1
|
Raut KK, Pandey S, Kharel G, Pascal SM. Evidence of direct interaction between cisplatin and the caspase-cleaved prostate apoptosis response-4 tumor suppressor. Protein Sci 2024; 33:e4867. [PMID: 38093605 PMCID: PMC10868438 DOI: 10.1002/pro.4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024]
Abstract
Prostate apoptosis response-4 (Par-4) tumor suppressor protein has gained attention as a potential therapeutic target owing to its unique ability to selectively induce apoptosis in cancer cells, sensitize them to chemotherapy and radiotherapy, and mitigate drug resistance. It has recently been reported that Par-4 interacts synergistically with cisplatin, a widely used anticancer drug. However, the mechanistic details underlying this relationship remain elusive. In this investigation, we employed an array of biophysical techniques, including circular dichroism spectroscopy, dynamic light scattering, and UV-vis absorption spectroscopy, to characterize the interaction between the active caspase-cleaved Par-4 (cl-Par-4) fragment and cisplatin. Additionally, elemental analysis was conducted to quantitatively assess the binding of cisplatin to the protein, utilizing inductively coupled plasma-optical emission spectroscopy and atomic absorption spectroscopy. Our findings provide evidence of direct interaction between cl-Par-4 and cisplatin, and reveal a binding stoichiometry of 1:1. This result provides insights that could be useful in enhancing the efficacy of cisplatin-based and tumor suppressor-based cancer therapies.
Collapse
Affiliation(s)
- Krishna K. Raut
- Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkVirginiaUSA
| | - Samjhana Pandey
- Biomedical Sciences ProgramOld Dominion UniversityNorfolkVirginiaUSA
| | - Gyanendra Kharel
- Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkVirginiaUSA
| | - Steven M. Pascal
- Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
2
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
4
|
Majumder P, Lee JT, Rahmberg AR, Kumar G, Mi T, Scharer CD, Boss JM. A super enhancer controls expression and chromatin architecture within the MHC class II locus. J Exp Med 2020; 217:e20190668. [PMID: 31753848 PMCID: PMC7041702 DOI: 10.1084/jem.20190668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Super enhancers (SEs) play critical roles in cell type-specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Andrew R Rahmberg
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Gaurav Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
5
|
The coordinating role of the human norovirus minor capsid protein VP2 is essential to functional change and nuclear localization of the major capsid protein VP1. Arch Virol 2019; 164:1173-1180. [PMID: 30810804 DOI: 10.1007/s00705-019-04192-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 01/27/2023]
Abstract
Global outbreaks of norovirus (NOV) gastroenteritis are associated with the most prevalent genotype, GII.4. Mutations in the protruding domain 2 (P2 domain) of the norovirus major capsid protein (VP1) result in the emergence of various NOV variants, however, it is unclear whether the minor capsid protein (VP2) also affects the generation of VP1 variants. In this study, using a human 293T expression system, we investigated the interactions of VP1 and VP2 of three GII.4 strains, focusing on the changes in expression and cellular localization. We found that co-transfection with VP1 and VP2 leads to a significant increase in expression of both proteins compared to that in cells transfected with VP1 or VP2 alone. In contrast to VP1 expressed in the absence of VP2, which was dispersed throughout the cytosol, VP2 expressed in the absence of VP1 was found to be located in the nucleus. This could be attributed to a predicted specific nuclear localization signal found in this gene. When both proteins were expressed, VP1 was found together with VP2 in the nucleus. These results thus suggest that the VP2 of GII.4 NOVs affects the function and cellular location of VP1 and that, with the cooperation of VP2, VP1 could play a critical role in affecting cell functions by impairing the downstream transcriptional signaling and chromatin remodeling in the cell nuclei.
Collapse
|
6
|
The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein. J Virol 2016; 90:3708-21. [PMID: 26792751 DOI: 10.1128/jvi.03000-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral transactivator Tax-1 plays a central role in the onset of ATLL, mostly by deregulating the NF-κB pathway. We demonstrate that CIITA, a key regulator of adaptive immunity, suppresses Tax-1-dependent activation of NF-κB by acting at several levels: it retains most of Tax-1 and RelA in the cytoplasm and inhibits their residual functional activity in the nucleus. Importantly, this inhibition occurs in cells that are targets of HTLV-1 infection. These findings are of interest in the field of virology because they expand the current knowledge of the functional relationship between viral products and cellular interactors and provide the basis for a better understanding of the molecular countermeasures adopted by the host cell to antagonize HTLV-1 spreading and transforming properties. Within this framework, our results may contribute to the establishment of novel strategies against HTLV-1 infection and virus-dependent oncogenic transformation.
Collapse
|
7
|
Nikbakht Brujeni G, Khosravi M. Molecular characterization of chicken class II transactivator gene. Immunogenetics 2014; 67:39-49. [PMID: 25339383 DOI: 10.1007/s00251-014-0810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Class II transactivator (CIITA) is an effective transcriptional factor regulating various genes in the immune system. Since the detection of CIITA in 1993, there has been considerable progress toward understanding its role as an activator of MHC II genes in human and mouse; however, there is little knowledge of this gene in other animals such as chicken. Molecular characterization of the chicken CIITA gene transcript was performed to determine its sequence and expression in different tissues. The CIITA cDNA was first generated through reverse transcriptase-polymerase chain reaction (RT-PCR) from Cobb chicken spleen cell RNA, using oligonucleotide primers based on the predicted cDNA sequence. The effect of the immune system stimulation on the CIITA gene expression in kidney, liver, thymus, and spleen were assessed by semi-quantitative RT-PCR analysis. A partial cDNA sequence (1,688 bp) encoding part of the NACHT domain followed by seven of the transactivator and one of the NLS domains were obtained. Comparison of the deduced amino acid sequence with other CIITAs reveals high level of similarities in amino acid composition, secondary structure and phosphorylation sites. Furthermore, in comparison to the Red Jungle Fowl (RJF) sequence, we found 17 single nucleotide polymorphisms in Cobb broiler chicken, ten of which were reported for the first time. Gene expression analysis indicated that CIITA RNA amounts increased in all the examined tissues following stimulation with Brucella antigen. This investigation may indicate that CIITA molecule has an important role in the chicken immune responses as well as human and other animals.
Collapse
Affiliation(s)
- Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | | |
Collapse
|
8
|
Stavride P, Arampatzi P, Papamatheakis J. Differential regulation of MHCII genes by PRMT6, via an AT-hook motif of RFX5. Mol Immunol 2013; 56:390-8. [DOI: 10.1016/j.molimm.2013.05.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
9
|
Arampatzi P, Gialitakis M, Makatounakis T, Papamatheakis J. Gene-specific factors determine mitotic expression and bookmarking via alternate regulatory elements. Nucleic Acids Res 2013; 41:2202-15. [PMID: 23303784 PMCID: PMC4230186 DOI: 10.1093/nar/gks1365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcriptional silencing during mitosis is caused by inactivation of critical transcriptional regulators and/or chromatin condensation. Inheritance of gene expression patterns through cell division involves various bookmarking mechanisms. In this report, we have examined the mitotic and post-mitotic expression of the DRA major histocompatibility class II (MHCII) gene in different cell types. During mitosis the constitutively MHCII-expressing B lymphoblastoid cells showed sustained occupancy of the proximal promoter by the cognate enhanceosome and general transcription factors. In contrast, although mitotic epithelial cells were depleted of these proteins irrespectively of their MHCII transcriptional activity, a distal enhancer selectively recruited the PP2A phosphatase via NFY and maintained chromatin accessibility. Based on our data, we propose a novel chromatin anti-condensation role for this element in mitotic bookmarking and timing of post-mitotic transcriptional reactivation.
Collapse
Affiliation(s)
- Panagiota Arampatzi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 70013, Greece
| | | | | | | |
Collapse
|
10
|
Major histocompatibility complex class II transactivator CIITA is a viral restriction factor that targets human T-cell lymphotropic virus type 1 Tax-1 function and inhibits viral replication. J Virol 2011; 85:10719-29. [PMID: 21813598 DOI: 10.1128/jvi.00813-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading.
Collapse
|
11
|
Shaw DJ, Morse R, Todd AG, Eggleton P, Lorson CL, Young PJ. Identification of a self-association domain in the Ewing's sarcoma protein: a novel function for arginine-glycine-glycine rich motifs? J Biochem 2010; 147:885-93. [PMID: 20211855 DOI: 10.1093/jb/mvq025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Ewing's sarcoma (EWS) protein is a ubiquitously expressed RNA chaperone. The EWS protein localizes predominantly to the nucleus. Previous reports have suggested that the EWS protein is capable of dimerizing. However, to date this has not been confirmed. Here, using a novel panel of recombinant proteins, we have performed an in vitro biomolecular interaction analysis of the EWS protein. We have demonstrated that all three arginine-glycine-glycine (RGG) motifs are capable of binding directly to the survival motor neuron protein, a Tudor domain containing EWS binding partner. We have also confirmed EWS is capable of self-associating, and we have mapped this binding domain to the RGG motifs. We have also found that self-association may be required for EWS nuclear import. This is the first direct evidence of RGG domains being involved in self-association and has implications on all RGG-containing proteins.
Collapse
Affiliation(s)
- Debra J Shaw
- Clinical Neurobiology, institute of biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Exeter EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
12
|
The mitogaligin protein is addressed to the nucleus via a non-classical localization signal. Biochem Biophys Res Commun 2010; 392:53-7. [PMID: 20056110 DOI: 10.1016/j.bbrc.2009.12.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 11/23/2022]
Abstract
Mitogaligin, a protein encoded by galig, an internal cytotoxic gene of the galectin-3 locus, is mostly a mitochondrial protein. Mitochondrial targeting is due to an already identified mitochondrial localization signal. Interaction of mitogaligin with mitochondria leads to cytochrome c cytosolic leakage and ultimately to cell death. We have previously pointed out that mitogaligin can also be directed to the nucleus when the mitochondrial addressing signal is inactivated, indicating a possible dual intracellular localization of the protein. When expressed in the nucleus, mitogaligin exhibits also apoptotic properties leading to cell death. In this report, we show that nuclear addressing of mitogaligin depends on a sequence differing from classical signals containing basic, lysine or proline-tyrosine rich residues. The signal consists of a long sequence of amino acids residues based on a series of a short repetitive degenerated sequence.
Collapse
|
13
|
Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J Biol Chem 2008; 283:9031-9. [PMID: 18245089 PMCID: PMC2431044 DOI: 10.1074/jbc.m706487200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Biology, Sarah Lawrence College, 1 Mead Way, Bronxville, NY 10708, USA
| | | | | | | |
Collapse
|
14
|
Rairdan G, Moffett P. Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect 2007; 9:677-86. [PMID: 17379561 DOI: 10.1016/j.micinf.2007.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plant and animal genomes encode proteins with nucleotide binding domains fused to leucine-rich repeat domains that are involved in responses to pathogens. While these domain structures are probably an example of convergent evolution, there are a number of similarities in the core mechanisms by which these proteins are regulated.
Collapse
Affiliation(s)
- Greg Rairdan
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
Tosi G, Pilotti E, Mortara L, Barbaro ADL, Casoli C, Accolla RS. Inhibition of human T cell leukemia virus type 2 replication by the suppressive action of class II transactivator and nuclear factor Y. Proc Natl Acad Sci U S A 2006; 103:12861-6. [PMID: 16908858 PMCID: PMC1568938 DOI: 10.1073/pnas.0601589103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Indexed: 11/18/2022] Open
Abstract
The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.
Collapse
Affiliation(s)
- Giovanna Tosi
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Elisabetta Pilotti
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Lorenzo Mortara
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Andrea De Lerma Barbaro
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Claudio Casoli
- Department of Clinical Medicine, Nephrology, and Health Sciences, University of Parma, 43100 Parma, Italy
| | - Roberto S. Accolla
- *Department of Clinical and Biological Sciences, University of Insubria, 21100 Varese, Italy; and
| |
Collapse
|
16
|
Ting JPY, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-95. [PMID: 16498449 DOI: 10.1038/nri1788] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
17
|
Krawczyk M, Reith W. Regulation of MHC class II expression, a unique regulatory system identified by the study of a primary immunodeficiency disease. ACTA ACUST UNITED AC 2006; 67:183-97. [PMID: 16573555 DOI: 10.1111/j.1399-0039.2006.00557.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are of central importance for adaptive immunity. Defective MHC-II expression causes a severe immunodeficiency disease called bare lymphocyte syndrome (BLS). Studies of the molecular defects underlying BLS have been pivotal for characterization of the regulatory system controlling the transcription of MHC-II genes. The precisely controlled pattern of MHC-II gene expression is achieved by a very peculiar and highly specialized molecular machinery that involves the interplay between ubiquitous DNA-binding transcription factors and a highly unusual, tightly regulated, non-DNA-binding coactivator called the MHC class II transactivator (CIITA). CIITA single handedly coordinates practically all aspects of MHC-II gene regulation and has therefore been dubbed the master controller of MHC-II expression. Several of the unusual features of the MHC-II regulatory system may be a consequence of the fact that CIITA originated from an ancient family of cytoplasmic proteins involved in inflammation and innate immunity. The function of CIITA in transcriptional regulation of MHC-II genes could thus be a recent acquisition by an ancestral protein having a role in an unrelated system.
Collapse
Affiliation(s)
- M Krawczyk
- University of Geneva Medical School, CMU, Switzerland
| | | |
Collapse
|
18
|
Patel DR, Li W, Park JS, Sofi MH, Gourley TS, Hangoc G, Kaplan MH, Chang CH. Constitutive expression of CIITA directs CD4 T cells to produce Th2 cytokines in the thymus. Cell Immunol 2005; 233:30-40. [PMID: 15876426 DOI: 10.1016/j.cellimm.2005.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 11/27/2022]
Abstract
We generated mice expressing a human type III CIITA transgene (CIITA Tg) under control of the CD4 promoter to study the role of CIITA in CD4 T cell biology. The transgene is expressed in peripheral CD4 and CD8 T cells, as well as in thymocytes. When CD4 T cells were differentiated towards the Th2 lineage, both control and CIITA Tg Th2 cells expressed similar levels of Th2 cytokines. Th1 cells from control and CIITA Tg mice cells produced comparable levels of IFN-gamma. CIITA Tg Th1 cells also expressed IL-4, IL-5, and IL-13 in the absence of Stat6. There was an approximate 10-fold increase in the number of peripheral naïve CD4 T cells and NK1.1- thymocytes producing IL-4 from CIITA Tg mice compared to control mice. Finally, Th1 cells from irradiated control mice reconstituted with CIITA Tg bone marrow displayed the same cytokine production profiles as Th1 cells from CIITA Tg mice. Together, our data demonstrate that CIITA expression pre-disposes CD4 T cells to produce Th2 type cytokines. Moreover, phenotypic similarities between Th1 cells expressing the CIITA transgene and CIITA deficient Th1 cells suggest that the role of CIITA in cytokine regulation is complex and may reflect both direct and indirect mechanisms of T cell development and differentiation.
Collapse
Affiliation(s)
- Dipak R Patel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM. Expression of MHC II genes. Curr Top Microbiol Immunol 2005; 290:147-70. [PMID: 16480042 DOI: 10.1007/3-540-26363-2_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases.
Collapse
Affiliation(s)
- G Drozina
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
20
|
Ting JPY, Davis BK. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 2005; 23:387-414. [PMID: 15771576 DOI: 10.1146/annurev.immunol.23.021704.115616] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The newly discovered CATERPILLER (CLR) gene family encodes proteins with a variable but limited number of N-terminal domains, followed by a nucleotide-binding domain (NBD) and leucine-rich repeats (LRR). The N-terminal domain consists of transactivation, CARD, Pyrin, or BIR domains, with a minority containing undefined domains. These proteins are remarkably similar in structure to the TIR-NBD-LRR and CC-NBD-LRR disease resistance (R) proteins that mediate immune responses in plants. The NBD-LRR architecture is conserved in plants and vertebrates, but only remnants are found in worms and flies. The CLRs regulate inflammatory and apoptotic responses, and some act as sensors that detect pathogen products. Several CLR genes have been genetically linked to susceptibility to immunologic disorders. We describe prominent family members, including CIITA, CARD4/NOD1, NOD2/CARD15, CIAS1, CARD7/NALP1, and NAIP, in more detail. We also discuss implied roles of these proteins in diversifying immune detection and in providing a check-and-balance during inflammation.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
21
|
Abstract
Nods are cytosolic proteins that contain a nucleotide-binding oligomerization domain (NOD). These proteins include key regulators of apoptosis and pathogen resistance in mammals and plants. A large number of Nods contain leucine-rich repeats (LRRs), hence referred to as NOD-LRR proteins. Genetic variation in several NOD-LRR proteins, including human Nod2, Cryopyrin, and CIITA, as well as mouse Naip5, is associated with inflammatory disease or increased susceptibility to microbial infections. Nod1, Nod2, Cryopyrin, and Ipaf have been implicated in protective immune responses against pathogens. Together with Toll-like receptors, Nod1 and Nod2 appear to play important roles in innate and acquired immunity as sensors of bacterial components. Specifically, Nod1 and Nod2 participate in the signaling events triggered by host recognition of specific motifs in bacterial peptidoglycan and, upon activation, induce the production of proinflammatory mediators. Naip5 is involved in host resistance to Legionella pneumophila through cell autonomous mechanisms, whereas CIITA plays a critical role in antigen presentation and development of antigen-specific T lymphocytes. Thus, NOD-LRR proteins appear to be involved in a diverse array of processes required for host immune reactions against pathogens.
Collapse
|
22
|
Zhu J, Qiu Z, Wiese C, Ishii Y, Friedrichsen J, Rajashekara G, Splitter GA. Nuclear and Mitochondrial Localization Signals Overlap within Bovine Herpesvirus 1 Tegument Protein VP22. J Biol Chem 2005; 280:16038-44. [PMID: 15705574 DOI: 10.1074/jbc.m500054200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VP22, a tegument protein of bovine herpesvirus 1, accumulates in the nucleus of infected and transiently transfected cells. Previous studies indicated a possible regulatory function of VP22 within nuclei, but how VP22 enters nuclei is unknown. Despite the abundance of basic residues within this protein, no classic nuclear localization signal (NLS) motif has been identified. To identify the signal directing nuclear accumulation, a series of truncations, internal deletions, and point mutations were constructed. Fluorescence microscopy of cells transfected with VP22 constructs indicated that a sequence of 103 residues is necessary and sufficient for nuclear localization. This NLS sequence is conformation-sensitive in contrast to a classical sequential NLS. Energy depletion assays and co-immunoprecipitation suggested that this NLS sequence also binds histone H4, resulting in nuclear retention of VP22. In addition, a mitochondrial targeting sequence was identified at the C-terminal 49 amino acids, which overlapped the sequence required for nuclear targeting. Our findings demonstrate the diversity of VP22 protein to localize within the cell and provide the opportunity for VP22 to direct cargo specifically to different subcellular compartments.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Animal Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Greer SF, Harton JA, Linhoff MW, Janczak CA, Ting JPY, Cressman DE. Serine Residues 286, 288, and 293 within the CIITA: A Mechanism for Down-Regulating CIITA Activity through Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2004; 173:376-83. [PMID: 15210796 DOI: 10.4049/jimmunol.173.1.376] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CIITA is the primary factor activating the expression of the class II MHC genes necessary for the exogenous pathway of Ag processing and presentation. Strict control of CIITA is necessary to regulate MHC class II gene expression and induction of an immune response. We show in this study that the nuclear localized form of CIITA is a predominantly phosphorylated form of the protein, whereas cytoplasmic CIITA is predominantly unphosphorylated. Novel phosphorylation sites were determined to be located within a region that contains serine residues 286, 288, and 293. Double mutations of these residues increased nuclear CIITA, indicating that these sites are not required for nuclear import. CIITA-bearing mutations of these serine residues significantly increased endogenous MHC class II expression, but did not significantly enhance trans-activation from a MHC class II promoter, indicating that these phosphorylation sites may be important for gene activation from intact chromatin rather than artificial plasmid-based promoters. These data suggest a model for CIITA function in which phosphorylation of these specific sites in CIITA in the nucleus serves to down-regulate CIITA activity.
Collapse
Affiliation(s)
- Susanna F Greer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
24
|
Adamski J, Ma Z, Nozell S, Benveniste EN. 17beta-Estradiol inhibits class II major histocompatibility complex (MHC) expression: influence on histone modifications and cbp recruitment to the class II MHC promoter. Mol Endocrinol 2004; 18:1963-74. [PMID: 15143155 DOI: 10.1210/me.2004-0098] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Major histocompatibility complex (MHC) class II proteins are important for the initiation of immune responses and are essential for specific recognition of foreign antigens by the immune system. Regulation of class II MHC expression primarily occurs at the transcriptional level. The class II transactivator protein is the master regulator that is essential for both constitutive and interferon-gamma-inducible class II MHC expression. Estrogen [17beta-estradiol (17beta-E2)] has been shown to have immunomodulatory effects. In this study, we show that 17beta-E2 down-regulates interferon-gamma inducible class II MHC protein levels on brain endothelial cells, as well as other cell types (astrocytes, fibrosacroma cells, macrophages). The inhibitory effects of 17beta-E2 on class II MHC expression are not due to changes in class II transactivator mRNA or protein levels, rather, 17beta-E2 mediates inhibition at the level of class II MHC gene expression. We demonstrate that 17beta-E2 attenuates H3 and H4 histone acetylation and cAMP response element binding protein-binding protein association with the class II MHC promoter, suggesting that 17beta-E2 inhibits class II MHC expression by a novel mechanism involving modification of the histone acetylation status of the class II MHC promoter.
Collapse
Affiliation(s)
- Jill Adamski
- Department of Cell Biology, University of Alabama at Birmingham, 1530 3rd Avenue South, MCLM 395, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
25
|
Inohara N, Nuñez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003; 3:371-82. [PMID: 12766759 DOI: 10.1038/nri1086] [Citation(s) in RCA: 737] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NOD (nucleotide-binding oligomerization domain) proteins are members of a family that includes the apoptosis regulator APAF1 (apoptotic protease activating factor 1), mammalian NOD-LRR (leucine-rich repeat) proteins and plant disease-resistance gene products. Several NOD proteins have been implicated in the induction of nuclear factor-kappaB (NF-kappaB) activity and in the activation of caspases. Two members of the NOD family, NOD1 and NOD2, mediate the recognition of specific bacterial components. Notably, genetic variation in the genes encoding the NOD proteins NOD2, cryopyrin and CIITA (MHC class II transactivator) in humans and Naip5 (neuronal apoptosis inhibitory protein 5) in mice is associated with inflammatory disease or increased susceptibility to bacterial infections. Mammalian NOD proteins seem to function as cytosolic sensors for the induction of apoptosis, as well as for innate recognition of microorganisms and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
26
|
Zika E, Greer SF, Zhu XS, Ting JPY. Histone deacetylase 1/mSin3A disrupts gamma interferon-induced CIITA function and major histocompatibility complex class II enhanceosome formation. Mol Cell Biol 2003; 23:3091-102. [PMID: 12697811 PMCID: PMC153210 DOI: 10.1128/mcb.23.9.3091-3102.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class II transactivator (CIITA) is a master transcriptional regulator of major histocompatibility complex class II (MHC-II) promoters. CIITA does not bind DNA, but it interacts with the transcription factors RFX5, NF-Y, and CREB and associated chromatin-modifying enzymes to form an enhanceosome. This report examines the effects of histone deacetylases 1 and 2 (HDAC1/HDAC2) on MHC-II gene induction by gamma interferon (IFN-gamma) and CIITA. The results show that an inhibitor of HDACs, trichostatin A, enhances IFN-gamma-induced MHC-II expression, while HDAC1/HDAC2 inhibits IFN-gamma- and CIITA-induced MHC-II gene expression. mSin3A, a corepressor of HDAC1/HDAC2, is important for this inhibition, while NcoR, a corepressor of HDAC3, is not. The effect of this inhibition is directed at CIITA, since HDAC1/HDAC2 reduces transactivation by a GAL4-CIITA fusion protein. CIITA binds to overexpressed and endogenous HDAC1, suggesting that HDAC and CIITA may affect each other by direct or indirect association. Inhibition of HDAC activity dramatically increases the association of NF-YB and RFX5 with CIITA, the assembly of CIITA, NF-YB, and RFX5 enhanceosome, and the extent of H3 acetylation at the MHC-II promoter. These results suggest a model where HDAC1/HDAC2 affect the function of CIITA through a disruption of MHC-II enhanceosome and relevant coactivator-transcription factor association and provide evidence that CIITA may act as a molecular switch to modulate MHC-II transcription by coordinating the functions of both histone acetylases and HDACs.
Collapse
Affiliation(s)
- Eleni Zika
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
27
|
Raval A, Weissman JD, Howcroft TK, Singer DS. The GTP-binding domain of class II transactivator regulates its nuclear export. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:922-30. [PMID: 12517958 DOI: 10.4049/jimmunol.170.2.922] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional coactivator class II transactivator (CIITA), although predominantly localized in the nucleus, is also present in the cytoplasm. The subcellular distribution of CIITA is actively regulated by the opposing actions of nuclear export and import. In this study, we show that nuclear export is negatively regulated by the GTP-binding domain (GBD; aa 421-561) of CIITA: mutation or deletion of the GBD markedly increased export of CIITA from the nucleus. Remarkably, a CIITA GBD mutant binds CRM1/exportin significantly better than does wild-type CIITA, leading to the conclusion that GTP is a negative regulator of CIITA nuclear export. We also report that, in addition to the previously characterized N- and C-terminal nuclear localization signal elements, there is an additional N-terminal nuclear localization activity, present between aa 209 and 222, which overlaps the proline/serine/threonine-rich domain of CIITA. Thus, fine-tuning of the nucleocytoplasmic distribution of coactivator proteins involved in transcription is an active and dynamic process that defines a novel mechanism for controlling gene regulation.
Collapse
Affiliation(s)
- Aparna Raval
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Barsony J, Prufer K. Vitamin D receptor and retinoid X receptor interactions in motion. VITAMINS AND HORMONES 2003; 65:345-76. [PMID: 12481554 DOI: 10.1016/s0083-6729(02)65071-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamin D receptor (VDR) and retinoid X receptor (RXR) are members of the nuclear receptor superfamily and they bind target DNA sequences as heterodimers to regulate transcription. This article surveys the latest findings regarding the roles of dimerizing RXR in VDR function and emphasizes potential areas for future developments. We first highlight the importance of dimerization with RXR for both the ligand-independent (hair growth) and ligand-dependent functions of VDR (calcium homeostasis, bone development and mineralization, control of cell growth and differentiation). Emerging information regarding the regulatory control of dimerization based on biochemical, structural, and genetic studies is then presented. Finally, the main focus of this article is a new dynamic perspective of dimerization functions, based on recent research with fluorescent protein chimeras in living cells by microscopy. These studies revealed that both VDR and RXR constantly shuttle between the cytoplasm and the nucleus and between subnuclear compartments, and showed the transient nature of receptor--DNA and receptor--coregulator interactions. Because RXR dimerizes with most of the nuclear receptors, regulation of receptor dynamics by RXR has a broad significance.
Collapse
Affiliation(s)
- J Barsony
- Laboratory of Cell Biochemistry and Biology, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
Tosi G, Jabrane-Ferrat N, Peterlin B. Phosphorylation of CIITA directs its oligomerization, accumulation and increased activity on MHCII promoters. EMBO J 2002; 21:5467-76. [PMID: 12374747 PMCID: PMC129089 DOI: 10.1093/emboj/cdf557] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The class II transactivator (CIITA) is the master regulator of major histocompatibility complex class II (MHCII) transcription. Its activity is regulated at the post-transcriptional level by phosphorylation and oligomerization. This aggregation mapped to and depended on the phosphorylation of residues between positions 253 and 321 in CIITA, which resulted in a dramatic accumulation of the protein and increased expression of MHCII genes in human promonocytic U937 cells, which represent immature antigen-presenting cells. Thus, the post-transcriptional modification of CIITA plays an important role in the immune response.
Collapse
Affiliation(s)
- Giovanna Tosi
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94115-0703, USA
Present address: Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Viale L.Borri 57, Varese, Italy Corresponding author e-mail:
| | | | - B.Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94115-0703, USA
Present address: Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Viale L.Borri 57, Varese, Italy Corresponding author e-mail:
| |
Collapse
|
30
|
Jabrane-Ferrat N, Nekrep N, Tosi G, Esserman LJ, Peterlin BM. Major histocompatibility complex class II transcriptional platform: assembly of nuclear factor Y and regulatory factor X (RFX) on DNA requires RFX5 dimers. Mol Cell Biol 2002; 22:5616-25. [PMID: 12101253 PMCID: PMC133954 DOI: 10.1128/mcb.22.15.5616-5625.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are regulated in a B-cell-specific and gamma interferon-inducible manner. Conserved upstream sequences (CUS) in their compact promoters bind nuclear factor Y (NFY) and regulatory factor X (RFX) complexes. These DNA-bound proteins form a platform that attracts the class II transactivator, which initiates and elongates MHC-II transcription. In this report, we analyzed the complex assembly of these DNA-bound proteins. First, we found that NFY can interact with RFX in cells. In particular, NFYA and NFYC bound RFXANK/B in vitro. Next, RFX5 formed dimers in vivo and in vitro. Within a leucine-rich stretch N-terminal to the DNA-binding domain in RFX5, the leucine at position 66 was found to be critical for this self-association. Mutant RFX5 proteins that could not form dimers also did not support the formation of higher-order DNA-protein complexes on CUS in vitro or MHC-II transcription in vivo. We conclude that the MHC-II transcriptional platform begins to assemble off CUS and then binds DNA via multiple, spatially constrained interactions. These findings offer one explanation of why in the Bare Lymphocyte Syndrome, which is a congenital severe combined immunodeficiency, MHC-II promoters are bare when any subunit of RFX is mutated or missing.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115-0703, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition by the immune system. Expression of class II molecules is exquisitely controlled at the transcriptional level. A large set of proteins interact with the promoters of class II genes. The most important of these is CIITA, a master controller that orchestrates expression but does not bind directly to the promoter. The transcriptosome complex formed at class II promoters is a model for induction of gene expression.
Collapse
Affiliation(s)
- Jenny Pan-Yun Ting
- Department of Microbiology and Immunology and The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
32
|
Harton JA, Zika E, Ting JP. The histone acetyltransferase domains of CREB-binding protein (CBP) and p300/CBP-associated factor are not necessary for cooperativity with the class II transactivator. J Biol Chem 2001; 276:38715-20. [PMID: 11514574 DOI: 10.1074/jbc.m106652200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class II transactivator (CIITA) is a transcriptional co-activator regulating the constitutive and interferon-gamma-inducible expression of class II major histocompatibility complex (MHC) and related genes. Promoter remodeling occurs following CIITA induction, suggesting the involvement of chromatin remodeling factors. Transcription of numerous genes requires the histone acetyltransferase (HAT) activities of CREB-binding protein (CBP), p300, and/or p300/CBP-associated factor (pCAF). These co-activators cooperate with CIITA and are hypothesized to promote class II major histocompatibility complex transcription through their HAT activity. To directly test this, we used HAT-defective CBP and pCAF. We demonstrate that cooperation between CIITA and CBP is independent of CBP HAT activity. Further, although pCAF enhances CIITA-mediated transcription, pCAF HAT domain dependence appears contingent upon the concentration of available CIITA. When HAT-defective CBP and pCAF are both present, cooperativity with CIITA is maintained. Consistent with a recent report, we show that nuclear localization of CIITA is enhanced by lysine 144, an in vitro target of pCAF-mediated HAT. Yet we find that neither mutation of lysine 144 nor deletion of residues 132-209 affects transcriptional cooperation with CBP or pCAF. Thus, acetylation of this residue may not be the primary mechanism for pCAF/CBP cooperation with CIITA. In conclusion, the HAT activities of the co-activators are not necessary for cooperation with CIITA.
Collapse
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology, the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
33
|
Cressman DE, O'Connor WJ, Greer SF, Zhu XS, Ting JP. Mechanisms of nuclear import and export that control the subcellular localization of class II transactivator. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3626-34. [PMID: 11564775 DOI: 10.4049/jimmunol.167.7.3626] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of the class II transactivator (CIITA) activates the transcription of all MHC class II genes. Previously, we reported that deletion of a carboxyl-terminal nuclear localization signal (NLS) results in the cytoplasmic localization of CIITA and one form of the type II bare lymphocyte syndrome. However, further sequential carboxyl-terminal deletions of CIITA resulted in mutant forms of the protein that localized predominantly to the nucleus, suggesting the presence of one or more additional NLS in the remaining sequence. We identified a 10-aa motif at residues 405-414 of CIITA that contains strong residue similarity to the classical SV40 NLS. Deletion of this region results in cytoplasmic localization of CIITA and loss of transactivation activity, both of which can be rescued by replacement with the SV40 NLS. Fusion of this sequence to a heterologous protein results in its nuclear translocation, confirming the identification of a NLS. In addition to nuclear localization sequences, CIITA is also controlled by nuclear export. Leptomycin B, an inhibitor of export, blocked the nuclear to cytoplasmic translocation of CIITA; however, leptomycin did not alter the localization of the NLS mutant, indicating that this region mediates only the rate of import and does not affect CIITA export. Several candidate nuclear export sequences were also found in CIITA and one affected the export of a heterologous protein. In summary, we have demonstrated that CIITA localization is balanced between the cytoplasm and nucleus due to the presence of NLS and nuclear export signal sequences in the CIITA protein.
Collapse
Affiliation(s)
- D E Cressman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|