1
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
2
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Shaaya M, Fauser J, Zhurikhina A, Conage-Pough JE, Huyot V, Brennan M, Flower CT, Matsche J, Khan S, Natarajan V, Rehman J, Kota P, White FM, Tsygankov D, Karginov AV. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. eLife 2020; 9:e60647. [PMID: 32965214 PMCID: PMC7577742 DOI: 10.7554/elife.60647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
Collapse
Affiliation(s)
- Mark Shaaya
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Anastasia Zhurikhina
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Jason E Conage-Pough
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Martin Brennan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Cameron T Flower
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Shahzeb Khan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
- Division of Cardiology, Department of Medicine, The University of Illinois, College of MedicineChicagoUnited States
| | - Pradeep Kota
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North CarolinaChapel HillUnited States
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Program in Computational and Systems Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of MedicineAtlantaUnited States
| | - Andrei V Karginov
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of MedicineChicagoUnited States
- University of Illinois Cancer Center, The University of Illinois at ChicagoChicagoUnited States
| |
Collapse
|
4
|
Weidemann SA, Sauer C, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Göbel C, Lebok P, Dum D, Fraune C, Kind S, Minner S, Izbicki J, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Heumann A. High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer. BMC Cancer 2019; 19:944. [PMID: 31606028 PMCID: PMC6790047 DOI: 10.1186/s12885-019-6182-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor 12 (PTPN12) is ubiquitously tyrosine phosphatase with tumor suppressive properties. METHODS PTPN12 expression was analyzed by immunohistochemistry on a tissue microarray with 13,660 clinical prostate cancer specimens. RESULTS PTPN12 staining was typically absent or weak in normal prostatic epithelium but seen in the majority of cancers, where staining was considered weak in 26.5%, moderate in 39.9%, and strong in 4.7%. High PTPN12 staining was associated with high pT category, high classical and quantitative Gleason grade, lymph node metastasis, positive surgical margin, high Ki67 labeling index and early prostate specific antigen recurrence (p < 0.0001 each). PTPN12 staining was seen in 86.4% of TMPRSS2:ERG fusion positive but in only 58.4% of ERG negative cancers. Subset analyses discovered that all associations with unfavorable phenotype and prognosis were markedly stronger in ERG positive than in ERG negative cancers but still retained in the latter group. Multivariate analyses revealed an independent prognostic impact of high PTPN12 expression in all cancers and in the ERG negative subgroup and to a lesser extent also in ERG positive cancers. Comparison with 12 previously analyzed chromosomal deletions revealed that high PTPN12 expression was significantly associated with 10 of 12 deletions in ERG negative and with 7 of 12 deletions in ERG positive cancers (p < 0.05 each) indicating that PTPN12 overexpression parallels increased genomic instability in prostate cancer. CONCLUSIONS These data identify PTPN12 as an independent prognostic marker in prostate cancer. PTPN12 analysis, either alone or in combination with other biomarkers might be of clinical utility in assessing prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
5
|
Nakatsu D, Kano F, Shinozaki-Narikawa N, Murata M. Pyk2-dependent phosphorylation of LSR enhances localization of LSR and tricellulin at tricellular tight junctions. PLoS One 2019; 14:e0223300. [PMID: 31574128 PMCID: PMC6773211 DOI: 10.1371/journal.pone.0223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Dagliyan O, Dokholyan NV, Hahn KM. Engineering proteins for allosteric control by light or ligands. Nat Protoc 2019; 14:1863-1883. [PMID: 31076662 PMCID: PMC6648709 DOI: 10.1038/s41596-019-0165-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Control of protein activity in living cells can reveal the role of spatiotemporal dynamics in signaling circuits. Protein analogs with engineered allosteric responses can be particularly effective in the interrogation of protein signaling, as they can replace endogenous proteins with minimal perturbation of native interactions. However, it has been a challenge to identify allosteric sites in target proteins where insertion of responsive domains produces an allosteric response comparable to the activity of native proteins. Here, we describe a detailed protocol to generate genetically encoded analogs of proteins that can be allosterically controlled by either rapamycin or blue light, as well as experimental procedures to produce and test these analogs in vitro and in mammalian cell lines. We describe computational methods, based on crystal structures or homology models, to identify effective sites for insertion of either an engineered rapamycin-responsive (uniRapR) domain or the light-responsive light-oxygen-voltage 2 (LOV2) domain. The inserted domains allosterically regulate the active site, responding to rapamycin with irreversible activation, or to light with reversible inactivation at higher spatial and temporal resolution. These strategies have been successfully applied to catalytic domains of protein kinases, Rho family GTPases, and guanine exchange factors (GEFs), as well as the binding domain of a GEF Vav2. Computational tasks can be completed within a few hours, followed by 1-2 weeks of experimental validation. We provide protocols for computational design, cloning, and experimental testing of the engineered proteins, using Src tyrosine kinase, GEF Vav2, and Rho GTPase Rac1 as examples.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology and of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Kusuyama J, Bandow K, Ohnishi T, Hisadome M, Shima K, Semba I, Matsuguchi T. Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase. Mol Biol Cell 2017; 28:1326-1336. [PMID: 28331074 PMCID: PMC5426847 DOI: 10.1091/mbc.e16-10-0716] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022] Open
Abstract
Osteopontin (OPN), a major marker of osteogenic differentiation, suppresses osteoblast responses to mechanical stress and cytokines, including HGF and PDGF. These OPN-induced effects are mediated through focal adhesion kinase inactivation by the induction of low–molecular weight protein tyrosine phosphatase. Osteopontin (OPN) is an osteogenic marker protein. Osteoblast functions are affected by inflammatory cytokines and pathological conditions. OPN is highly expressed in bone lesions such as those in rheumatoid arthritis. However, local regulatory effects of OPN on osteoblasts remain ambiguous. Here we examined how OPN influences osteoblast responses to mechanical stress and growth factors. Expression of NO synthase 1 (Nos1) and Nos2 was increased by low-intensity pulsed ultrasound (LIPUS) in MC3T3-E1 cells and primary osteoblasts. The increase of Nos1/2 expression was abrogated by both exogenous OPN overexpression and recombinant OPN treatment, whereas it was promoted by OPN-specific siRNA and OPN antibody. Moreover, LIPUS-induced phosphorylation of focal adhesion kinase (FAK), a crucial regulator of mechanoresponses, was down-regulated by OPN treatments. OPN also attenuated hepatocyte growth factor–induced vitamin D receptor (Vdr) expression and platelet-derived growth factor–induced cell mobility through the repression of FAK activity. Of note, the expression of low–molecular weight protein tyrosine phosphatase (LMW-PTP), a FAK phosphatase, was increased in both OPN-treated and differentiated osteoblasts. CD44 was a specific OPN receptor for LWW-PTP induction. Consistently, the suppressive influence of OPN on osteoblast responsiveness was abrogated by LMW-PTP knockdown. Taken together, these results reveal novel functions of OPN in osteoblast physiology.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakato 350-0283, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Mitsuhiro Hisadome
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.,Department of Dermatology, Field of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
8
|
Li H, Yang F, Liu C, Xiao P, Xu Y, Liang Z, Liu C, Wang H, Wang W, Zheng W, Zhang W, Ma X, He D, Song X, Cui F, Xu Z, Yi F, Sun JP, Yu X. Crystal Structure and Substrate Specificity of PTPN12. Cell Rep 2016; 15:1345-58. [DOI: 10.1016/j.celrep.2016.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 01/21/2023] Open
|
9
|
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells. Cell Signal 2014; 26:2721-9. [PMID: 25152368 DOI: 10.1016/j.cellsig.2014.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.
Collapse
|
10
|
Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Biochemistry 2014; 53:397-412. [PMID: 24359314 PMCID: PMC3954597 DOI: 10.1021/bi401223r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
Collapse
Affiliation(s)
- Nicholas G. Selner
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Rinrada Luechapanichkul
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Xianwen Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Benjamin G. Neel
- Princess Margaret Cancer Center, University Health Network, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Charles E. Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Abstract
Manipulation of protein kinase activity is widely used to dissect signaling pathways controlling physiological and pathological processes. Common methods often cannot provide the desired spatial and temporal resolution in control of kinase activity. Regulation of kinase activity by photocaged kinase inhibitors has been successfully used to achieve tight temporal and local control, but inhibitors are limited to inactivation of kinases and often do not provide the desired specificity. Here we report detailed methods for light-mediated activation of kinases in living cells using engineered rapamycin-regulated kinases in conjunction with a photocaged analog of rapamycin.
Collapse
|
12
|
Yang S, Roselli F, Patchev AV, Yu S, Almeida OFX. Non-receptor-tyrosine kinases integrate fast glucocorticoid signaling in hippocampal neurons. J Biol Chem 2013; 288:23725-39. [PMID: 23818519 DOI: 10.1074/jbc.m113.470146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite numerous descriptions of rapid effects of corticosterone on neuronal function, the intracellular mechanisms responsible for these changes remain elusive. The present comprehensive analysis reveals that signaling from a membrane-located G protein-coupled receptor activates PKC, Akt/PKB, and PKA, which subsequently trigger the phosphorylation of the tyrosine kinases Pyk2, Src, and Abl. These changes induce rapid cytoskeletal rearrangements (increased PSD-95 co-clustering) within the post-synaptic density; these events are accompanied by increased surface NMDA receptor expression, reflecting corticosterone-induced inhibition of NMDA receptor endocytosis. Notably, none of these signaling mechanisms require de novo protein synthesis. The observed up-regulation of ERK1/2 (downstream of NMDA receptor signaling) together with the fact that c-Abl integrates cytoplasmic and nuclear functions introduces a potential mechanism through which rapid signaling initiated at the plasma membrane may eventually determine the long term integrated response to corticosterone by impacting on the transcriptional machinery that is regulated by classical, nuclear mineralocorticoid, and glucocorticoid receptors.
Collapse
Affiliation(s)
- Silei Yang
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | | | | | |
Collapse
|
13
|
Zhang P, Liu X, Li Y, Zhu X, Zhan Z, Meng J, Li N, Cao X. Protein tyrosine phosphatase with proline-glutamine-serine-threonine-rich motifs negatively regulates TLR-triggered innate responses by selectively inhibiting IκB kinase β/NF-κB activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:1685-94. [PMID: 23296707 DOI: 10.4049/jimmunol.1202384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs are essential for sensing the invading pathogens and initiating protective immune responses. However, aberrant activation of TLR-triggered inflammatory innate responses leads to the inflammatory disorders and autoimmune diseases. The molecular mechanisms that fine-tune TLR responses remain to be fully elucidated. Protein tyrosine phosphatase with proline-glutamine-serine-threonine-rich motifs (PTP-PEST) has been shown to be important in cell adhesion, migration, and also T cell and B cell activation. However, the roles of PTP-PEST in TLR-triggered immune response remain unclear. In this study, we report that PTP-PEST expression was upregulated in macrophages by TLR ligands. PTP-PEST inhibited TNF-α, IL-6, and IFN-β production in macrophages triggered by TLR3, TLR4, and TLR9. Overexpression of catalytically inactive mutants of PTP-PEST abolished the inhibitory effects, indicating that PTP-PEST inhibits TLR response in a phosphatase-dependent manner. Accordingly, PTP-PEST knockdown increased TLR3, -4, and -9-triggered proinflammatory cytokine and type I IFN production. PTP-PEST selectively inhibited TLR-induced NF-κB activation, whereas it had no substantial effect on MAPK and IFN regulatory factor 3 activation. Moreover, PTP-PEST directly interacted with IκB kinase β (IKKβ) then inhibited IKKβ phosphorylation at Ser(177/181) and Tyr(188/199), and subsequently suppressed IKKβ activation and kinase activity as well as downstream NF-κB activation, resulting in suppression of the TLR-triggered innate immune response. Thus, PTP-PEST functions as a feedback-negative regulator of TLR-triggered innate immune responses by selectively impairing IKKβ/NF-κB activation.
Collapse
Affiliation(s)
- Peng Zhang
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng Y, Lu Z. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST). CHINESE JOURNAL OF CANCER 2012; 32:75-83. [PMID: 23237212 PMCID: PMC3845610 DOI: 10.5732/cjc.012.10084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.
Collapse
Affiliation(s)
- Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Souza CM, Davidson D, Rhee I, Gratton JP, Davis EC, Veillette A. The phosphatase PTP-PEST/PTPN12 regulates endothelial cell migration and adhesion, but not permeability, and controls vascular development and embryonic viability. J Biol Chem 2012; 287:43180-90. [PMID: 23105101 DOI: 10.1074/jbc.m112.387456] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability.
Collapse
Affiliation(s)
- Cleiton Martins Souza
- Laboratories of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Hendriks WJAJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J. Protein tyrosine phosphatases in health and disease. FEBS J 2012; 280:708-30. [DOI: 10.1111/febs.12000] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ari Elson
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot; Israel
| | - Sheila Harroch
- Department of Neuroscience; Institut Pasteur; Paris; France
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Andrew Stoker
- Neural Development Unit; Institute of Child Health; University College London; UK
| | | |
Collapse
|
17
|
Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem 2012; 287:20942-56. [PMID: 22544749 DOI: 10.1074/jbc.m112.368654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
18
|
Karginov AV, Hahn KM. Allosteric activation of kinases: design and application of RapR kinases. ACTA ACUST UNITED AC 2012; Chapter 14:14.13.1-14.13.16. [PMID: 22161545 DOI: 10.1002/0471143030.cb1413s53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Here we describe a method for the engineered regulation of protein kinases in living cells, the design and application of RapR (rapamycin regulated) kinases. The RapR kinase method enables activation of kinases with high specificity and precise temporal control. Insertion of an engineered allosteric switch, the iFKBP domain, at a structurally conserved position within the kinase catalytic domain makes the modified kinase inactive. Treatment with rapamycin or its non-immunosuppressive analogs triggers interaction with a small FKBP-rapamycin-binding domain (FRB), restoring the activity of the kinase. The reagents used in this method are genetically encoded or membrane permeable, enabling ready application in many systems. Based on the structural similarity of kinase catalytic domains, this method is likely applicable to a wide variety of kinases. Successful regulation has already been demonstrated for three kinases representing both tyrosine and serine/threonine kinase families (p38, FAK, Src). Procedures for designing and testing RapR kinases are discussed.
Collapse
Affiliation(s)
- Andrei V Karginov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
19
|
Eleniste PP, Du L, Shivanna M, Bruzzaniti A. Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts. Int J Biochem Cell Biol 2012; 44:790-800. [PMID: 22342188 DOI: 10.1016/j.biocel.2012.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/17/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2's FERM domain with dynamin's plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin's GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
20
|
Hurd TR, DeGennaro M, Lehmann R. Redox regulation of cell migration and adhesion. Trends Cell Biol 2011; 22:107-15. [PMID: 22209517 DOI: 10.1016/j.tcb.2011.11.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS), particularly hydrogen peroxide, and the proteins that regulate them play important roles in the migration and adhesion of cells. Stimulation of cell surface receptors with growth factors and chemoattractants generates ROS, which relay signals from the cell surface to key signaling proteins inside the cell. ROS act within cells to promote migration and also in nonmigrating cells to influence the behavior of migrating cells. Hydrogen peroxide has also been suggested to act as a chemoattractant in its own right, drawing immune cells to wounds. We discuss recent progress made towards understanding how organisms use ROS, and to what degree they depend on them, during the related processes of cell migration and adhesion.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
21
|
Schneider GB, Zaharias R, Seabold D, Stanford C. Integrin-associated tyrosine kinase FAK affects Cbfa1 expression. J Orthop Res 2011; 29:1443-7. [PMID: 21412826 DOI: 10.1002/jor.21382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/18/2011] [Indexed: 02/04/2023]
Abstract
Following cell adhesion, focal adhesion kinase (FAK) autophosphorylates on tyrosine and regulates intracellular signaling cascades that regulate cell growth and differentiation. The hypothesis of this study was FAK mediates osteoblast differentiation dependent Cbfa1 expression. Slowly mineralizing UI and rapidly mineralizing UMR-106-01 BSP osteoblasts formed focal adhesions; however, the level of FAK in UI focal adhesions was less than that seen in BSP cells. UI cultures had less FAK expression (p < 0.05) along with elevated levels of FAK phosphotyrosine in comparison to rapidly mineralizing BSP cultures. Mineralization decreased in a dose-dependent manner in response to Herbimycin A, a tyrosine kinase inhibitor. Overexpression of FAK in UI cells led to a fourfold increase in Cbfa1 gene expression (p < 0.02), and an increase in Cbfa1 protein expression. These results suggest that the integrin-associated tyrosine kinase FAK contributes to the regulation of the osteoblast differentiation in part through the regulation of Cbfa1 expression.
Collapse
Affiliation(s)
- Galen B Schneider
- Department of Prosthodontics, University of Iowa College of Dentistry, The University of Iowa, Iowa City, Iowa 52242-1001, USA.
| | | | | | | |
Collapse
|
22
|
Sastry SK, Elferink LA. Checks and balances: interplay of RTKs and PTPs in cancer progression. Biochem Pharmacol 2011; 82:435-40. [PMID: 21704606 DOI: 10.1016/j.bcp.2011.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/08/2023]
Abstract
In recent years, targeted therapies for receptor tyrosine kinases (RTKs) have shown initial promise in the clinical setting for the treatment of several tumors driven by these oncogenic signaling pathways. Unfortunately, clinical relapse due to acquired resistance to these molecular therapeutics is common. An improved understanding of how tumors bypass the inhibitory effects of RTK-targeted therapies has revealed a rich myriad of possible mechanisms for acquired resistance. Protein tyrosine phosphatases (PTPs) can function as oncogenes or tumor suppressors to either enhance or suppress RTK signaling. Recent studies suggest that the loss or gain of function of PTP's can significantly impinge on RTK signaling during tumor progression. Here we review the interplay between RTKs and PTPs as an emerging mechanism for acquired resistance to RTK-targeted therapies, that may aid in the design of improved therapies to prevent and overcome resistance in treatments for cancer patients.
Collapse
Affiliation(s)
- Sarita K Sastry
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
23
|
Arthur JF, Shen Y, Gardiner EE, Coleman L, Murphy D, Kenny D, Andrews RK, Berndt MC. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J Thromb Haemost 2011; 9:163-72. [PMID: 20946164 DOI: 10.1111/j.1538-7836.2010.04091.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Reactive oxygen species generation is one consequence of ligand engagement of platelet glycoprotein (GP) receptors GPIb-IX-V and GPVI, which bind VWF/collagen and initiate thrombosis at arterial shear; however, the precise molecular mechanism coupling redox pathway activation to engagement of these receptors is unknown. OBJECTIVE The objective of this study was to identify novel binding partners for GPIb-IX-V and GPVI that could provide a potential link between redox pathways and early platelet signaling events. METHODS AND RESULTS Using protein array analysis and affinity-binding assays, we demonstrated that the orphan TNF receptor-associated factor (TRAF) family member, TRAF4, selectively binds cytoplasmic sequences of GPIbβ and GPVI. TRAF4, p47(phox) [of the NADPH oxidase (Nox2) enzyme complex] and other redox relevant signaling proteins such as Hic-5, co-immunoprecipitate with GPIb/GPVI from human platelet lysates whilst MBP-TRAF4 or MBP-p47(phox) fusion proteins specifically pull-down GPIb/GPVI. GPIb- or GPVI-selective agonists induce phosphorylation of the TRAF4-associated proteins, Hic-5 and Pyk2, with phosphorylation attenuated by Nox2 inhibition. CONCLUSION These results describe the first direct association of TRAF4 with a receptor, and identify a novel binding partner for GPIb-IX-V and GPVI, providing a potential link between these platelet receptors and downstream TRAF4/Nox2-dependent redox pathways.
Collapse
Affiliation(s)
- J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Davidson D, Shi X, Zhong MC, Rhee I, Veillette A. The phosphatase PTP-PEST promotes secondary T cell responses by dephosphorylating the protein tyrosine kinase Pyk2. Immunity 2010; 33:167-80. [PMID: 20727793 DOI: 10.1016/j.immuni.2010.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 05/21/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
Abstract
PTP-PEST (encoded by Ptpn12) is an intracellular protein tyrosine phosphatase belonging to the same family as LYP. LYP inhibits secondary T cell responses by suppressing Src family protein tyrosine kinases and is implicated in human autoimmunity. To determine the function of PTP-PEST in T cells, we generated mice with a conditionally deleted allele of Ptpn12. By removing PTP-PEST in T cells, we determined that PTP-PEST was not necessary for T cell development or primary responses. However, PTP-PEST was required for secondary T cell responses, anergy prevention, and autoimmunity induction. PTP-PEST specifically regulated the phosphorylation of Pyk2, a substrate of the Src family kinase Fyn. It also promoted the formation of T cell homoaggregates, which are known to enhance T cell activation. Thus, PTP-PEST controls Pyk2 activity and is a positive regulator of secondary T cell activation. These data illustrate the critical role of protein tyrosine phosphatases in T cell regulation.
Collapse
Affiliation(s)
- Dominique Davidson
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada.
| | | | | | | | | |
Collapse
|
25
|
Espejo R, Rengifo-Cam W, Schaller MD, Evers BM, Sastry SK. PTP-PEST controls motility, adherens junction assembly, and Rho GTPase activity in colon cancer cells. Am J Physiol Cell Physiol 2010; 299:C454-63. [PMID: 20519451 DOI: 10.1152/ajpcell.00148.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An important step in carcinoma progression is loss of cell-cell adhesion leading to increased invasion and metastasis. We show here that the protein tyrosine phosphatase, PTP-PEST, is a critical regulator of cell-cell junction integrity and epithelial cell motility. Using colon carcinoma cells, we show that the expression level of PTP-PEST regulates cell motility. Either transient small interfering RNA or stable short hairpin RNA knockdown of PTP-PEST enhances haptotactic and chemotactic migration of KM12C colon carcinoma cells. Furthermore, KM12C cells with stably knocked down PTP-PEST exhibit a mesenchymal-like phenotype with prominent membrane ruffles and lamellae. In contrast, ectopic expression of PTP-PEST in KM20 or DLD-1 cells, which lack detectable endogenous PTP-PEST expression, suppresses haptotactic migration. Importantly, we find that PTP-PEST localizes in adherens junctions. Concomitant with enhanced motility, stable knockdown of PTP-PEST causes a disruption of cell-cell junctions. These effects are due to a defect in junctional assembly and not to a loss of E-cadherin expression. Adherens junction assembly is impaired following calcium switch in KM12C cells with stably knocked down PTP-PEST and is accompanied by an increase in the activity of Rac1 and a suppression of RhoA activity in response to cadherin engagement. Taken together, these results suggest that PTP-PEST functions as a suppressor of epithelial cell motility by controlling Rho GTPase activity and the assembly of adherens junctions.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | |
Collapse
|
26
|
Collins M, Tremblay M, Chapman N, Curtiss M, Rothman PB, Houtman JCD. The T cell receptor-mediated phosphorylation of Pyk2 tyrosines 402 and 580 occurs via a distinct mechanism than other receptor systems. J Leukoc Biol 2009; 87:691-701. [PMID: 20028775 DOI: 10.1189/jlb.0409227] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The tyrosine kinase Pyk2 is vital for integrating receptor-mediated signals controlling adhesion and motility in neuronal, epithelial, and hematopoietic cell types. In T cells, the stimulation of the TCR and costimulatory, chemokine, cytokine, and integrin receptors leads to the phosphorylation of Pyk2 and the induction of its catalytic activity. However, our understanding of the mechanism of the TCR-induced, site-specific phosphorylation of this kinase is incomplete and contradictory. To address this issue, the role of individual signaling pathways in the phosphorylation of Pyk2 tyrosines 402 and 580 upon TCR activation was assessed in human T cells. In contrast to other receptor systems, the TCR-induced phosphorylation of Pyk2 tyrosines 402 and 580 was dependent on the Src family kinases, Fyn or Lck. Interestingly, the TCR-mediated phosphorylation of Pyk2 tyrosines 402 and 580 did not require Ca(2+) influx, ZAP-70 activation, actin cytoskeleton rearrangement, or PI3K function. These observations are different than other receptor systems, which require the induction of one or more of these pathways. Together, these data have defined more fully the mechanism for the TCR-induced phosphorylation of specific sites on Pyk2, suggesting that the TCR has a distinct pathway for the activation of Pyk2 compared with other receptor systems.
Collapse
Affiliation(s)
- Michaela Collins
- Department of Microbiology, Carver College of Medicine, University of Iowa, 2210 MERF, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
27
|
Nakamura K, Palmer HEF, Ozawa T, Mashima K. Protein phosphatase 1alpha associates with protein tyrosine phosphatase-PEST inducing dephosphorylation of phospho-serine 39. J Biochem 2009; 147:493-500. [PMID: 19919952 DOI: 10.1093/jb/mvp191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)-PEST is expressed in a wide variety of several cell types and is an efficient regulator of cell adhesion, spreading and migration. PTP-PEST-associating molecules are important in elucidating the function of PTP-PEST. Herein, we have identified protein phosphatase 1alpha (PP1alpha) as a novel PTP-PEST binding protein, and then we aimed to determine how PP1alpha contributes to the phosphorylation at Ser39 of PTP-PEST, whose phosphorylation suppresses PTP-PEST enzymatic activity. The HEK 293 cells overexpressing exogenous PTP-PEST were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and the phosphorylation of PTP-PEST at Ser39 was evaluated using an anti-phospho-Ser39 PTP-PEST specific antibody (anti-pS39-PEST Ab). It was demonstrated that the phosphorylation at Ser39 detected by anti-pS39-PEST Ab was dependent on TPA treatment and a significant inverse correlation between the PTP activity of PTP-PEST and anti-pS39-PEST Ab-immunoreactive band intensity. The phosphorylation of Ser39 was suppressed by co-transfection of a plasmid encoding wild-type PP1alpha, but not by that of the dominant-negative PP1alpha mutant. Furthermore, TPA-induced phosphorylation could take place in PTP-PEST catalytic domain, but the phosphorylation of PTP-PEST catalytic domain could not be abrogated by co-transfection of a plasmid expressing wild-type PP1alpha. In conclusion, PP1alpha associates with the non-catalytic domain of PTP-PEST and regulates PTP activity via dephosphorylation of phospho-Ser39.
Collapse
Affiliation(s)
- Kana Nakamura
- Department of Life Science, Rikkyo (St Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
Osteoclasts, the primary cell type mediating bone resorption, are multinucleated, giant cells derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclast activity is, in a large part, regulated by protein-tyrosine phosphorylation. While information about functional roles of several protein-tyrosine kinases (PTK), including c-Src, in osteoclastic resorption has been accumulated, little is known about the roles of protein-tyrosine phosphatases (PTPs) in regulation of osteoclast activity. Recent evidence implicates important regulatory roles for four PTPs (SHP-1, cyt-PTP-epsilon, PTP-PEST, and PTPoc) in osteoclasts. Cyt-PTP-epsilon, PTP-PEST, and PTP-oc are positive regulators of osteoclast activity, while SHP-1 is a negative regulator. Of these PTPs in osteoclasts, only PTP-oc is a positive regulator of c-Src PTK through dephosphorylation of the inhibitory phosphotyrosine-527 residue. Although some information about mechanisms of action of these PTPs to regulate osteoclast activity is reviewed in this article, much additional work is required to provide more comprehensive details about their functions in osteoclasts.
Collapse
Affiliation(s)
- M. H.-C. Sheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - K.-H. W. Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92350 USA
| |
Collapse
|
29
|
Abstract
Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclasts. We report here that dynamin associates with Pyk2, independent of dynamin's GTPase activity, and reduces Pyk2 Y402 phosphorylation in a GTPase-dependent manner, leading to decreased Src binding to Pyk2. Overexpressing dynamin decreased the macrophage colony-stimulating factor- and adhesion-induced phosphorylation of Pyk2 in osteoclastlike cells, suggesting that dynamin is likely to regulate Src-Pyk2 binding downstream of integrins and growth factor receptors with important cellular consequences. Furthermore, catalytically active Src promotes dynamin-Pyk2 association, and mutating specific Src-phosphorylated tyrosine residues in dynamin blunts the dynamin-induced decrease in Pyk2 phosphorylation. Thus, since Src binds to Pyk2 through its interaction with phospho-Y402, our results suggest that Src activates a negative-feedback loop downstream of integrin engagement and other stimuli by promoting both the binding of dynamin to Pyk2-containing complexes and the dynamin-dependent decrease in Pyk2 Y402 phosphorylation, ultimately leading to the dissociation of Src from Pyk2.
Collapse
|
30
|
Arimura Y, Vang T, Tautz L, Williams S, Mustelin T. TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Mol Immunol 2008; 45:3074-84. [PMID: 18457880 DOI: 10.1016/j.molimm.2008.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/19/2022]
Abstract
We report that the protein tyrosine phosphatase PTP-PEST is expressed in resting human and mouse CD4(+) and CD8(+) T cells, but not in Jurkat T leukemia cells, and that PTP-PEST protein, but not mRNA, was dramatically downregulated in CD4(+) and CD8(+) primary human T cells upon T cell activation. This was also true in mouse CD4(+) T cells, but less striking in mouse CD8(+) T cells. PTP-PEST reintroduced into Jurkat at levels similar to those in primary human T cells, was a potent inhibitor of TCR-induced transactivation of reporter genes driven by NFAT/AP-1 and NF-kappaB elements and by the entire IL-2 gene promoter. Introduction of PTP-PEST into previously activated primary human T cells also reduced subsequent IL-2 production by these cells in response to TCR and CD28 stimulation. The inhibitory effect of PTP-PEST was associated with dephosphorylation the Lck kinase at its activation loop site (Y394), reduced early TCR-induced tyrosine phosphorylation, reduced ZAP-70 phosphorylation and inhibition of MAP kinase activation. We propose that PTP-PEST tempers T cell activation by dephosphorylating TCR-proximal signaling molecules, such as Lck, and that down-regulation of PTP-PEST may be a reason for the increased response to TCR triggering of previously activated T cells.
Collapse
MESH Headings
- Animals
- CSK Tyrosine-Protein Kinase
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Humans
- Immunologic Memory
- Jurkat Cells
- Leukemia/enzymology
- Leukemia/pathology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Membrane Microdomains/enzymology
- Mice
- Mice, Inbred C57BL
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Transcriptional Activation
- src-Family Kinases
Collapse
Affiliation(s)
- Yutaka Arimura
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
31
|
Granot-Attas S, Elson A. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption. Eur J Cell Biol 2008; 87:479-90. [PMID: 18342392 DOI: 10.1016/j.ejcb.2008.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 01/06/2023] Open
Abstract
Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage. Their primary function is to degrade bone in various physiological contexts. Osteoclasts adhere to bone via podosomes, specialized adhesion structures whose structure and subcellular organization are affected by mechanical contact of the cell with bone matrix. Ample evidence indicates that reversible tyrosine phosphorylation of podosomal proteins plays a major role in determining the organization and dynamics of podosomes. Although roles of several tyrosine kinases are known in detail in this respect, little is known concerning the roles of protein tyrosine phosphatases (PTPs) in regulating osteoclast adhesion. Here we summarize available information concerning the known and hypothesized roles of the best-researched PTPs in osteoclasts - PTPRO, PTP epsilon, SHP-1, and PTP-PEST. Of these, PTPRO, PTP epsilon, and PTP-PEST appear to support osteoclast activity while SHP-1 inhibits it. Additional studies are required to provide full molecular details of the roles of these PTPs in regulating osteoclast adhesion, and to uncover additional PTPs that participate in this process.
Collapse
Affiliation(s)
- Shira Granot-Attas
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
32
|
Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 2007; 28:201-14. [PMID: 17967873 DOI: 10.1128/mcb.01324-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Focal adhesion kinase (FAK) is an essential kinase that regulates developmental processes and functions in the pathology of human disease. An intramolecular autoinhibitory interaction between the FERM and catalytic domains is a major mechanism of regulation. Based upon structural studies, a fluorescence resonance energy transfer (FRET)-based FAK biosensor that discriminates between autoinhibited and active conformations of the kinase was developed. This biosensor was used to probe FAK conformational change in live cells and the mechanism of regulation. The biosensor demonstrates directly that FAK undergoes conformational change in vivo in response to activating stimuli. A conserved FERM domain basic patch is required for this conformational change and for interaction with a novel ligand for FAK, acidic phospholipids. Binding to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing phospholipid vesicles activated and induced conformational change in FAK in vitro, and alteration of PIP2 levels in vivo changed the level of activation of the conformational biosensor. These findings provide direct evidence of conformational regulation of FAK in living cells and novel insight into the mechanism regulating FAK conformation.
Collapse
|
33
|
Lietha D, Cai X, Ceccarelli DFJ, Li Y, Schaller MD, Eck MJ. Structural basis for the autoinhibition of focal adhesion kinase. Cell 2007; 129:1177-87. [PMID: 17574028 PMCID: PMC2077847 DOI: 10.1016/j.cell.2007.05.041] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/03/2007] [Accepted: 05/12/2007] [Indexed: 12/18/2022]
Abstract
Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.
Collapse
Affiliation(s)
- Daniel Lietha
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
It is now well established that the members of the PTP (protein tyrosine phosphatase) superfamily play critical roles in fundamental biological processes. Although there has been much progress in defining the function of PTPs, the task of identifying substrates for these enzymes still presents a challenge. Many PTPs have yet to have their physiological substrates identified. The focus of this review will be on the current state of knowledge of PTP substrates and the approaches used to identify them. We propose experimental criteria that should be satisfied in order to rigorously assign PTP substrates as bona fide. Finally, the progress that has been made in defining the biological roles of PTPs through the identification of their substrates will be discussed.
Collapse
Affiliation(s)
- Tony Tiganis
- *Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Anton M. Bennett
- †Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Chellaiah MA, Kuppuswamy D, Lasky L, Linder S. Phosphorylation of a Wiscott-Aldrich Syndrome Protein-associated Signal Complex Is Critical in Osteoclast Bone Resorption. J Biol Chem 2007; 282:10104-10116. [PMID: 17283076 DOI: 10.1074/jbc.m608957200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activities of different kinases have been correlated to the phosphorylation of Wiscott-Aldrich syndrome protein (WASP) by studies in multiple cell systems. The purpose of this study was to elucidate the regulatory mechanisms involved in WASP phosphorylation and the resulting sealing ring formation in osteoclasts. The phosphorylation state of WASP and WASP-interacting proteins was determined in osteoclasts treated with osteopontin or expressing either constitutively active or kinase-defective Src by adenovirus-mediated delivery. In vitro kinase analysis of WASP immunoprecipitates exhibited phosphorylation of c-Src, PYK2, WASP, protein-tyrosine phosphatase (PTP)-PEST, and Pro-Ser-Thr phosphatase-interacting protein (PSTPIP). Phosphorylation of these proteins was increased in osteopontin-treated and constitutively active Src-expressing osteoclasts. Pulldown analysis with glutathione S-transferase-fused proline-rich regions of PTP-PEST revealed coprecipitation of WASP, PYK2, c-Src, and PSTPIP proteins with the N-terminal region (amino acids 294-497) of PTP-PEST. Similarly, interaction of the same signaling proteins, as well as PTP-PEST, was observed with glutathione S-transferase-fused proline-rich regions of WASP. Furthermore, osteopontin stimulation or constitutively active Src expression resulted in serine phosphorylation and inhibition of WASP-associated PTP-PEST. The inhibition of PTP-PEST was accompanied by an increase in tyrosine phosphorylation of WASP and other associated signaling proteins. Experiments with an inhibitor to phosphatase and small interference RNA to PTP-PEST confirmed the involvement of PTP-PEST in sealing ring formation and bone resorption. WASP, which is identified in the sealing ring of resorbing osteoclasts, also demonstrates colocalization with c-Src, PYK2, PSTPIP, and PTP-PEST in immunostaining analyses. Our findings suggest that both tyrosine kinase(s) and the tyrosine phosphatase PTP-PEST coordinate the formation of the sealing ring and thus the bone-resorbing function of osteoclasts.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201.
| | - Dhandapani Kuppuswamy
- Gazes Cardiac Research Institute, Cardiology Division, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Larry Lasky
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94111
| | - Stefan Linder
- Institut fuer Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universitaet, Pettenkoferstrasse 9, D-80336 Muenchen, Germany
| |
Collapse
|
36
|
Sahu SN, Nunez S, Bai G, Gupta A. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 2007; 292:C2288-96. [PMID: 17329398 DOI: 10.1152/ajpcell.00503.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases Pyk2 and c-Src and the cytosolic protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence (PTP-PEST). In the current study, LPXN was detectable as a 50-kDa protein in PC-3 cells, a bone-derived metastatic prostate cancer cell line. In PC-3 cells, LPXN was also found to associate with Pyk2, c-Src, and PTP-PEST. A siRNA-mediated inhibition of LPXN resulted in decreased in vitro PC-3 cell migration. A recombinant adenoviral-mediated overexpression of LPXN resulted in an increased association of Pyk2 with LPXN, whereas a similar adenoviral-mediated overexpression of PTP-PEST resulted in decreased association of Pyk2 and c-Src with LPXN. The overexpression of LPXN in PC-3 cells resulted in increased migration, as assessed by in vitro Transwell migration assays. On the contrary, the overexpression of PTP-PEST in PC-3 cells resulted in decreased migration. The overexpression of LPXN resulted in increased activity of Rho GTPase, which was decreased in PTP-PEST-overexpressing cells. The increase in Rho GTPase activity following overexpression of LPXN was inhibited in the presence of Y27632, a selective inhibitor of Rho GTPase. In conclusion, our data demonstrate that LPXN forms a signaling complex with Pyk2, c-Src, and PTP-PEST to regulate migration of prostate cancer cells.
Collapse
Affiliation(s)
- Surasri Nandan Sahu
- Dept. of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
37
|
Sirois J, Côté JF, Charest A, Uetani N, Bourdeau A, Duncan SA, Daniels E, Tremblay ML. Essential function of PTP-PEST during mouse embryonic vascularization, mesenchyme formation, neurogenesis and early liver development. Mech Dev 2006; 123:869-80. [PMID: 17070019 PMCID: PMC4671782 DOI: 10.1016/j.mod.2006.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/03/2006] [Accepted: 08/28/2006] [Indexed: 11/29/2022]
Abstract
PTP (protein-tyrosine phosphatase)-PEST is a ubiquitously expressed cellular regulator of integrin signalling. It has been shown to bind several molecules such as Shc, paxillin and Grb2, that are involved downstream of FAK (focal adhesion kinase) pathway. Through its specific association to p130cas and further dephosphorylation, PTP-PEST plays a critical role in cell-matrix interactions, which are essential during embryogenesis. We report here that ablation of the gene leads to early embryonic lethality, correlating well with the high expression of the protein during embryonic development. We observed an increased level of tyrosine phosphorylation of p130cas protein in E9.5 PTP-PEST(-/-) embryos, a first evidence of biochemical defect leading to abnormal growth and development. Analysis of null mutant embryos revealed that they reach gastrulation, initiate yolk sac formation, but fail to progress through normal subsequent developmental events. E9.5-10.5 PTP-PEST(-/-) embryos had morphological abnormalities such as defective embryo turning, improper somitogenesis and vasculogenesis, impaired liver development, accompanied by degeneration in both neuroepithelium and somatic epithelia. Moreover, in embryos surviving until E10.5, the caudal region was truncated, with severe mesenchyme deficiency and no successful liver formation. Defects in embryonic mesenchyme as well as subsequent failure of proper vascularization, liver development and somatogenesis, seemed likely to induce lethality at this stage of development, and these results confirm that PTP-PEST plays an essential function in early embryogenesis.
Collapse
Affiliation(s)
- Jacinthe Sirois
- McGill Cancer Center and Biochemistry Department, McGill University, 3655 Sir William Osler Promenade, Montreal, QUE, Canada H3G 1Y6
| | - Jean-François Côté
- Clinical Research Institute of Montreal, 110 pine Avenue West, Montreal, QUE, Canada H2W 1R7
| | - Alain Charest
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noriko Uetani
- McGill Cancer Center and Biochemistry Department, McGill University, 3655 Sir William Osler Promenade, Montreal, QUE, Canada H3G 1Y6
| | - Annie Bourdeau
- McGill Cancer Center and Biochemistry Department, McGill University, 3655 Sir William Osler Promenade, Montreal, QUE, Canada H3G 1Y6
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eugene Daniels
- Department of Anatomy and Cell Biology, McGill University, Montreal, QUE, Canada H3G 1Y6
| | - Michel L. Tremblay
- McGill Cancer Center and Biochemistry Department, McGill University, 3655 Sir William Osler Promenade, Montreal, QUE, Canada H3G 1Y6
| |
Collapse
|
38
|
Hallé M, Liu YC, Hardy S, Théberge JF, Blanchetot C, Bourdeau A, Meng TC, Tremblay ML. Caspase-3 regulates catalytic activity and scaffolding functions of the protein tyrosine phosphatase PEST, a novel modulator of the apoptotic response. Mol Cell Biol 2006; 27:1172-90. [PMID: 17130234 PMCID: PMC1800677 DOI: 10.1128/mcb.02462-05] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein tyrosine phosphatase PEST (PTP-PEST) is involved in the regulation of the actin cytoskeleton. Despite the emerging functions attributed to both PTPs and the actin cytoskeleton in apoptosis, the involvement of PTP-PEST in apoptotic cell death remains to be established. Using several cell-based assays, we showed that PTP-PEST participates in the regulation of apoptosis. As apoptosis progressed, a pool of PTP-PEST localized to the edge of retracting lamellipodia. Expression of PTP-PEST also sensitized cells to receptor-mediated apoptosis. Concertedly, specific degradation of PTP-PEST was observed during apoptosis. Pharmacological inhibitors, immunodepletion experiments, and in vitro cleavage assays identified caspase-3 as the primary regulator of PTP-PEST processing during apoptosis. Caspase-3 specifically cleaved PTP-PEST at the (549)DSPD motif and generated fragments, some of which displayed increased catalytic activity. Moreover, caspase-3 regulated PTP-PEST interactions with paxillin, leupaxin, Shc, and PSTPIP. PTP-PEST acted as a scaffolding molecule connecting PSTPIP to additional partners: paxillin, Shc, Csk, and activation of caspase-3 correlated with the modulation of the PTP-PEST adaptor function. In addition, cleavage of PTP-PEST facilitated cellular detachment during apoptosis. Together, our data demonstrate that PTP-PEST actively contributes to the cellular apoptotic response and reveal the importance of caspases as regulators of PTPs in apoptosis.
Collapse
Affiliation(s)
- Maxime Hallé
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang 115, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Streit S, Ruhe JE, Knyazev P, Knyazeva T, Iacobelli S, Peter S, Hoefler H, Ullrich A. PTP-PEST phosphatase variations in human cancer. ACTA ACUST UNITED AC 2006; 170:48-53. [PMID: 16965954 DOI: 10.1016/j.cancergencyto.2006.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/02/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Signal transduction via tyrosine phosphorylation, normally fine-tuned by the concerted action of both protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is a key mechanism in tumorigenesis. PTP-PEST, a ubiquitously expressed cytoplasmic tyrosine phosphatase, is thought to play an important role in cell adhesion and motility, and may be involved in metastasis. A search for sequence variations within the gene PTPN12 (alias PTP-PEST) was performed in breast cancer cell lines, leading to the identification of three amino acid substitutions at positions 322, 573, and 709. These alterations were also found in squamous cell carcinoma cell lines and could be verified in primary human breast and kidney tumor samples. Analysis of peripheral blood samples confirmed the germline origin of these alterations. Furthermore, functional characterization of the Ile322 and Ala573 PTP-PEST mutants revealed an enhancement of in vitro phosphatase activity, whereas the Lys709 variant showed reduced catalytic activity. These data demonstrate the existence of PTP-PEST variants that might be meaningful for human cancer and underscore the need for further characterizing PTP-PEST and its signaling pathways in context of this disease.
Collapse
Affiliation(s)
- Sylvia Streit
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sahu SN, Khadeer MA, Robertson BW, Núñez SM, Bai G, Gupta A. Association of leupaxin with Src in osteoclasts. Am J Physiol Cell Physiol 2006; 292:C581-90. [PMID: 16914530 DOI: 10.1152/ajpcell.00636.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leupaxin (LPXN), which belongs to the paxillin extended family of adaptor proteins, was previously identified as a component of the sealing zone in osteoclasts. LPXN was found to associate with several podosomal proteins, such as the protein tyrosine kinase Pyk2, the protein-tyrosine phosphatase-PEST (PTP-PEST), actin-binding proteins, and regulators of actin cytoskeletal reorganization. It was previously demonstrated that inhibition of LPXN expression resulted in reduced osteoclast-mediated resorption. In the current study, overexpression of LPXN in murine osteoclasts resulted in both enhanced resorptive activity and cell adhesion, as assessed by in vitro resorption assays. The overexpression of LPXN resulted in an increased association of Pyk2 with LPXN. In an attempt to determine an additional biochemical basis for the observed phenomenon in increased osteoclast activity, a coimmunoprecipitation screen for additional binding partners revealed that Src, a protein tyrosine kinase that is critical to both podosome formation and osteoclast function, was also associated with LPXN. After exposure to the pro-inflammatory and osteoclastogenic cytokine TNF-alpha, there was an increase in the level of Src that coimmunoprecipitated with LPXN. Our data indicate that association of the scaffold protein LPXN with Src adds further complexity to the organization of the podosomal signaling complex in osteoclasts.
Collapse
Affiliation(s)
- Surasri Nandan Sahu
- Department of Biomedical Sciences, 4G-29, Dental School, University of Maryland-Baltimore, 666 West Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
41
|
Burridge K, Sastry SK, Sallee JL. Regulation of Cell Adhesion by Protein-tyrosine Phosphatases. J Biol Chem 2006; 281:15593-6. [PMID: 16497668 DOI: 10.1074/jbc.r500030200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein-tyrosine phosphatases are key regulators of protein tyrosine phosphorylation. More than merely terminating the pathways initiated by protein-tyrosine kinases, phosphatases are active participants in many signaling pathways. Signals involving tyrosine phosphorylation are frequently generated in response to cell-matrix adhesion. In addition, high levels of protein tyrosine phosphorylation generally promote disassembly or turnover of adhesions. In this brief review, we will discuss the role of protein-tyrosine phosphatases in cell-matrix adhesions.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell and Developmental Biology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | |
Collapse
|
42
|
Sastry SK, Rajfur Z, Liu BP, Cote JF, Tremblay ML, Burridge K. PTP-PEST couples membrane protrusion and tail retraction via VAV2 and p190RhoGAP. J Biol Chem 2006; 281:11627-36. [PMID: 16513648 PMCID: PMC4664556 DOI: 10.1074/jbc.m600897200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell motility is regulated by a balance between forward protrusion and tail retraction. These phenomena are controlled by a spatial asymmetry in signals at the front and the back of the cell. We show here that the protein-tyrosine phosphatase, PTP-PEST, is required for the coupling of protrusion and retraction during cell migration. PTP-PEST null fibroblasts, which are blocked in migration, exhibit exaggerated protrusions at the leading edge and long, unretracted tails in the rear. This altered morphology is accompanied by changes in the activity of Rho GTPases, Rac1 and RhoA, which mediate protrusion and retraction, respectively. PTP-PEST null cells exhibit enhanced Rac1 activity and decreased RhoA activity. We further show that PTP-PEST directly targets the upstream regulators of Rac1 and RhoA, VAV2 and p190RhoGAP. Moreover, we demonstrate that the activities of VAV2 and p190RhoGAP are regulated by PTP-PEST. Finally, we present evidence indicating the VAV2 can be regulated by integrin-mediated adhesion. These data suggest that PTP-PEST couples protrusion and retraction by acting on VAV2 and p190RhoGAP to reciprocally modulate the activity of Rac1 and RhoA.
Collapse
Affiliation(s)
- Sarita K Sastry
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1048, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Wu SS, Jácamo RO, Vong SK, Rozengurt E. Differential regulation of Pyk2 phosphorylation at Tyr-402 and Tyr-580 in intestinal epithelial cells: roles of calcium, Src, Rho kinase, and the cytoskeleton. Cell Signal 2006; 18:1932-40. [PMID: 16574377 DOI: 10.1016/j.cellsig.2006.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
The calcium-dependent proline-rich tyrosine kinase Pyk2 is activated by tyrosine phosphorylation, associates with focal adhesion proteins, and has been linked to proliferative and migratory responses in a variety of mesenchymal and epithelial cell types. Full Pyk2 activation requires phosphorylation at functionally distinct sites, including autophosphorylation site Tyr-402 and catalytic domain site Tyr-580, though the mechanisms involved are unclear. The pathways mediating Pyk2 phosphorylation at Tyr-402 and Tyr-580 were therefore investigated. Both sites were rapidly and transiently phosphorylated following cell stimulation by Ang II or LPA. However, only Tyr-580 phosphorylation was rapidly enhanced by intracellular Ca(2+) release, or inhibited by Ca(2+) depletion. Conversely, Tyr-402 phosphorylation was highly sensitive to inhibition of actin stress fibers, or of Rho kinase (ROK), an upstream regulator of stress fiber assembly. Ang II also induced a delayed (30-60 min) secondary phosphorylation peak occurring at Tyr-402 alone. Unlike the homologous focal adhesion kinase (FAK), Pyk2 phosphorylation was sensitive neither to the Src inhibitor PP2, nor to truncation of its N-terminal region, which contains a putative autoinhibitory FERM domain. These results better define the mechanisms involved in Pyk2 activation, demonstrating that autophosphorylation is ROK- and stress fiber-dependent, while transphosphorylation within the kinase domain is Ca(2+)-dependent and Src-independent in intestinal epithelial cells. This contrasts with the tight sequential coupling of phosphorylation seen in FAK activation, and further underlines the differences between these closely related kinases.
Collapse
Affiliation(s)
- Steven S Wu
- Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 900 Veteran Avenue, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
44
|
Ostergaard HL, Lysechko TL. Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res 2006; 31:267-82. [PMID: 15888917 DOI: 10.1385/ir:31:3:267] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pyk2 is a protein tyrosine kinase expressed primarily in brain and hematopoietic cells. It becomes activated in response to stimulation through numerous receptors, including integrins, chemokine receptors, and antigen receptors, and is found in association with src-family kinases. Although this enzyme associates with many proteins known to be important for activation and has many characteristics of a scaffolding protein, its function remains elusive. A number of studies in non-T-cells suggest that Pyk2 is important for cell spreading, cell migration, and integrin function; however, a defined role in T-cells has not been established. Here, we discuss evidence that implicates Pyk2 in directionality of signaling, which is essential to establishment of the directional killing mediated by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Hanne L Ostergaard
- Department of Medical Microbiology & Immunology, University of Alberta, 670 Heritage Medicval Centre, Edmonton, Alberta T6G 2S2, Canada.
| | | |
Collapse
|
45
|
Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA, Terada LS. Subcellular targeting of oxidants during endothelial cell migration. ACTA ACUST UNITED AC 2006; 171:893-904. [PMID: 16330715 PMCID: PMC2171295 DOI: 10.1083/jcb.200507004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47phox and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.
Collapse
Affiliation(s)
- Ru Feng Wu
- University of Texas Southwestern, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jamieson JS, Tumbarello DA, Hallé M, Brown MC, Tremblay ML, Turner CE. Paxillin is essential for PTP-PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. J Cell Sci 2005; 118:5835-47. [PMID: 16317044 DOI: 10.1242/jcs.02693] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tyrosine phosphatase PTP-PEST has been implicated in the regulation of cell spreading and migration through dephosphorylation of focal adhesion proteins and inhibition of Rac GTPase activity. The focal adhesion adaptor protein paxillin is also necessary for normal cell migration and binds directly to PTP-PEST. In this study, we have utilized PTP-PEST(-/-) and paxillin(-/-) fibroblasts to demonstrate that paxillin is essential for PTP-PEST inhibition of cell spreading and membrane protrusion as well as inhibition of adhesion-induced Rac activation. Furthermore, we show that paxillin-binding is necessary for PTP-PEST stimulation of cell migration. Mutation analysis indicates that PTP-PEST function involves binding to the paxillin C-terminal LIM domains, and signaling through the tyrosine 31 and 118 phosphorylation sites, as well as the LD4 motif of the paxillin N-terminus. Using 'substrate trapping' approaches and immunoprecipitation, we show that the ARF GAP paxillin kinase linker PKL/GIT2, a paxillin LD4 binding partner, is a substrate for PTP-PEST. Additionally, the PKL-paxillin interaction was necessary for PTP-PEST inhibition of cell spreading. These data provide mechanistic insight into how the paxillin-PTP-PEST interaction contributes to integrin signaling events associated with the spatiotemporal regulation of key modulators of the cytoskeleton and cell motility machinery.
Collapse
Affiliation(s)
- Jennifer S Jamieson
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
47
|
Cousin H, Alfandari D. A PTP-PEST-like protein affects alpha5beta1-integrin-dependent matrix assembly, cell adhesion, and migration in Xenopus gastrula. Dev Biol 2004; 265:416-32. [PMID: 14732402 DOI: 10.1016/j.ydbio.2003.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During amphibian gastrulation, mesodermal cell movements depend on both cell-cell and cell-matrix interactions. Ectodermal cells from the blastocoel roof use alpha5beta1 integrins to assemble a fibronectin-rich extracellular matrix on which mesodermal cells migrate using the same alpha5beta1 integrin. In this report, we show that the tyrosine phosphatase xPTP-PESTr can prevent fibronectin fibril formation when overexpressed in ectodermal cells resulting in delayed gastrulation. In addition, isolated ectodermal cells overexpressing xPTP-PESTr are able to spread on fibronectin using the alpha5beta1 integrin in the absence of activin-A induction and before the onset of gastrulation. We further show that while the inhibition of fibrillogenesis depends on the phosphatase activity of xPTP-PESTr, induction of cell spreading does not. Finally, while cell spreading is usually associated with cell migration, xPTP-PESTr promotes ectodermal cell spreading on fibronectin but also reduces cell migration in response to activin-A, suggesting an adverse effect on cell translocation. We propose that xPTP-PESTr overexpression adversely affect cell migration by preventing de-adhesion of cells from the substrate.
Collapse
Affiliation(s)
- Hélène Cousin
- Paige Laboratory, Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
48
|
McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR. The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem 2003; 279:12009-19. [PMID: 14701796 DOI: 10.1074/jbc.m313098200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-mediated adhesion plays an important role in B cell development and activation. Signaling initiated by antigens, chemokines, or phorbol esters can rapidly convert integrins to an activated adhesion-competent state. The binding of integrins to their ligands can then induce actin-dependent cell spreading, which can facilitate cell-cell adhesion or cell migration on extracellular matrices. The signaling pathways involved in integrin activation and post-adhesion events in B cells are not completely understood. We have previously shown that anti-Ig antibodies, the chemokine stromal cell-derived factor-1 (SDF-1; CXCL12), and phorbol esters activate the Rap1 and Rap2 GTPases in B cells and that Rap activation is essential for SDF-1-induced B cell migration (McLeod, S. J., Li, A. H. Y., Lee, R. L., Burgess, A. E., and Gold, M. R. (2002) J. Immunol. 169, 1365-1371; Christian, S. L., Lee, R. L., McLeod, S. J., Burgess, A. E., Li, A. H. Y., Dang-Lawson, M., Lin, K. B. L., and Gold, M. R. (2003) J. Biol. Chem. 278, 41756-41767). We show here that preventing Rap activation by expressing Rap-specific GTPase-activating protein II (RapGAPII) significantly decreased lymphocyte function-associated antigen-1- and alpha(4) integrin-dependent binding of murine B cell lines to purified adhesion molecules and to other cells. Conversely, augmenting Rap activation by expressing a constitutively active form of Rap2 enhanced B cell adhesion, showing for the first time that Rap2 can promote integrin activation. We also show that blocking Rap activation inhibited anti-Ig-induced cell spreading and phorbol ester-induced actin polymerization as well as anti-Ig- and SDF-1-induced phosphorylation of Pyk2, a tyrosine kinase involved in morphological changes and chemokine-induced B cell migration. Thus, the Rap GTPases regulate integrin-mediated B cell adhesion as well as processes that control B cell morphology and migration.
Collapse
Affiliation(s)
- Sarah J McLeod
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
49
|
Sheehan TP, Neve RL, Duman RS, Russell DS. Antidepressant effect of the calcium-activated tyrosine kinase Pyk2 in the lateral septum. Biol Psychiatry 2003; 54:540-51. [PMID: 12946883 DOI: 10.1016/s0006-3223(02)01815-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating evidence indicates that neural activity in the lateral septum (LS) influences the pathophysiology of depression and therapeutic effectiveness of antidepressant drugs. For example, the development of behavioral deficits in animal screens for antidepressant drug activity corresponds with a blunting of LS activity, whereas chronic treatment with antidepressants enhances cell firing in the LS; however, the molecular mechanisms underlying such behavioral functions of the LS have not been determined. The nonreceptor tyrosine kinase Pyk2 is highly expressed in the LS and plays important roles in regulating cellular excitability and synaptic plasticity, making it an attractive candidate for regulating the effects of stress and antidepressants on LS functioning and behavior. We provide evidence that stress decreases Pyk2 phosphorylation in the LS, whereas enhancing Pyk2 expression in LS neurons has an antidepressant effect behaviorally.Pyk2 messenger ribonucleic acid (mRNA) expression in the rat forebrain was detected by in situ hybridization, and a brief description of the distribution of Pyk2 mRNA in selected areas is presented. Levels of total Pyk2 protein and phosphorylated Pyk2 were subsequently measured in the LS and hippocampus following stress exposure, as were levels of extracellular stimuli-regulated kinase (Erk) and phospho-Erk. Herpes simplex virus (HSV)-mediated gene transfer was then used to enhance Pyk2 expression in the LS, and the effect this had on behavior in the learned helplessness model of depression was evaluated. High levels of Pyk2 mRNA were detected in a number of forebrain regions, including the hippocampus and LS. Following acute stress exposure, subjects showed a decrease in phosphorylated Pyk2 and Erk in the LS but not in the hippocampus. Total levels of Pyk2 and Erk remained unchanged following stress. In the learned helplessness paradigm, injection of HSV-Pyk2 into the LS prevented the active avoidance deficit caused by exposure to inescapable shock, indicative of an antidepressant effect. These results indicate that following acute stress, Pyk2 and Erk activity in the LS are decreased, whereas experimentally increasing Pyk2 activity in LS neurons reverses the behavioral deficits of acute, inescapable stress. These findings establish a role for the tyrosine kinase Pyk2 in the biochemical and behavioral responses to stress and suggest a possible role in the pathophysiology of depression, particularly notable considering Pyk2's role in promoting synaptic plasticity.
Collapse
Affiliation(s)
- Teige P Sheehan
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut 06508, USA
| | | | | | | |
Collapse
|
50
|
Seabold GK, Burette A, Lim IA, Weinberg RJ, Hell JW. Interaction of the tyrosine kinase Pyk2 with the N-methyl-D-aspartate receptor complex via the Src homology 3 domains of PSD-95 and SAP102. J Biol Chem 2003; 278:15040-8. [PMID: 12576483 DOI: 10.1074/jbc.m212825200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein-tyrosine kinase Pyk2/CAKbeta/CADTK is a key activator of Src in many cells. At hippocampal synapses, induction of long term potentiation requires the Pyk2/Src signaling pathway, which up-regulates the activity of N-methyl-d-aspartate-type glutamate receptors. Because localization of protein kinases close to their substrates is crucial for effective phosphorylation, we investigated how Pyk2 might be recruited to the N-methyl-d-aspartate receptor complex. This interaction is mediated by PSD-95 and its homolog SAP102. Both proteins colocalize with Pyk2 at postsynaptic dendritic spines in the cerebral cortex. The proline-rich regions in the C-terminal half of Pyk2 bind to the SH3 domain of PSD-95 and SAP102. The SH3 and guanylate kinase homology (GK) domain of PSD-95 and SAP102 interact intramolecularly, but the physiological significance of this interaction has been unclear. We show that Pyk2 effectively binds to the Src homology 3 (SH3) domain of SAP102 only when the GK domain is removed from the SH3 domain. Characterization of PSD-95 and SAP102 as adaptor proteins for Pyk2 fills a critical gap in the understanding of the spatial organization of the Pyk2-Src signaling pathway at the postsynaptic site and reveals a physiological function of the intramolecular SH3-GK domain interaction in SAP102.
Collapse
Affiliation(s)
- Gail K Seabold
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532, USA
| | | | | | | | | |
Collapse
|