1
|
Wei J, Meisl G, Dear AJ, Michaels TCT, Knowles TPJ. Kinetics of Amyloid Oligomer Formation. Annu Rev Biophys 2025; 54:185-207. [PMID: 39929552 DOI: 10.1146/annurev-biophys-080124-122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Low-molecular-weight oligomers formed from amyloidogenic peptides and proteins have been identified as key cytotoxins across a range of neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Developing therapeutic strategies that target oligomers is therefore emerging as a promising approach for combating protein misfolding diseases. As such, there is a great need to understand the fundamental properties, dynamics, and mechanisms associated with oligomer formation. In this review, we discuss how chemical kinetics provides a powerful tool for studying these systems. We review the chemical kinetics approach to determining the underlying molecular pathways of protein aggregation and discuss its applications to oligomer formation and dynamics. We discuss how this approach can reveal detailed mechanisms of primary and secondary oligomer formation, including the role of interfaces in these processes. We further use this framework to describe the processes of oligomer conversion and dissociation, and highlight the distinction between on-pathway and off-pathway oligomers. Furthermore, we showcase on the basis of experimental data the diversity of pathways leading to oligomer formation in various in vitro and in silico systems. Finally, using the lens of the chemical kinetics framework, we look at the current oligomer inhibitor strategies both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiapeng Wei
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| | - Alexander J Dear
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; ,
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; ,
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; , ,
| |
Collapse
|
2
|
Beeg M, Rocutto B, Battocchio E, Dacomo L, Corbelli A, Fiordaliso F, Balducci C, Gobbi M. The Detection of Toxic Amyloid-β Fibril Fragments Through a Surface Plasmon Resonance Immunoassay. Int J Mol Sci 2024; 25:13020. [PMID: 39684731 DOI: 10.3390/ijms252313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β1-42 (Aβ42) forms highly stable and insoluble fibrillar structures, representing the principal components of the amyloid plaques present in the brain of Alzheimer's disease (AD) patients. The involvement of Aβ42 in AD-associated neurodegeneration has also been demonstrated, in particular for smaller and soluble aggregates (oligomers). Based on these findings and on genetic evidence, Aβ42 aggregates are considered key players in the pathogenesis of AD and targets for novel therapies. Different approaches are currently used to detect the various aggregation states of Aβ peptide, including spectrophotometric methods, imaging techniques, and immunoassays, but all of these have specific limitations. To overcome them, we have recently exploited the peculiar properties of surface plasmon resonance (SPR) to develop an immunoassay capable of selectively detecting monomers and oligomers, discriminating them also from bigger fibrils in a mixture of different aggregated species, without any manipulation of the solution. In the present study, we extended these previous studies, showing that the SPR-based immunoassay makes it possible to unveil the fibril fragmentation induced mechanically, a result difficult to be conveniently and reliably assessed with other approaches. Moreover, we show that SPR-recognized fibril fragments are more toxic than the larger fibrillar structures, suggesting the relevance of the proposed SPR-based immunoassay.
Collapse
Affiliation(s)
- Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Beatrice Rocutto
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Elisabetta Battocchio
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Letizia Dacomo
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Claudia Balducci
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
3
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
4
|
Tsai TY, Jhang WT, Hsu HK, Chan YT, Chang CF, Chen YR. Amyloid Modifier SERF1a Accelerates Alzheimer's Amyloid-β Fibrillization and Exacerbates the Cytotoxicity. ACS Chem Neurosci 2024; 15:479-490. [PMID: 38211979 DOI: 10.1021/acschemneuro.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disease affecting the elderly in the world. The pathological hallmark senile plaques are mainly composed of amyloid-β (Aβ), in which the main isoforms are Aβ40 and Aβ42. Aβ is prone to aggregate and ultimately forms amyloid fibrils in the brains of AD patients. Factors that alter the Aβ aggregation process have been considered to be potential targets for treatments of AD. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) was previously selected from a chemical mutagenesis screen and identified as an amyloid modifier that promotes amyloid aggregation for α-synuclein, huntingtin, and Aβ40. The interaction and effect of yeast ScSERF on Aβ40 were previously described. Here, we examined the human SERF1a effect on Aβ40 and Aβ42 fibrillization by the Thioflavin T assay and found that SERF1a accelerated Aβ fibrillization in a dose-dependent manner without changing the fibril amount and without incorporation. By Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), we found that SERF1a altered the secondary structures and the morphology of Aβ fibrils. The electrospray ionization mass spectrometry (ESI-MS) and analytical ultracentrifugation (AUC) results showed that SERF1a binds to Aβ in a 1:1 stoichiometry. Moreover, the NMR study showed that SERF1a interacts with Aβ via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a enhanced toxicity of Aβ intermediates, and the effect can be rescued by SERF1a antibody. Overall, our study provides the underlying molecular mechanism for the SERF1a effect on Aβ fibrillization and facilitates the therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ting Jhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| |
Collapse
|
5
|
Guan Y, Li Y, Gao W, Mei J, Xu W, Wang C, Ai H. Aggregation Dynamics Characteristics of Seven Different Aβ Oligomeric Isoforms-Dependence on the Interfacial Interaction. ACS Chem Neurosci 2024; 15:155-168. [PMID: 38109178 DOI: 10.1021/acschemneuro.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The aggregation of β-amyloid (Aβ) peptides has been confirmed to be associated with the onset of Alzheimer's disease (AD). Among the three phases of Aβ aggregation, the lag phase has been considered to be the best time for early Aβ pathological deposition clinical intervention and prevention for potential patients with normal cognition. Aβ peptide exists in various lengths in vivo, and Aβ oligomer in the early lag phase is neurotoxic but polymorphous and metastable, depending on Aβ length (isoform), molecular weight, and specific phase, and therefore hardly characterized experimentally. To cope with the problem, molecular dynamics simulation was used to investigate the aggregation process of five monomers for each of the seven common Aβ isoforms during the lag phase. Results showed that Aβ(1-40) and Aβ(1-38) monomers aggregated faster than their truncated analogues Aβ(4-40) and Aβ(4-38), respectively. However, the aggregation rate of Aβ(1-42) was slower than that of its truncated analogues Aβ(4-42) rather than that of Aβpe(3-42). More importantly, Aβ(1-38) is first predicted as more likely to form stable hexamer than the remaining five Aβ isoforms, as Aβ(1-42) does. It is hydrophobic interaction mainly (>50%) from the interfacial β1 and β2 regions of two reactants, pentamer and monomer, aggregated by Aβ(1-38)/Aβ(1-42) rather than by other Aβ isoforms, that drives the hexamer stably as a result of the formation of the effective hydrophobic collapse. This paper provides new insights into the aggregation characteristics of Aβ with different lengths and the conditions necessary for Aβ to form oligomers with a high molecular weight in the early lag phase, revealing the dependence of Aβ hexamer formation on the specific interfacial interaction.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
6
|
Farrell KM, Fields CR, Dicke SS, Zanni MT. Simultaneously Measured Kinetics of Two Amyloid Polymorphs Using Cross Peak Specific 2D IR Spectroscopy. J Phys Chem Lett 2023; 14:11750-11757. [PMID: 38117179 PMCID: PMC11163371 DOI: 10.1021/acs.jpclett.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The origin of in vitro amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale. We simulated the data with three different kinetic models for polymorph formation. Only a model based on secondary nucleation reproduces the cross peak kinetics. These experiments are evidence that fibrils formed by secondary nucleation have a different polymorphic structure than the parent fibrils and illustrate the enhanced structural resolution of this new cross peak specific polarization scheme.
Collapse
Affiliation(s)
- Kieran M Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Xia Q, Wang Z, Wan W, Feng H, Sun R, Jing B, Ge Y, Liu Y. Fluorene-based tau fibrillation sensor and inhibitor with fluorogenic and photo-crosslinking properties. Chem Commun (Camb) 2023; 59:10008-10011. [PMID: 37522834 DOI: 10.1039/d3cc02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Tau protein aggregation into neurofibrillary tangles often causes tauopathies. Herein, we report fluorene based sensors with fluorogenicity upon binding to tau proteins. Intriguingly, these sensors possess triplet state properties to inhibit tau fibrillation upon photo-induced crosslinking.
Collapse
Affiliation(s)
- Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Huan Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Jing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Yusong Ge
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
10
|
Kreutzer AG, Guaglianone G, Yoo S, Parrocha CMT, Ruttenberg SM, Malonis RJ, Tong K, Lin YF, Nguyen JT, Howitz WJ, Diab MN, Hamza IL, Lai JR, Wysocki VH, Nowick JS. Probing differences among Aβ oligomers with two triangular trimers derived from Aβ. Proc Natl Acad Sci U S A 2023; 120:e2219216120. [PMID: 37216514 PMCID: PMC10235986 DOI: 10.1073/pnas.2219216120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The assembly of the β-amyloid peptide (Aβ) to form oligomers and fibrils is closely associated with the pathogenesis and progression of Alzheimer's disease. Aβ is a shape-shifting peptide capable of adopting many conformations and folds within the multitude of oligomers and fibrils the peptide forms. These properties have precluded detailed structural elucidation and biological characterization of homogeneous, well-defined Aβ oligomers. In this paper, we compare the structural, biophysical, and biological characteristics of two different covalently stabilized isomorphic trimers derived from the central and C-terminal regions Aβ. X-ray crystallography reveals the structures of the trimers and shows that each trimer forms a ball-shaped dodecamer. Solution-phase and cell-based studies demonstrate that the two trimers exhibit markedly different assembly and biological properties. One trimer forms small soluble oligomers that enter cells through endocytosis and activate capase-3/7-mediated apoptosis, while the other trimer forms large insoluble aggregates that accumulate on the outer plasma membrane and elicit cellular toxicity through an apoptosis-independent mechanism. The two trimers also exhibit different effects on the aggregation, toxicity, and cellular interaction of full-length Aβ, with one trimer showing a greater propensity to interact with Aβ than the other. The studies described in this paper indicate that the two trimers share structural, biophysical, and biological characteristics with oligomers of full-length Aβ. The varying structural, assembly, and biological characteristics of the two trimers provide a working model for how different Aβ trimers can assemble and lead to different biological effects, which may help shed light on the differences among Aβ oligomers.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | | | | | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yu-Fu Lin
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - Jennifer T. Nguyen
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| | - William J. Howitz
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Michelle N. Diab
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Imane L. Hamza
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY10461
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH43210
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA92697
| |
Collapse
|
11
|
Lee S, Dagar A, Cho I, Kim K, Park IW, Yoon S, Cha M, Shin J, Kim HY, Kim I, Kim Y. 4-Acyl-3,4-dihydropyrrolo[1,2- a]pyrazine Derivative Rescued the Hippocampal-Dependent Cognitive Decline of 5XFAD Transgenic Mice by Dissociating Soluble and Insoluble Aβ Aggregates. ACS Chem Neurosci 2023. [PMID: 37171100 DOI: 10.1021/acschemneuro.2c00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Cerebral amyloid-β (Aβ) deposition is a representative hallmark of Alzheimer's disease (AD). Development of Aβ-clearing small molecules could be an advantageous therapeutic strategy for Aβ clearance considering the advantages in terms of side effects, cost-effectiveness, stability, and oral bioavailability. Here, we report an Aβ-dissociating small molecule, YIAD-0121, a derivative of 4-acyl-3,4-dihydropyrrolo[1,2-a]pyrazine. Through a series of anti-Aβ screening assays, YIAD-0121 was identified to inhibit Aβ aggregation and dissociate preformed Aβ fibrils in vitro. Furthermore, the administration of YIAD-0121 in 5XFAD transgenic AD mice inhibited the increase of cerebral Aβ aggregation and progression of hippocampus-dependent cognitive decline, with ameliorated neuroinflammation.
Collapse
Affiliation(s)
- Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Anuradha Dagar
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Minhae Cha
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ikyon Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
12
|
Taylor AP, Davis PJ, Aubrey LD, White JBR, Parton ZN, Staniforth RA. Simple, Reliable Protocol for High-Yield Solubilization of Seedless Amyloid-β Monomer. ACS Chem Neurosci 2022; 14:53-71. [PMID: 36512740 PMCID: PMC9817077 DOI: 10.1021/acschemneuro.2c00411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Self-assembly of the amyloid-β (Aβ) peptide to form toxic oligomers and fibrils is a key causal event in the onset of Alzheimer's disease, and Aβ is the focus of intense research in neuroscience, biophysics, and structural biology aimed at therapeutic development. Due to its rapid self-assembly and extreme sensitivity to aggregation conditions, preparation of seedless, reproducible Aβ solutions is highly challenging, and there are serious ongoing issues with consistency in the literature. In this paper, we use a liquid-phase separation technique, asymmetric flow field-flow fractionation with multiangle light scattering (AF4-MALS), to develop and validate a simple, effective, economical method for re-solubilization and quality control of purified, lyophilized Aβ samples. Our findings were obtained with recombinant peptide but are physicochemical in nature and thus highly relevant to synthetic peptide. We show that much of the variability in the literature stems from the inability of overly mild solvent treatments to produce consistently monomeric preparations and is rectified by a protocol involving high-pH (>12) dissolution, sonication, and rapid freezing to prevent modification. Aβ treated in this manner is chemically stable, can be stored over long timescales at -80 °C, and exhibits remarkably consistent self-assembly behavior when returned to near-neutral pH. These preparations are highly monomeric, seedless, and do not require additional rounds of size exclusion, eliminating the need for this costly procedure and increasing the flexibility of use. We propose that our improved protocol is the simplest, fastest, and most effective way to solubilize Aβ from diverse sources for sensitive self-assembly and toxicity assays.
Collapse
|
13
|
Wu Y, Huang S, Wu M, Tu L, Lee M, Chan JCC. Aβ
42
oligomers can seed the fibrillization of Aβ
40
peptides. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐Shan Wu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Meng‐Hsin Wu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ling‐Hsien Tu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ming‐Che Lee
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | |
Collapse
|
14
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
15
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
16
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
17
|
Matsushima Y, Irie Y, Kageyama Y, Bellier JP, Tooyama I, Maki T, Kume T, Yanagita RC, Irie K. Structure optimization of the toxic conformation model of amyloid β42 by intramolecular disulfide bond formation. Chembiochem 2022; 23:e202200029. [PMID: 35165998 DOI: 10.1002/cbic.202200029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Amyloid β (Aβ) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aβ42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogs with a combination of cysteine and homocysteine at positions 17/28. The analogs with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analog, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogs at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aβ42. Furthermore, a thioflavin-T assay, non-denaturing gel electrophoresis, and morphological study suggested that the majority of these conformation-restricted analogs existed in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aβ42, rather than the oligomeric state, is essential to induce cytotoxicity.
Collapse
Affiliation(s)
- Yuka Matsushima
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, JAPAN
| | - Yumi Irie
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, JAPAN
| | - Yusuke Kageyama
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Jean-Pierre Bellier
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Ikuo Tooyama
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Takahito Maki
- University of Toyama: Toyama Daigaku, Department of Applied Pharmacology, JAPAN
| | - Toshiaki Kume
- University of Toyama: Toyama Daigaku, Department of Applied Pharmacology, JAPAN
| | - Ryo C Yanagita
- Kagawa University Faculty of Agriculture Graduate School of Agriculture: Kagawa Daigaku Nogakubu Daigakuin Nogaku Kenkyuka, Department of Applied Biological Sciences, JAPAN
| | - Kazuhiro Irie
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| |
Collapse
|
18
|
Zhang S, Yoo S, Snyder DT, Katz BB, Henrickson A, Demeler B, Wysocki VH, Kreutzer AG, Nowick JS. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Biochemistry 2022; 61:252-264. [PMID: 35080857 PMCID: PMC9083094 DOI: 10.1021/acs.biochem.1c00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aβ42 tetramer (PDB: 6RHY) provides a working model for the AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aβ dimer model for amyloid and Alzheimer's disease research.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin B. Katz
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| |
Collapse
|
19
|
Mukherjee S, Tithof J. Model of glymphatic clearance of aggregating proteins from the brain interstitium. Phys Rev E 2022; 105:024405. [PMID: 35291186 DOI: 10.1103/physreve.105.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
A growing body of evidence suggests that cerebrospinal fluid circulates through the brain to sweep away high-molecular-weight solutes. Multiple studies demonstrate that flow through this pathway, often referred to as the glymphatic system, is most active during sleep. We numerically model the clearance of amyloid-β (a high-molecular-weight protein connected to Alzheimer's disease) from the brain interstitium by combined diffusion and glymphatic advection. We first compare the clearance for a range of different flow conditions and quantify the relation between the clearance rates and Péclet number Pe. We then simulate protein buildup using a reaction-advection-diffusion equation based on the Smoluchowski aggregation scheme and quantify the buildup for different Pe. We find that for flows with Pe≳1, the rate of accumulation of heavy aggregates decreases exponentially with Pe. We finally explore the effect of the sleep-wake cycle by incorporating a variation in the flow speed motivated by experimental measurements. We find that periods of sleep lead to better clearance of intermediate protein aggregates and deter the buildup of large aggregates in the brain. In a conservative estimate, for Pe≈1, we find a 32% reduction in the buildup rate of heavier protein aggregates compared to purely diffusive clearance.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
20
|
Chang HW, Ma HI, Wu YS, Lee MC, Chung-Yueh Yuan E, Huang SJ, Cheng YS, Wu MH, Tu LH, Chan JCC. Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chem Sci 2022; 13:8526-8535. [PMID: 35974768 PMCID: PMC9337746 DOI: 10.1039/d2sc01555b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os. Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho-I. Ma
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Shan Wu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Sheng Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
21
|
Rey V, Abatedaga I, Vera C, Vieyra FEM, Borsarelli CD. Photosensitized Formation of Soluble Bionanoparticles of Lysozyme. ChemistrySelect 2021. [DOI: 10.1002/slct.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| |
Collapse
|
22
|
Kato H, Sato H, Okuda M, Wu J, Koyama S, Izumi Y, Waku T, Iino M, Aoki M, Arawaka S, Ohta Y, Ishizawa K, Kawasaki K, Urano Y, Miyasaka T, Noguchi N, Kume T, Akaike A, Sugimoto H, Kato T. Therapeutic effect of a novel curcumin derivative GT863 on a mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:489-495. [PMID: 34894926 DOI: 10.1080/21678421.2021.2012699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigated the therapeutic effects of the curcumin derivative 3-[(1E)-2-(1H-indol-6-yl)ethenyl]-5-[(1E)-2-[2-methoxy-4-(2-pyridylmethoxy)phenyl]ethenyl]-1H-pyrazole (GT863) in amyotrophic lateral sclerosis (ALS). The inhibitory effect of GT863 on superoxide dismutase 1 (SOD1) aggregation was evaluated in cell-free assays. GT863 interfered with the conformational changes of the SOD1 protein and later, oligomeric aggregation. Furthermore, its antioxidant, anti-inflammatory, and neuroprotective effects were evaluated in cell-free and cultured cell assays. GT863 inhibited H2O2- and glutamate-induced cytotoxicity and activated an antioxidant responsive element pathway. Additionally, in vivo effects of GT863 in the ALS mice model were evaluated by its oral administration to H46R mutant SOD1 transgenic mice. Rotarod test showed that GT863 administration significantly slowed the progression of motor dysfunction in the mice. In addition, GT863 substantially reduced highly-aggregated SOD1, further preserving large neurons in the spinal cord of GT863-treated mice. Collectively, these results indicated that GT863 could be a viable therapeutic agent with multiple vital actions for the treatment of ALS.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Dentistry, Oral and Maxillofacial-Plastic and Reconstructive Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroyasu Sato
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michiaki Okuda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Green Tech Co., Ltd, Kyoto, Japan
| | - Jun Wu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shingo Koyama
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto-shi, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial-Plastic and Reconstructive Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Miyagi, Japan, and
| | - Shigeki Arawaka
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasuyuki Ohta
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kenichi Ishizawa
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kanan Kawasaki
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yasuomi Urano
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Tomohiro Miyasaka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hachiro Sugimoto
- Green Tech Co., Ltd, Kyoto, Japan.,Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takeo Kato
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
23
|
Sohma Y, Sawazaki T, Kanai M. Chemical catalyst-promoted photooxygenation of amyloid proteins. Org Biomol Chem 2021; 19:10017-10029. [PMID: 34787628 DOI: 10.1039/d1ob01677f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Misfolded proteins produce aberrant fibrillar aggregates, called amyloids, which contain cross-β-sheet higher order structures. The species generated in the aggregation process (i.e., oligomers, protofibrils, and fibrils) are cytotoxic and can cause various diseases. Interfering with the amyloid formation of proteins could be a drug development target for treating diseases caused by aberrant protein aggregation. In this review, we introduce a variety of chemical catalysts that oxygenate amyloid proteins under light irradiation using molecular oxygen as the oxygen atom donor (i.e., photooxygenation catalysts). Catalytic photooxygenation strongly inhibits the aggregation of amyloid proteins due to covalent installation of hydrophilic oxygen atoms and attenuates the neurotoxicity of the amyloid proteins. Recent in vivo studies in disease model animals using photooxygenation catalysts showed promising therapeutic effects, such as memory improvement and lifespan extension. Moreover, photooxygenation catalysts with new modes of action, including interference with the propagation of amyloid core seeds and enhancement in the metabolic clearance of amyloids in the brain, have begun to be identified. Manipulation of catalytic photooxygenation with secured amyloid selectivity is indispensable for minimizing the side effects in clinical application. Here we describe several strategies for designing catalysts that selectively photooxygenate amyloids without reacting with other non-amyloid biomolecules.
Collapse
Affiliation(s)
- Youhei Sohma
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan.
| | - Taka Sawazaki
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Rofo F, Buijs J, Falk R, Honek K, Lannfelt L, Lilja AM, Metzendorf NG, Gustavsson T, Sehlin D, Söderberg L, Hultqvist G. Novel multivalent design of a monoclonal antibody improves binding strength to soluble aggregates of amyloid beta. Transl Neurodegener 2021; 10:38. [PMID: 34579778 PMCID: PMC8477473 DOI: 10.1186/s40035-021-00258-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Amyloid-β (Aβ) immunotherapy is a promising therapeutic strategy in the fight against Alzheimer’s disease (AD). A number of monoclonal antibodies have entered clinical trials for AD. Some of them have failed due to the lack of efficacy or side-effects, two antibodies are currently in phase 3, and one has been approved by FDA. The soluble intermediate aggregated species of Aβ, termed oligomers and protofibrils, are believed to be key pathogenic forms, responsible for synaptic and neuronal degeneration in AD. Therefore, antibodies that can strongly and selectively bind to these soluble intermediate aggregates are of great diagnostic and therapeutic interest. Methods We designed and recombinantly produced a hexavalent antibody based on mAb158, an Aβ protofibril-selective antibody. The humanized version of mAb158, lecanemab (BAN2401), is currently in phase 3 clinical trials for the treatment of AD. The new designs involved recombinantly fusing single-chain fragment variables to the N-terminal ends of mAb158 antibody. Real-time interaction analysis with LigandTracer and surface plasmon resonance were used to evaluate the kinetic binding properties of the generated antibodies to Aβ protofibrils. Different ELISA setups were applied to demonstrate the binding strength of the hexavalent antibody to Aβ aggregates of different sizes. Finally, the ability of the antibodies to protect cells from Aβ-induced effects was evaluated by MTT assay. Results Using real-time interaction analysis with LigandTracer, the hexavalent design promoted a 40-times enhanced binding with avidity to protofibrils, and most of the added binding strength was attributed to the reduced rate of dissociation. Furthermore, ELISA experiments demonstrated that the hexavalent design also had strong binding to small oligomers, while retaining weak and intermediate binding to monomers and insoluble fibrils. The hexavalent antibody also reduced cell death induced by a mixture of soluble Aβ aggregates. Conclusion We provide a new antibody design with increased valency to promote binding avidity to an enhanced range of sizes of Aβ aggregates. This approach should be general and work for any aggregated protein or repetitive target. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00258-x.
Collapse
Affiliation(s)
- Fadi Rofo
- Protein Drug Design, Faculty of Pharmacy, Uppsala University, 75124, Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden.,Ridgeview Instruments, 75237, Uppsala, Sweden
| | | | - Ken Honek
- BioArctic AB, 11251, Stockholm, Sweden
| | - Lars Lannfelt
- BioArctic AB, 11251, Stockholm, Sweden.,Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | | | - Nicole G Metzendorf
- Protein Drug Design, Faculty of Pharmacy, Uppsala University, 75124, Uppsala, Sweden
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 75185, Uppsala, Sweden
| | | | - Greta Hultqvist
- Protein Drug Design, Faculty of Pharmacy, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
25
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Kageyama Y, Irie Y, Matsushima Y, Segawa T, Bellier JP, Hidaka K, Sugiyama H, Kaneda D, Hashizume Y, Akatsu H, Miki K, Kita A, Walker DG, Irie K, Tooyama I. Characterization of a Conformation-Restricted Amyloid β Peptide and Immunoreactivity of Its Antibody in Human AD brain. ACS Chem Neurosci 2021; 12:3418-3432. [PMID: 34464082 DOI: 10.1021/acschemneuro.1c00416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Characterization of amyloid β (Aβ) oligomers, the transition species present prior to the formation of Aβ fibrils and that have cytotoxicity, has become one of the major topics in the investigations of Alzheimer's disease (AD) pathogenesis. However, studying pathophysiological properties of Aβ oligomers is challenging due to the instability of these protein complexes in vitro. Here, we report that conformation-restricted Aβ42 with an intramolecular disulfide bond at positions 17 and 28 (SS-Aβ42) formed stable Aβ oligomers in vitro. Thioflavin T binding assays, nondenaturing gel electrophoresis, and morphological analyses revealed that SS-Aβ42 maintained oligomeric structure, whereas wild-type Aβ42 and the highly aggregative Aβ42 mutant with E22P substitution (E22P-Aβ42) formed Aβ fibrils. In agreement with these observations, SS-Aβ42 was more cytotoxic compared to the wild-type and E22P-Aβ42 in cell cultures. Furthermore, we developed a monoclonal antibody, designated TxCo-1, using the toxic conformation of SS-Aβ42 as immunogen. X-ray crystallography of the TxCo-1/SS-Aβ42 complex, enzyme immunoassay, and immunohistochemical studies confirmed the recognition site and specificity of TxCo-1 to SS-Aβ42. Immunohistochemistry with TxCo-1 antibody identified structures resembling senile plaques and vascular Aβ in brain samples of AD subjects. However, TxCo-1 immunoreactivity did not colocalize extensively with Aβ plaques identified with conventional Aβ antibodies. Together, these findings indicate that Aβ with a turn at positions 22 and 23, which is prone to form Aβ oligomers, could show strong cytotoxicity and accumulated in brains of AD subjects. The SS-Aβ42 and TxCo-1 antibody should facilitate understanding of the pathological role of Aβ with toxic conformation in AD.
Collapse
Affiliation(s)
- Yusuke Kageyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yumi Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuka Matsushima
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tatsuya Segawa
- Immuno-Biological Laboratories Co., Ltd., Fujioka-Shi, Gunma 375-0005, Japan
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, 19-14 Noyoricho, Yamanaka, Aichi 441-8124, Japan
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, 19-14 Noyoricho, Yamanaka, Aichi 441-8124, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, 19-14 Noyoricho, Yamanaka, Aichi 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medicine, Nagoya, Aichi 467-8601, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan, Osaka 590-0494, Japan
| | - Douglas G. Walker
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kazuhiro Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
27
|
Shi H, Wang L, Yao Z, Lee JY, Guo W. Role of the English (H6R) Mutation on the Structural Properties of Aβ40 and Aβ42 Owing to the Histidine Tautomeric Effect. ACS Chem Neurosci 2021; 12:2705-2711. [PMID: 34240598 DOI: 10.1021/acschemneuro.1c00355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
As an intrinsic origin cause, histidine behaviors play a critical role in protein misfolding processes. Generally, the English (H6R) mutation will disrupt H6 interactions. However, the structural properties of Aβ40 H6R and Aβ42 H6R under the complex influence of a histidine tautomeric effect and an H6R mutation remain unclear. Therefore, we performed a replica exchange molecular dynamics simulation to unveil such structural properties. Our result showed that the H6R substitute could promote the generation of β-sheet structures in comparison to the wild type. Three β-strand structure properties were observed in Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) with β-sheet contents of 47.5%, 37.2%, 46.9%, and 38.6%, respectively, and the dominant conformational properties of Aβ40 (rδδ), Aβ42 (rεε), Aβ42 (rεδ), and Aβ42 (rδδ) had top conformational states of 86.0%, 73.2%, 67.0%, and 56.5%, respectively. Further analysis confirmed that R6 had different mechanisms for controlling the conformational features in Aβ40 H6R and Aβ42 H6R. In the Aβ40 systems, H14 H-bond networks played a critical role in controlling the structural properties. However, in the Aβ42 systems, R6 was more important because it was directly involved in the β-strand formation and maintained the β-sheet between the N-terminus and the central hydrophobic core region. Our current study helps to elucidate the histidine tautomeric behaviors in H6R mutations, which will present opportunities to understand the correlation between with/without H6 and the Aβ40/Aβ42 H6R misfolding mechanisms.
Collapse
Affiliation(s)
- Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lisha Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
28
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
29
|
Toward the equilibrium and kinetics of amyloid peptide self-assembly. Curr Opin Struct Biol 2021; 70:87-98. [PMID: 34153659 DOI: 10.1016/j.sbi.2021.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 01/28/2023]
Abstract
Several devastating human diseases are linked to peptide self-assembly, but our understanding their onset and progression is not settled. This is a sign of the complexity of the aggregation process, which is prevented, catalyzed, or retarded by numerous factors in body fluids and cells, varying in time and space. Biophysical studies of pure peptide solutions contribute insights into the underlying steps in the process and quantitative parameters relating to rate constants (energy barriers) and equilibrium constants (population distributions). This requires methods to quantify the concentration of at least one species in the process. Translation to an in vivo situation poses an enormous challenge, and the effects of selected components (bottom up) or entire body fluids (top down) need to be quantified.
Collapse
|
30
|
Yu L, Deng Z, Zhang W, Liu S, Zhang F, Zhou J, Ma C, Wang C. Opposite Regulatory Effects of Immobilized Cations on the Folding Vs. Assembly of Melittin. Front Chem 2021; 9:685947. [PMID: 34178946 PMCID: PMC8225954 DOI: 10.3389/fchem.2021.685947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Ions are crucial in modulating the protein structure. For the free ions in bulk solution, ammonium is kosmotropic (structure forming) and guanidinium is chaotropic (structure breaking) to the protein structure within the Hofmeister series. However, the effect of immobilized ions on a protein surface is less explored. Herein, we explored the influence of two immobilized cations (ammonium in the side chain of lysine and guanidinium in the side chain of arginine) on the folding and assembly of melittin. Melittin adopts an α-helix structure and is driven by hydrophobic interactions to associate into a helical bundle. To test the influence of immobilized cations on the peptide structure, we designed the homozygous mutants exclusively containing ammonium (melittin-K) or guanidinium (melittin-R) and compared the differences of melittin-K vs. melittin-R in their folding, assembly, and molecular functions. The side chains of lysine and arginine differ in their influences on the folding and assembly of melittin. Specifically, the side chain of R increases the α-helical propensity of melittin relative to that of K, following an inverse Hofmeister series. In contrast, the side chain of K favors the assembly of melittin relative to the side chain of R in line with a direct Hofmeister series. The opposite regulatory effects of immobilized cations on the folding and assembly of melittin highlight the complexity of the noncovalent interactions that govern protein intermolecular architecture.
Collapse
Affiliation(s)
- Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| | - Feiyi Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, China
| | | | | | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
31
|
An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β. Sci Rep 2021; 11:11570. [PMID: 34078941 PMCID: PMC8172837 DOI: 10.1038/s41598-021-90680-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
A key hallmark of Alzheimer’s disease is the extracellular deposition of amyloid plaques composed primarily of the amyloidogenic amyloid-β (Aβ) peptide. The Aβ peptide is a product of sequential cleavage of the Amyloid Precursor Protein, the first step of which gives rise to a C-terminal Fragment (C99). Cleavage of C99 by γ-secretase activity releases Aβ of several lengths and the Aβ42 isoform in particular has been identified as being neurotoxic. The misfolding of Aβ leads to subsequent amyloid fibril formation by nucleated polymerisation. This requires an initial and critical nucleus for self-assembly. Here, we identify and characterise the composition and self-assembly properties of cell-derived hexameric Aβ42 and show its assembly enhancing properties which are dependent on the Aβ monomer availability. Identification of nucleating assemblies that contribute to self-assembly in this way may serve as therapeutic targets to prevent the formation of toxic oligomers.
Collapse
|
32
|
Awasthi P, Singh A, Khatun S, Gupta AN, Das S. Fibril growth captured by electrical properties of amyloid-β and human islet amyloid polypeptide. Phys Rev E 2021; 101:062413. [PMID: 32688470 DOI: 10.1103/physreve.101.062413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 11/07/2022]
Abstract
The aggregation of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) proteins have attracted considerable attention because of their involvement in protein misfolding diseases. These proteins have mostly been investigated using atomic force microscopy, transmission electron microscopy, and fluorescence microscopy to study the directional growth of fibrils both perpendicular to and along the fibril axis. Here, we demonstrate the real-time monitoring of the directional growth of fibrils in terms of activation energy of proton transfer using an impedance spectroscopy technique. The activation energy is used to quantify the sensitivity of proton conduction to the different stages of protein aggregation. The decrement (increment) in activation energy is related to the fibril growth along (perpendicular to) the fibril axis in intrinsic protein aggregation. The entire aggregation process shows different phases of the directional growth for Aβ and hIAPP, indicating different pathways for their aggregation. The activation energy for hIAPP is found to be smaller than the activation energy of Aβ during the aggregation process. The oscillatory behavior of the activation energy of hIAPP reflects a rapid change in the directional growth of the protofilaments of hIAPP. The results indicate higher aggregation propensity of Aβ than hIAPP. In the presence of resveratrol, hIAPP exhibits slower aggregation compared to Aβ. Methods of this study may in general be used to reveal the modulated aggregation pathway of proteins in the presence of different ligands.
Collapse
Affiliation(s)
- Prasoon Awasthi
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Soumen Das
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
33
|
Decker Y, Németh E, Schomburg R, Chemla A, Fülöp L, Menger MD, Liu Y, Fassbender K. Decreased pH in the aging brain and Alzheimer's disease. Neurobiol Aging 2021; 101:40-49. [PMID: 33578193 DOI: 10.1016/j.neurobiolaging.2020.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Using publicly available data sets, we compared pH in the human brain and the cerebrospinal fluid (CSF) of postmortem control and Alzheimer's disease cases. We further investigated the effects of long-term acidosis in vivo in the APP-PS1 mouse model of Alzheimer's disease. We finally examined in vitro whether low pH exposure could modulate the release of proinflammatory cytokines and the uptake of amyloid beta by microglia. In the human brain, pH decreased with aging. Similarly, we observed a reduction of pH in the brain of C57BL/6 mice with age. In addition, independent database analyses revealed that postmortem brain and CSF pH is further reduced in Alzheimer's disease cases compared with controls. Moreover, in vivo experiments showed that low pH CSF infusion increased amyloid beta plaque load in APP-PS1 mice. We further observed that mild acidosis reduced the amyloid beta 42-induced release of tumor necrosis factor-alpha by microglia and their capacity to uptake this peptide. Brain acidosis is associated with aging and might affect pathophysiological processes such as amyloid beta aggregation or inflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Yann Decker
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany.
| | - Eszter Németh
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Robert Schomburg
- Rehaklinik Zihlschlacht, Neurologisches Rehabilitationszentrum, Zihlschlacht, Switzerland
| | - Axel Chemla
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany.
| |
Collapse
|
34
|
Deleanu M, Hernandez JF, Cipelletti L, Biron JP, Rossi E, Taverna M, Cottet H, Chamieh J. Unraveling the Speciation of β-Amyloid Peptides during the Aggregation Process by Taylor Dispersion Analysis. Anal Chem 2021; 93:6523-6533. [PMID: 33852281 DOI: 10.1021/acs.analchem.1c00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation mechanisms of amyloid β peptides depend on multiple intrinsic and extrinsic physicochemical factors (e.g., peptide chain length, truncation, peptide concentration, pH, ionic strength, temperature, metal concentration, etc.). Due to this high number of parameters, the formation of oligomers and their propensity to aggregate make the elucidation of this physiopathological mechanism a challenging task. From the analytical point of view, up to our knowledge, few techniques are able to quantify, in real time, the proportion and the size of the different soluble species during the aggregation process. This work aims at demonstrating the efficacy of the modern Taylor dispersion analysis (TDA) performed in capillaries (50 μm i.d.) to unravel the speciation of β-amyloid peptides in low-volume peptide samples (∼100 μL) with an analysis time of ∼3 min per run. TDA was applied to study the aggregation process of Aβ(1-40) and Aβ(1-42) peptides at physiological pH and temperature, where more than 140 data points were generated with a total volume of ∼1 μL over the whole aggregation study (about 0.5 μg of peptides). TDA was able to give a complete and quantitative picture of the Aβ speciation during the aggregation process, including the sizing of the oligomers and protofibrils, the consumption of the monomer, and the quantification of different early- and late-formed aggregated species.
Collapse
Affiliation(s)
- Mihai Deleanu
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| | | | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, 34095 Montpellier, France.,Institut Universitaire de France (IUF), France
| | | | - Emilie Rossi
- , Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Myriam Taverna
- Institut Universitaire de France (IUF), France.,, Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Hervé Cottet
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| | - Joseph Chamieh
- IBMM, ENSCM, Université Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
35
|
Interrogating biological systems using visible-light-powered catalysis. Nat Rev Chem 2021; 5:322-337. [PMID: 37117838 DOI: 10.1038/s41570-021-00265-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Light-powered catalysis has found broad utility as a chemical transformation strategy, with widespread impact on energy, environment, drug discovery and human health. A noteworthy application impacting human health is light-induced sensitization of cofactors for photodynamic therapy in cancer treatment. The clinical adoption of this photosensitization approach has inspired the search for other photochemical methods, such as photoredox catalysis, to influence biological discovery. Over the past decade, light-mediated catalysis has enabled the discovery of valuable synthetic transformations, propelling it to become a highly utilized chemical synthesis strategy. The reaction components required to achieve a photoredox reaction are identical to photosensitization (catalyst, light source and substrate), making it ideally suited for probing biological environments. In this Review, we discuss the therapeutic application of photosensitization and advancements made in developing next-generation catalysts. We then highlight emerging uses of photoredox catalytic methods for protein bioconjugation and probing complex cellular environments in living cells.
Collapse
|
36
|
Urbanc B. Cross-Linked Amyloid β-Protein Oligomers: A Missing Link in Alzheimer's Disease Pathology? J Phys Chem B 2021; 125:1307-1316. [PMID: 33440940 DOI: 10.1021/acs.jpcb.0c07716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid β-protein (Aβ) oligomers are broadly viewed as the proximate mediators of toxicity in Alzheimer's disease (AD). Recent studies, however, provide substantial evidence that Aβ is involved in protection and repair of the central nervous system whereby Aβ oligomer and subsequent fibril formation are integral to its normal antimicrobial and antiviral function. These developments raise a question of what exactly makes Aβ oligomers toxic in the context of AD. This Perspective describes a paradigm shift in the search for toxic Aβ oligomer species that involves oxidative-stress-induced stabilization of Aβ oligomers via cross-linking and reviews most recent research elucidating structural aspects of cross-linked Aβ oligomers and potential inhibition of their toxicity.
Collapse
Affiliation(s)
- Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Kim D, Bae GH, Kim HY, Jeon H, Kim K, Shin J, Lee S, Hong S, Kim I, Kim Y. Orally Administered Benzofuran Derivative Disaggregated Aβ Plaques and Oligomers in the Brain of 5XFAD Alzheimer Transgenic Mouse. ACS Chem Neurosci 2021; 12:99-108. [PMID: 33332107 DOI: 10.1021/acschemneuro.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amyloid-β (Aβ) aggregated forms are highly associated with the onset of Alzheimer's disease (AD). Aβ abnormally accumulates in the brain and induces neuronal damages and symptoms of AD such as cognitive impairment and memory loss. Since an antibody drug, aducanumab, reduces Aβ aggregates and delays clinical decline, clearance of accumulated Aβ in the brain is accounted as a therapeutic approach to treat AD. In this study, we synthesized 17 benzofuran derivatives that may disaggregate Aβ oligomers and plaques into inert monomers. By a series of Aβ aggregation inhibition and aggregates' disaggregation assays utilizing thioflavin T assays and gel electrophoresis, YB-9, 2-((5-methoxy-3-(4-methoxyphenyl)benzofuran-6-yl)oxy)acetic acid, was selected as the final Aβ-disaggregator candidate. When it was orally administered to the 8-month-old male transgenic mouse model with five familial AD mutations (5XFAD) via drinking water daily for two months, Aβ oligomers and plaques in hippocampus were reduced. Consequently, decreased astrogliosis and rescued synaptic dysfunction were observed in the hippocampus of YB-9-treated 5XFAD mice compared with the untreated transgenic control group.
Collapse
Affiliation(s)
- DaWon Kim
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States
| | | | | | | | | | | | | | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States
| | | | | |
Collapse
|
38
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
39
|
Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity. Molecules 2020; 25:molecules25235698. [PMID: 33287192 PMCID: PMC7730986 DOI: 10.3390/molecules25235698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.
Collapse
|
40
|
Wang H, Lallemang M, Hermann B, Wallin C, Loch R, Blanc A, Balzer BN, Hugel T, Luo J. ATP Impedes the Inhibitory Effect of Hsp90 on Aβ 40 Fibrillation. J Mol Biol 2020; 433:166717. [PMID: 33220262 DOI: 10.1016/j.jmb.2020.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding in an Adenosine triphosphate (ATP)-dependent way. Hsp90 has been reported to interact with Alzheimeŕs disease associated amyloid-β (Aβ) peptides and to suppress toxic oligomer- and fibril formation. However, the mechanism remains largely unclear. Here we use a combination of atomic force microscopy (AFM) imaging, circular dichroism (CD) spectroscopy and biochemical analysis to quantify this interaction and put forward a microscopic picture including rate constants for the different transitions towards fibrillation. We show that Hsp90 binds to Aβ40 monomers weakly but inhibits Aβ40 from growing into fibrils at substoichiometric concentrations. ATP impedes this interaction, presumably by modulating Hsp90's conformational dynamics and reducing its hydrophobic surface. Altogether, these results might indicate alternative ways to prevent Aβ40 fibrillation by manipulating chaperones that are already abundant in the brain.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Bianca Hermann
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Rolf Loch
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland.
| |
Collapse
|
41
|
Takalloo Z, Ardakani ZA, Maroufi B, Shahangian SS, Sajedi RH. Stress-dependent conformational changes of artemin: Effects of heat and oxidant. PLoS One 2020; 15:e0242206. [PMID: 33196673 PMCID: PMC7668597 DOI: 10.1371/journal.pone.0242206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Artemin is an abundant thermostable protein in Artemia embryos and it is considered as a highly efficient molecular chaperone against extreme environmental stress conditions. The conformational dynamics of artemin have been suggested to play a critical role in its biological functions. In this study, we have investigated the conformational and functional changes of artemin under heat and oxidative stresses to identify the relationship between its structure and function. The tertiary and quaternary structures of artemin were evaluated by fluorescence measurements, protein cross-linking analysis, and dynamic light scattering. Based on the structural analysis, artemin showed irreversible substantial conformational lability in responses to heat and oxidant, which was mainly mediated through the hydrophobic interactions and dimerization of the chaperone. In addition, the chaperone-like activity of heated and oxidized artemin was examined using lysozyme refolding assay and the results showed that although both factors, i.e. heat and oxidant, at specific levels improved artemin potency, simultaneous incubation with both stressors significantly triggered the chaperone activation. Moreover, the heat-induced dimerization of artemin was found to be the most critical factor for its activation. It was suggested that oxidation presumably acts through stabilizing the dimer structures of artemin through formation of disulfide bridges between the subunits and strengthens its chaperoning efficacy. Accordingly, it is proposed that artemin probably exists in a monomer–oligomer equilibrium in Artemia cysts and environmental stresses and intracellular portion of protein substrates may shift the equilibrium towards the active dimer forms of the chaperone.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Afshar Ardakani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
42
|
Vadukul DM, Maina M, Franklin H, Nardecchia A, Serpell LC, Marshall KE. Internalisation and toxicity of amyloid-β 1-42 are influenced by its conformation and assembly state rather than size. FEBS Lett 2020; 594:3490-3503. [PMID: 32871611 DOI: 10.1002/1873-3468.13919] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023]
Abstract
Amyloid fibrils found in plaques in Alzheimer's disease (AD) brains are composed of amyloid-β peptides. Oligomeric amyloid-β 1-42 (Aβ42) is thought to play a critical role in neurodegeneration in AD. Here, we determine how size and conformation affect neurotoxicity and internalisation of Aβ42 assemblies using biophysical methods, immunoblotting, toxicity assays and live-cell imaging. We report significant cytotoxicity of Aβ42 oligomers and their internalisation into neurons. In contrast, Aβ42 fibrils show reduced internalisation and no toxicity. Sonicating Aβ42 fibrils generates species similar in size to oligomers but remains nontoxic. The results suggest that Aβ42 oligomers have unique properties that underlie their neurotoxic potential. Furthermore, we show that incubating cells with Aβ42 oligomers for 24 h is sufficient to trigger irreversible neurotoxicity.
Collapse
Affiliation(s)
- Devkee M Vadukul
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,CEMO-Alzheimer Dementia group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Mahmoud Maina
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,College of Medical Sciences, Yobe State University, Nigeria
| | - Hannah Franklin
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Astrid Nardecchia
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Louise C Serpell
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Karen E Marshall
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| |
Collapse
|
43
|
Koronyo-Hamaoui M, Sheyn J, Hayden EY, Li S, Fuchs DT, Regis GC, Lopes DHJ, Black KL, Bernstein KE, Teplow DB, Fuchs S, Koronyo Y, Rentsendorj A. Peripherally derived angiotensin converting enzyme-enhanced macrophages alleviate Alzheimer-related disease. Brain 2020; 143:336-358. [PMID: 31794021 DOI: 10.1093/brain/awz364] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Targeted overexpression of angiotensin-converting enzyme (ACE), an amyloid-β protein degrading enzyme, to brain resident microglia and peripheral myelomonocytes (ACE10 model) substantially diminished Alzheimer's-like disease in double-transgenic APPSWE/PS1ΔE9 (AD+) mice. In this study, we explored the impact of selective and transient angiotensin-converting enzyme overexpression on macrophage behaviour and the relative contribution of bone marrow-derived ACE10 macrophages, but not microglia, in attenuating disease progression. To this end, two in vivo approaches were applied in AD+ mice: (i) ACE10/GFP+ bone marrow transplantation with head shielding; and (ii) adoptive transfer of CD115+-ACE10/GFP+ monocytes to the peripheral blood. Extensive in vitro studies were further undertaken to establish the unique ACE10-macrophage phenotype(s) in response to amyloid-β1-42 fibrils and oligomers. The combined in vivo approaches showed that increased cerebral infiltration of ACE10 as compared to wild-type monocytes (∼3-fold increase; P < 0.05) led to reductions in cerebral soluble amyloid-β1-42, vascular and parenchymal amyloid-β deposits, and astrocytosis (31%, 47-80%, and 33%, respectively; P < 0.05-0.0001). ACE10 macrophages surrounded brain and retinal amyloid-β plaques and expressed 3.2-fold higher insulin-like growth factor-1 (P < 0.01) and ∼60% lower tumour necrosis factor-α (P < 0.05). Importantly, blood enrichment with CD115+-ACE10 monocytes in symptomatic AD+ mice resulted in pronounced synaptic and cognitive preservation (P < 0.05-0.001). In vitro analysis of macrophage response to well-defined amyloid-β1-42 conformers (fibrils, prion rod-like structures, and stabilized soluble oligomers) revealed extensive resistance to amyloid-β1-42 species by ACE10 macrophages. They exhibited 2-5-fold increased surface binding to amyloid-β conformers as well as substantially more effective amyloid-β1-42 uptake, at least 8-fold higher than those of wild-type macrophages (P < 0.0001), which were associated with enhanced expression of surface scavenger receptors (i.e. CD36, scavenger receptor class A member 1, triggering receptor expressed on myeloid cells 2, CD163; P < 0.05-0.0001), endosomal processing (P < 0.05-0.0001), and ∼80% increased extracellular degradation of amyloid-β1-42 (P < 0.001). Beneficial ACE10 phenotype was reversed by the angiotensin-converting enzyme inhibitor (lisinopril) and thus was dependent on angiotensin-converting enzyme catalytic activity. Further, ACE10 macrophages presented distinct anti-inflammatory (low inducible nitric oxide synthase and lower tumour necrosis factor-α), pro-healing immune profiles (high insulin-like growth factor-1, elongated cell morphology), even following exposure to Alzheimer's-related amyloid-β1-42 oligomers. Overall, we provide the first evidence for therapeutic roles of angiotensin-converting enzyme-overexpressing macrophages in preserving synapses and cognition, attenuating neuropathology and neuroinflammation, and enhancing resistance to defined pathognomonic amyloid-β forms.
Collapse
Affiliation(s)
- Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Songlin Li
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Institute of Neuroscience and Chemistry, and Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dahabada H J Lopes
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
44
|
Zuroff LR, Torbati T, Hart NJ, Fuchs DT, Sheyn J, Rentsendorj A, Koronyo Y, Hayden EY, Teplow DB, Black KL, Koronyo-Hamaoui M. Effects of IL-34 on Macrophage Immunological Profile in Response to Alzheimer's-Related Aβ 42 Assemblies. Front Immunol 2020; 11:1449. [PMID: 32765504 PMCID: PMC7378440 DOI: 10.3389/fimmu.2020.01449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-34 (IL-34) is a recently discovered cytokine that acts as a second ligand of the colony stimulating factor 1 receptor (CSF1R) in addition to macrophage colony-stimulating factor (M-CSF). Similar to M-CSF, IL-34 also stimulates bone marrow (BM)-derived monocyte survival and differentiation into macrophages. Growing evidence suggests that peripheral BM-derived monocyte/macrophages (BMMO) play a key role in the physiological clearance of cerebral amyloid β-protein (Aβ). Aβ42 forms are especially neurotoxic and highly associated with Alzheimer's disease (AD). As a ligand of CSF1R, IL-34 may be relevant to innate immune responses in AD. To investigate how IL-34 affects macrophage phenotype in response to structurally defined and stabilized Aβ42 oligomers and preformed fibrils, we characterized murine BMMO cultured in media containing M-CSF, IL-34, or regimens involving both cytokines. We found that the immunological profile and activation phenotype of IL-34-stimulated BMMO differed significantly from those cultured with M-CSF alone. Specifically, macrophage uptake of fibrillar or oligomeric Aβ42 was markedly reduced following exposure to IL-34 compared to M-CSF. Surface expression of type B scavenger receptor CD36, known to facilitate Aβ recognition and uptake, was modified following treatment with IL-34. Similarly, IL-34 macrophages expressed lower levels of proteins involved in both Aβ uptake (triggering receptor expressed on myeloid cells 2, TREM2) as well as Aβ-degradation (matrix metallopeptidase 9, MMP-9). Interestingly, intracellular compartmentalization of Aβ visualized by staining of early endosome antigen 1 (EEA1) was not affected by IL-34. Macrophage characteristics associated with an anti-inflammatory and pro-wound healing phenotype, including processes length and morphology, were also quantified, and macrophages stimulated with IL-34 alone displayed less process elongation in response to Aβ42 compared to those cultured with M-CSF. Further, monocytes treated with IL-34 alone yielded fewer mature macrophages than those treated with M-CSF alone or in combination with IL-34. Our data indicate that IL-34 impairs monocyte differentiation into macrophages and reduces their ability to uptake pathological forms of Aβ. Given the critical role of macrophage-mediated Aβ clearance in both murine models and patients with AD, future work should investigate the therapeutic potential of modulating IL-34 in vivo to increase macrophage-mediated Aβ clearance and prevent disease development.
Collapse
Affiliation(s)
- Leah R Zuroff
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tania Torbati
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States.,Western University of Health Sciences College of Osteopathic Medicine of the Pacific, Pomona, CA, United States
| | - Nadav J Hart
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Keith L Black
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Neurosurgery Department, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Applied Cellular Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
45
|
Dear AJ, Meisl G, Šarić A, Michaels TCT, Kjaergaard M, Linse S, Knowles TPJ. Identification of on- and off-pathway oligomers in amyloid fibril formation. Chem Sci 2020; 11:6236-6247. [PMID: 32953019 PMCID: PMC7480182 DOI: 10.1039/c9sc06501f] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
The misfolding and aberrant aggregation of proteins into fibrillar structures is a key factor in some of the most prevalent human diseases, including diabetes and dementia. Low molecular weight oligomers are thought to be a central factor in the pathology of these diseases, as well as critical intermediates in the fibril formation process, and as such have received much recent attention. Moreover, on-pathway oligomeric intermediates are potential targets for therapeutic strategies aimed at interrupting the fibril formation process. However, a consistent framework for distinguishing on-pathway from off-pathway oligomers has hitherto been lacking and, in particular, no consensus definition of on- and off-pathway oligomers is available. In this paper, we argue that a non-binary definition of oligomers' contribution to fibril-forming pathways may be more informative and we suggest a quantitative framework, in which each oligomeric species is assigned a value between 0 and 1 describing its relative contribution to the formation of fibrils. First, we clarify the distinction between oligomers and fibrils, and then we use the formalism of reaction networks to develop a general definition for on-pathway oligomers, that yields meaningful classifications in the context of amyloid formation. By applying these concepts to Monte Carlo simulations of a minimal aggregating system, and by revisiting several previous studies of amyloid oligomers in light of our new framework, we demonstrate how to perform these classifications in practice. For each oligomeric species we obtain the degree to which it is on-pathway, highlighting the most effective pharmaceutical targets for the inhibition of amyloid fibril formation.
Collapse
Affiliation(s)
- Alexander J Dear
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
- Department of Biochemistry and Structural Biology , Lund Univerisity , SE22100 Lund , Sweden .
| | - Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Anđela Šarić
- Department of Physics and Astronomy , Institute for the Physics of Living Systems , University College London , Gower Street , London WC1E 6BT , UK
- MRC Laboratory for Molecular Cell Biology , University College London , Gower St, WC1E 6BT , London , UK
| | - Thomas C T Michaels
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
- Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics , Aarhus University , Høegh-Guldbergs Gade 6B , DK-8000 Aarhus C , Denmark
| | - Sara Linse
- Department of Biochemistry and Structural Biology , Lund Univerisity , SE22100 Lund , Sweden .
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
- Cavendish Laboratory , Department of Physics , University of Cambridge , J J Thomson Avenue , Cambridge CB3 0HE , UK .
| |
Collapse
|
46
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. J Chem Theory Comput 2020; 16:3920-3935. [PMID: 32307994 DOI: 10.1021/acs.jctc.0c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) oligomers are known as the most toxic form of Aβ peptides, and they are a major contributor to Alzheimer's disease. Therefore, developing antagonist screening methods for the formation of Aβ oligomers is urgent and of great interest. In this study, we introduce virtual oligomerization inhibition (VOI), a novel virtual screening protocol that applies atomistic simulation to quantitatively investigate the ability of a ligand in interfering Aβ oligomerization and the formation of Aβ oligomers. Results from the VOI performance on six known inhibitors of Aβ aggregation (brazilin, curcumin, EGCG, ELND005, resveratrol, and tacrine) are in excellent agreement with the results of expensive experiments. Moreover, VOI can reveal the mechanism and kinetics of the inhibition process at the atomistic level. VOI not only improves the efficiency of the antagonist screening for Aβ oligomerization but also reduces the cost of performing the task. Attractively, the principle of VOI can also be applied to inhibitor screening for the aggregation of other amyloid proteins/peptides.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
47
|
Frigori RB, Barroso da Silva FL, Carvalho PPD, Alves NA. Occurrence of Biased Conformations as Precursors of Assembly States in Fibril Elongation of Amyloid-β Fibril Variants: An In Silico Study. J Phys Chem B 2020; 124:2798-2805. [DOI: 10.1021/acs.jpcb.0c01360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rafael B. Frigori
- Universidade Tecnológica Federal do Paraná, Rua Cristo Rei 19, Toledo 85902-490, Paraná, Brazil
| | - Fernando L. Barroso da Silva
- Departamento de Ciências Biomoleculares, FCFRP, Universidade de São Paulo, Avenida do Café, s/no, Ribeirão Preto 14040-903, São Paulo, Brazil
| | - Patrícia P. D. Carvalho
- Departamento de Fı́sica, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Nelson A. Alves
- Departamento de Fı́sica, FFCLRP, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| |
Collapse
|
48
|
Liu W, Wang W, Dong X, Sun Y. Near-Infrared Light-Powered Janus Nanomotor Significantly Facilitates Inhibition of Amyloid-β Fibrillogenesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12618-12628. [PMID: 32105446 DOI: 10.1021/acsami.0c02342] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the natural motors, artificial nanomotors (NMs) have emerged as intelligent, advanced, and multifunctional nanoplatforms that can perform complex tasks in living environments. However, the functionalization of these fantastic materials is in its infancy, hindering the success of this booming field. Herein, an inhibitor-conjugated near-infrared (NIR) laser-propelled Janus nanomotor (JNM-I) was constructed and first applied in the modulation of amyloid-β protein (Aβ) aggregation which is highly associated with Alzheimer's disease (AD). Under NIR light illumination, JNM-I exhibited efficient propulsion through the "self-thermophoresis" effect, and the active motion of JNM-I increased the opportunity of the contacts between the immobilized inhibitors and Aβ species, leading to an intensification of JNM-I on modulating the on-pathway Aβ aggregation, as evidenced by the distinct changes of the amyloid morphology, conformation, and cytotoxicity. For example, with a NIR irradiation, 200 μg/mL of JNM-I increased the cultured SH-SY5Y cell viability from 68% to nearly 100%, but it only protected the cells to 89% viability without an NIR irradiation. Meanwhile, the NIR irradiation effectively improved the blood-brain barrier (BBB) penetration of JNM-I. Such a JNM-I has connected artificial nanomotors with protein aggregation and provided new insight into the potential applications of various nanomotors in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
49
|
Li S, Hayden EY, Garcia VJ, Fuchs DT, Sheyn J, Daley DA, Rentsendorj A, Torbati T, Black KL, Rutishauser U, Teplow DB, Koronyo Y, Koronyo-Hamaoui M. Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ 42 Oligomers and Protect Synapses. Front Immunol 2020; 11:49. [PMID: 32082319 PMCID: PMC7005081 DOI: 10.3389/fimmu.2020.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired synaptic integrity and function due to accumulation of amyloid β-protein (Aβ42) oligomers is thought to be a major contributor to cognitive decline in Alzheimer's disease (AD). However, the exact role of Aβ42 oligomers in synaptotoxicity and the ability of peripheral innate immune cells to rescue synapses remain poorly understood due to the metastable nature of oligomers. Here, we utilized photo-induced cross-linking to stabilize pure oligomers and study their effects vs. fibrils on synapses and protection by Aβ-phagocytic macrophages. We found that cortical neurons were more susceptible to Aβ42 oligomers than fibrils, triggering additional neuritic arborization retraction, functional alterations (hyperactivity and spike waveform), and loss of VGluT1- and PSD95-excitatory synapses. Co-culturing neurons with bone marrow-derived macrophages protected synapses against Aβ42 fibrils; moreover, immune activation with glatiramer acetate (GA) conferred further protection against oligomers. Mechanisms involved increased Aβ42 removal by macrophages, amplified by GA stimulation: fibrils were largely cleared through intracellular CD36/EEA1+-early endosomal proteolysis, while oligomers were primarily removed via extracellular/MMP-9 enzymatic degradation. In vivo studies in GA-immunized or CD115+-monocyte-grafted APPSWE/PS1ΔE9-transgenic mice followed by pre- and postsynaptic analyses of entorhinal cortex and hippocampal substructures corroborated our in vitro findings of macrophage-mediated synaptic preservation. Together, our data demonstrate that activated macrophages effectively clear Aβ42 oligomers and rescue VGluT1/PSD95 synapses, providing rationale for harnessing macrophages to treat AD.
Collapse
Affiliation(s)
- Songlin Li
- Institute of Neuroscience and Chemistry, Wenzhou University, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Veronica J. Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - David A. Daley
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Tania Torbati
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
50
|
Ono K, Zhao D, Wu Q, Simon J, Wang J, Radu A, Pasinetti GM. Pine Bark Polyphenolic Extract Attenuates Amyloid-β and Tau Misfolding in a Model System of Alzheimer's Disease Neuropathology. J Alzheimers Dis 2020; 73:1597-1606. [PMID: 31958081 PMCID: PMC8162892 DOI: 10.3233/jad-190543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plant-derived polyphenolic compounds possess diverse biological activities, including strong anti-oxidant, anti-inflammatory, anti-microbial, and anti-tumorigenic activities. There is a growing interest in the development of polyphenolic compounds for preventing and treating chronic and degenerative diseases, such as cardiovascular disorders, cancer, and neurological diseases including Alzheimer's disease (AD). Two neuropathological changes of AD are the appearance of neurofibrillary tangles containing tau and extracellular amyloid deposits containing amyloid-β protein (Aβ). Our laboratory and others have found that polyphenolic preparations rich in proanthocyanidins, such as grape seed extract, are capable of attenuating cognitive deterioration and reducing brain neuropathology in animal models of AD. Oligopin is a pine bark extract composed of low molecular weight proanthocyanidins oligomers (LMW-PAOs), including flavan-3-ol units such as catechin (C) and epicatechin (EC). Based on the ability of its various components to confer resilience to the onset of AD, we tested whether oligopin can specifically prevent or attenuate the progression of AD dementia preclinically. We also explored the underlying mechanism(s) through which oligopin may exert its biological activities. Oligopin inhibited oligomer formation of not only Aβ1-40 and Aβ1-42, but also tau in vitro. Our pharmacokinetics analysis of metabolite accumulation in vivo resulted in the identification of Me-EC-O-β-Glucuronide, Me-(±)-C-O-β-glucuronide, EC-O-β-glucuronide, and (±)-C-O-β-glucuronide in the plasma of mice. These metabolites are primarily methylated and glucuronidated C and EC conjugates. The studies conducted provide the necessary impetus to design future clinical trials with bioactive oligopin to prevent both prodromal and residual forms of AD.
Collapse
Affiliation(s)
- Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Daisy Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - James Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aurelian Radu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical, Center, Bronx, NY, USA
| |
Collapse
|