1
|
Sharma P, Zhang X, Ly K, Kim JH, Wan Q, Kim J, Lou M, Kain L, Teyton L, Winau F. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape. Science 2024; 383:190-200. [PMID: 38207022 PMCID: PMC11398950 DOI: 10.1126/science.adg1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-β (TGF-β) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.
Collapse
Affiliation(s)
- Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Ly
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wan
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Sharma P, Zhang X, Ly K, Kim JH, Wan Q, Kim J, Lou M, Kain L, Teyton L, Winau F. Hyperglycosylation of prosaposin in tumor DCs promotes immune escape in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545005. [PMID: 37398287 PMCID: PMC10312684 DOI: 10.1101/2023.06.14.545005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tumors develop strategies to evade immunity by suppressing antigen presentation. Here, we show that prosaposin drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor DCs leads to cancer immune escape. We found that lysosomal prosaposin and its single saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, TGF-β induced hyperglycosylation of prosaposin and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. In melanoma patients, we found similar prosaposin hyperglycosylation in tumor-associated DCs, and reconstitution with prosaposin rescued activation of tumor-infiltrating T cells. Targeting tumor DCs with recombinant prosaposin triggered cancer protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of prosaposin in tumor immunity and escape and introduce a novel principle of prosaposin-based cancer immunotherapy. One Sentence Summary Prosaposin facilitates antigen cross-presentation and tumor immunity and its hyperglycosylation leads to immune evasion.
Collapse
|
3
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Gebai A, Gorelik A, Nagar B. Crystal structure of saposin D in an open conformation. J Struct Biol 2018; 204:145-150. [PMID: 30026085 DOI: 10.1016/j.jsb.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 11/30/2022]
Abstract
Saposins are accessory proteins that aid in the degradation of sphingolipids by hydrolytic enzymes. Their structure usually comprises four α-helices arranged in various conformations including an open, V-shaped form that is generally associated with the ability to interact with membranes and/or enzymes to accentuate activity. Saposin D is required by the lysosomal hydrolase, acid ceramidase, which breaks down ceramide into sphingosine and free fatty acid, to display optimal activity. The structure of saposin D was previously determined in an inactive conformation, revealing a monomeric, closed and compact form. Here, we present the crystal structure of the open, V-shaped form of saposin D. The overall shape is similar to the open conformation found in other saposins with slight differences in the angles between the α-helices. The structure forms a dimer that serves to stabilize the hydrophobic surface exposed in the open form, which results in an internal, hydrophobic cavity that could be used to carry extracted membrane lipids.
Collapse
Affiliation(s)
- Ahmad Gebai
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
5
|
Garrido-Arandia M, Cuevas-Zuviría B, Díaz-Perales A, Pacios LF. A Comparative Study of Human Saposins. Molecules 2018; 23:molecules23020422. [PMID: 29443946 PMCID: PMC6017893 DOI: 10.3390/molecules23020422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
Saposins are small proteins implicated in trafficking and loading of lipids onto Cluster of Differentiation 1 (CD1) receptor proteins that in turn present lipid antigens to T cells and a variety of T-cell receptors, thus playing a crucial role in innate and adaptive immune responses in humans. Despite their low sequence identity, the four types of human saposins share a similar folding pattern consisting of four helices linked by three conserved disulfide bridges. However, their lipid-binding abilities as well as their activities in extracting, transporting and loading onto CD1 molecules a variety of sphingo- and phospholipids in biological membranes display two striking characteristics: a strong pH-dependence and a structural change between a compact, closed conformation and an open conformation. In this work, we present a comparative computational study of structural, electrostatic, and dynamic features of human saposins based upon their available experimental structures. By means of structural alignments, surface analyses, calculation of pH-dependent protonation states, Poisson-Boltzmann electrostatic potentials, and molecular dynamics simulations at three pH values representative of biological media where saposins fulfill their function, our results shed light into their intrinsic features. The similarities and differences in this class of proteins depend on tiny variations of local structural details that allow saposins to be key players in triggering responses in the human immune system.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD1/chemistry
- Antigens, CD1/immunology
- Cell Membrane/chemistry
- Cell Membrane/immunology
- Humans
- Immunity, Innate
- Lipids/chemistry
- Lipids/immunology
- Molecular Dynamics Simulation
- Phospholipids/chemistry
- Phospholipids/immunology
- Protein Binding/immunology
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Saposins/chemistry
- Saposins/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain.
| | - Bruno Cuevas-Zuviría
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain.
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria, 28040 Madrid, Spain.
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, ETSIAAB, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Bryksa BC, Yada RY. Protein Structure Insights into the Bilayer Interactions of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease. Sci Rep 2017; 7:16911. [PMID: 29208977 PMCID: PMC5717070 DOI: 10.1038/s41598-017-16734-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Many plant aspartic proteases contain a saposin-like domain whose principal functions are intracellular sorting and host defence. Its structure is characterised by helical segments cross-linked by three highly conserved cystines. The present study on the saposin-like domain of Solanum tuberosum aspartic protease revealed that acidification from inactive to active conditions causes dimerisation and a strand-to-helix secondary structure transition independent of bilayer interaction. Bilayer fusion was shown to occur under reducing conditions yielding a faster shift to larger vesicle sizes relative to native conditions, implying that a lower level structural motif might be bilayer-active. Characterisation of peptide sequences based on the domain’s secondary structural regions showed helix-3 to be active (~4% of the full domain’s activity), and mutation of its sole positively charged residue resulted in loss of activity and disordering of structure. Also, the peptides’ respective circular dichroism spectra suggested that native folding within the full domain is dependent on surrounding structure. Overall, the present study reveals that the aspartic protease saposin-like domain active structure is an open saposin fold dimer whose formation is pH-dependent, and that a bilayer-active motif shared among non-saposin membrane-active proteins including certain plant defence proteins is nested within an overall structure essential for native functionality.
Collapse
Affiliation(s)
- Brian C Bryksa
- Ontario Agricultural College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada.
| |
Collapse
|
7
|
Towle KM, Vederas JC. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. MEDCHEMCOMM 2017; 8:276-285. [PMID: 30108744 PMCID: PMC6072434 DOI: 10.1039/c6md00607h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
Bacteriocins are potent antimicrobial peptides that are ribosomally produced and exported by bacteria, presumably to aid elimination of competing microorganisms. Many circular and linear leaderless bacteriocins have a recuring three dimensional structural motif known as a saposin-like fold. Although these bacteriocin sizes and sequences are often quite different, and their mechanisms of action vary, this conserved motif of multiple helices appears critical for activity and may enable peptide-lipid and peptide-receptor interactions in target bacterial cell membranes. Comparisons between electrostatic surfaces and hydrophobic surface maps of different bacteriocins are discussed emphasizing similarities and differences in the context of proposed modes of action.
Collapse
Affiliation(s)
- K M Towle
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| | - J C Vederas
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| |
Collapse
|
8
|
Mason L, Amani P, Cross M, Baker J, Bailey UM, Jones MK, Gasser RB, Hofmann A. The Relevance of Structural Biology in Studying Molecules Involved in Parasite–Host Interactions: Potential for Designing New Interventions. Aust J Chem 2014. [DOI: 10.1071/ch14304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New interventions against infectious diseases require a detailed knowledge and understanding of pathogen–host interactions and pathogeneses at the molecular level. The combination of the considerable advances in systems biology research with methods to explore the structural biology of molecules is poised to provide new insights into these areas. Importantly, exploring three-dimensional structures of proteins is central to understanding disease processes, and establishing structure–function relationships assists in identification and assessment of new drug and vaccine targets. Frequently, the molecular arsenal deployed by invading pathogens, and in particular parasites, reveals a common theme whereby families of proteins with conserved three-dimensional folds play crucial roles in infectious processes, but individual members of such families show high levels of specialisation, which is often achieved through grafting particular structural features onto the shared overall fold. Accordingly, the applicability of predictive methodologies based on the primary structure of proteins or genome annotations is limited, particularly when thorough knowledge of molecular-level mechanisms is required. Such instances exemplify the need for experimental three-dimensional structures provided by protein crystallography, which remain an essential component of this area of research. In the present article, we review two examples of key protein families recently investigated in our laboratories, which could represent intervention targets in the metabolome or secretome of parasites.
Collapse
|
9
|
Cala-De Paepe D, Layre E, Giacometti G, Garcia-Alles LF, Mori L, Hanau D, de Libero G, de la Salle H, Puzo G, Gilleron M. Deciphering the role of CD1e protein in mycobacterial phosphatidyl-myo-inositol mannosides (PIM) processing for presentation by CD1b to T lymphocytes. J Biol Chem 2012; 287:31494-502. [PMID: 22782895 DOI: 10.1074/jbc.m112.386300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lipids are important antigens that induce T cell-mediated specific immune responses. They are presented to T lymphocytes by a specific class of MHC-I like proteins, termed CD1. The majority of the described CD1-presented mycobacterial antigens are presented by the CD1b isoform. We previously demonstrated that the stimulation of CD1b-restricted T cells by the hexamannosylated phosphatidyl-myo-inositol (PIM(6)), a family of mycobacterial antigens, requires a prior partial digestion of the antigen oligomannoside moiety by α-mannosidase and that CD1e is an accessory protein absolutely required for the generation of the lipid immunogenic form. Here, we show that CD1e behaves as a lipid transfer protein influencing lipid immunoediting and membrane transfer of PIM lipids. CD1e selectively assists the α-mannosidase-dependent digestion of PIM(6) species according to their degree of acylation. Moreover, CD1e transfers only diacylated PIM from donor to acceptor liposomes and also from membranes to CD1b. This study provides new insight into the molecular mechanisms by which CD1e contributes to lipid immunoediting and CD1-restricted presentation to T cells.
Collapse
Affiliation(s)
- Diane Cala-De Paepe
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Insights into the membrane interactions of the saposin-like proteins Na-SLP-1 and Ac-SLP-1 from human and dog hookworm. PLoS One 2011; 6:e25369. [PMID: 21991310 PMCID: PMC3184995 DOI: 10.1371/journal.pone.0025369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/01/2011] [Indexed: 12/03/2022] Open
Abstract
Saposin-like proteins (SAPLIPs) from soil-transmitted helminths play pivotal roles in host-pathogen interactions and have a high potential as targets for vaccination against parasitic diseases. We have identified two non-orthologous SAPLIPs from human and dog hookworm, Na-SLP-1 and Ac-SLP-1, and solved their three-dimensional crystal structures. Both proteins share the property of membrane binding as monitored by liposome co-pelleting assays and monolayer adsorption. Neither SAPLIP displayed any significant haemolytic or bactericidal activity. Based on the structural information, as well as the results from monolayer adsorption, we propose models of membrane interactions for both SAPLIPs. Initial membrane contact of the monomeric Na-SLP-1 is most likely by electrostatic interactions between the membrane surface and a prominent basic surface patch. In case of the dimeric Ac-SLP-1, membrane interactions are most likely initiated by a unique tryptophan residue that has previously been implicated in membrane interactions in other SAPLIPs.
Collapse
|
11
|
Bryksa BC, Bhaumik P, Magracheva E, De Moura DC, Kurylowicz M, Zdanov A, Dutcher JR, Wlodawer A, Yada RY. Structure and mechanism of the saposin-like domain of a plant aspartic protease. J Biol Chem 2011; 286:28265-75. [PMID: 21676875 DOI: 10.1074/jbc.m111.252619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many plant aspartic proteases contain an additional sequence of ~100 amino acids termed the plant-specific insert, which is involved in host defense and vacuolar targeting. Similar to all saposin-like proteins, the plant-specific insert functions via protein-membrane interactions; however, the structural basis for such interactions has not been studied, and the nature of plant-specific insert-mediated membrane disruption has not been characterized. In the present study, the crystal structure of the saposin-like domain of potato aspartic protease was resolved at a resolution of 1.9 Å, revealing an open V-shaped configuration similar to the open structure of human saposin C. Notably, vesicle disruption activity followed Michaelis-Menten-like kinetics, a finding not previously reported for saposin-like proteins including plant-specific inserts. Circular dichroism data suggested that secondary structure was pH-dependent in a fashion similar to influenza A hemagglutinin fusion peptide. Membrane effects characterized by atomic force microscopy and light scattering indicated bilayer solubilization as well as fusogenic activity. Taken together, the present study is the first report to elucidate the membrane interaction mechanism of plant saposin-like domains whereby pH-dependent membrane interactions resulted in bilayer fusogenic activity that probably arose from a viral type pH-dependent helix-kink-helix motif at the plant-specific insert N terminus.
Collapse
Affiliation(s)
- Brian C Bryksa
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.
Collapse
Affiliation(s)
- Heike Schulze
- Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, University of Bonn, Germany
| | | |
Collapse
|
13
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
14
|
Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. FEBS Lett 2009; 584:1700-12. [PMID: 19836391 DOI: 10.1016/j.febslet.2009.10.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/09/2009] [Indexed: 01/05/2023]
Abstract
The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes.
Collapse
Affiliation(s)
- Thomas Kolter
- LiMES - Life and Medical Sciences Institute, Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | |
Collapse
|
15
|
Beck MR, DeKoster GT, Cistola DP, Goldman WE. NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B. Mol Microbiol 2009; 72:344-53. [PMID: 19298372 PMCID: PMC4876643 DOI: 10.1111/j.1365-2958.2009.06647.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The fungal protein CBP (calcium binding protein) is a known virulence factor with an unknown virulence mechanism. The protein was identified based on its ability to bind calcium and its prevalence as Histoplasma capsulatum's most abundant secreted protein. However, CBP has no sequence homology with other CBPs and contains no known calcium binding motifs. Here, the NMR structure of CBP reveals a highly intertwined homodimer and represents the first atomic level NMR model of any fungal virulence factor. Each CBP monomer is comprised of four alpha-helices that adopt the saposin fold, characteristic of a protein family that binds to membranes and lipids. This structural homology suggests that CBP functions as a lipid binding protein, potentially interacting with host glycolipids in the phagolysosome of host cells.
Collapse
Affiliation(s)
- Moriah R. Beck
- Department of Molecular Microbiology, Washington University in St. Louis
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| | - Gregory T. DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - David P. Cistola
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis
| | - William E. Goldman
- Department of Molecular Microbiology, Washington University in St. Louis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| |
Collapse
|
16
|
Kacher Y, Brumshtein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, Futerman AH. Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Biol Chem 2008; 389:1361-9. [PMID: 18783340 DOI: 10.1515/bc.2008.163] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In mammalian cells, glucosylceramide (GlcCer), the simplest glycosphingolipid, is hydrolyzed by the lysosomal enzyme acid beta-glucosidase (GlcCerase). In the human metabolic disorder Gaucher disease, GlcCerase activity is significantly decreased owing to one of approximately 200 mutations in the GlcCerase gene. The most common therapy for Gaucher disease is enzyme replacement therapy (ERT), in which patients are given intravenous injections of recombinant human GlcCerase; the Genzyme product Cerezyme has been used clinically for more than 15 years and is administered to approximately 4000 patients worldwide. Here we review the crystal structure of Cerezyme and other recombinant forms of GlcCerase, as well as of their complexes with covalent and non-covalent inhibitors. We also discuss the stability of Cerezyme, which can be altered by modification of its N-glycan chains with possible implications for improved ERT in Gaucher disease.
Collapse
Affiliation(s)
- Yaacov Kacher
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:674-83. [PMID: 19014978 DOI: 10.1016/j.bbamcr.2008.09.020] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 12/17/2022]
Abstract
Cellular membranes enter the lysosomal compartment by endocytosis, phagocytosis, or autophagy. Within the lysosomal compartment, membrane components of complex structure are degraded into their building blocks. These are able to leave the lysosome and can then be utilized for the resynthesis of complex molecules or can be further degraded. Constitutive degradation of membranes occurs on the surface of intra-endosomal and intra-lysosomal membrane structures. Many integral membrane proteins are sorted to the inner membranes of endosomes and lysosome after ubiquitinylation. In the lysosome, proteins are degraded by proteolytic enzymes, the cathepsins. Phospholipids originating from lipoproteins or cellular membranes are degraded by phospholipases. Water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues of glycoproteins, glycosaminoglycans, and glycosphingolipids. For glycosphingolipids with short oligosaccharide chains, the additional presence of membrane-active lysosomal lipid-binding proteins is required. The presence of lipid-binding proteins overcomes the phase problem of water soluble enzymes and lipid substrates by transferring the substrate to the degrading enzyme or by solubilizing the internal membranes. The lipid composition of intra-lysosomal vesicles differs from that of the plasma membrane. To allow at least glycosphingolipid degradation by hydrolases and activator proteins, the cholesterol content of these intraorganellar membranes decreases during endocytosis and the concentration of bis(monoacylglycero)phosphate, a stimulator of sphingolipid degradation, increases. A considerable part of our current knowledge about mechanism and biochemistry of lysosomal lipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within sphingolipid and glycosphingolipid catabolism.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES Program Unit Membrane Biology and Lipid Biochemistry, Laboratory of Lipid Biochemistry, Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Germany
| | | | | |
Collapse
|
18
|
Rossmann M, Schultz-Heienbrok R, Behlke J, Remmel N, Alings C, Sandhoff K, Saenger W, Maier T. Crystal Structures of Human Saposins C and D: Implications for Lipid Recognition and Membrane Interactions. Structure 2008; 16:809-17. [DOI: 10.1016/j.str.2008.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/30/2008] [Accepted: 02/06/2008] [Indexed: 01/18/2023]
|
19
|
John M, Wendeler M, Heller M, Sandhoff K, Kessler H. Characterization of human saposins by NMR spectroscopy. Biochemistry 2006; 45:5206-16. [PMID: 16618109 DOI: 10.1021/bi051944+] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saposins are lipid-binding and membrane-perturbing glycoproteins of the mammalian lysosomes involved in sphingolipid and membrane digestion. Although the four human saposins (Saps), A-D, are sequence-related, they are responsible for the activation of different steps in the cascade of lysosomal glycosphingolipid degradation. Saposin activity is maximal under acidic conditions, and the pH dependence of lipid and membrane binding has been assigned to conformational variability. We have employed solution NMR spectroscopy to all four (15)N-labeled human saposins at both neutral and acidic pH. Using backbone NOEs and residual dipolar couplings, the "saposin fold" comprising five alpha-helices was confirmed for Sap-A, Sap-C, and Sap-D. Structural variations within these proteins are in the order of variations between the known structures of Sap-C and NK-lysin. In contrast, Sap-B yielded spectra of very poor quality, presumably due to conformational heterogeneity and molecular association. Sap-D exists in a slow dynamic equilibrium of two conformational states with yet unknown function. At pH 4.0, where all saposins are highly unstable, Sap-C undergoes a transition to a specific dimeric state, which is likely to resemble the structure recently found in both Sap-C in a detergent environment and crystals of Sap-B.
Collapse
Affiliation(s)
- Michael John
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | |
Collapse
|
20
|
Ciaffoni F, Tatti M, Boe A, Salvioli R, Fluharty A, Sonnino S, Vaccaro AM. Saposin B binds and transfers phospholipids. J Lipid Res 2006; 47:1045-53. [PMID: 16461955 DOI: 10.1194/jlr.m500547-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saposin B (Sap B) is a member of a family of four small glycoproteins, Sap A, B, C, and D. Like the other three saposins, Sap B plays a physiological role in the lysosomal degradation of sphingolipids (SLs). Although the interaction of Sap B with SLs has been investigated extensively, that with the main membrane lipid components, namely phospholipids and cholesterol (Chol), is scarcely known. Using large unilamellar vesicles (LUVs) as membrane models, we have now found that Sap B simultaneously extracts from the lipid surface neutral [phosphatidylcholine (PC)] and anionic [phosphatidylinositol (PI)] phospholipids, fewer SLs [ganglioside GM1 (GM1) or cerebroside sulfate (CS)], and no Chol. More PI than SL (GM1 or CS) was solubilized from LUVs containing equal amounts of PI and SLs. An increase in PI level had a poor effect on the Sap B-induced solubilization of GM1 or CS but strongly inhibited that of PC. Sap B was able not only to bind, but also to transfer phospholipids between lipid surfaces. Both the phospholipid binding and transfer activities were optimal at low pH values. These results represent the first biochemical analysis of the Sap B interaction with phospholipids. The capacity of Sap B to bind and transfer phospholipids occurs under conditions mimicking the interior of the late endosomal/lysosomal compartment and thus might have physiological relevance.
Collapse
Affiliation(s)
- Fiorella Ciaffoni
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanita, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 2006; 21:81-103. [PMID: 16212488 DOI: 10.1146/annurev.cellbio.21.122303.120013] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration of the negatively charged bis(monoacylglycero)phosphate (BMP)--erroneously also called lysobisphosphatidic acid (LBPA)--increases. Glycosphingolipid degradation requires the presence of water-soluble acid exohydrolases, sphingolipid activator proteins, and anionic phospholipids like BMP. The lysosomal degradation of sphingolipids with short hydrophilic head groups requires the presence of sphingolipid activator proteins (SAPs). These are the saposins (Saps) and the GM2 activator protein. Sphingolipid activator proteins are membrane-perturbing and lipid-binding proteins with different specificities for the bound lipid and the activated enzyme-catalyzed reaction. Their inherited deficiency leads to sphingolipid- and membrane-storage diseases. Sphingolipid activator proteins not only facilitate glycolipid digestion but also act as glycolipid transfer proteins facilitating the association of lipid antigens with immunoreceptors of the CD1 family.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, 53121 Bonn, Germany.
| | | |
Collapse
|
22
|
Bruhn H. A short guided tour through functional and structural features of saposin-like proteins. Biochem J 2005; 389:249-57. [PMID: 15992358 PMCID: PMC1175101 DOI: 10.1042/bj20050051] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SAPLIPs (saposin-like proteins) are a diverse family of lipid-interacting proteins that have various and only partly understood, but nevertheless essential, cellular functions. Their existence is conserved in phylogenetically most distant organisms, such as primitive protozoa and mammals. Owing to their remarkable sequence variability, a common mechanism for their actions is not known. Some shared principles beyond their diversity have become evident by analysis of known three-dimensional structures. Whereas lipid interaction is the basis for their functions, the special cellular tasks are often defined by interaction partners other than lipids. Based on recent findings, this review summarizes phylogenetic relations, function and structural features of the members of this family.
Collapse
Affiliation(s)
- Heike Bruhn
- Research Center for Infectious Diseases, Röntgenring 11, D-97070 Würzburg, Germany.
| |
Collapse
|
23
|
Kolter T, Winau F, Schaible UE, Leippe M, Sandhoff K. Lipid-binding Proteins in Membrane Digestion, Antigen Presentation, and Antimicrobial Defense. J Biol Chem 2005; 280:41125-8. [PMID: 16230343 DOI: 10.1074/jbc.r500015200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie, D-53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
24
|
Piret J, Schanck A, Delfosse S, Van Bambeke F, Kishore BK, Tulkens PM, Mingeot-Leclercq MP. Modulation of the in vitro activity of lysosomal phospholipase A1 by membrane lipids. Chem Phys Lipids 2005; 133:1-15. [PMID: 15589222 DOI: 10.1016/j.chemphyslip.2004.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 08/06/2004] [Accepted: 08/19/2004] [Indexed: 11/21/2022]
Abstract
Lysosomal phospholipases play a critical role for degradation of cellular membranes after their lysosomal segregation. We investigated the regulation of lysosomal phospholipase A1 by cholesterol, phosphatidylethanolamine, and negatively-charged lipids in correlation with changes of biophysical properties of the membranes induced by these lipids. Lysosomal phospholipase A1 activity was determined towards phosphatidylcholine included in liposomes of variable composition using a whole-soluble lysosomal fraction of rat liver as enzymatic source. Phospholipase A1 activity was then related to membrane fluidity, lipid phase organization and membrane potential as determined by fluorescence depolarization of DPH, 31P NMR and capillary electrophoresis. Phospholipase A1 activity was markedly enhanced when the amount of negatively-charged lipids included in the vesicles was increased from 10 to around 30% of total phospholipids and the intensity of this effect depended on the nature of the acidic lipids used (ganglioside GM1<phosphatidylinositol approximately phosphatidylserine approximately phosphatidylglycerol approximately phosphatidylpropanol<phosphatidic acid). For liposomes containing phosphatidylinositol, this increase of activity was not modified by the presence of phosphatidylethanolamine and enhanced by cholesterol only when the phosphatidylinositol content was lower than 18%. Our results, therefore show that both the surface-negative charge and the nature of the acidic lipid included in bilayers modulate the activity of phospholipase A1 towards phosphatidylcholine, while the change in lipid hydration or in fluidity of membrane are less critical. These observations may have physiological implications with respect to the rate of degradation of cellular membranes after their lysosomal segregation.
Collapse
Affiliation(s)
- Jocelyne Piret
- Unité de Pharmacologie Cellulaire et Moléculaire, Université catholique de Louvain 73.70, Avenue E. Mounier 73, B-1200 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
25
|
Selkirk ME, Hussein AS, Chambers AE, Goulding D, Gares MP, Vásquez-Lopez C, Gárate T, Parkhouse RME, Gounaris K. Trichinella spiralis secretes a homologue of prosaposin. Mol Biochem Parasitol 2005; 135:49-56. [PMID: 15287586 DOI: 10.1016/j.molbiopara.2004.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infective larvae and adult stage Trichinella spiralis secrete a protein homologous to prosaposin, the precursor of sphingolipid activator proteins (saposins) A-D originally defined in vertebrates. The protein contains four saposin domains, with the six cysteine residues which form the three intramolecular disulphide bonds in close register in each case. It differs substantially from vertebrate prosaposins in the N-terminal prodomain, the region separating saposins A and B, and completely lacks the C-terminal domain which has been demonstrated to be essential for lysosomal targetting in these organisms. The protein is secreted in unprocessed form with an estimated mass of 56 kDa, and contains a single N-linked glycan which is bound by the monoclonal antibody NIM-M1, characteristic of the TSL-1 antigens which are capped by tyvelose (3,6-dideoxy-D-arabinohexose). Immuno-electron microscopy localised the protein to membrane-bound vesicles and more complex multi-lamellar organelles in diverse tissues including the hypodermis, intestine and stichosomes, although it was absent from the dense-core secretory granules typical of the latter. Possible functions of a secreted prosaposin are discussed.
Collapse
Affiliation(s)
- Murray E Selkirk
- Department of Biological Sciences, Biochemistry Building, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Matsuda J, Kido M, Tadano-Aritomi K, Ishizuka I, Tominaga K, Toida K, Takeda E, Suzuki K, Kuroda Y. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum Mol Genet 2004; 13:2709-23. [PMID: 15345707 DOI: 10.1093/hmg/ddh281] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sphingolipid activator proteins (saposins A, B, C and D) are small homologous glycoproteins that are encoded by a single gene in tandem within a large precursor protein (prosaposin) and are required for in vivo degradation of some sphingolipids with relatively short carbohydrate chains. Human patients with prosaposin or specific saposin B or C deficiency are known, and prosaposin- and saposin A-deficient mouse lines have been generated. Experimental evidence suggests that saposin D may be a lysosomal acid ceramidase activator. However, no specific saposin D deficiency state is known in any mammalian species. We have generated a specific saposin D(-/-) mouse by introducing a mutation (C509S) into the saposin D domain of the mouse prosaposin gene. Saposin D(-/-) mice developed progressive polyuria at around 2 months and ataxia at around 4 months. Pathologically, the kidney of saposin D(-/-) mice showed renal tubular degeneration and eventual hydronephrosis. In the nervous system, progressive and selective loss of the cerebellar Purkinje cells in a striped pattern was conspicuous, and almost all Purkinje cells disappeared by 12 months. Biochemically, ceramides, particularly those containing hydroxy fatty acids accumulated in the kidney and the brain, most prominently in the cerebellum. These results not only indicate the role of saposin D in in vivo ceramide metabolism, but also suggest possible cytotoxicity of ceramide underlying the cerebellar Purkinje cell and renal tubular cell degeneration.
Collapse
Affiliation(s)
- Junko Matsuda
- Department of Pediatrics, The Institute of Health Bioscience, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi X, Chu Z. Fusogenic domain and lysines in saposin C. Arch Biochem Biophys 2004; 424:210-8. [PMID: 15047193 DOI: 10.1016/j.abb.2004.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/17/2004] [Indexed: 02/07/2023]
Abstract
Saposin C, a sphingolipid activator protein with fusogenic activity, interacts specifically with the membrane containing negatively charged, unsaturated phospholipids. The kinetics and mechanism of saposin C-induced membrane fusion were previously investigated using acidic phospholipid liposomes. A hypothetic clip-on model for such a fusion process was illustrated by the ionic binding between saposin C and lipids, as well as the inter-saposin C hydrophobic interaction. Here, we report the location of the fusogenic domain in a linear sequence at the amino-terminal half of saposin C. This domain consisted of the first and second helical sequences. Selected positively charged lysines in the fusogenic domain were mutated to study the roles of basic residues in the saposin C-induced vesicle fusion. Based on the results, Lys13 and Lys17 were critical for the fusogenic activity, but had no effect on the enzymatic activation of acid beta-glucosidase (GCase). These results clearly indicate the segregation of the fusion and activation function into two different regions of saposin C. Interestingly, all the Lys mutant saposin Cs anchored on the acidic phospholipid membrane. Our data suggest that saposin C's fusogenic and activation functions have different requirements for the orientation and insertion manners of helical peptides in membranes.
Collapse
Affiliation(s)
- Xiaoyang Qi
- The Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, and Department of Pediatrics, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
28
|
Kang SJ, Cresswell P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 2004; 5:175-81. [PMID: 14716312 DOI: 10.1038/ni1034] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 12/19/2003] [Indexed: 11/09/2022]
Abstract
Members of the CD1 family present antigenic lipids to T lymphocytes. CD1 molecules survey endocytic compartments for lipid antigens that are sorted into these vesicles after incorporation into the membrane bilayer, and extraction from the bilayer is likely to be a critical step for lipid association. We hypothesized that lysosomal saposins, which are cofactors required for sphingolipid degradation, might be involved in this process. Here we show that saposins, although not required for the autoreactive recognition of CD1d by natural killer T cells, are indispensable for the binding of an exogenous lipid antigen, alpha-galactosylceramide, to CD1d in the endocytic pathway. We suggest that saposins mobilize monomeric lipids from lysosomal membranes and facilitate their association with CD1d.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, PO Box 208011, New Haven, CT 06520-8011, USA
| | | |
Collapse
|
29
|
Ciaffoni F, Tatti M, Salvioli R, Vaccaro AM. Interaction of saposin D with membranes: effect of anionic phospholipids and sphingolipids. Biochem J 2003; 373:785-92. [PMID: 12733985 PMCID: PMC1223540 DOI: 10.1042/bj20030359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Revised: 05/02/2003] [Accepted: 05/06/2003] [Indexed: 12/13/2022]
Abstract
Saposin (Sap) D is an endolysosomal protein that, together with three other similar proteins, Sap A, Sap B and Sap C, is involved in the degradation of sphingolipids and, possibly, in the solubilization and transport of gangliosides. We found that Sap D is able to destabilize and disrupt membranes containing each of the three anionic phospholipids most abundant in the acidic endolysosomal compartment, namely lysobisphosphatidic acid (LBPA), phosphatidylinositol (PI) and phosphatidylserine (PS). The breakdown of the membranes, which occurs when the Sap D concentration on the lipid surface reaches a critical value, is a slow process that gives rise to small particles. The Sap D-particle complexes formed in an acidic milieu can be dissociated by an increase in pH, suggesting a dynamic association of Sap D with membranes. The presence of anionic phospholipids is required also for the Sap D-induced perturbation and solubilization of membranes containing a neutral sphingolipid such as ceramide or a ganglioside such as G(M1). At appropriate Sap D concentrations Cer and G(M1) are solubilized as constituents of small phospholipid particles. Our findings imply that most functions of Sap D are dependent on its interaction with anionic phospholipids, which mediate the Sap D effect on other components of the membrane such as sphingolipids. On consideration of the properties of Sap D we propose that Sap D might have a role in the definition of the structure and function of membranes, such as the intra-endolysosomal membranes, that are rich in anionic phospholipids.
Collapse
Affiliation(s)
- Fiorella Ciaffoni
- Laboratorio di Metabolismo e Biochimica Patologica, Istituto Superiore Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | | | | | | |
Collapse
|
30
|
Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci 2003; 358:847-61. [PMID: 12803917 PMCID: PMC1693173 DOI: 10.1098/rstb.2003.1265] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin.
Collapse
Affiliation(s)
- Konrad Sandhoff
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
31
|
You HX, Qi X, Grabowski GA, Yu L. Phospholipid membrane interactions of saposin C: in situ atomic force microscopic study. Biophys J 2003; 84:2043-57. [PMID: 12609906 PMCID: PMC1302773 DOI: 10.1016/s0006-3495(03)75012-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 10/28/2002] [Indexed: 10/21/2022] Open
Abstract
Saposin C (Sap C) is a small glycoprotein required for hydrolysis of glucosylceramidase in lysosomes. The full activity of glucosylceramidase requires the presence of both Sap C and acidic phospholipids. Interaction between Sap C and acidic phospholipid-containing membranes, a crucial step for enzyme activation, is not fully understood. In this study, the dynamic process of Sap C interaction with acidic phospholipid-containing membranes was investigated in aqueous buffer using atomic force microscopy. Sap C induced two types of membrane restructuring: formation of patch-like structural domains and the occurrence of membrane destabilization. The former caused thickness increase whereas the latter caused thickness reduction in the gel-phase membrane bilayer, possibly as a result of lipid loss or an interdigitating process. Patch-like domain formation was independent of acidic phospholipids, whereas membrane destabilization is dependent on the presence and concentration of acidic phospholipids. Sap C effects on membrane restructuring were further studied using synthetic peptides. Synthetic peptides corresponding to the amphipathic alpha-helical domains 1 (designated "H1 peptide") and 2 (H2 peptide) of Sap C were used. Our results indicated that H2 contributed to domain formation but not to membrane destabilization, whereas H1 induced neither type of membrane restructuring. However, H1 was able to mimic Sap C's destabilization effect in conjunction with H2, but only when H1 was present first and H2 was added afterwards. This study provides an approach to investigate the structure-function aspects of Sap C interaction with phospholipid membranes, with insights into the mechanism(s) of Sap C-membrane interaction.
Collapse
Affiliation(s)
- Hong Xing You
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Ohio 45267-0521, USA.
| | | | | | | |
Collapse
|
32
|
Lefrancois S, May T, Knight C, Bourbeau D, Morales CR. The lysosomal transport of prosaposin requires the conditional interaction of its highly conserved d domain with sphingomyelin. J Biol Chem 2002; 277:17188-99. [PMID: 11856752 DOI: 10.1074/jbc.m200343200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal prosaposin (65 kDa) is a nonenzymic protein that is transported to the lysosomes in a mannose 6-phosphate-independent manner. Selective deletion of the functional domains of prosaposin indicates that the D domain and the carboxyl-terminal region are necessary for its transport to the lysosomes. Inhibitors of sphingolipid biosynthesis, such as fumonisin B(1) (FB(1)) and tricyclodecan-9-yl xanthate potassium salt (D609), also interfere with the trafficking of prosaposin to lysosomes. In this study, we examine sphingomyelin as a direct candidate for the trafficking of prosaposin. Chinese hamster ovary and COS-7 cells overexpressing prosaposin or an albumin/prosaposin construct were incubated with these inhibitors, treated with sphingolipids, and then immunostained. Sphingomyelin restored the immunostaining in lysosomes in both FB(1)- and D609-treated cells and ceramide reestablished the immunostaining in FB(1)-treated cells only. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits glycosphingolipids, had no effect on the immunostaining pattern. To determine whether sphingomyelin has the same effect on the transport of endogenous prosaposin, testicular explants were treated with FB(1) and D609. Sphingomyelin restored prosaposin immunogold labeling in the lysosomes of FB(1)- and D609-treated Sertoli cells, whereas ceramide restored the label in FB(1) treatment only. Albumin linked to the D and COOH-terminal domains of prosaposin was used as a dominant negative competitor. The construct blocked the targeting of prosaposin and induced accumulation of membrane in the lysosomes, demonstrating that the construct uses the same transport pathway as endogenous prosaposin. In conclusion, our results showed that sphingomyelin, the D domain, and its adjacent COOH-terminal region play a crucial role in the transport of prosaposin to lysosomes. Although the precise nature of this lipid-protein interaction is not well established, it is proposed that sphingomyelin microdomains (lipid rafts) are part of a mechanism ensuring correct intercellular trafficking of prosaposin.
Collapse
Affiliation(s)
- Stephane Lefrancois
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|