1
|
Zhang C, Zhang S, Wang G, Huang X, Xu S, Wang D, Guo C, Wang Y. Genomics and transcriptomics identify quantitative trait loci affecting growth-related traits in silver pomfret (Pampus argenteus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101414. [PMID: 39813916 DOI: 10.1016/j.cbd.2025.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources. Therefore, we conducted mass selection for fast-growing strain P. argenteus for several consecutive years. Various genetic improvement programs have modified its genome sequence through selective pressure, leaving nucleotide signals that can be detected at the genomic level. In the present study, we combined bulked segregant analysis and transcriptome sequencing to identify candidate single nucleotide polymorphisms (SNPs) and key genes for growth-related traits in P. argenteus. A total of 7,280,936 SNPs and 2,212,379 insertions/deletions were identified in the extreme phenotypes of the fast-growing and slow-growing groups. Based on the examination of SNP frequency differences and sliding-window analysis, 42 SNPs were identified as candidate markers. Moreover, 14 of the 42 SNPs linked to growth-related traits were confirmed to be credible SNPs, and eight growth-related genes were screened, namely myb-binding protein 1 A, insulin A/B chains, α-1B adrenoceptor, engulfment and cell motility protein 3, myosin light chain kinase family member 4, insulin receptor located, unconventional myosin-9b, and matrilin-1. An optimal three-factor model (SNP4&SNP12&SNP14) was constructed using the generalized multifactor dimensionality reduction method, and its accuracy was verified as 67.72 %. These results may benefit genetic studies and accelerate genetic improvement of fast-growing strains of P. argenteus.
Collapse
Affiliation(s)
- Cheng Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shun Zhang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Guanlin Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Xiang Huang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shanliang Xu
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Danli Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Chunyang Guo
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China.
| | - Yajun Wang
- National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China.
| |
Collapse
|
2
|
Qasim H, Rajaei M, Xu Y, Reyes-Alcaraz A, Abdelnasser HY, Stewart MD, Lahiri SK, Wehrens XHT, McConnell BK. AKAP12 Upregulation Associates With PDE8A to Accelerate Cardiac Dysfunction. Circ Res 2024; 134:1006-1022. [PMID: 38506047 DOI: 10.1161/circresaha.123.323655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND In heart failure, signaling downstream the β2-adrenergic receptor is critical. Sympathetic stimulation of β2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind β2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS cAMP accumulation in real time downstream of the β2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Ying Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| | - M David Stewart
- Department of Biology and Biochemistry (M.D.S.), University of Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Integrative Physiology, Medicine, Neuroscience, Pediatrics, and Center for Space Medicine, Baylor College of Medicine, Houston, TX (S.K.L., X.H.T.W.)
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (H.Q., M.R., Y.X., A.R.-A., H.Y.A., B.K.M.), University of Houston, TX
| |
Collapse
|
3
|
Wei W, Smrcka AV. Subcellular β-Adrenergic Receptor Signaling in Cardiac Physiology and Disease. J Cardiovasc Pharmacol 2022; 80:334-341. [PMID: 35881897 PMCID: PMC9452480 DOI: 10.1097/fjc.0000000000001324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors are critical regulators of cardiac function with profound effects on cardiac output during sympathetic stimulation. Chronic stimulation of the adrenergic system of the heart under conditions of cardiac stress leads to cardiac dysfunction, hypertrophy, and ultimately failure. Emerging data have revealed that G protein-coupled receptors in intracellular compartments are functionally active and regulate distinct cellular processes from those at the cell surface. β2 adrenergic receptors internalize onto endosomes in various cell types where they have recently been shown to continue to stimulate cAMP production to selectively regulate gene expression. Other studies have identified β1 adrenergic receptors at the nuclear envelope and the Golgi apparatus. Here, we discuss data on signaling by β1 and β2 adrenergic receptors in the heart and the possible influence of their subcellular locations on their divergent physiological functions in cardiac myocytes and in cardiac pathology. Understanding the relative roles of these receptors at these locations could have a significant impact on pharmacological targeting of these receptors for the treatment of heart failure and cardiac diseases.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
4
|
Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther 2022; 231:107977. [PMID: 34480967 PMCID: PMC9375844 DOI: 10.1016/j.pharmthera.2021.107977] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of receptors involved in cellular signaling across the plasma membrane and a major class of drug targets. The canonical model for GPCR signaling involves three components - the GPCR, a heterotrimeric G protein and a proximal plasma membrane effector - that have been generally thought to be freely mobile molecules able to interact by 'collision coupling'. Here, we synthesize evidence that supports the existence of GPCR-effector macromolecular membrane assemblies (GEMMAs) comprised of specific GPCRs, G proteins, plasma membrane effector molecules and other associated transmembrane proteins that are pre-assembled prior to receptor activation by agonists, which then leads to subsequent rearrangement of the GEMMA components. The GEMMA concept offers an alternative and complementary model to the canonical collision-coupling model, allowing more efficient interactions between specific signaling components, as well as the integration of the concept of GPCR oligomerization as well as GPCR interactions with orphan receptors, truncated GPCRs and other membrane-localized GPCR-associated proteins. Collision-coupling and pre-assembled mechanisms are not exclusive and likely both operate in the cell, providing a spectrum of signaling modalities which explains the differential properties of a multitude of GPCRs in their different cellular environments. Here, we explore the unique pharmacological characteristics of individual GEMMAs, which could provide new opportunities to therapeutically modulate GPCR signaling.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Addiction, Intramural Research Program, NIH, DHHS, Baltimore, MD, USA.
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, IDIBELL, University of Barcelona, L’Hospitalet de Llobregat, Spain
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec
| | - Ralf Jockers
- University of Paris, Institute Cochin, INSERM, CNRS, Paris, France
| | - Diomedes E. Logothetis
- Laboratory of Electrophysiology, Departments of Pharmaceutical Sciences, Chemistry and Chemical Biology and Center for Drug Discovery, School of Pharmacy at the Bouvé College of Health Sciences and College of Science, Northeastern University, Boston, Massachusetts, USA
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
5
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
6
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
8
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure-function continuum with intrinsic disorder-based proteoforms. Cell Mol Life Sci 2019; 76:4461-4492. [PMID: 31428838 PMCID: PMC11105632 DOI: 10.1007/s00018-019-03276-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
GPCR-G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signaling cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand-GPCR and GPCR-G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defines an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR-G protein system represents an illustrative example of the protein structure-function continuum, where structures of the involved proteins represent a complex mosaic of differently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fine-tuned by various post-translational modifications and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specific partners. In other words, GPCRs and G proteins exist as sets of conformational/basic, inducible/modified, and functioning proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, St. Petersburg, 195251, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow, Russian Federation.
| |
Collapse
|
9
|
Fan Q, Yin X, Rababa'h A, Diaz Diaz A, Wijaya CS, Singh S, Suryavanshi SV, Vo HH, Saeed M, Zhang Y, McConnell BK. Absence of gravin-mediated signaling inhibits development of high-fat diet-induced hyperlipidemia and atherosclerosis. Am J Physiol Heart Circ Physiol 2019; 317:H793-H810. [PMID: 31441691 DOI: 10.1152/ajpheart.00215.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gravin, an A-kinase anchoring protein, is known to play a role in regulating key processes that lead to inflammation and atherosclerosis development, namely, cell migration, proliferation, and apoptosis. We investigated the role of gravin in the development of high-fat diet (HFD)-induced atherosclerosis and hyperlipidemia. Five-week-old male wild-type (WT) and gravin-t/t mice were fed a normal diet or an HFD for 16 wk. Gravin-t/t mice showed significantly lower liver-to-body-weight ratio, cholesterol, triglyceride, and very low-density lipoprotein levels in serum as compared with WT mice on HFD. Furthermore, there was less aortic plaque formation coupled with decreased lipid accumulation and liver damage, as the gravin-t/t mice had lower levels of serum alanine aminotransferase and aspartate aminotransferase. Additionally, gravin-t/t HFD-fed mice had decreased expression of liver 3-hydroxy-3-methyl-glutaryl-CoA reductase, an essential enzyme for cholesterol synthesis and lower fatty acid synthase expression. Gravin-t/t HFD-fed mice also exhibited inhibition of sterol regulatory element binding protein-2 (SREBP-2) expression, a liver transcription factor associated with the regulation of lipid transportation. In response to platelet-derived growth factor receptor treatment, gravin-t/t vascular smooth muscle cells exhibited lower intracellular calcium transients and decreased protein kinase A- and protein kinase C-dependent substrate phosphorylation, notably involving the Erk1/2 signaling pathway. Collectively, these results suggest the involvement of gravin-dependent regulation of lipid metabolism via the reduction of SREBP-2 expression. The absence of gravin-mediated signaling lowers blood pressure, reduces plaque formation in the aorta, and decreases lipid accumulation and damage in the liver of HFD mice. Through these processes, the absence of gravin-mediated signaling complex delays the HFD-induced hyperlipidemia and atherosclerosis.NEW & NOTEWORTHY The gravin scaffolding protein plays a key role in the multiple enzymatic pathways of lipid metabolism. We have shown for the first time the novel role of gravin in regulating the pathways related to the initiation and progression of atherosclerosis. Specifically, an absence of gravin-mediated signaling decreases the lipid levels (cholesterol, triglyceride, and VLDL) that are associated with sterol regulatory element binding protein-2 downregulation.
Collapse
Affiliation(s)
- Qiying Fan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xing Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Abeer Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Andrea Diaz Diaz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Sonal Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Henry Hiep Vo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Moawiz Saeed
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
10
|
Mugabo Y, Lim GE. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation. Endocrinology 2018; 159:3615-3630. [PMID: 30204866 PMCID: PMC6180900 DOI: 10.1210/en.2018-00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Among their pleiotropic functions, scaffold proteins are required for the accurate coordination of signaling pathways. It has only been within the past 10 years that their roles in glucose homeostasis and metabolism have emerged. It is well appreciated that changes in the expression or function of signaling effectors, such as receptors or kinases, can influence the development of chronic diseases such as diabetes and obesity. However, little is known regarding whether scaffolds have similar roles in the pathogenesis of metabolic diseases. In general, scaffolds are often underappreciated in the context of metabolism or metabolic diseases. In the present review, we discuss various scaffold proteins and their involvement in signaling pathways related to metabolism and metabolic diseases. The aims of the present review were to highlight the importance of scaffold proteins and to raise awareness of their physiological contributions. A thorough understanding of how scaffolds influence metabolism could aid in the discovery of novel therapeutic approaches to treat chronic conditions, such as diabetes, obesity, and cardiovascular disease, for which the incidence of all continue to increase at alarming rates.
Collapse
Affiliation(s)
- Yves Mugabo
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Civciristov S, Ellisdon AM, Suderman R, Pon CK, Evans BA, Kleifeld O, Charlton SJ, Hlavacek WS, Canals M, Halls ML. Preassembled GPCR signaling complexes mediate distinct cellular responses to ultralow ligand concentrations. Sci Signal 2018; 11:eaan1188. [PMID: 30301787 PMCID: PMC7416780 DOI: 10.1126/scisignal.aan1188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface signaling proteins, participate in nearly all physiological processes, and are the targets of 30% of marketed drugs. Typically, nanomolar to micromolar concentrations of ligand are used to activate GPCRs in experimental systems. We detected GPCR responses to a wide range of ligand concentrations, from attomolar to millimolar, by measuring GPCR-stimulated production of cyclic adenosine monophosphate (cAMP) with high spatial and temporal resolution. Mathematical modeling showed that femtomolar concentrations of ligand activated, on average, 40% of the cells in a population provided that a cell was activated by one to two binding events. Furthermore, activation of the endogenous β2-adrenergic receptor (β2AR) and muscarinic acetylcholine M3 receptor (M3R) by femtomolar concentrations of ligand in cell lines and human cardiac fibroblasts caused sustained increases in nuclear translocation of extracellular signal-regulated kinase (ERK) and cytosolic protein kinase C (PKC) activity, respectively. These responses were spatially and temporally distinct from those that occurred in response to higher concentrations of ligand and resulted in a distinct cellular proteomic profile. This highly sensitive signaling depended on the GPCRs forming preassembled, higher-order signaling complexes at the plasma membrane. Recognizing that GPCRs respond to ultralow concentrations of neurotransmitters and hormones challenges established paradigms of drug action and provides a previously unappreciated aspect of GPCR activation that is quite distinct from that typically observed with higher ligand concentrations.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cindy K Pon
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Excellerate Bioscience Ltd, MediCity, Nottingham NG90 6BH, UK
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
12
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
13
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Li Z, Singh S, Suryavanshi SV, Ding W, Shen X, Wijaya CS, Gao WD, McConnell BK. Force development and intracellular Ca 2+ in intact cardiac muscles from gravin mutant mice. Eur J Pharmacol 2017; 807:117-126. [PMID: 28428008 DOI: 10.1016/j.ejphar.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Gravin (AKAP12) is an A-kinase-anchoring-protein that scaffolds protein kinase A (PKA), β2-adrenergic receptor (β2-AR), protein phosphatase 2B and protein kinase C. Gravin facilitates β2-AR-dependent signal transduction through PKA to modulate cardiac excitation-contraction coupling and its removal positively affects cardiac contraction. Trabeculae from the right ventricles of gravin mutant (gravin-t/t) mice were employed for force determination. Simultaneously, corresponding intracellular Ca2+ transient ([Ca2+]i) were measured. Twitch force (Tf)-interval relationship, [Ca2+]i-interval relationship, and the rate of decay of post-extrasysolic potentiation (Rf) were also obtained. Western blot analysis were performed to correlate sarcomeric protein expression with alterations in calcium cycling between the WT and gravin-t/t hearts. Gravin-t/t muscles had similar developed force compared to WT muscles despite having lower [Ca2+]i at any given external Ca2+ concentration ([Ca2+]o). The time to peak force and peak [Ca2+]i were slower and the time to 75% relaxation was significantly prolonged in gravin-t/t muscles. Both Tf-interval and [Ca2+]i-interval relations were depressed in gravin-t/t muscles. Rf, however, did not change. Furthermore, Western blot analysis revealed decreased ryanodine receptor (RyR2) phosphorylation in gravin-t/t hearts. Gravin-t/t cardiac muscle exhibits increased force development in responsiveness to Ca2+. The Ca2+ cycling across the SR appears to be unaltered in gravin-t/t muscle. Our study suggests that gravin is an important component of cardiac contraction regulation via increasing myofilament sensitivity to calcium. Further elucidation of the mechanism can provide insights to role of gravin if any in the pathophysiology of impaired contractility.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Heilongjiang, China
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wengang Ding
- Department of Anesthesiology of 2nd Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zaye Tower 6208, Baltimore, MD 21287, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
15
|
Priming GPCR signaling through the synergistic effect of two G proteins. Proc Natl Acad Sci U S A 2017; 114:3756-3761. [PMID: 28325873 DOI: 10.1073/pnas.1617232114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although individual G-protein-coupled receptors (GPCRs) are known to activate one or more G proteins, the GPCR-G-protein interaction is viewed as a bimolecular event involving the formation of a ternary ligand-GPCR-G-protein complex. Here, we present evidence that individual GPCR-G-protein interactions can reinforce each other to enhance signaling through canonical downstream second messengers, a phenomenon we term "GPCR priming." Specifically, we find that the presence of noncognate Gq protein enhances cAMP stimulated by two Gs-coupled receptors, β2-adrenergic receptor (β2-AR) and D1 dopamine receptor (D1-R). Reciprocally, Gs enhances IP1 through vasopressin receptor (V1A-R) but not α1 adrenergic receptor (α1-AR), suggesting that GPCR priming is a receptor-specific phenomenon. The C terminus of either the Gαs or Gαq subunit is sufficient to enhance Gα subunit activation and cAMP levels. Interaction of Gαs or Gαq C termini with the GPCR increases signaling potency, suggesting an altered GPCR conformation as the underlying basis for GPCR priming. We propose three parallel mechanisms involving (i) sequential G-protein interactions at the cognate site, (ii) G-protein interactions at distinct allosteric and cognate sites on the GPCR, and (iii) asymmetric GPCR dimers. GPCR priming suggests another layer of regulation in the classic GPCR ternary-complex model, with broad implications for the multiplicity inherent in signaling networks.
Collapse
|
16
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
17
|
Weninger S, Van Craenenbroeck K, Cameron RT, Vandeput F, Movsesian MA, Baillie GS, Lefebvre RA. Phosphodiesterase 4 interacts with the 5-HT4(b) receptor to regulate cAMP signaling. Cell Signal 2014; 26:2573-82. [PMID: 25101859 DOI: 10.1016/j.cellsig.2014.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase (PDE) 3 and PDE4, which degrade cyclic adenosine monophosphate (cAMP), are important regulators of 5-hydroxytryptamine (5-HT) 4 receptor signaling in cardiac tissue. Therefore, we investigated whether they interact with the 5-HT4(b) receptor, and whether A-kinase anchoring proteins (AKAPs), scaffolding proteins that bind to the regulatory subunit of protein kinase A (PKA) and contribute to the spacial-temporal control of cAMP signaling, are involved in the regulation of 5-HT4(b) receptor signaling. By measuring PKA activity in the absence and presence of PDE3 and PDE4 inhibitiors, we found that constitutive signaling of the overexpressed HA-tagged 5-HT4(b) receptor in HEK293 cells is regulated predominantly by PDE4, with a secondary role for PDE3 that is unmasked in the presence of PDE4 inhibition. Overexpressed PDE4D3 and PDE3A1, and to a smaller extent PDE4D5 co-immunoprecipitate constitutively with the 5-HT4(b) receptor. PDE activity measurements in immunoprecipitates of the 5-HT4(b) receptor confirm the association of PDE4D3 with the receptor and provide evidence that the activity of this PDE may be increased upon receptor stimulation with 5-HT. A possible involvement of AKAPs in 5-HT4(b) receptor signaling was uncovered in experiments using the St-Ht31 inhibitor peptide, which disrupts the interaction of AKAPs with PKA. However, St-Ht31 did not influence 5-HT4(b) receptor-stimulated PKA activity, and endogenous AKAP79 and gravin were not found in immunoprecipitates of the 5-HT4(b) receptor. In conclusion, we found that both PDE3A1 and PDE4D3 are integrated into complexes that contain the 5-HT4(b) receptor and may thereby regulate 5-HT4(b) receptor-mediated signaling.
Collapse
Affiliation(s)
- S Weninger
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium
| | - K Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - R T Cameron
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - F Vandeput
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - M A Movsesian
- Cardiovascular Medicine Division, VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - G S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Office 534, Wolfson-Link Building, Glasgow G12 8QQ, UK
| | - R A Lefebvre
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, Ghent 9000, Belgium.
| |
Collapse
|
18
|
Enhanced cardiac function in Gravin mutant mice involves alterations in the β-adrenergic receptor signaling cascade. PLoS One 2013. [PMID: 24058627 DOI: 10.1371/journal.pone.0074784.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gravin, an A-kinase anchoring protein, targets protein kinase A (PKA), protein kinase C (PKC), calcineurin and other signaling molecules to the beta2-adrenergic receptor (β2-AR). Gravin mediates desensitization/resensitization of the receptor by facilitating its phosphorylation by PKA and PKC. The role of gravin in β-AR mediated regulation of cardiac function is unclear. The purpose of this study was to determine the effect of acute β-AR stimulation on cardiac contractility in mice lacking functional gravin. Using echocardiographic analysis, we observed that contractility parameters such as left ventricular fractional shortening and ejection fraction were increased in gravin mutant (gravin-t/t) animals lacking functional protein compared to wild-type (WT) animals both at baseline and following acute isoproterenol (ISO) administration. In isolated gravin-t/t cardiomyocytes, we observed increased cell shortening fraction and decreased intracellular Ca(2+) in response to 1 µmol/L ISO stimulation. These physiological responses occurred in the presence of decreased β2-AR phosphorylation in gravin-t/t hearts, where PKA-dependent β2-AR phosphorylation has been shown to lead to receptor desensitization. cAMP production, PKA activity and phosphorylation of phospholamban and troponin I was comparable in WT and gravin-t/t hearts both with and without ISO stimulation. However, cardiac myosin binding protein C (cMyBPC) phosphorylation site at position 273 was significantly increased in gravin-t/t versus WT hearts, in the absence of ISO. Additionally, the cardioprotective heat shock protein 20 (Hsp20) was significantly more phosphorylated in gravin-t/t versus WT hearts, in response to ISO. Our results suggest that disruption of gravin's scaffold mediated signaling is able to increase baseline cardiac function as well as to augment contractility in response to acute β-AR stimulation by decreasing β2-AR phosphorylation and thus attenuating receptor desensitization and perhaps by altering PKA localization to increase the phosphorylation of cMyBPC and the nonclassical PKA substrate Hsp20.
Collapse
|
19
|
Guillory AN, Yin X, Wijaya CS, Diaz Diaz AC, Rababa’h A, Singh S, Atrooz F, Sadayappan S, McConnell BK. Enhanced cardiac function in Gravin mutant mice involves alterations in the β-adrenergic receptor signaling cascade. PLoS One 2013; 8:e74784. [PMID: 24058627 PMCID: PMC3776749 DOI: 10.1371/journal.pone.0074784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Gravin, an A-kinase anchoring protein, targets protein kinase A (PKA), protein kinase C (PKC), calcineurin and other signaling molecules to the beta2-adrenergic receptor (β2-AR). Gravin mediates desensitization/resensitization of the receptor by facilitating its phosphorylation by PKA and PKC. The role of gravin in β-AR mediated regulation of cardiac function is unclear. The purpose of this study was to determine the effect of acute β-AR stimulation on cardiac contractility in mice lacking functional gravin. Using echocardiographic analysis, we observed that contractility parameters such as left ventricular fractional shortening and ejection fraction were increased in gravin mutant (gravin-t/t) animals lacking functional protein compared to wild-type (WT) animals both at baseline and following acute isoproterenol (ISO) administration. In isolated gravin-t/t cardiomyocytes, we observed increased cell shortening fraction and decreased intracellular Ca2+ in response to 1 µmol/L ISO stimulation. These physiological responses occurred in the presence of decreased β2-AR phosphorylation in gravin-t/t hearts, where PKA-dependent β2-AR phosphorylation has been shown to lead to receptor desensitization. cAMP production, PKA activity and phosphorylation of phospholamban and troponin I was comparable in WT and gravin-t/t hearts both with and without ISO stimulation. However, cardiac myosin binding protein C (cMyBPC) phosphorylation site at position 273 was significantly increased in gravin-t/t versus WT hearts, in the absence of ISO. Additionally, the cardioprotective heat shock protein 20 (Hsp20) was significantly more phosphorylated in gravin-t/t versus WT hearts, in response to ISO. Our results suggest that disruption of gravin’s scaffold mediated signaling is able to increase baseline cardiac function as well as to augment contractility in response to acute β-AR stimulation by decreasing β2-AR phosphorylation and thus attenuating receptor desensitization and perhaps by altering PKA localization to increase the phosphorylation of cMyBPC and the nonclassical PKA substrate Hsp20.
Collapse
Affiliation(s)
- Ashley N. Guillory
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Xing Yin
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Cori S. Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Andrea C. Diaz Diaz
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Abeer Rababa’h
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Sonal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston Texas Medical Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Schott MB, Grove B. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin. Cell Signal 2013; 25:2125-35. [PMID: 23838009 DOI: 10.1016/j.cellsig.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC.
Collapse
Affiliation(s)
- Micah B Schott
- Department of Basic Sciences, UND School of Medicine and Health Sciences, 501 N Columbia Rd., Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
21
|
Flynn R, Altier C. A macromolecular trafficking complex composed of β₂-adrenergic receptors, A-Kinase Anchoring Proteins and L-type calcium channels. J Recept Signal Transduct Res 2013; 33:172-6. [PMID: 23557075 DOI: 10.3109/10799893.2013.782219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Sympathetic modulation of cardiac L-type calcium channels is an important mechanism for regulating heart rate and cardiac contractility. At the molecular level, activation of β-adrenergic receptors (βAR) increases calcium influx into cardiac myocytes by activating protein kinase A (PKA), leading to subsequent phosphorylation of L-type calcium channels. In the case of the β2AR, this process is facilitated by the presence of A-Kinase Anchoring Proteins (AKAPs) that serve as scaffolding proteins for the L-type calcium channel and the β2AR complex. Our work has shown that, in addition to facilitating PKA phosphorylation of the channel, AKAPs also promote an increase in the Cav1.2 channel surface expression. Here we review the molecular mechanisms of β2AR/AKAP/L-type channel interactions and trafficking.
Collapse
Affiliation(s)
- Robyn Flynn
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
22
|
Cotecchia S, Stanasila L, Diviani D. Protein-protein interactions at the adrenergic receptors. Curr Drug Targets 2012; 13:15-27. [PMID: 21777184 PMCID: PMC3290771 DOI: 10.2174/138945012798868489] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 01/07/2023]
Abstract
The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of βarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype. At the end, we will review the main findings on oligomerization of the AR subtypes.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Départment de Pharmacologie et de Toxicologie, Université de Lausanne, Switzerland.
| | | | | |
Collapse
|
23
|
Blant A, Czubryt MP. Promotion and inhibition of cardiac hypertrophy by A-kinase anchor proteins. Can J Physiol Pharmacol 2012; 90:1161-70. [DOI: 10.1139/y2012-032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Originally identified as mediators of cyclic adenosine monophosphate (cAMP) and protein kinase A signaling, A-kinase anchor proteins (AKAPs) are now recognized as a diverse family of molecular scaffolds capable of interacting with many other proteins. Members of the AKAP family within the heart can take on either pro- or anti-hypertrophic roles by interacting with a myriad of protein kinases and phosphatases in the process. AKAPs often form the core of large signaling complexes (or signalosomes) that allow multiple pathways to converge and functionally intertwine. Approximately 30% of AKAPs discovered to date are expressed in the heart, but the functions of many of these remain to be discovered. This review focuses on AKAPs that have been demonstrated to play roles in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- Alexandra Blant
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
24
|
Molecular Mechanisms of G Protein-Independent Signaling Mediated by 7-Transmembrane Receptors. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Koçer SS, Wang HY, Malbon CC. "Shaping" of cell signaling via AKAP-tethered PDE4D: Probing with AKAR2-AKAP5 biosensor. J Mol Signal 2012; 7:4. [PMID: 22583680 PMCID: PMC3493269 DOI: 10.1186/1750-2187-7-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/15/2012] [Indexed: 11/25/2022] Open
Abstract
Background PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE4D, as well as GPCRs, and is obligate for the propagation of the activation of the mitogen-activated protein kinase cascade from GPCRs to ERK1,2. Results Using an AKAR2-AKAP5 fusion “biosensor”, we investigated the spatial-temporal activation of AKAP5 undergoing phosphorylation by PKA in response to β-adrenergic stimulation. The pattern of PKA activation reported by AKAR2-AKAP5 is a more rapid and spatially distinct from those “sensed” by AKAR2-AKAP12. Spatial-temporal restriction of activated PKA by AKAP5 was found to “shape” the signaling response. Phosphatase PDE4D tethered to AKAP5 also later reverses within 60 s elevated intracellular cyclic AMP levels stimulated by β-adrenergic agonist. AKAP12, however, fails to attenuate the rise in cyclic AMP over this time. Fusion of the AKAP5 PDE4D-binding-domain to AKAP12 was found to accelerate a reversal of accumulation of intracellular cyclic AMP. Conclusion AKAPs, which are scaffolds with tethered enzymes, can “shape” the temporal and spatial aspects of cell signaling.
Collapse
Affiliation(s)
- Salih S Koçer
- Department of Pharmacological Sciences, Health Sciences Center, BST-7, SUNY at Stony Brook, School of Medicine, Stony Brook, New York 11794-8651, USA.
| | | | | |
Collapse
|
26
|
Abstract
Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream -signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as -chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.
Collapse
|
27
|
Gao S, Wang HY, Malbon CC. AKAP12 and AKAP5 form higher-order hetero-oligomers. J Mol Signal 2011; 6:8. [PMID: 21831305 PMCID: PMC3170326 DOI: 10.1186/1750-2187-6-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/10/2011] [Indexed: 01/12/2023] Open
Abstract
Background The family of A-kinase-anchoring proteins, AKAPs, constitutes a group of molecular scaffolds that act to catalyze dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. AKAP5 (MW ~47 kDa) and AKAP12 (MW ~191 kDa) homo-oligomerize, but whether or not such AKAPs can hetero-oligomerize into supermolecular scaffolds of increased complexity is unknown. Results Affinity chromatography using immobilized AKAPs as "bait" demonstrates unequivocally that AKAP5 and AKAP12 do form minimally hetero-dimers. Steric-exclusion chromatography of AKAP5 and AKAP12 mixtures revealed the existence of very large, supermolecular complexes containing both AKAPs. Docking of AKAP5 to AKAP12 was increased 4-fold by beta-adrenergic agonist stimulation. Overexpression of AKAP12 was found to potentiate AKAP5-mediated Erk1/2 activation in response to stimulation with beta-adrenergic agonist. Conclusion AKAP5 and AKAP12 are capable of forming hetero-oligomeric supermolecular complexes that influence AKAP locale and function.
Collapse
Affiliation(s)
- Shujuan Gao
- Department of Pharmacology, Health Sciences Center, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794-8651 USA.
| | | | | |
Collapse
|
28
|
Soloff MS, Jeng YJ, Izban MG, Sinha M, Luxon BA, Stamnes SJ, England SK. Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci 2011; 18:781-97. [PMID: 21795739 PMCID: PMC4051400 DOI: 10.1177/1933719111398150] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An important action of progesterone during pregnancy is to maintain the uterus in a quiescent state and thereby prevent preterm labor. The causes of preterm labor are not well understood, so progesterone action on the myometrium can provide clues about the processes that keep the uterus from contracting prematurely. Accordingly, we have carried out Affymetrix GeneChip analysis of progesterone effects on gene expression in immortalized human myometrial cells cultured from a patient near the end of pregnancy. Progesterone appears to inhibit uterine excitability by a number of mechanisms, including increased expression of calcium and voltage-operated K(+) channels, which dampens the electrical activity of the myometrial cell, downregulation of agents, and receptors involved in myometrial contraction, reduction in cell signal components that lead to increased intracellular Ca(2+) concentrations in response to contractile stimuli, and downregulation of proteins involved in the cross-linking of actin and myosin filaments to produce uterine contractions.
Collapse
Affiliation(s)
- Melvyn S. Soloff
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yow-Jiun Jeng
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael G. Izban
- Department of Obstetrics and Gynecology, Meharry Medical College, Nashville, TN, USA
| | - Mala Sinha
- Department of Biochemistry and Molecular Biology, and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Bruce A. Luxon
- Department of Biochemistry and Molecular Biology, and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Susan J. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sarah K. England
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
29
|
Valentine CD, Haggie PM. Confinement of β(1)- and β(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell 2011; 22:2970-82. [PMID: 21680711 PMCID: PMC3154891 DOI: 10.1091/mbc.e11-01-0034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The presence of stable multiprotein complexes containing adrenergic receptors is verified in live H9c2 cardiomyocyte-like cells by single-particle tracking. The immobilization of β-adrenergic receptors presumably contributes to the specificity of cardiac adrenergic responses. The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β1- and β2AR, are structurally similar but mediate distinct signaling responses. Scaffold protein–mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β1- and β2AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)–domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β2AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β2AR confinement. For both β1- and β2AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β1- or β2AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes.
Collapse
Affiliation(s)
- Cathleen D Valentine
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
30
|
Gao S, Wang HY, Malbon CC. AKAP5 and AKAP12 Form Homo-oligomers. J Mol Signal 2011; 6:3. [PMID: 21554706 PMCID: PMC3113324 DOI: 10.1186/1750-2187-6-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize. RESULTS In gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single "domain" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies. CONCLUSION Both AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.
Collapse
Affiliation(s)
- Shujuan Gao
- Departments of Pharmacology, Heath Sciences Center, School of Medicine, State Univerdity of New York at Stony Brook, NY 11794-8651 USA
| | - Hsien-yu Wang
- Physiology & Biophysics, Health Sciences Center, School of Medicine, State Univerdity of New York at Stony Brook, NY 11794-8661 USA
| | - Craig C Malbon
- Departments of Pharmacology, Heath Sciences Center, School of Medicine, State Univerdity of New York at Stony Brook, NY 11794-8651 USA
| |
Collapse
|
31
|
Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, Jockers R. GPCR-Interacting Proteins, Major Players of GPCR Function. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:349-80. [DOI: 10.1016/b978-0-12-385952-5.00001-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS. Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 2010; 107:747-56. [PMID: 20671242 PMCID: PMC2981172 DOI: 10.1161/circresaha.109.216127] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 07/19/2010] [Indexed: 12/12/2022]
Abstract
RATIONALE Sympathetic stimulation of the heart increases the force of contraction and rate of ventricular relaxation by triggering protein kinase (PK)A-dependent phosphorylation of proteins that regulate intracellular calcium. We hypothesized that scaffolding of cAMP signaling complexes by AKAP5 is required for efficient sympathetic stimulation of calcium transients. OBJECTIVE We examined the function of AKAP5 in the β-adrenergic signaling cascade. METHODS AND RESULTS We used calcium imaging and electrophysiology to examine the sympathetic response of cardiomyocytes isolated from wild type and AKAP5 mutant animals. The β-adrenergic regulation of calcium transients and the phosphorylation of substrates involved in calcium handling were disrupted in AKAP5 knockout cardiomyocytes. The scaffolding protein, AKAP5 (also called AKAP150/79), targets adenylyl cyclase, PKA, and calcineurin to a caveolin 3-associated complex in ventricular myocytes that also binds a unique subpopulation of Ca(v)1.2 L-type calcium channels. Only the caveolin 3-associated Ca(v)1.2 channels are phosphorylated by PKA in response to sympathetic stimulation in wild-type heart. However, in the AKAP5 knockout heart, the organization of this signaling complex is disrupted, adenylyl cyclase 5/6 no longer associates with caveolin 3 in the T-tubules, and noncaveolin 3-associated calcium channels become phosphorylated after β-adrenergic stimulation, although this does not lead to an enhanced calcium transient. The signaling domain created by AKAP5 is also essential for the PKA-dependent phosphorylation of ryanodine receptors and phospholamban. CONCLUSIONS These findings identify an AKAP5-organized signaling module that is associated with caveolin 3 and is essential for sympathetic stimulation of the calcium transient in adult heart cells.
Collapse
Affiliation(s)
- C. Blake Nichols
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Charles F. Rossow
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Manuel F. Navedo
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Ruth E. Westenbroek
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Luis F. Santana
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - G. Stanley McKnight
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Welch EJ, Jones BW, Scott JD. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 2010; 10:86-97. [PMID: 20368369 DOI: 10.1124/mi.10.2.6] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A-Kinase Anchoring Proteins (AKAPs) orchestrate and synchronize cellular events by tethering the cAMP-dependent protein kinase (PKA) and other signaling enzymes to organelles and membranes. The control of kinases and phosphatases that are held in proximity to activators, effectors, and substrates favors the rapid dissemination of information from one cellular location to the next. This article charts the inception of the PKA-anchoring hypothesis, the characterization of AKAPs and their nomenclature, and the physiological roles of context-specific AKAP signaling complexes.
Collapse
Affiliation(s)
- Emily J Welch
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
34
|
Tao J, Wang HY, Malbon CC. AKAR2-AKAP12 fusion protein "biosenses" dynamic phosphorylation and localization of a GPCR-based scaffold. J Mol Signal 2010; 5:3. [PMID: 20412577 PMCID: PMC2871262 DOI: 10.1186/1750-2187-5-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/22/2010] [Indexed: 11/24/2022] Open
Abstract
Background The cAMP-dependent protein kinase A (PKA) plays a pivotal role in virtually all cells, there being a multitude of important target molecules that are substrates for PKA in cell signaling. The spatial-temporal dynamics of PKA activation in living cells has been made accessible by the development of clever biosensors that yield a FRET signal in response to the phosphorylation by PKA. AKAR2 is genetically encoded fluorescent probe that acts as a biosensor for PKA activation. AKAP12 is a scaffold that docks PKA, G-protein-coupled receptors, cell membrane negatively-charged phospholipids, and catalyzes receptor resensitization and recycling. In the current work, the AKAR2 biosensor was fused to the N-terminus of AKAP12 to evaluate its ability to function and report on dynamic phosphorylation of the AKAP12 scaffold. Results AKAR2-AKAP12 can be expressed in mammalian cells, is fully functional, and reveals the spatial-temporal activation of AKAP12 undergoing phosphorylation by PKA in response to beta-adrenergic activation in human epidermoid carcinoma A431 cells. Conclusion The dynamic phosphorylation of AKAP12 "biosensed" by AKAR2-AKAP12 reveals the scaffold in association with the cell membrane, undergoing rapid phosphorylation by PKA. The perinuclear, cytoplasmic accumulation of phosphorylated scaffold reflects the phosphorylated, PKA-activated form of AKAP12, which catalyzes the resensitization and recycling of desensitized, internalized G-protein-coupled receptors.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, School of Medicine, Heath Sciences Center, SUNY/Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | |
Collapse
|
35
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
36
|
Ritter SL, Hall RA. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 2009; 10:819-30. [PMID: 19935667 DOI: 10.1038/nrm2803] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) mediate physiological responses to various ligands, such as hormones, neurotransmitters and sensory stimuli. The signalling and trafficking properties of GPCRs are often highly malleable depending on the cellular context. Such fine-tuning of GPCR function can be attributed in many cases to receptor-interacting proteins that are differentially expressed in distinct cell types. In some cases these GPCR-interacting partners directly mediate receptor signalling, whereas in other cases they act mainly as scaffolds to modulate G protein-mediated signalling. Furthermore, GPCR-interacting proteins can have a big impact on the regulation of GPCR trafficking, localization and/or pharmacological properties.
Collapse
Affiliation(s)
- Stefanie L Ritter
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
37
|
Yan X, Walkiewicz M, Carlson J, Leiphon L, Grove B. Gravin dynamics regulates the subcellular distribution of PKA. Exp Cell Res 2009; 315:1247-59. [PMID: 19210988 PMCID: PMC2893735 DOI: 10.1016/j.yexcr.2008.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/24/2008] [Accepted: 12/27/2008] [Indexed: 11/18/2022]
Abstract
Gravin, a multivalent A-kinase anchoring protein (AKAP), localizes to the cell periphery in several cell types and is postulated to target PKA and other binding partners to the plasma membrane. An N-terminal myristoylation sequence and three regions rich in basic amino acids are proposed to mediate this localization. Reports indicating that phorbol ester affects the distribution of SSeCKS, the rat orthologue of gravin, further suggest that PKC may also regulate the subcellular distribution of gravin, which in turn may affect PKA distribution. In this study, quantitative confocal microscopy of cells expressing full-length and mutant gravin-EGFP constructs lacking the proposed targeting domains revealed that either the N-myristoylation site or the polybasic regions were sufficient to target gravin to the cell periphery. Moreover, phorbol ester treatment induced redistribution of gravin-EGFP from the cell periphery to a juxtanuclear vesicular compartment, but this required the presence of the N-myristoylation site. Confocal microscopy further revealed that not only did gravin-EGFP target a PKA RII-ECFP construct to the cell periphery, but PKC activation resulted in redistribution of the gravin and PKA constructs to the same subcellular site. It is postulated that this dynamic response by gravin to PKC activity may mediate PKC dependent control of PKA activity.
Collapse
Affiliation(s)
- Xiaohong Yan
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
39
|
Tao J, Malbon CC. G-protein-coupled receptor-associated A-kinase anchoring proteins AKAP5 and AKAP12: differential signaling to MAPK and GPCR recycling. J Mol Signal 2008; 3:19. [PMID: 19055733 PMCID: PMC2621157 DOI: 10.1186/1750-2187-3-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/02/2008] [Indexed: 11/10/2022] Open
Abstract
Background A-kinase Anchoring Protein AKAP5 and AKAP12 both dock to the β2-adrenergic receptor, the former constitutively, the latter dynamically in response to activation of the receptor with agonist. Results In the current work we analyze the ability of each AKAP to contribute to two downstream signaling events, the activation of mitogen-activate protein kinase and the resensitization/recycling of the internalized, desensitized β2-adrenergic receptor to the cell membrane. Although both AKAP share a large number of docking partners in common (e.g., β2-adrenergic receptor, protein kinases A and C, protein phosphatase-2B, and negatively-charged membrane phospholipids), AKAP5 and AKAP12 are shown to segregate with respect to activation of Erk1,2 and to resensitization/recycling of β2-adrenergic receptor. A431 cells were found to highly express AKAP12, but little of AKAP5. HEK293 cells, in contrast, were found to highly express AKAP5, but little of AKAP12. Suppression of the expression of AKAP5 in either A431 cells or HEK293 cells leads to loss of the ability of the β2-adrenergic receptor to activate Erk1,2. Suppression of the expression of AKAP12 in either cell line leads to loss of the ability of these cells to resensitize the β2-adrenergic receptor. Conclusion Knock-down experiments of endogenous AKAP 5 and AKAP12 in two cell lines used commonly to study β2-adrenergic receptor signaling clearly discriminate between the activation of mitogen-activated protein kinase (a downstream read-out solely mediated by AKAP5) and receptor recycling (a downstream read-out solely mediated by AKAP12).
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, School of Medicine, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | |
Collapse
|
40
|
Membrane signalling complexes: implications for development of functionally selective ligands modulating heptahelical receptor signalling. Cell Signal 2008; 21:179-85. [PMID: 18790047 DOI: 10.1016/j.cellsig.2008.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/24/2008] [Indexed: 11/24/2022]
Abstract
Technological development has considerably changed the way in which we evaluate drug efficacy and has led to a conceptual revolution in pharmacological theory. In particular, molecular resolution assays have revealed that heptahelical receptors may adopt multiple active conformations with unique signalling properties. It is therefore becoming widely accepted that ligand ability to stabilize receptor conformations with distinct signalling profiles may allow to direct the stimulus generated by an activated receptor towards a specific signalling pathway. This capacity to induce only a subset of the ensemble of responses regulated by a given receptor has been termed "functional selectivity" (or "stimulus trafficking"), and provides the bases for a highly specific regulation of receptor signalling. Concomitant with these observations, heptahelical receptors have been shown to associate with G proteins and effectors to form multimeric arrays. These complexes are constitutively formed during protein synthesis and are targeted to the cell surface as integral signalling units. Herein we summarize evidence supporting the existence of such constitutive signalling arrays and analyze the possibility that they may constitute viable targets for developing ligands with "functional selectivity".
Collapse
|
41
|
Scholten A, Aye TT, Heck AJR. A multi-angular mass spectrometric view at cyclic nucleotide dependent protein kinases: in vivo characterization and structure/function relationships. MASS SPECTROMETRY REVIEWS 2008; 27:331-353. [PMID: 18381623 DOI: 10.1002/mas.20166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry has evolved in recent years to a well-accepted and increasingly important complementary technique in molecular and structural biology. Here we review the many contributions mass spectrometry based studies have made in recent years in our understanding of the important cyclic nucleotide activated protein kinase A (PKA) and protein kinase G (PKG). We both describe the characterization of kinase isozymes, substrate phosphorylation, binding partners and post-translational modifications by proteomics based methodologies as well as their structural and functional properties as revealed by native mass spectrometry, H/D exchange MS and ion mobility. Combining all these mass spectrometry based data with other biophysical and biochemical data has been of great help to unravel the intricate regulation of kinase function in the cell in all its magnificent complexity.
Collapse
Affiliation(s)
- Arjen Scholten
- Biomolecular Mass Spectrometry & Proteomics Group, Utrecht Institute of Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands
| | | | | |
Collapse
|
42
|
Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 2008; 48:537-68. [PMID: 18184106 DOI: 10.1146/annurev.pharmtox.48.113006.094830] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endocytic pathway tightly controls the activity of G protein-coupled receptors (GPCRs). Ligand-induced endocytosis can drive receptors into divergent lysosomal and recycling pathways, producing essentially opposite effects on the strength and duration of cellular signaling via heterotrimeric G proteins, and may also promote distinct signaling events from intracellular membranes. This chapter reviews recent developments toward understanding the molecular machinery and functional implications of GPCR sorting in the endocytic pathway, focusing on mammalian GPCRs whose ligand-induced endocytosis is mediated primarily by clathrin-coated pits. Lysosomal sorting of a number of GPCRs occurs via a highly conserved mechanism requiring covalent tagging of receptors with ubiquitin. There is increasing evidence that additional, noncovalent mechanisms control the sorting of endocytosed GPCRs to lysosomes in mammalian cells. Recycling of several GPCRs to the plasma membrane is also specifically sorted, via a mechanism requiring both receptor-specific and shared sorting proteins. The current data reveal an unprecedented degree of specificity and plasticity in the cellular regulation of mammalian GPCRs by endocytic membrane trafficking. These developments have fundamental implications for GPCR pharmacology, and suggest new mechanisms that could be exploited in GPCR-directed pharmacotherapy.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- Institute of Reproductive Biology and Development, Imperial College London, Hammersmith Campus, London, United Kingdom
| | | |
Collapse
|
43
|
Fang Y. Non-invasive Optical Biosensor for Probing Cell Signaling. SENSORS (BASEL, SWITZERLAND) 2007; 7:2316-2329. [PMID: 28903229 PMCID: PMC3864524 DOI: 10.3390/s7102316] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 10/15/2007] [Indexed: 01/14/2023]
Abstract
Cell signaling mediated through a cellular target is encoded by spatial andtemporal dynamics of downstream signaling networks. The coupling of temporal dynamicswith spatial gradients of signaling activities guides cellular responses upon stimulation.Monitoring the integration of cell signaling in real time, if realized, would provide a newdimension for understanding cell biology and physiology. Optical biosensors includingresonant waveguide grating (RWG) biosensor manifest a physiologically relevant andintegrated cellular response related to dynamic redistribution of cellular matters, thusproviding a non-invasive means for cell signaling study. This paper reviews recentprogresses in biosensor instrumentation, and theoretical considerations and potentialapplications of optical biosensors for whole cell sensing.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Sullivan Park, Corning, NY 14831, USA.
| |
Collapse
|
44
|
Molina-Muñoz T, Romero-Avila MT, Avendaño-Vázquez SE, García-Sáinz JA. Phosphorylation, desensitization and internalization of human alpha1B-adrenoceptors induced by insulin-like growth factor-I. Eur J Pharmacol 2007; 578:1-10. [PMID: 17915215 DOI: 10.1016/j.ejphar.2007.08.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/21/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
The effect of insulin-like growth factor-I (IGF-I) on human alpha(1B)-adrenoceptor function, phosphorylation state and cellular location was studied. Rat-1 fibroblasts were transfected with a plasmid construction containing enhanced green fluorescent protein joined to the carboxyl terminus of the human alpha(1B)-adrenoceptor. Receptors were identified by radioligand binding and photoaffinity labeling, and were immunoprecipitated with an antiserum generated against the enhanced green fluorescent protein. The receptor was functional, as evidenced by noradrenaline action on intracellular calcium and inositol phosphate production. IGF-I had no significant effect by itself on these parameters but markedly reduced the effects of noradrenaline. IGF-I induced alpha(1B)-adrenoceptor phosphorylation, which was markedly reduced by the following agents: pertussis toxin, a metalloproteinase inhibitor, diphtheria toxin mutant CRM 197, an epidermal growth factor (EGF) receptor intrinsic kinase activity inhibitor, and by phosphoinositide 3-kinase and protein kinase C inhibitors. IGF-I action appears to involve activation of a pertussis toxin-sensitive G protein, shedding of heparin-binding EGF and autocrine activation of EGF receptors. G protein subunits and phosphotyrosine residues stimulate phosphoinositide 3-kinase activity leading to activation of protein kinase C, which in turn phosphorylates alpha(1B)-adrenoceptors. Confocal fluorescent microscopy showed that alpha(1B)-adrenoceptors fussed to the green fluorescent protein were located in plasma membrane and intracellular vesicles in the basal state. IGF-I induced receptor redistribution favoring the intracellular location; this effect was blocked by hypertonic sucrose and concanavalin A. Our data show that IGF-I induces alpha(1B)-adrenoceptor desensitization associated to receptor phosphorylation and internalization.
Collapse
Affiliation(s)
- Tzindilú Molina-Muñoz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México D. F. 04510, Mexico
| | | | | | | |
Collapse
|
45
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
46
|
Shumay E, Tao J, Wang HY, Malbon CC. Lysophosphatidic acid regulates trafficking of beta2-adrenergic receptors: the Galpha13/p115RhoGEF/JNK pathway stimulates receptor internalization. J Biol Chem 2007; 282:21529-41. [PMID: 17493936 DOI: 10.1074/jbc.m701998200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid is an important lipid ligand regulating many aspects of cell function, including proliferation and migration. Operating via heterotrimeric G proteins to downstream effectors, lysophosphatidic acid was shown to regulate the function and trafficking of the G protein-coupled beta(2)-adrenergic receptor. C3 exotoxin, expression of dominant negative RhoA, and inhibition of c-Jun N-terminal kinase blocked the ability of lysophosphatidic acid to sequester the beta(2)-adrenergic receptor, whereas expression of constitutively active Galpha(13), p115RhoGEF, or RhoA mimicked lysophosphatidic acid (LPA) action, stimulating the internalization of the Galpha(s)-coupled beta(2)-adrenergic receptor. This study revealed a novel cross-talk exerted from the LPA/Galpha(13)/p115RhoGEF/RhoA pathway to the beta(2)-adrenergic receptor/Galpha(s)/adenylyl cyclase pathway, attenuating the ability of beta-adrenergic agonists to act following stimulation of cells by LPA as may occur during beta-adrenergic therapy of an inflammatory response.
Collapse
Affiliation(s)
- Elena Shumay
- Department of Pharmacology, Diabetes and Metabolic Diseases Research Program, School of Medicine, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
47
|
Appert-Collin A, Baisamy L, Diviani D. Regulation of g protein-coupled receptor signaling by a-kinase anchoring proteins. J Recept Signal Transduct Res 2007; 26:631-46. [PMID: 17118802 DOI: 10.1080/10799890600923211] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specificity of transduction events is controlled at the molecular level by scaffold, anchoring, and adaptor proteins, which position signaling enzymes at proper subcellular localization. This allows their efficient catalytic activation and accurate substrate selection. A-kinase anchoring proteins (AKAPs) are group of functionally related proteins that compartmentalize the cAMP-dependent protein kinase (PKA) and other signaling enyzmes at precise subcellular sites in close proximity to their physiological substrate(s) and favor specific phosphorylation events. Recent evidence suggests that AKAP transduction complexes play a key role in regulating G protein-coupled receptor (GPCR) signaling. Regulation can occur at multiple levels because AKAPs have been shown both to directly modulate GPCR function and to act as downstream effectors of GPCR signaling. In this minireview, we focus on the molecular mechanisms through which AKAP-signaling complexes modulate GPCR transduction cascades.
Collapse
Affiliation(s)
- Aline Appert-Collin
- Département de Pharmacologie et de Toxicologie, Faculté de Médecine, Lausanne, Switzerland
| | | | | |
Collapse
|
48
|
Tao J, Wang HY, Malbon CC. Src Docks to A-kinase Anchoring Protein Gravin, Regulating β2-Adrenergic Receptor Resensitization and Recycling. J Biol Chem 2007; 282:6597-608. [PMID: 17200117 DOI: 10.1074/jbc.m608927200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
49
|
Yin D, Shumay E, Wang HY, Malbon CC. Yeast Ste2 receptors as tools for study of mammalian protein kinases and adaptors involved in receptor trafficking. J Mol Signal 2006; 1:2. [PMID: 17224079 PMCID: PMC1761140 DOI: 10.1186/1750-2187-1-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 11/10/2006] [Indexed: 01/24/2023] Open
Abstract
Background Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Yeast cells, in contrast, display G protein-coupled receptors (e.g., alpha-factor pheromone receptor Ste2) that have evolved in the absence of receptor tyrosine kinases, such as those found in higher organisms. We sought to understand the motifs in G protein-coupled receptors that act as substrates for receptor tyrosine kinases and the functional consequence of such phosphorylation on receptor biology. We expressed in human HEK 293 cells yeast wild-type Ste2 as well as a Ste2 chimera engineered with cytoplasmic domains of the beta2-adrenergic receptor and tested receptor sequestration in response to activation of the insulin receptor tyrosine kinase. Results The yeast Ste2 was successfully expressed in HEK 293 cells. In response to alpha-factor, Ste2 signals to the mitogen-activated protein kinase pathway and internalizes. Wash out of agonist and addition of antagonist does not lead to Ste2 recycling to the cell membrane. Internalized Ste2 is not significantly degraded. Beta2-adrenergic receptors display internalization in response to agonist (isoproterenol), but rapidly recycle to the cell membrane following wash out of agonist and addition of antagonist. Beta2-adrenergic receptors display internalization in response to activation of insulin receptors (i.e., cross-regulation), whereas Ste2 does not. Substitution of the cytoplasmic domains of the β2-adrenergic receptor for those of Ste2 creates a Ste2/beta2-adrenergic receptor chimera displaying insulin-stimulated internalization. Conclusion Chimera composed of yeast Ste2 into which domains of mammalian G protein-coupled receptors have been substituted, when expressed in animal cells, provide a unique tool for study of the regulation of G protein-coupled receptor trafficking by mammalian receptor tyrosine kinases and adaptor proteins.
Collapse
Affiliation(s)
- Dezhong Yin
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center, School of Medicine, SUNY/Stony Brook, Stony Brook, NY 11794-8651, USA
| | - Elena Shumay
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center, School of Medicine, SUNY/Stony Brook, Stony Brook, NY 11794-8651, USA
| | - Hsien-yu Wang
- Physiology & Biophysics, Diabetes & Metabolic Diseases Research Center, School of Medicine, SUNY/Stony Brook, Stony Brook, NY 11794-8651, USA
| | - Craig C Malbon
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center, School of Medicine, SUNY/Stony Brook, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
50
|
Gardner LA, Tavalin SJ, Goehring AS, Scott JD, Bahouth SW. AKAP79-mediated targeting of the cyclic AMP-dependent protein kinase to the beta1-adrenergic receptor promotes recycling and functional resensitization of the receptor. J Biol Chem 2006; 281:33537-53. [PMID: 16940053 DOI: 10.1074/jbc.m601809200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resensitization of G protein-coupled receptors (GPCR) following prolonged agonist exposure is critical for restoring the responsiveness of the receptor to subsequent challenges by agonist. The 3'-5' cyclic AMP-dependent protein kinase (PKA) and serine 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) were both necessary for efficient recycling and resensitization of the agonist-internalized beta(1)-AR (Gardner, L. A., Delos Santos, N. M., Matta, S. G., Whitt, M. A., and Bahouth, S. W. (2004) J. Biol. Chem. 279, 21135-21143). Because PKA is compartmentalized near target substrates by interacting with protein kinase A anchoring proteins (AKAPs), the present study was undertaken to identify the AKAP involved in PKA-mediated phosphorylation of the beta(1)-AR and in its recycling and resensitization. Here, we report that Ht-31 peptide-mediated disruption of PKA/AKAP interactions prevented the recycling and functional resensitization of heterologously expressed beta(1)-AR in HEK-293 cells and endogenously expressed beta(1)-AR in SK-N-MC cells and neonatal rat cortical neurons. Whereas several endogenous AKAPs were identified in HEK-293 cells, small interfering RNA-mediated down-regulation of AKAP79 prevented the recycling of the beta(1)-AR in this cell line. Co-immunoprecipitations and fluorescence resonance energy transfer (FRET) microscopy experiments in HEK-293 cells revealed that the beta(1)-AR, AKAP79, and PKA form a ternary complex at the carboxyl terminus of the beta(1)-AR. This complex was involved in PKA-mediated phosphorylation of the third intracellular loop of the beta(1)-AR because disruption of PKA/AKAP interactions or small interfering RNA-mediated down-regulation of AKAP79 both inhibited this response. Thus, AKAP79 provides PKA to phosphorylate the beta(1)-AR and thereby dictate the recycling and resensitization itineraries of the beta(1)-AR.
Collapse
Affiliation(s)
- Lidia A Gardner
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|