606 DOI: 10.1016/j.molimm.2011.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/08/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
The complement system is a critical component of innate immunity that requires regulation to avoid inappropriate activation. This regulation is provided by many proteins, including complement factor H (CFH), a critical regulator of the alternative pathway of complement activation. Given its regulatory function, mutations in CFH have been implicated in diseases such as age-related macular degeneration and membranoproliferative glomerulonephritis, and central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and a demyelinating murine model, experimental autoimmune encephalomyelitis (EAE). There have been few investigations on the transcriptional regulation of CFH in the brain and CNS. Our studies show that CFH mRNA is present in several CNS cell types. The murine CFH (mCFH) promoter was cloned and examined through truncation constructs and we show that specific regions throughout the promoter contain enhancers and repressors that are positively regulated by inflammatory cytokines in astrocytes. Database mining of these regions indicated transcription factor binding sites conserved between different species, which led to the investigation of specific transcription factor binding interactions in a 241 base pair (bp) region at -416 bp to -175 bp that showed the strongest activity. Through supershift analysis, it was determined that c-Jun and c-Fos interact with the CFH promoter in astrocytes in this region. These results suggest a relationship between cell cycle and complement regulation, and how these transcription factors and CFH affect disease will be a valuable area of investigation.
Collapse
Affiliation(s)
- Laura A Fraczek
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | | | | |
Collapse
|
50
|
Chen H, Ghori-Javed FY, Rashid H, Serra R, Gutierrez SE, Javed A. Chondrocyte-specific regulatory activity of Runx2 is essential for survival and skeletal development. Cells Tissues Organs 2011; 194:161-5. [PMID: 21597273 DOI: 10.1159/000324743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coordinated activities of multiple mesenchymal cell types contribute to the development of the mammalian skeleton formed through endochondral ossification. Synthesis of a cartilage template by chondrocytes is an obligatory step for the generation of skeletal elements during endochondral ossification. Gene ablation studies have established that Runx2 is an essential transcription factor for bone formation and the differentiation of skeletal cells. However, global gene deletion has failed to discern the tissue- and cell type-specific roles of Runx2. We generated floxed mice to elucidate the Runx2 regulatory control distinctive to cartilage tissue during bone development. Exon 8 of the Runx2 gene was selectively deleted in developing chondrocytes by utilizing Col2a-Cre mice. Cell- and tissue-specific gene recombination was confirmed by β-gal activity in R26R mice. The chondrocyte-specific loss of Runx2 caused failure of endochondral ossification, impaired craniofacial development, dwarfism, and perinatal lethality. Radiographic imaging and histochemical approaches were used to characterize the skeletal phenotype. We conclude that regulatory control of Runx2 in chondrocytes is essential for endochondral ossification, and it is independent of the role of Runx2 in osteoblasts.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|