1
|
Subhi-Issa N, Tovar Manzano D, Pereiro Rodriguez A, Sanchez Ramon S, Perez Segura P, Ocaña A. γδ T Cells: Game Changers in Immune Cell Therapy for Cancer. Cancers (Basel) 2025; 17:1063. [PMID: 40227601 PMCID: PMC11987767 DOI: 10.3390/cancers17071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 04/15/2025] Open
Abstract
Gamma delta (γδ) T cells are a unique subset of T lymphocytes with distinctive features that make them highly promising candidates for cancer therapy. Their MHC-independent recognition of tumor antigens, ability to mediate direct cytotoxicity, and role in modulating the tumor microenvironment position them as versatile agents in cancer immunotherapy. This review integrates and synthesizes the existing data on γδ T cells, with an emphasis on the development and optimization of in vitro expansion protocols. Critical aspects are detailed such as activation strategies, co-culture systems, cytokine use, and other parameters to ensure robust cell proliferation and functionality, which may be valuable for those developing or optimizing clinical practices. Finally, we discuss current advancements in γδ T cell research, clinical experience, and highlight areas needing further exploration. Considering these data, we hypothesize and propose potential new applications such as engineering γδ T cells for enhanced resistance to immune checkpoint pathways or for localized cytokine delivery within the tumor microenvironment, which could broaden their therapeutic impact in the treatment of cancer and beyond.
Collapse
Affiliation(s)
- Nabil Subhi-Issa
- Department of Immunology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Daniel Tovar Manzano
- Department of Immunology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | | | - Silvia Sanchez Ramon
- Department of Immunology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
- Department of Immunology, Ophthalmology, and ORL, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Pedro Perez Segura
- Department of Oncology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain (A.O.)
| | - Alberto Ocaña
- Department of Oncology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain (A.O.)
| |
Collapse
|
2
|
Xu Q, Sharif M, James E, Dismorr JO, Tucker JHR, Willcox BE, Mehellou Y. Phosphonodiamidate prodrugs of phosphoantigens (ProPAgens) exhibit potent Vγ9/Vδ2 T cell activation and eradication of cancer cells. RSC Med Chem 2024; 15:2462-2473. [PMID: 39026632 PMCID: PMC11253855 DOI: 10.1039/d4md00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
The phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) is an established activator of Vγ9/Vδ2 T cells and stimulates downstream effector functions including cytotoxicity and cytokine production. In order to improve its drug-like properties, we herein report the design, synthesis, serum stability, in vitro metabolism, and biological evaluation of a new class of symmetrical phosphonodiamidate prodrugs of methylene and difluoromethylene monophosphonate derivatives of HMBPP. These prodrugs, termed phosphonodiamidate ProPAgens, were synthesized in good yields, exhibited excellent serum stability (>7 h), and their in vitro metabolism was shown to be initiated by carboxypeptidase Y. These phosphonodiamidate ProPAgens triggered potent activation of Vγ9/Vδ2 T cells, which translated into efficient Vγ9/Vδ2 T cell-mediated eradication of bladder cancer cells in vitro. Together, these findings showcase the potential of these phosphonodiamidate ProPAgens as Vγ9/Vδ2 T cell modulators that could be further developed as novel cancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Qin Xu
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Maria Sharif
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Edward James
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham Birmingham B15 2TT UK
- Cancer Immunology and Immunotherapy Centre, University of Birmingham Birmingham B15 2TT UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Cardiff CF10 3NB UK
- Medicines Discovery Institute, Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
3
|
Schadeck J, Oberg HH, Peipp M, Hedemann N, Schamel WW, Bauerschlag D, Wesch D. Vdelta1 T cells are more resistant than Vdelta2 T cells to the immunosuppressive properties of galectin-3. Front Immunol 2024; 14:1286097. [PMID: 38259448 PMCID: PMC10800970 DOI: 10.3389/fimmu.2023.1286097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ovarian carcinomas have the highest lethality amongst gynecological tumors. A problem after primary resection is the recurrence of epithelial ovarian carcinomas which is often associated with chemotherapy resistance. To improve the clinical outcome, it is of high interest to consider alternative therapy strategies. Due to their pronounced plasticity, γδ T cells are attractive for T-cell-based immunotherapy. However, tumors might escape by the release of lectin galectin-3, which impairs γδ T-cell function. Hence, we tested the effect of galectin-3 on the different γδ T-cell subsets. After coculture between ovarian tumor cells and Vδ1 or Vδ2 T cells enhanced levels of galectin-3 were released. This protein did not affect the cytotoxicity of both γδ T-cell subsets, but differentially influenced the proliferation of the two γδ T-cell subsets. While increased galectin-3 levels and recombinant galectin-3 inhibited the proliferation of Vδ2 T cells, Vδ1 T cells were unaffected. In contrast to Vδ1 T cells, the Vδ2 T cells strongly upregulated the galectin-3 binding partner α3β1-integrin after their activation correlating with the immunosuppressive properties of galectin-3. In addition, galectin-3 reduced the effector memory compartment of zoledronate-activated Vδ2 T cells. Therefore, our data suggest that an activation of Vδ1 T-cell proliferation as part of a T-cell-based immunotherapy can be of advantage.
Collapse
Affiliation(s)
- Jan Schadeck
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Matthias Peipp
- Divison of Antibody-Based Immunotherapy, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Wolfgang W. Schamel
- Signalling Research Centre Biological Signalling Studies (BIOSS) and Centre of Integrative Biological Signalling Studies (CIBSS), Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
4
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
5
|
Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? Eur J Pharmacol 2022; 919:174803. [DOI: 10.1016/j.ejphar.2022.174803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
|
6
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
7
|
Seitz J, Wirth T. Electrochemical bromofunctionalization of alkenes in a flow reactor. Org Biomol Chem 2021; 19:6892-6896. [PMID: 34327521 DOI: 10.1039/d1ob01302e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bromination of organic molecules has been extensively studied to date, yet there is still a demand for safe and sustainable methodologies. Hazardous reagents, selectivity, low atom economy and waste production are the most persisting problems of brominating reagents. The electrochemical oxidation of bromide to bromine is a viable strategy to reduce waste by avoiding chemical oxidants. Furthermore, the in situ generation of reactive intermediates minimizes the risk of hazardous reagents. In this work, we investigate the electrochemical generation of bromine from hydrobromic acid in a flow electrochemical reactor. Various alkenes could be converted to their corresponding dibromides, bromohydrines, bromohydrin ethers and cyclized products in good to excellent yields.
Collapse
Affiliation(s)
- Jakob Seitz
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | | |
Collapse
|
8
|
Laplagne C, Ligat L, Foote J, Lopez F, Fournié JJ, Laurent C, Valitutti S, Poupot M. Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Cell Mol Immunol 2021; 18:1861-1870. [PMID: 34183807 PMCID: PMC8237548 DOI: 10.1038/s41423-021-00720-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.
Collapse
Affiliation(s)
- Chloé Laplagne
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Laetitia Ligat
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Juliet Foote
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Frederic Lopez
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Camille Laurent
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- IUCT-O, Toulouse, France
| | - Salvatore Valitutti
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Mary Poupot
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
| |
Collapse
|
9
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
10
|
Lentini NA, Schroeder CM, Harmon NM, Huang X, Schladetsch MA, Foust BJ, Poe MM, Hsiao CHC, Wiemer AJ, Wiemer DF. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. ACS Med Chem Lett 2021; 12:136-142. [PMID: 33488975 DOI: 10.1021/acsmedchemlett.0c00586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and its phosphonate analogs are potent phosphoantigens. HMBPP contains an (E)-allylic alcohol which interacts with the molecular target BTN3A1 giving an antigenic signal to activate Vγ9Vδ2 T cells. As probes of BTN3A1 function, we prepared prodrug derivatives of the HMBPP analog C-HMBP that lack the (E)-allylic alcohol or have modified it to an aldehyde or aldoxime and evaluated their biological activity. Removal of the alcohol completely abrogates phosphoantigenicity in these compounds while the aldoxime modification decreases potency relative to the (E)-allylic alcohol form. However, homoprenyl derivatives oxidized to an aldehyde stimulate Vγ9Vδ2 T cells at nanomolar concentrations. Selection of phosphonate protecting groups (i.e., prodrug forms) impacts the potency of phosphoantigen aldehydes, with mixed aryl acyloxyalkyl forms exhibiting superior activity relative to aryl amidate forms. The activity correlates with the cellular reduction of the aldehyde to the alcohol form. Thus, the functionality on this ligand framework can be altered concurrently with phosphonate protection to promote cellular transformation to highly potent phosphoantigens.
Collapse
Affiliation(s)
- Nicholas A. Lentini
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chloe M. Schroeder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Nyema M. Harmon
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Megan A. Schladetsch
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Benjamin J. Foust
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
11
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
12
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:1886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| |
Collapse
|
15
|
Gonnermann D, Oberg HH, Lettau M, Peipp M, Bauerschlag D, Sebens S, Kabelitz D, Wesch D. Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses γδ T Cell Proliferation but Not Their Cytotoxicity. Front Immunol 2020; 11:1328. [PMID: 32695112 PMCID: PMC7338555 DOI: 10.3389/fimmu.2020.01328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 01/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an immunosuppressive tumor microenvironment with a dense desmoplastic stroma. The expression of β-galactoside-binding protein galectin-3 is regarded as an intrinsic tumor escape mechanism for inhibition of tumor-infiltrating T cell function. In this study, we demonstrated that galectin-3 is expressed by PDAC and by γδ or αβ T cells but is only released in small amounts by either cell population. Interestingly, large amounts of galectin-3 were released during the co-culture of allogeneic in vitro expanded or allogeneic or autologous resting T cells with PDAC cells. By focusing on the co-culture of tumor cells and γδ T cells, we observed that knockdown of galectin-3 in tumor cells identified these cells as the source of secreted galectin-3. Galectin-3 released by tumor cells or addition of physiological concentrations of recombinant galectin-3 did neither further inhibit the impaired γδ T cell cytotoxicity against PDAC cells nor did it induce cell death of in vitro expanded γδ T cells. Initial proliferation of resting peripheral blood and tumor-infiltrating Vδ2-expressing γδ T cells was impaired by galectin-3 in a cell-cell-contact dependent manner. The interaction of galectin-3 with α3β1 integrin expressed by Vδ2 γδ T cells was involved in the inhibition of γδ T cell proliferation. The addition of bispecific antibodies targeting γδ T cells to PDAC cells enhanced their cytotoxic activity independent of the galectin-3 release. These results are of high relevance in the context of an in vivo application of bispecific antibodies which can enhance cytotoxic activity of γδ T cells against tumor cells but probably not their proliferation when galectin-3 is present. In contrast, adoptive transfer of in vitro expanded γδ T cells together with bispecific antibodies will enhance γδ T cell cytotoxicity and overcomes the immunosuppressive function of galectin-3.
Collapse
Affiliation(s)
- Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, UKSH, Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) and Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Abstract
Phosphoantigens (pAgs) are small phosphorus-containing molecules that stimulate Vγ9Vδ2 T cells with sub-nanomolar cellular potency. Recent work has revealed that these compounds work through binding to the transmembrane immunoglobulin butyrophilin 3A1 (BTN3A1) within its intracellular B30.2 domain. Engagement of BTN3A1 is critical to the formation of an immune synapse between cells that contain pAgs and the Vγ9Vδ2 T cells. This minireview summarizes the structure-activity relationships of pAgs and their implications to the mechanisms of butyrophilin 3 activation leading to Vγ9Vδ2 T cell response.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences and Institute for Systems Genomics, University of Connecticut, 69N. Eagleville Road, Storrs, CT, 06269, USA
| |
Collapse
|
17
|
Kouakanou L, Peters C, Sun Q, Floess S, Bhat J, Huehn J, Kabelitz D. Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci Rep 2020; 10:6550. [PMID: 32300237 PMCID: PMC7162875 DOI: 10.1038/s41598-020-63572-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Qiwei Sun
- BGI Genomics Institute, Shenzhen, China
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
- Metabolic Programming, School of Life Sciences, Technical University Munich (TUM), 85354, Freising, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany.
| |
Collapse
|
18
|
Activation of Human γδ T Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells 2020; 9:cells9030713. [PMID: 32183240 PMCID: PMC7140608 DOI: 10.3390/cells9030713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Human Vγ9Vδ2 γδ T cells can kill a variety of cancer cells and have attracted substantial interest for cancer immunotherapy. Toll-like receptor (TLR) ligands are promising adjuvants for cancer immunotherapy, but TLR7/8 ligand Resiquimod has been shown to inhibit CD4 T-cell activation in a monocyte-dependent manner. Therefore, we studied the modulation of human γδ T-cell activation by TLR7/8 ligands. Methods: Peripheral blood mononuclear cells (PBMC) or purified γδ T cells together with purified monocytes were stimulated with zoledronic acid or phosphoantigens in the absence or presence of various imidazoquinoline TLR7 or TLR8 agonists. Read-out systems included interferon-γ induction and cellular expansion of γδ T cells, as well as viability, cell surface antigen modulation, and IL-1β and TNF-α production of monocytes. Results: TLR8 ligand TL8-506 and TLR7/8 ligand Resiquimod (but not TLR7 ligands) rapidly induced IFN-γ expression in γδ T cells within PBMC, and co-stimulated phosphoantigen-induced IFN-γ expression in γδ T cells. On the other hand, TLR8 ligands potently suppressed γδ T-cell expansion in response to zoledronic acid and phosphoantigen. Purified monocytes secreted large amounts of IL-1β and TNF-α when stimulated with TLR8 ligands but simultaneously underwent substantial cell death after 24 h. Conclusions: TLR8 ligand-activated monocytes potently co-stimulate early γδ T-cell activation but failed to provide accessory cell function for in vitro expansion of γδ T cells.
Collapse
|
19
|
Peters C, Kouakanou L, Kabelitz D. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. J Leukoc Biol 2020; 107:1009-1022. [PMID: 32034803 DOI: 10.1002/jlb.1mr1219-245r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (VitC) is an essential vitamin that needs to be provided through exogenous sources. It is a potent anti-oxidant, and an essential cofactor for many enzymes including a group of enzymes that modulate epigenetic regulation of gene expression. Moreover, VitC has a significant influence on T-cell differentiation, and can directly interfere with T-cell signaling. Conventional CD4 and CD8 T cells express the αβ TCR and recognize peptide antigens in the context of MHC presentation. The numerically small population of γδ T cells recognizes antigens in an MHC-independent manner. γδ T cells kill a broad variety of malignant cells, and because of their unique features, are interesting candidates for cancer immunotherapy. In this review, we summarize what is known about the influence of VitC on T-cell activation and differentiation with a special focus on γδ T cells. The known mechanisms of action of VitC on αβ T cells are discussed and extrapolated to the effects observed on γδ T-cell activation and differentiation. Overall, VitC enhances proliferation and effector functions of γδ T cells and thus may help to increase the efficacy of γδ T cells applied as cancer immunotherapy in adoptive cell transfer.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
20
|
Imbert C, Olive D. γδ T Cells in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:91-104. [PMID: 33119877 DOI: 10.1007/978-3-030-49270-0_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.
Collapse
Affiliation(s)
- Caroline Imbert
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France.,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France. .,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France.
| |
Collapse
|
21
|
Oberg HH, Janitschke L, Sulaj V, Weimer J, Gonnermann D, Hedemann N, Arnold N, Kabelitz D, Peipp M, Bauerschlag D, Wesch D. Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. J Leukoc Biol 2019; 107:1081-1095. [PMID: 31833593 PMCID: PMC7318294 DOI: 10.1002/jlb.5ma1119-265r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer displays the highest mortality of all gynecological tumors. A relapse of the disease even after successful surgical treatment is a significant problem. Resistance against the current platinum‐based chemotherapeutic standard regime requires a detailed ex vivo immune profiling of tumor‐infiltrating cells and the development of new therapeutic strategies. In this study, we phenotypically and functionally characterize tumor cells and autologous tumor‐derived αβ and γδ T lymphocyte subsets. Tumor‐infiltrating (TIL) and tumor‐ascites lymphocytes (TAL) were ex vivo isolated out of tumor tissue and ascites, respectively, from high‐grade ovarian carcinoma patients (FIGO‐stage IIIa‐IV). We observed an increased γδ T cell percentage in ascites compared to tumor‐tissue and blood of these patients, whereas CD8+ αβ T cells were increased within TAL and TIL. The number of Vδ1 and non‐Vδ1/Vδ2‐expressing γδ T cells was increased in the ascites and in the tumor tissue compared to the blood of the same donors. Commonly in PBL, the Vγ9 chain of the γδ T cell receptor is usually associated exclusively with the Vδ2 chain. Interestingly, we detected Vδ1 and non‐Vδ1/Vδ2 T cells co‐expressing Vγ9, which is so far not described for TAL and TIL. Importantly, our data demonstrated an expression of human epidermal growth factor receptor (HER)‐2 on high‐grade ovarian tumors, which can serve as an efficient tumor antigen to target CD3 TIL or selectively Vγ9‐expressing γδ T cells by bispecific antibodies (bsAbs) to ovarian cancer cells. Our bsAbs efficiently enhance cytotoxicity of TIL and TAL against autologous HER‐2‐expressing ovarian cells.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Lisa Janitschke
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Vjola Sulaj
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, UKSH, CAU Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Department of Gynecology and Obstetrics, UKSH, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Oberg HH, Peters C, Kabelitz D, Wesch D. Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods Enzymol 2019; 631:429-441. [PMID: 31948561 DOI: 10.1016/bs.mie.2019.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enhancement of immune responses against tumor cells is a main focus of cancer immunotherapy. Immunotherapeutic approaches comprise a broad range of clinical applications including adjuvant therapies, check point inhibitors, cellular therapies, oncolytic viruses or targeted biologics such as bispecific antibodies. The usage of bispecific antibodies is one promising approach to enhance cytotoxicity and to selectively target effector cells to tumor-associated antigens. Here, we discuss the real-time cell analysis system as a suitable in vitro method to determine the interaction of tumor cell with effector cells alone or within a heterogeneous mixture of immune cells in peripheral blood or within tumor-infiltrating cells. The determination of cytotoxic effector cell activity using the real-time cell analyzer is highly useful to monitor the dynamic cellular interplay over extended periods of time.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany.
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
23
|
Oberg HH, Wesch D, Kalyan S, Kabelitz D. Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Front Immunol 2019; 10:1690. [PMID: 31379875 PMCID: PMC6657370 DOI: 10.3389/fimmu.2019.01690] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Apart from their activity in combating infections, neutrophils play an important role in regulating the tumor microenvironment. Neutrophils can directly kill (antibody-coated) cancer cells, and support other immune anti-tumoral strategies. On the other hand, neutrophils can also exert pro-tumorigenic activities via the production of factors which promote cancer growth, angiogenesis and metastasis formation. The balance of anti- and pro-cancer activity is influenced by the particularly delicate interplay that exists between neutrophils and T lymphocytes. In murine models, it has been reported that γδ T cells are a major source of IL-17 that drives the recruitment and pro-tumorigenic differentiation of neutrophils. This, however, contrasts with the well-studied anti-tumor activity of γδ T cells in experimental models and the anti-tumor activity of human γδ T cells. In this article, we first review the reciprocal interactions between neutrophils, tumor cells and T lymphocytes with a special focus on their interplay with γδ T cells, followed by the presentation of our own recent results. We have previously shown that zoledronic acid (ZOL)-activated neutrophils inhibit γδ T-cell proliferation due to the production of reactive oxygen species, arginase-1 and serine proteases. We now demonstrate that killing of ductal pancreatic adenocarcinoma (PDAC) cells by freshly isolated resting human γδ T cells was reduced in the presence of neutrophils and even more pronounced so after activation of neutrophils with ZOL. In contrast, direct T-cell receptor-dependent activation by γδ T cell-specific pyrophosphate antigens or by bispecific antibodies enhanced the cytotoxic activity and cytokine/granzyme B production of resting human γδ T cells, thereby overriding the suppression by ZOL-activated neutrophils. Additionally, the coculture of purified neutrophils with autologous short-term expanded γδ T cells enhanced rather than inhibited γδ T-cell cytotoxicity against PDAC cells. Purified neutrophils alone also exerted a small but reproducible lysis of PDAC cells which was further enhanced in the presence of γδ T cells. The latter set-up was associated with improved granzyme B and IFN-γ release which was further increased in the presence of ZOL. Our present results demonstrate that the presence of neutrophils can enhance the killing capacity of activated γδ T cells. We discuss these results in the broader context of regulatory interactions between neutrophils and T lymphocytes.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shirin Kalyan
- Clinical Research Development Laboratory, Department of Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
24
|
Pizzolato G, Kaminski H, Tosolini M, Franchini DM, Pont F, Martins F, Valle C, Labourdette D, Cadot S, Quillet-Mary A, Poupot M, Laurent C, Ysebaert L, Meraviglia S, Dieli F, Merville P, Milpied P, Déchanet-Merville J, Fournié JJ. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes. Proc Natl Acad Sci U S A 2019; 116:11906-11915. [PMID: 31118283 PMCID: PMC6576116 DOI: 10.1073/pnas.1818488116] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
γδ T lymphocytes represent ∼1% of human peripheral blood mononuclear cells and even more cells in most tissues of vertebrates. Although they have important anticancer functions, most current single-cell RNA sequencing (scRNA-seq) studies do not identify γδ T lymphocytes because their transcriptomes at the single-cell level are unknown. Here we show that high-resolution clustering of large scRNA-seq datasets and a combination of gene signatures allow the specific detection of human γδ T lymphocytes and identification of their T cell receptor (TCR)Vδ1 and TCRVδ2 subsets in large datasets from complex cell mixtures. In t-distributed stochastic neighbor embedding plots from blood and tumor samples, the few γδ T lymphocytes appear collectively embedded between cytotoxic CD8 T and NK cells. Their TCRVδ1 and TCRVδ2 subsets form close yet distinct subclusters, respectively neighboring NK and CD8 T cells because of expression of shared and distinct cytotoxic maturation genes. Similar pseudotime maturation trajectories of TCRVδ1 and TCRVδ2 γδ T lymphocytes were discovered, unveiling in both subsets an unattended pool of terminally differentiated effector memory cells with preserved proliferative capacity, a finding confirmed by in vitro proliferation assays. Overall, the single-cell transcriptomes of thousands of individual γδ T lymphocytes from different CMV+ and CMV- donors reflect cytotoxic maturation stages driven by the immunological history of donors. This landmark study establishes the rationale for identification, subtyping, and deep characterization of human γδ T lymphocytes in further scRNA-seq studies of complex tissues in physiological and disease conditions.
Collapse
Affiliation(s)
- Gabriele Pizzolato
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
- Humanitas University, 20089 Rozzano (MI), Italy
- Department of Biopathology and Medical Biotechnologies, University of Palermo, 90133 Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, 90133 Palermo, Italy
| | - Hannah Kaminski
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33076 Bordeaux, France
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Fréderic Pont
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Fréderic Martins
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, 31432 Toulouse, France
- Plateforme GeT, Genotoul, 31100 Toulouse, France
| | - Carine Valle
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Delphine Labourdette
- Plateforme GeT, Genotoul, 31100 Toulouse, France
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Sarah Cadot
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| | - Serena Meraviglia
- Department of Biopathology and Medical Biotechnologies, University of Palermo, 90133 Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, 90133 Palermo, Italy
| | - Francesco Dieli
- Department of Biopathology and Medical Biotechnologies, University of Palermo, 90133 Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, 90133 Palermo, Italy
| | - Pierre Merville
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, F-33076 Bordeaux, France
- Service de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire de Bordeaux, 33000 Bordeaux, France
| | - Pierre Milpied
- Aix Marseille University, CNRS, INSERM, Centre d' Immunologie de Marseille-Luminy, 13007 Marseille, France
| | | | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, 31100 Toulouse, France;
- Toulouse University, 31000 Toulouse, France
- ERL 5294 CNRS, 31024 Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, 31100 Toulouse, France
- Laboratoire d'Excellence 'TOUCAN', Toulouse, France
- Programme Hospitalo, Universitaire en Cancérologie CAPTOR, 31059 Toulouse, France
- Institut Carnot Lymphome CALYM, 69495 Lyon-Pierre Bénite, France
| |
Collapse
|
25
|
Vitamin C promotes the proliferation and effector functions of human γδ T cells. Cell Mol Immunol 2019; 17:462-473. [PMID: 31171862 PMCID: PMC7192840 DOI: 10.1038/s41423-019-0247-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
γδ T cells are of interest as effector cells for cellular immunotherapy due to their HLA-non-restricted lysis of many different tumor cell types. Potential applications include the adoptive transfer of in vitro-expanded γδ T cells. Therefore, it is important to optimize the culture conditions to enable maximal proliferative and functional activity. Vitamin C (L-ascorbic acid) is an essential vitamin with multiple effects on immune cells. It is a cofactor for several enzymes, has antioxidant activity, and is an epigenetic modifier. Here, we investigated the effects of vitamin C (VC) and its more stable derivative, L-ascorbic acid 2-phosphate (pVC), on the proliferation and effector function of human γδ T cells stimulated with zoledronate (ZOL) or synthetic phosphoantigens (pAgs). VC and pVC did not increase γδ T-cell expansion within ZOL- or pAg-stimulated PBMCs, but increased the proliferation of purified γδ T cells and 14-day-expanded γδ T-cell lines in response to γδ T-cell-specific pAgs. VC reduced the apoptosis of γδ T cells during primary stimulation. While pVC did not prevent activation-induced death of pAg-restimulated γδ T cells, it enhanced the cell cycle progression and cellular expansion. Furthermore, VC and pVC enhanced cytokine production during primary activation, as well as upon pAg restimulation of 14-day-expanded γδ T cells. VC and pVC also increased the oxidative respiration and glycolysis of γδ T cells, but stimulus-dependent differences were observed. The modulatory activity of VC and pVC might help to increase the efficacy of γδ T-cell expansion for adoptive immunotherapy.
Collapse
|
26
|
Wang RN, Wen Q, He WT, Yang JH, Zhou CY, Xiong WJ, Ma L. Optimized protocols for γδ T cell expansion and lentiviral transduction. Mol Med Rep 2019; 19:1471-1480. [PMID: 30628681 PMCID: PMC6390064 DOI: 10.3892/mmr.2019.9831] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023] Open
Abstract
γδ T cells are a subset of unconventional T cells that serve a critical role in infectious diseases and various types of cancer. Cell therapy with genetically‑modified γδ T cells is regarded as a promising tool for tumor treatment. However, since γδ T cells constitute a minority of T cells, their large‑scale expansion is difficult to realize in an efficient and cost‑effective manner. In the present study, based on previous studies, culture protocols for γδ T cells were tested using different combinations of isopentenyl pyrophosphate and interleukin 2 in order to satisfy different experimental purposes. One protocol was demonstrated to be the most suitable for lentiviral transduction. These results greatly reinforce the promising prospects of using γδ T cells in basic research and for clinical applications.
Collapse
Affiliation(s)
- Rui-Ning Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jia-Hui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Jing Xiong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
27
|
Juraske C, Wipa P, Morath A, Hidalgo JV, Hartl FA, Raute K, Oberg HH, Wesch D, Fisch P, Minguet S, Pongcharoen S, Schamel WW. Anti-CD3 Fab Fragments Enhance Tumor Killing by Human γδ T Cells Independent of Nck Recruitment to the γδ T Cell Antigen Receptor. Front Immunol 2018; 9:1579. [PMID: 30038626 PMCID: PMC6046647 DOI: 10.3389/fimmu.2018.01579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
T lymphocytes expressing the γδ T cell receptor (γδ TCR) can recognize antigens expressed by tumor cells and subsequently kill these cells. γδ T cells are indeed used in cancer immunotherapy clinical trials. The anti-CD3ε antibody UCHT1 enhanced the in vitro tumor killing activity of human γδ T cells by an unknown molecular mechanism. Here, we demonstrate that Fab fragments of UCHT1, which only bind monovalently to the γδ TCR, also enhanced tumor killing by expanded human Vγ9Vδ2 γδ T cells or pan-γδ T cells of the peripheral blood. The Fab fragments induced Nck recruitment to the γδ TCR, suggesting that they stabilized the γδ TCR in an active CD3ε conformation. However, blocking the Nck-CD3ε interaction in γδ T cells using the small molecule inhibitor AX-024 neither reduced the γδ T cells' natural nor the Fab-enhanced tumor killing activity. Likewise, Nck recruitment to CD3ε was not required for intracellular signaling, CD69 and CD25 up-regulation, or cytokine secretion by γδ T cells. Thus, the Nck-CD3ε interaction seems to be dispensable in γδ T cells.
Collapse
Affiliation(s)
- Claudia Juraske
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Piyamaporn Wipa
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anna Morath
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- University Hospital “José de San Martin”, University of Buenos Aires, Buenos Aires, Argentina
| | - Frederike A. Hartl
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Raute
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
- Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Riganti C, Castella B, Massaia M. ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Front Immunol 2018; 9:1246. [PMID: 29937767 PMCID: PMC6002486 DOI: 10.3389/fimmu.2018.01246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| |
Collapse
|
29
|
Boutin L, Scotet E. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Front Immunol 2018; 9:828. [PMID: 29731756 PMCID: PMC5919976 DOI: 10.3389/fimmu.2018.00828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.
Collapse
Affiliation(s)
- Lola Boutin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Sanofi R&D, Biologics Research, Centre de Recherche Vitry Alfortville, Paris, France
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
30
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
31
|
Abstract
In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor and recognize antigens as peptides presented by major histocompatibility complex class I or class II molecules, human γδ T cells recognize different metabolites such as non-peptidic pyrophosphate molecules that are secreted by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in immunosurveillance of infection and cellular transformation. Until recently, it has been unknown how the γδ T-cell receptor senses such pyrophosphates in the absence of known antigen-presenting molecules. Recent studies from several groups have identified a unique role of butyrophilin (BTN) protein family members in this process, notably of BTN3A1. BTNs are a large family of transmembrane proteins with diverse functions in lipid secretion and innate and adaptive immunity. Here we discuss current models of how BTN molecules regulate γδ T-cell activation. We also address the implications of these recent findings on the design of novel immunotherapeutic strategies based on the activation of γδ T cells.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| |
Collapse
|
32
|
Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T. Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol 2017; 47:982-992. [DOI: 10.1002/eji.201646818] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Starick
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Felipe Riano
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | | | - Volker Kunzmann
- Medical Clinic and Policlinic II; University of Würzburg; Würzburg Germany
| | - Jianqiang Li
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Matthias Kreiss
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry; University of Regensburg; Regensburg Germany
| | - Emmanuel Scotet
- CRCINA, INSERM, CNRS; Université d'Angers; Université de Nantes; Nantes France
- Labex IGO “Immunotherapy, Graft, Oncology”; Nantes France
| | - Daniel Olive
- Centre de recherche en Cancérologie de Marseille; Inserm U1068 / CNRS U7258; Aix Marseille Université
- Institut Paoli-Calmettes; Marseille France
| | | | - Thomas Herrmann
- Institute for Virology and Immunbiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
33
|
Abstract
Vδ2Vγ9 T cells are the dominant γδ T-cell subset in human peripheral blood. Vδ2 T cells recognize pyrophosphate molecules derived from microbes or tumor cells; hence, they play a role in antimicrobial and antitumor immunity. TGF-β, together with IL-15, induces a regulatory phenotype in Vδ2 T cells, characterized by forkhead box protein P3 (FoxP3) expression and suppressive activity on CD4 T-cell activation. We performed a genome-wide transcriptome analysis and found that the same conditions (TGF-β plus IL-15) strongly enhanced the expression of additional genes in Vδ2 T cells, including IKAROS family zinc finger 4 (IKZF4; Eos), integrin subunit alpha E (ITGAE; CD103/αEβ7), and IL9 This up-regulation was associated with potent IL-9 production as revealed by flow cytometry and multiplex analysis of cell culture supernatants. In contrast to CD4 and CD8 αβ T cells, γδ T cells did not require IL-4 for induction of intracellular IL-9 expression. Upon antigen restimulation of Vδ2 T cells expanded in vitro in the presence of TGF-β and IL-15, IL-9 was the most abundant among 16 analyzed cytokines and chemokines. IL-9 is a pleiotropic cytokine involved in various (patho)physiological conditions, including allergy and tumor defense, where it can promote antitumor immunity. Given the conspicuous sensitivity of many different tumors to Vδ2 T-cell-mediated killing, the conditions defined here for strong induction of IL-9 might be relevant for the development of Vδ2 T-cell-based immunotherapy.
Collapse
|
34
|
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380:413-423. [PMID: 27392648 PMCID: PMC5003697 DOI: 10.1016/j.canlet.2016.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors.
Collapse
MESH Headings
- Animals
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Genetic Therapy/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sang Yun Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
35
|
A Subset of Protective γ9δ2 T Cells Is Activated by Novel Mycobacterial Glycolipid Components. Infect Immun 2016; 84:2449-62. [PMID: 27297390 PMCID: PMC4995917 DOI: 10.1128/iai.01322-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
γ9δ2 T cells provide a natural bridge between innate and adaptive immunity, rapidly and potently respond to pathogen infection in mucosal tissues, and are prominently induced by both tuberculosis (TB) infection and bacillus Calmette Guérin (BCG) vaccination. Mycobacterium-expanded γ9δ2 T cells represent only a subset of the phosphoantigen {isopentenyl pyrophosphate [IPP] and (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphate [HMBPP]}-responsive γ9δ2 T cells, expressing an oligoclonal set of T cell receptor (TCR) sequences which more efficiently recognize and inhibit intracellular Mycobacterium tuberculosis infection. Based on this premise, we have been searching for M. tuberculosis antigens specifically capable of inducing a unique subset of mycobacterium-protective γ9δ2 T cells. Our screening strategy includes the identification of M. tuberculosis fractions that expand γ9δ2 T cells with biological functions capable of inhibiting intracellular mycobacterial replication. Chemical treatments of M. tuberculosis whole-cell lysates (MtbWL) ruled out protein, nucleic acid, and nonpolar lipids as the M. tuberculosis antigens inducing protective γ9δ2 T cells. Mild acid hydrolysis, which transforms complex carbohydrate to monomeric residues, abrogated the specific activity of M. tuberculosis whole-cell lysates, suggesting that a polysaccharide was required for biological activity. Extraction of MtbWL with chloroform-methanol-water (10:10:3) resulted in a polar lipid fraction with highly enriched specific activity; this activity was further enriched by silica gel chromatography. A combination of mass spectrometry and nuclear magnetic resonance analysis of bioactive fractions indicated that 6-O-methylglucose-containing lipopolysaccharides (mGLP) are predominant components present in this active fraction. These results have important implications for the development of new immunotherapeutic approaches for prevention and treatment of TB.
Collapse
|
36
|
Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D, Mytilineos J, Wesch D, Oberg HH, Held-Feindt J, Kabelitz D. NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncoimmunology 2015; 5:e1093276. [PMID: 27141377 PMCID: PMC4839372 DOI: 10.1080/2162402x.2015.1093276] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 10/26/2022] Open
Abstract
The interaction of the MHC class I-related chain molecules A and B (MICA and MICB) and UL-16 binding protein (ULBP) family members expressed on tumor cells with the corresponding NKG2D receptor triggers cytotoxic effector functions in NK cells and γδ T cells. However, as a mechanism of tumor immune escape, NKG2D ligands (NKG2DLs) can be released from the cell surface. In this study, we investigated the NKG2DL system in different human glioblastoma (GBM) cell lines, the most lethal brain tumor in adults. Flow cytometric analysis and ELISA revealed that despite the expression of various NKG2DLs only ULBP2 is released as a soluble protein via the proteolytic activity of "a disintegrin and metalloproteases" (ADAM) 10 and 17. Moreover, we report that temozolomide (TMZ), a chemotherapeutic agent in clinical use for the treatment of GBM, increases the cell surface expression of NKG2DLs and sensitizes GBM cells to γδ T cell-mediated lysis. Both NKG2D and the T-cell receptor (TCR) are involved. The cytotoxic activity of γδ T cells toward GBM cells is strongly enhanced in a TCR-dependent manner by stimulation with pyrophosphate antigens. These data clearly demonstrate the complexity of mechanisms regulating NKG2DL expression in GBM cells and further show that treatment with TMZ can increase the immunogenicity of GBM. Thus, TMZ might enhance the potential of the adoptive transfer of ex vivo expanded γδ T cells for the treatment of malignant glioblastoma.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Stefanie Luecke
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Ting Wang
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany; University of Alberta, Edmonton, Canada
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Wuerttemberg-Hessen, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Wuerttemberg-Hessen, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH , Campus Kiel , Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| |
Collapse
|
37
|
Phalke SP, Chiplunkar SV. Activation status of γδ T cells dictates their effect on osteoclast generation and bone resorption. Bone Rep 2015; 3:95-103. [PMID: 28377972 PMCID: PMC5365245 DOI: 10.1016/j.bonr.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023] Open
Abstract
γδ T cells, a small subset of T cell population (5–10%), forms a bridge between innate and adaptive immunity. Although the role of γδ T cells in infectious diseases and antitumor immunity is well investigated, their role in bone biology needs to be explored. Aminobisphosphonates are used as a standard treatment modality for bone related disorders and are potent activators of γδ T cells. In the present study, we have compared the effect of “activated” and “freshly isolated” γδ T cells on osteoclast generation and function. We have shown that “activated” (αCD3/CD28 + rhIL2 or BrHPP + rhIL2 stimulated) γδ T cells inhibit osteoclastogenesis, while “freshly isolated” γδ T cells enhance osteoclast generation and function. Upon stimulation with phosphoantigen (BrHPP), “freshly isolated” γδ T cells were also able to suppress osteoclast generation and function. Cytokine profiles of these cells revealed that, “freshly isolated” γδ T cells secrete higher amounts of IL6 (pro-osteoclastogenic), while “activated” γδ T cells secrete high IFNγ levels (anti-osteoclastogenic). Neutralization of IFNγ and IL6 reversed the “inhibitory” or “stimulatory” effect of γδ T cells on osteoclastogenesis. In conclusion, we have shown that, activation status and dynamics of IL6 and IFNγ secretion dictate pro and anti-osteoclastogenic role of γδ T cells. Freshly isolated (unstimulated) γδ T cells enhance osteoclastogenesis. Activated γδ T cells inhibit osteoclast generation and function. Activated γδ T cells secrete high IFNγ, while freshly isolated secrete high IL6. Dynamics of IL6/IFNγ explains pro- and anti-osteoclastogenic effect of γδ T cells.
Collapse
Key Words
- Activation status
- BrHPP, bromohydrin pyrophosphate
- CBA, cytometric bead array
- Cytokines
- FCS, Fetal calf serum
- FH, Ficoll-Hypaque
- IFNγ, interferon gamma
- IL6, interleukin 6
- MACS, magnetic-activated cell sorting
- MFI, mean fluorescent intensity
- OAAS, osteoclast activity assay substrate
- OPCs, osteoclast precursor cells
- Osteoclasts
- PBMCs, peripheral blood mononuclear cells
- PBS, phosphate buffered saline
- Phosphoantigen
- RPMI, Roswell Park Memorial Institute medium
- SEM, standard error of mean
- TRAP, tartarate resistant acid phosphatase
- cαMEM, complete minimum essential medium with alpha modification
- rhIL2, recombinant human interleukin 2
- rhMCSF, recombinant human macrophage-colony stimulating factor
- rhRANKL, recombinant human receptor activator of nuclear factor kappa-B ligand
- αIFNγ, anti-interferon gamma
- αIL6, anti-interleukin 6
- γδ T cells
Collapse
Affiliation(s)
| | - Shubhada V. Chiplunkar
- Corresponding author at: Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.Chiplunkar LaboratoryAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi Mumbai410210India
| |
Collapse
|
38
|
Gao Y, Williams AP. Role of Innate T Cells in Anti-Bacterial Immunity. Front Immunol 2015; 6:302. [PMID: 26124758 PMCID: PMC4463001 DOI: 10.3389/fimmu.2015.00302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023] Open
Abstract
Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination.
Collapse
Affiliation(s)
- Yifang Gao
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK
| | - Anthony P Williams
- Academic Unit of Cancer Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton and NIHR Cancer Research UK Experimental Cancer Medicine Centre , Southampton , UK ; Wessex Investigational Sciences Hub (WISH) Laboratory, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton NHS Foundation Trust , Southampton , UK
| |
Collapse
|
39
|
Castella B, Foglietta M, Sciancalepore P, Rigoni M, Coscia M, Griggio V, Vitale C, Ferracini R, Saraci E, Omedé P, Riganti C, Palumbo A, Boccadoro M, Massaia M. Anergic bone marrow Vγ9Vδ2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncoimmunology 2015; 4:e1047580. [PMID: 26451323 PMCID: PMC4589055 DOI: 10.1080/2162402x.2015.1047580] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/31/2022] Open
Abstract
Vγ9Vδ2 T cells have a natural inclination to recognize malignant B cells in vitro via receptors for stress-induced self-ligands and TCR-dependent recognition of phosphoantigens (pAgs) generated in the mevalonate (Mev) pathway. This inclination is continuously challenged in vivo by the immune suppression operated by tumor cells. Multiple myeloma (MM) is a prototypic B-cell malignancy in which myeloma cells subvert the local microenvironment to reshape antitumor immune responses. In this study, we have investigated the immune competence of bone marrow (BM) Vγ9Vδ2 T cells in a large series of MM patients. We have found that the BM microenvironment significantly hampers the pAg-reactivity of BM Vγ9Vδ2 T cells, which become largely PD-1+ and are surrounded by PD-L1+ myeloma cells and increased numbers of PD-L1+ myeloid-derived suppressor cells (MDSC). Vγ9Vδ2 T-cell dysfunction is an early event that can be already detected in individuals with monoclonal gammopathy of undetermined significance (MGUS) and not fully reverted even when MM patients achieve clinical remission. Anti-PD-1 treatment increases the cytotoxic potential of Vγ9Vδ2 T cells by almost 5-fold after pAg stimulation, and appears to be a promising strategy for effective immune interventions in MM.
Collapse
Affiliation(s)
- Barbara Castella
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy
| | - Myriam Foglietta
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy
| | - Patrizia Sciancalepore
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Micol Rigoni
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy
| | - Marta Coscia
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy ; S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Valentina Griggio
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy
| | - Candida Vitale
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Riccardo Ferracini
- Divisione di Ortopedia, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino ; Torino, Italy
| | - Elona Saraci
- S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Paola Omedé
- S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia; Università degli Studi di Torino ; Torino, Italy
| | - Antonio Palumbo
- S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Mario Boccadoro
- S.C. Ematologia I; Università degli Studi di Torino ; Torino, Italy
| | - Massimo Massaia
- Laboratorio di Ematologia Oncologica; Centro di Ricerca in Medicina Sperimentale (CeRMS); Torino, Italy ; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute; Università degli Studi di Torino ; Torino, Italy
| |
Collapse
|
40
|
Adams EJ, Gu S, Luoma AM. Human gamma delta T cells: Evolution and ligand recognition. Cell Immunol 2015; 296:31-40. [PMID: 25991474 DOI: 10.1016/j.cellimm.2015.04.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 01/26/2023]
Abstract
The γδ T cell lineage in humans remains much of an enigma due to the low number of defined antigens, the non-canonical ways in which these cells respond to their environment and difficulty in tracking this population in vivo. In this review, we survey a comparative evolutionary analysis of the primate V, D and J gene segments and contrast these findings with recent progress in defining antigen recognition by different populations of γδ T cells in humans. Signatures of both purifying and diversifying selection at the Vδ and Vγ gene loci are placed into context of Vδ1+ γδ T cell recognition of CD1d presenting different lipids, and Vγ 9Vδ2 T cell modulation by pyrophosphate-based phosphoantigens through the butyrophilins BTN3A. From this comparison, it is clear that co-evolution between γδ TCRs and these ligands is likely occurring, but the diversity inherent in these recombined receptors is an important feature in ligand surveillance.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Adrienne M Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Ochi R, Perur N, Yoshida K, Tamaoki N. Fast thermal cis–trans isomerization depending on pH and metal ions of water-soluble azobenzene derivatives containing a phosphate group. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Kobayashi H, Tanaka Y. γδ T Cell Immunotherapy-A Review. Pharmaceuticals (Basel) 2015; 8:40-61. [PMID: 25686210 PMCID: PMC4381201 DOI: 10.3390/ph8010040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Cancer immunotherapy utilizing Vγ9Vδ2 T cells has been developed over the past decade. A large number of clinical trials have been conducted on various types of solid tumors as well as hematological malignancies. Vγ9Vδ2 T cell-based immunotherapy can be classified into two categories based on the methods of activation and expansion of these cells. Although the in vivo expansion of Vγ9Vδ2 T cells by phosphoantigens or nitrogen-containing bisphosphonates (N-bis) has been translated to early-phase clinical trials, in which the safety of the treatment was confirmed, problems such as activation-induced Vγ9Vδ2 T cell anergy and a decrease in the number of peripheral blood Vγ9Vδ2 T cells after infusion of these stimulants have not yet been solved. In addition, it is difficult to ex vivo expand Vγ9Vδ2 T cells from advanced cancer patients with decreased initial numbers of peripheral blood Vγ9Vδ2 T cells. In this article, we review the clinical studies and reports targeting Vγ9Vδ2 T cells and discuss the development and improvement of Vγ9Vδ2 T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hirohito Kobayashi
- Transfusion Medicine and Cell Processing, Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Yoshimasa Tanaka
- Center for Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
43
|
Fazio J, Kalyan S, Wesch D, Kabelitz D. Inhibition of human γδ T cell proliferation and effector functions by neutrophil serine proteases. Scand J Immunol 2015; 80:381-9. [PMID: 25345993 DOI: 10.1111/sji.12221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 12/18/2022]
Abstract
Human peripheral blood γδ T cells expressing the Vγ9Vδ2 T cell receptor are activated by microbial or endogenous pyrophosphate antigens and indirectly by nitrogen-containing bisphosphonates. Apart from proliferation, such phosphoantigens induce proinflammatory cytokine production including TNF-α and IFN-γ and trigger cytotoxic effector function. Neutrophil granulocytes are known to modulate T cell activation. The neutrophil serine proteases proteinase 3, elastase and cathepsin G have multiple potential targets and promote microbial killing. In this study, we investigated the effect of the three serine proteases on the in vitro proliferation and effector functions of γδ T cells cultured in serum-free medium. All three proteases inhibited the proliferative activity, suppressed the cytokine production and decreased the cytotoxicity of γδ T cells. Further studies indicated that proteolytic cleavage of IL-2 and modulation of butyrophilin 3A1 (CD277) expression might contribute to the overall inhibition.
Collapse
Affiliation(s)
- J Fazio
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
44
|
Gu S, Nawrocka W, Adams EJ. Sensing of Pyrophosphate Metabolites by Vγ9Vδ2 T Cells. Front Immunol 2015; 5:688. [PMID: 25657647 PMCID: PMC4303140 DOI: 10.3389/fimmu.2014.00688] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
The predominant population of γδ T cells in human blood express a T cell receptor (TCR) composed of a Vγ9 (Vγ2 in an alternate nomenclature) and Vδ2 domains. These cells came into the limelight when it was discovered they can respond to certain microbial infections and tumorigenic cells through the detection of small, pyrophosphate containing organic molecules collectively called “phosphoantigens” or “pAgs.” These molecules are intermediates in both eukaryotic and prokaryotic metabolic pathways. Chemical variants of these intermediates have been used in the clinic to treat a range of different cancers, however, directed optimization of these molecules requires a full understanding of their mechanism of action on target cells. We and others have identified a subclass of butyrophilin-related molecules (BTN3A1-3) that are directly involved in pAg sensing in the target cell, leading to engagement and activation of the T cell through the TCR. Our data and that of others support the pAg binding site to be the intracellular B30.2 domain of BTN3A1, which is the only isoform capable of mediating pAg-dependent stimulation of Vγ9Vδ2 T cells. Here, we review the data demonstrating pAg binding to the B30.2 domain and our studies of the structural conformations of the BTN3A extracellular domains. Finally, we synthesize a model linking binding of pAg to the intracellular domain with T cell detection via the extracellular domains in an “inside-out” signaling mechanism of the type characterized first for integrin molecule signaling. We also explore the role of Vγ9Vδ2 TCR variability in the CDR3 γ and δ loops and how this may modulate Vγ9Vδ2 cells as a population in surveillance of human health and disease.
Collapse
Affiliation(s)
- Siyi Gu
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Wioletta Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, IL , USA ; Committee on Immunology, University of Chicago , Chicago, IL , USA ; Committee on Cancer Biology, University of Chicago , Chicago, IL , USA
| |
Collapse
|
45
|
De Libero G, Lau SY, Mori L. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones. Front Immunol 2015; 5:679. [PMID: 25642230 PMCID: PMC4295553 DOI: 10.3389/fimmu.2014.00679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023] Open
Abstract
The mechanistic requirements of antigen recognition by T cells expressing a γδ TCR has revealed important differences with those of αβ TCR cells and, despite impressive new data generated in the very recent years, they remain poorly understood. Based on the structure of the TCR chains and the tissue distribution, γδ cells are represented in a variety of populations. The major subset of human peripheral blood γδ cells express Vγ9Vδ2 TCR heterodimers and are all stimulated by phosphorylated metabolites (commonly called phosphoantigens). Phosphoantigens are molecules with a very small mass and only stimulate Vγ9Vδ2 cells in the presence of antigen-presenting cells, suggesting a strict requirement for dedicated antigen-presenting molecules. Recent studies have identified butyrophilin (BTN) 3A1 as the molecule necessary to stimulate Vγ9Vδ2 cells. BTN3A1 extracellular, transmembrane, and cytoplasmic domains have different functions, including cognate interaction with the Vγ9Vδ2 TCR, binding of the phosphoantigens, and interaction with cytoplasmic proteins. This review mainly discusses the known molecular mechanisms of BTN3A1-mediated antigen presentation to γδ cells and proposes a model of phosphoantigen presentation, which integrates past and recent studies.
Collapse
Affiliation(s)
- Gennaro De Libero
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Sze-Yi Lau
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Lucia Mori
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore ; Department of Biomedicine, University of Basel , Basel , Switzerland
| |
Collapse
|
46
|
Harly C, Peigné CM, Scotet E. Molecules and Mechanisms Implicated in the Peculiar Antigenic Activation Process of Human Vγ9Vδ2 T Cells. Front Immunol 2015; 5:657. [PMID: 25601861 PMCID: PMC4283718 DOI: 10.3389/fimmu.2014.00657] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/08/2014] [Indexed: 12/04/2022] Open
Abstract
In human beings, as well as in most non-human primates, the major peripheral γδ T cell subset, which accounts several percent of the whole lymphoid cells pool in adults, carries an heterodimeric TCR composed of Vγ9 and Vδ2 chains. Vγ9Vδ2 T cells are specifically and strongly activated by small organic pyrophosphate molecules termed phosphoantigens (phosphoAg). These low molecular weight compounds are metabolites that are produced by either microbes or endogenously, as intermediates of the mammalian mevalonate pathway, and can accumulate intracellularly during cell stress like transformation or infection. Despite the characterization of numerous natural and synthetic phosphoAg, the mechanism(s) underlying the unique and specific antigenic activation process induced by these compounds remains poorly understood. Activation is both TCR- and cell-to-cell contact-dependent, and results of previous studies have also strongly suggested a key contribution of membrane-associated molecules of primate origin expressed on target cells. The recent identification of B7-related butyrophilin (BTN) molecules CD277/BTN3A, and more precisely their BTN3A1 isoforms, as mandatory molecules in the phosphoAg-induced recognition of target cells by Vγ9Vδ2 T cells opens important opportunities for research and applications in this field. Here, we review the unusual and complex antigenic reactivity of human Vγ9Vδ2 T cells. We highlight the recent advances in our understanding of this process, and propose a model that integrates the type I glycoprotein BTN3A1 and its intracellular B30.2 domain as a physical intermediate implicated in the detection of dysregulated intracellular levels of phosphoAg and the sensing of cell stress by Vγ9Vδ2T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that utilize the unique functional potential of this major γδ T cell subset.
Collapse
Affiliation(s)
- Christelle Harly
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute , Bethesda, MD , USA ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Cassie-Marie Peigné
- Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, INSERM , Nantes , France ; University of Nantes , Nantes , France ; Unité Mixte de Recherche 6299, Centre National de la Recherche Scientifique , Nantes , France
| | - Emmanuel Scotet
- Unité Mixte de Recherche 892, Centre de Recherche en Cancérologie Nantes Angers, INSERM , Nantes , France ; University of Nantes , Nantes , France ; Unité Mixte de Recherche 6299, Centre National de la Recherche Scientifique , Nantes , France
| |
Collapse
|
47
|
Deniger DC, Moyes JS, Cooper LJN. Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol 2014; 5:636. [PMID: 25566249 PMCID: PMC4263175 DOI: 10.3389/fimmu.2014.00636] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/28/2014] [Indexed: 01/13/2023] Open
Abstract
γδ T cells hold promise for adoptive immunotherapy because of their reactivity to bacteria, viruses, and tumors. However, these cells represent a small fraction (1–5%) of the peripheral T-cell pool and require activation and propagation to achieve clinical benefit. Aminobisphosphonates specifically expand the Vγ9Vδ2 subset of γδ T cells and have been used in clinical trials of cancer where objective responses were detected. The Vγ9Vδ2 T cell receptor (TCR) heterodimer binds multiple ligands and results in a multivalent attack by a monoclonal T cell population. Alternatively, populations of γδ T cells with oligoclonal or polyclonal TCR repertoire could be infused for broad-range specificity. However, this goal has been restricted by a lack of applicable expansion protocols for non-Vγ9Vδ2 cells. Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs), tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T cells with oligoclonal or polyclonal TCR repertoires. Immobilized major histocompatibility complex Class-I chain-related A was a stimulus for γδ T cells expressing TCRδ1 isotypes, and plate-bound activating antibodies have expanded Vδ1 and Vδ2 cells ex vivo. Clinically sufficient quantities of TCRδ1, TCRδ2, and TCRδ1negTCRδ2neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. Gamma delta T cells are also amenable to genetic modification as evidenced by introduction of αβ TCRs, chimeric antigen receptors, and drug-resistance genes. This represents a promising future for the clinical application of oligoclonal or polyclonal γδ T cells in autologous and allogeneic settings that builds on current trials testing the safety and efficacy of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Drew C Deniger
- Surgery Branch, National Cancer Institute , Bethesda, MD , USA
| | - Judy S Moyes
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Laurence J N Cooper
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
48
|
Decaup E, Duault C, Bezombes C, Poupot M, Savina A, Olive D, Fournié JJ. Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVγ9+ γδ T lymphocytes. Immunol Lett 2014; 161:133-7. [DOI: 10.1016/j.imlet.2014.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/26/2022]
|
49
|
Bhuyan R, Nandy SK, Seal A. Anin silicostructural insights intoPlasmodiumLytB protein and its inhibition. J Biomol Struct Dyn 2014; 33:1198-210. [DOI: 10.1080/07391102.2014.938248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Wiemer DF, Wiemer AJ. Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 2014; 89:301-12. [DOI: 10.1016/j.bcp.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/29/2023]
|