1
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
2
|
Shang R, Kretov DA, Adamson SI, Treiber T, Treiber N, Vedanayagam J, Chuang J, Meister G, Cifuentes D, Lai E. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic Acids Res 2022; 50:7637-7654. [PMID: 35801921 PMCID: PMC9303283 DOI: 10.1093/nar/gkac568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
3
|
Xie F, Cui QK, Wang ZY, Liu B, Qiao W, Li N, Cheng J, Hou YM, Dong XY, Wang Y, Zhang MX. ILF3 is responsible for hyperlipidemia-induced arteriosclerotic calcification by mediating BMP2 and STAT1 transcription. J Mol Cell Cardiol 2021; 161:39-52. [PMID: 34343541 DOI: 10.1016/j.yjmcc.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Calcification is common in atherosclerotic plaque and can induce vulnerability, which further leads to myocardial infarction, plaque rupture and stroke. The mechanisms of atherosclerotic calcification are poorly characterized. Interleukin enhancer binding factor 3 (ILF3) has been identified as a novel factor affecting dyslipidemia and stroke subtypes. However, the precise role of ILF3 in atherosclerotic calcification remains unclear. In this study, we used smooth muscle-conditional ILF3 knockout (ILF3SM-KO) and transgenic mice (ILF3SM-Tg) and macrophage-conditional ILF3 knockout (ILF3M-KO) and transgenic (ILF3M-Tg) mice respectively. Here we showed that ILF3 expression is increased in calcified human aortic vascular smooth muscle cells (HAVSMCs) and calcified atherosclerotic plaque in humans and mice. We then found that hyperlipidemia increases ILF3 expression and exacerbates calcification of VSMCs and macrophages by regulating bone morphogenetic protein 2 (BMP2) and signal transducer and activator of transcription 1 (STAT1) transcription. We further explored the molecular mechanisms of ILF3 in atherosclerotic calcification and revealed that ILF3 acts on the promoter regions of BMP2 and STAT1 and mediates BMP2 upregulation and STAT1 downregulation, which promotes atherosclerotic calcification. Our results demonstrate the effect of ILF3 in atherosclerotic calcification. Inhibition of ILF3 may be a useful therapy for preventing and even reversing atherosclerotic calcification.
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Ke Cui
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhao-Yang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Ying Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Nazitto R, Amon LM, Mast FD, Aitchison JD, Aderem A, Johnson JS, Diercks AH. ILF3 Is a Negative Transcriptional Regulator of Innate Immune Responses and Myeloid Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2949-2965. [PMID: 34031149 DOI: 10.4049/jimmunol.2001235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
APCs such as myeloid dendritic cells (DCs) are key sentinels of the innate immune system. In response to pathogen recognition and innate immune stimulation, DCs transition from an immature to a mature state that is characterized by widespread changes in host gene expression, which include the upregulation of cytokines, chemokines, and costimulatory factors to protect against infection. Several transcription factors are known to drive these gene expression changes, but the mechanisms that negatively regulate DC maturation are less well understood. In this study, we identify the transcription factor IL enhancer binding factor 3 (ILF3) as a negative regulator of innate immune responses and DC maturation. Depletion of ILF3 in primary human monocyte-derived DCs led to increased expression of maturation markers and potentiated innate responses during stimulation with viral mimetics or classic innate agonists. Conversely, overexpression of short or long ILF3 isoforms (NF90 and NF110) suppressed DC maturation and innate immune responses. Through mutagenesis experiments, we found that a nuclear localization sequence in ILF3, and not its dual dsRNA-binding domains, was required for this function. Mutation of the domain associated with zinc finger motif of ILF3's NF110 isoform blocked its ability to suppress DC maturation. Moreover, RNA-sequencing analysis indicated that ILF3 regulates genes associated with cholesterol homeostasis in addition to genes associated with DC maturation. Together, our data establish ILF3 as a transcriptional regulator that restrains DC maturation and limits innate immune responses through a mechanism that may intersect with lipid metabolism.
Collapse
Affiliation(s)
- Rodolfo Nazitto
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Lynn M Amon
- Center for Infectious Disease Research, Seattle, WA; and
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Alan Aderem
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Jarrod S Johnson
- Center for Infectious Disease Research, Seattle, WA; and.,Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Alan H Diercks
- Department of Immunology, University of Washington School of Medicine, Seattle, WA;
| |
Collapse
|
5
|
Nourreddine S, Lavoie G, Paradis J, Ben El Kadhi K, Méant A, Aubert L, Grondin B, Gendron P, Chabot B, Bouvier M, Carreno S, Roux PP. NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated mRNA Decay. Cell Rep 2021; 31:107660. [PMID: 32433969 DOI: 10.1016/j.celrep.2020.107660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
In human cells, the expression of ∼1,000 genes is modulated throughout the cell cycle. Although some of these genes are controlled by specific transcriptional programs, very little is known about their post-transcriptional regulation. Here, we analyze the expression signature associated with all 687 RNA-binding proteins (RBPs) and identify 39 that significantly correlate with cell cycle mRNAs. We find that NF45 and NF90 play essential roles in mitosis, and transcriptome analysis reveals that they are necessary for the expression of a subset of mitotic mRNAs. Using proteomics, we identify protein clusters associated with the NF45-NF90 complex, including components of Staufen-mediated mRNA decay (SMD). We show that depletion of SMD components increases the binding of mitotic mRNAs to the NF45-NF90 complex and rescues cells from mitotic defects. Together, our results indicate that the NF45-NF90 complex plays essential roles in mitosis by competing with the SMD machinery for a common set of mRNAs.
Collapse
Affiliation(s)
- Sami Nourreddine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Justine Paradis
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | | | - Antoine Méant
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Grondin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Sébastien Carreno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
6
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
7
|
Chan TW, Fu T, Bahn JH, Jun HI, Lee JH, Quinones-Valdez G, Cheng C, Xiao X. RNA editing in cancer impacts mRNA abundance in immune response pathways. Genome Biol 2020; 21:268. [PMID: 33106178 PMCID: PMC7586670 DOI: 10.1186/s13059-020-02171-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND RNA editing generates modifications to the RNA sequences, thereby increasing protein diversity and shaping various layers of gene regulation. Recent studies have revealed global shifts in editing levels across many cancer types, as well as a few specific mechanisms implicating individual sites in tumorigenesis or metastasis. However, most tumor-associated sites, predominantly in noncoding regions, have unknown functional relevance. RESULTS Here, we carry out integrative analysis of RNA editing profiles between epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key paradigm for metastasis. We identify distinct editing patterns between epithelial and mesenchymal tumors in seven cancer types using TCGA data, an observation further supported by single-cell RNA sequencing data and ADAR perturbation experiments in cell culture. Through computational analyses and experimental validations, we show that differential editing sites between epithelial and mesenchymal phenotypes function by regulating mRNA abundance of their respective genes. Our analysis of RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported by experimental validations. Consistent with the known roles of ILF3 in immune response, epithelial-mesenchymal differential editing sites are enriched in genes involved in immune and viral processes. The strongest target of editing-dependent ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral response. CONCLUSIONS Our study reports widespread differences in RNA editing between epithelial and mesenchymal tumors and a novel mechanism of editing-dependent regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer and its relevance to cancer-related immune pathways.
Collapse
Affiliation(s)
- Tracey W Chan
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Chonghui Cheng
- Lester & Sue Smith Breast Center & Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Sciences, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Zhang Y, Sun J, Qi Y, Wang Y, Ding Y, Wang K, Zhou Q, Wang J, Ma F, Zhang J, Guo B. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY) 2020; 12:6191-6205. [PMID: 32248186 PMCID: PMC7185097 DOI: 10.18632/aging.103016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
LncRNAs have been proven closely correlated to tumor progression. A recent study identified LncRNA TPT1-AS1 (TPT1-AS1) as one of the liver-metastasis associated LncRNAs in colorectal cancer (CRC). In this study, we report that TPT1-AS1 is upregulated in CRC tissues, which is associated with poor prognosis. Functional assays unravel a pro-angiogenesis and metastasis role of TPT1-AS1. Mechanistically, Flexmap 3D assays reveal that TPT1-AS1 upregulates the VEGFA secretion in CRC cells. RNA immunoprecipitation and mRNA stability assays further show that TPT1-AS1 interacts with nuclear factor 90 (NF90) and subsequently promotes the association between NF90 and VEGFA mRNA, which leads to the upregulation of VEGFA mRNA stability. Therefore, we elucidate a new regulatory mechanism of TPT1-AS1 in CRC angiogenesis and targeting the TPT1-AS1/NF90/VEGFA axis may provide a useful strategy for diagnosis and treatment for colorectal cancer patients.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiangyun Sun
- Department of Acupuncture, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Qi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimin Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Wang
- Department of Central Sterile Supply, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Watson SF, Bellora N, Macias S. ILF3 contributes to the establishment of the antiviral type I interferon program. Nucleic Acids Res 2020; 48:116-129. [PMID: 31701124 PMCID: PMC7145544 DOI: 10.1093/nar/gkz1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Upon detection of viral infections, cells activate the expression of type I interferons (IFNs) and pro-inflammatory cytokines to control viral dissemination. As part of their antiviral response, cells also trigger the translational shutoff response which prevents translation of viral mRNAs and cellular mRNAs in a non-selective manner. Intriguingly, mRNAs encoding for antiviral factors bypass this translational shutoff, suggesting the presence of additional regulatory mechanisms enabling expression of the self-defence genes. Here, we identified the dsRNA binding protein ILF3 as an essential host factor required for efficient translation of the central antiviral cytokine, IFNB1, and a subset of interferon-stimulated genes. By combining polysome profiling and next-generation sequencing, ILF3 was also found to be necessary to establish the dsRNA-induced transcriptional and translational programs. We propose a central role for the host factor ILF3 in enhancing expression of the antiviral defence mRNAs in cellular conditions where cap-dependent translation is compromised.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| |
Collapse
|
11
|
Jia R, Ajiro M, Yu L, McCoy P, Zheng ZM. Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation. RNA (NEW YORK, N.Y.) 2019; 25:630-644. [PMID: 30796096 PMCID: PMC6467003 DOI: 10.1261/rna.068619.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/21/2019] [Indexed: 05/28/2023]
Abstract
Alternative RNA splicing is an important focus in molecular and clinical oncology. We report here that SRSF3 regulates alternative RNA splicing of interleukin enhancer binding factor 3 (ILF3) and production of this double-strand RNA-binding protein. An increased coexpression of ILF3 isoforms and SRSF3 was found in various types of cancers. ILF3 isoform-1 and isoform-2 promote cell proliferation and transformation. Tumor cells with reduced SRSF3 expression produce aberrant isoform-5 and -7 of ILF3. By binding to RNA sequence motifs, SRSF3 regulates the production of various ILF3 isoforms by exclusion/inclusion of ILF3 exon 18 or by selection of an alternative 3' splice site within exon 18. ILF3 isoform-5 and isoform-7 suppress tumor cell proliferation and the isoform-7 induces cell apoptosis. Our data indicate that ILF3 isoform-1 and isoform-2 are two critical factors for cell proliferation and transformation. The increased SRSF3 expression in cancer cells plays an important role in maintaining the steady status of ILF3 isoform-1 and isoform-2.
Collapse
Affiliation(s)
- Rong Jia
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Ke Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Masahiko Ajiro
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
12
|
Vrakas CN, Herman AB, Ray M, Kelemen SE, Scalia R, Autieri MV. RNA stability protein ILF3 mediates cytokine-induced angiogenesis. FASEB J 2019; 33:3304-3316. [PMID: 30383449 PMCID: PMC6404561 DOI: 10.1096/fj.201801315r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
Abstract
Interleukin enhancer-binding factor 3 (ILF3), an RNA-binding protein, is best known for its role in innate immunity by participation in cellular antiviral responses. A role for ILF3 in angiogenesis is unreported. ILF3 expression in CD31+ capillaries of hypoxic cardiac tissue was detected by immunohistochemistry. Proangiogenic stimuli induce ILF3 mRNA and protein expression in cultured human coronary artery endothelial cells (hCAECs). Angiogenic indices, including proliferation, migration, and tube formation, are all significantly reduced in hCAECs when ILF3 is knocked down using small interfering RNA (siRNA), but are significantly increased when ILF3 is overexpressed using adenovirus. Protein and mRNA abundance of several angiogenic factors including CXCL1, VEGF, and IL-8 are decreased when ILF3 is knocked down by siRNA. These factors are increased when ILF3 is overexpressed by adenovirus. ILF3 is phosphorylated and translocates from the nucleus to the cytoplasm in response to angiogenic stimuli. Proangiogenic transcripts containing adenine and uridine-rich elements were bound to ILF3 through RNA immunoprecipitation. ILF3 stabilizes proangiogenic transcripts including VEGF, CXCL1, and IL-8 in hCAECs. Together these data suggest that in endothelial cells, the RNA stability protein, ILF3, plays a novel and central role in angiogenesis. Our working hypothesis is that ILF3 promotes angiogenesis through cytokine-inducible mRNA stabilization of proangiogenic transcripts.-Vrakas, C. N., Herman, A. B., Ray, M., Kelemen, S. E., Scalia, R., Autieri, M. V. RNA stability protein ILF3 mediates cytokine-induced angiogenesis.
Collapse
Affiliation(s)
- Christine N. Vrakas
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Allison B. Herman
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mitali Ray
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sheri E. Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rosario Scalia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Meng W, Wang XJ, Wang HCR. Targeting nuclear proteins for control of viral replication. Crit Rev Microbiol 2019; 45:495-513. [DOI: 10.1080/1040841x.2018.1553848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| |
Collapse
|
14
|
Hao C, Shao R, Raju U, Fang B, Swisher SG, Pataer A. Accumulation of RNA-dependent protein kinase (PKR) in the nuclei of lung cancer cells mediates radiation resistance. Oncotarget 2018; 7:38235-38242. [PMID: 27203671 PMCID: PMC5122385 DOI: 10.18632/oncotarget.9428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
We have previously demonstrated that radiation induced cell death in PKR (−/−) deficient mouse embryo fibroblasts (MEFs) but not in PKR (+/+) wild type MEFs. Our study indicated that PKR can also be involved in survival pathways following radiation therapy through activation of the AKT survival pathways in these MEFs is mediated in part through PKR. The role of PKR on radiation sensitivity in cancer cells has not been evaluated. In this study, we demonstrated that radiation treatment causes nuclear translocation of PKR in human lung cancer cells. The transduction of lung cancer cells with a dominant negative adenoviral PKR vector blocks nuclear translocation of PKR and leads to the reversal of radiation resistance. Plasmid transduction of lung cancer cells with nuclear targeted wild type PKR vectors also increased radiation resistance. This effect is selectively abrogated by plasmid transduction of dominant negative PKR vectors which restore radiation sensitivity. These findings suggest a novel role for PKR in lung cancer cells as a mediator of radiation resistance possibly through translocation of the protein product to the nucleus.
Collapse
Affiliation(s)
- Chuncheng Hao
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Current Address: Department of Oncology Radiotherapy, the Cancer Hospital of Harbin Medical University, Harbin, China
| | - Ruping Shao
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uma Raju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apar Pataer
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Batlle C, de Groot NS, Iglesias V, Navarro S, Ventura S. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Sci Rep 2017; 7:12134. [PMID: 28935930 PMCID: PMC5608858 DOI: 10.1038/s41598-017-09714-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Prion-like behaviour is attracting much attention due to the growing evidences that amyloid-like self-assembly may reach beyond neurodegeneration and be a conserved functional mechanism. The best characterized functional prions correspond to a subset of yeast proteins involved in translation or transcription. Their conformational promiscuity is encoded in Prion Forming Domains (PFDs), usually long and intrinsically disordered protein segments of low complexity. The compositional bias of these regions seems to be important for the transition between soluble and amyloid-like states. We have proposed that the presence of cryptic soft amyloid cores embedded in yeast PFDs can also be important for their assembly and demonstrated their existence and self-propagating abilities. Here, we used an orthogonal approach in the search of human domains that share yeast PFDs compositional bias and exhibit a predicted nucleating core, identifying 535 prion-like candidates. We selected seven proteins involved in transcriptional or translational regulation and associated to disease to characterize the properties of their amyloid cores. All of them self-assemble spontaneously into amyloid-like structures able to propagate their polymeric state. This provides support for the presence of short sequences able to trigger conformational conversion in prion-like human proteins, potentially regulating their functionality.
Collapse
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Natalia Sanchez de Groot
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
16
|
Damianov A, Ying Y, Lin CH, Lee JA, Tran D, Vashisht AA, Bahrami-Samani E, Xing Y, Martin KC, Wohlschlegel JA, Black DL. Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR. Cell 2016; 165:606-19. [PMID: 27104978 DOI: 10.1016/j.cell.2016.03.040] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/18/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
Rbfox proteins control alternative splicing and posttranscriptional regulation in mammalian brain and are implicated in neurological disease. These proteins recognize the RNA sequence (U)GCAUG, but their structures and diverse roles imply a variety of protein-protein interactions. We find that nuclear Rbfox proteins are bound within a large assembly of splicing regulators (LASR), a multimeric complex containing the proteins hnRNP M, hnRNP H, hnRNP C, Matrin3, NF110/NFAR-2, NF45, and DDX5, all approximately equimolar to Rbfox. We show that splicing repression mediated by hnRNP M is stimulated by Rbfox. Virtually all the intron-bound Rbfox is associated with LASR, and hnRNP M motifs are enriched adjacent to Rbfox crosslinking sites in vivo. These findings demonstrate that Rbfox proteins bind RNA with a defined set of cofactors and affect a broader set of exons than previously recognized. The function of this multimeric LASR complex has implications for deciphering the regulatory codes controlling splicing networks.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Ying
- Molecular Biology Interdepartmental Ph.D. Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Diana Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J 2016; 474:259-280. [PMID: 28062840 DOI: 10.1042/bcj20160790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.
Collapse
|
18
|
Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:1373. [PMID: 27556459 PMCID: PMC5000768 DOI: 10.3390/ijms17081373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2's potential role as a therapeutic target in HCC.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| | - Xu Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chengli Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kwabena Gyabaah Owusu-Ansah
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xiaoyu Weng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wendi Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chuanhui Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Rongliang Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Heng Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
19
|
Li T, Li X, Zhu W, Wang H, Mei L, Wu S, Lin X, Han X. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Lett 2016; 590:2797-810. [PMID: 27423063 DOI: 10.1002/1873-3468.12311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
NF90 is a novel host antiviral factor that regulates PKR activation and stress granule formation in influenza A virus (IAV)-infected cells, but the precise mechanisms by which it operates remain unclear. We identified NF90 as a novel interacting protein of IAV nonstructural protein 1 (NS1). The interaction was dependent on the RNA-binding properties of NS1. NS1 associated with NF90 and PKR simultaneously; however, the interaction between NF90 and PKR was restricted by NS1. Knockdown of NF90 promoted inhibition of PKR phosphorylation induced by NS1, while coexpression of NF90 impeded reduction of PKR phosphorylation and stress granule formation triggered by NS1. In summary, NF90 exerts its antiviral activity by antagonizing the inhibitory role of NS1 on PKR phosphorylation.
Collapse
Affiliation(s)
- Ting Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Xi Li
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - WenFei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - HuiYu Wang
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - Lin Mei
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - ShaoQiang Wu
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XiangMei Lin
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| | - XueQing Han
- Chinese Academy of Inspection and Quarantine, Institute of Animal Quarantine, Chaoyang District, Beijing, China
| |
Collapse
|
20
|
Dixit U, Pandey AK, Mishra P, Sengupta A, Pandey VN. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells. Nucleic Acids Res 2016; 44:5271-5287. [PMID: 27106056 PMCID: PMC4914112 DOI: 10.1093/nar/gkw312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3' NTR and domain IIId of the HCV-IRES in the 5' NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication.
Collapse
Affiliation(s)
- Updesh Dixit
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Priya Mishra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amitabha Sengupta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Liu X, Zhang C, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X, Shi J. NF45 inhibits cardiomyocyte apoptosis following myocardial ischemia-reperfusion injury. Pathol Res Pract 2015; 211:955-62. [PMID: 26573128 DOI: 10.1016/j.prp.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
Cardiomyocyte apoptosis, which occurs during ischemia and reperfusion injury, can cause irreversible damage to cardiac function. There is accumulating evidence that nuclear factor 45 (NF45) and regulatory pathways are important in understanding reparative processes in the myocardium. NF45 is a multifunctional regulator of gene expression that participates in the regulation of DNA break repair. Recently, NF45 has been proved to be associated with tumor cell apoptosis in various human malignancies. However, the underlying mechanism of NF45 regulating myocardial ischemia-reperfusion (I/R) injury remains unclear. In this study, western blot showed that NF45 expression decreased after myocardial I/R in vivo. Double immunofluorescent staining revealed that NF45, located in the nucleus of cardiomyocyes, was correlated with cardiomyocyte apoptosis. Furthermore, NF45 expression decreased in H9c2 cells after hypoxia-reoxygenation (H/R) treatment in vitro, which was in line with the results in vivo. Overexpression of NF45 in H9c2 cells reduced cell apoptosis, as evidenced by increased Bcl-2 level, as well as decreased cleaved caspase-3, p53 and p21 expression. The expression of NF45 was reduced by LY294002 (a PI3K/Akt inhibitor), but not SB203580 (a p38 inhibitor), suggesting that NF45 prevented H/R-induced H9c2 cell apoptosis via PI3K/Akt pathway. Our data may supply a novel molecular target for acute myocardial infarction (AMI) therapy.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chi Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Long Qian
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chao Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Kunpeng Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Chen Yang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Daliang Yan
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China
| | - Xiang Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, China.
| |
Collapse
|
23
|
Nakadai T, Fukuda A, Shimada M, Nishimura K, Hisatake K. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators. J Biol Chem 2015; 290:26832-45. [PMID: 26381409 DOI: 10.1074/jbc.m115.688317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Aya Fukuda
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Shimada
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Ken Nishimura
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
24
|
Up-Regulation of NF45 Correlates with Schwann Cell Proliferation After Sciatic Nerve Crush. J Mol Neurosci 2015; 56:216-27. [DOI: 10.1007/s12031-014-0484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
25
|
NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 2015; 108:20-4. [DOI: 10.1016/j.biochi.2014.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/26/2014] [Indexed: 01/09/2023]
|
26
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Huang Q, He X, Qiu X, Liu X, Sun G, Guo J, Ding Z, Yang L, Ban N, Tao T, Wang D. Expression of NF45 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth. Tumour Biol 2014; 35:10149-57. [DOI: 10.1007/s13277-014-2310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022] Open
|
28
|
Wen X, Huang X, Mok BWY, Chen Y, Zheng M, Lau SY, Wang P, Song W, Jin DY, Yuen KY, Chen H. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3753-64. [DOI: 10.4049/jimmunol.1302813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Yao P, Potdar AA, Ray PS, Eswarappa SM, Flagg AC, Willard B, Fox PL. The HILDA complex coordinates a conditional switch in the 3'-untranslated region of the VEGFA mRNA. PLoS Biol 2013; 11:e1001635. [PMID: 23976881 PMCID: PMC3747992 DOI: 10.1371/journal.pbio.1001635] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Cell regulatory circuits integrate diverse, and sometimes conflicting, environmental cues to generate appropriate, condition-dependent responses. Here, we elucidate the components and mechanisms driving a protein-directed RNA switch in the 3'UTR of vascular endothelial growth factor (VEGF)-A. We describe a novel HILDA (hypoxia-inducible hnRNP L-DRBP76-hnRNP A2/B1) complex that coordinates a three-element RNA switch, enabling VEGFA mRNA translation during combined hypoxia and inflammation. In addition to binding the CA-rich element (CARE), heterogeneous nuclear ribonucleoprotein (hnRNP) L regulates switch assembly and function. hnRNP L undergoes two previously unrecognized, condition-dependent posttranslational modifications: IFN-γ induces prolyl hydroxylation and von Hippel-Lindau (VHL)-mediated proteasomal degradation, whereas hypoxia stimulates hnRNP L phosphorylation at Tyr(359), inducing binding to hnRNP A2/B1, which stabilizes the protein. Also, phospho-hnRNP L recruits DRBP76 (double-stranded RNA binding protein 76) to the 3'UTR, where it binds an adjacent AU-rich stem-loop (AUSL) element, "flipping" the RNA switch by disrupting the GAIT (interferon-gamma-activated inhibitor of translation) element, preventing GAIT complex binding, and driving robust VEGFA mRNA translation. The signal-dependent, HILDA complex coordinates the function of a trio of neighboring RNA elements, thereby regulating translation of VEGFA and potentially other mRNA targets. The VEGFA RNA switch might function to ensure appropriate angiogenesis and tissue oxygenation during conflicting signals from combined inflammation and hypoxia. We propose the VEGFA RNA switch as an archetype for signal-activated, protein-directed, multi-element RNA switches that regulate posttranscriptional gene expression in complex environments.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Alka A. Potdar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Partho Sarothi Ray
- Department of Biology, Indian Institute of Science Education and Research, Kolkata, India
| | - Sandeepa M. Eswarappa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrew C. Flagg
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
31
|
Chaumet A, Castella S, Gasmi L, Fradin A, Clodic G, Bolbach G, Poulhe R, Denoulet P, Larcher JC. Proteomic analysis of interleukin enhancer binding factor 3 (Ilf3) and nuclear factor 90 (NF90) interactome. Biochimie 2013; 95:1146-57. [PMID: 23321469 DOI: 10.1016/j.biochi.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/04/2013] [Indexed: 11/17/2022]
Abstract
Interleukin enhancer binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by alternative splicing from the ILF3 gene that provides each protein with a long and identical N-terminal domain of 701 amino acids and a specific C-terminal domain of 210 and 15 amino acids, respectively. They exhibit a high polymorphism due to their posttranscriptional and posttranslational modifications. Ilf3 and NF90 functions remain unclear although they have been described as RNA binding proteins but have been implicated in a large scale of cellular phenomena depending on the nature of their interacting partners, the composition of their protein complexes and their subcellular localization. In order to better understand the functions of Ilf3 and NF90, we have investigated their protein partners by an affinity chromatography approach. In this report, we have identified six partners of Ilf3 and NF90 that interact with their double-stranded RNA binding motifs: hnRNP A/B, hnRNP A2/B1, hnRNP A3, hnRNP D, hnRNP Q and PSF. These hnRNP are known to be implicated in mRNA stabilization, transport and/or translation regulation whereas PSF is a splicing factor. Furthermore, Ilf3, NF90 and most of their identified partners have been shown to be present in large complexes. Altogether, these data suggest an implication of Ilf3 and NF90 in mRNA metabolism. This work allows to establish a link between Ilf3 and NF90 functions, as RNA binding proteins, and their interacting partners implicated in these functions.
Collapse
Affiliation(s)
- Alexandre Chaumet
- Laboratoire de Biologie du Développement, UMR 7622 CNRS, UPMC Univ Paris 06, 9 quai Saint Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
33
|
Fishwick KJ, Kim E, Bronner ME. ILF-3 is a regulator of the neural plate border marker Zic1 in chick embryos. Dev Dyn 2012; 241:1325-32. [PMID: 22639388 DOI: 10.1002/dvdy.23809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The neural crest is a multipotent cell type unique to the vertebrate lineage and capable of differentiating into a large number of varied cell types, including ganglia of the peripheral nervous system, cartilage, and glia. An early step in neural crest specification occurs at the neural plate border, a region defined by the overlap of transcription factors of the Zic, Msx, and Pax families. RESULTS Here we identify a novel chick gene with close homology to double-stranded RNA-binding protein Interleukin enhancer binding factor 3 (ILF-3) in other species. Our results show that chick Ilf-3 is required for proper expression of the transcription factor, Zic-1, at the neural plate border. CONCLUSION We have identified a novel chick gene and show it has a role in the correct specification of Zic-1 at the neural plate border.
Collapse
Affiliation(s)
- K J Fishwick
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
34
|
Ohno M, Fujita M, Nishizuka M, Osada S, Imagawa M. Interactions of Thyroid Hormone Receptor with Ku Proteins and Interleukin Enhancer Binding Factor 3 Modulate the Promoter Activity of Thyroid-Stimulating Hormone Alpha. Biol Pharm Bull 2012; 35:380-4. [DOI: 10.1248/bpb.35.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masae Ohno
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Mayu Fujita
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Makoto Nishizuka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Masayoshi Imagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
35
|
Motl JA, Chalker DL. Zygotic expression of the double-stranded RNA binding motif protein Drb2p is required for DNA elimination in the ciliate Tetrahymena thermophila. EUKARYOTIC CELL 2011; 10:1648-59. [PMID: 22021239 PMCID: PMC3232721 DOI: 10.1128/ec.05216-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA binding motif (DSRM)-containing proteins play many roles in the regulation of gene transcription and translation, including some with tandem DSRMs that act in small RNA biogenesis. We report the characterization of the genes for double-stranded RNA binding proteins 1 and 2 (DRB1 and DRB2), two genes encoding nuclear proteins with tandem DSRMs in the ciliate Tetrahymena thermophila. Both proteins are expressed throughout growth and development but exhibit distinct peaks of expression, suggesting different biological roles. In support of this, we show that expression of DRB2 is essential for vegetative growth while DRB1 expression is not. During conjugation, Drb1p and Drb2p localize to distinct nuclear foci. Cells lacking all DRB1 copies are able to produce viable progeny, although at a reduced rate relative to wild-type cells. In contrast, cells lacking germ line DRB2 copies, which thus cannot express Drb2p zygotically, fail to produce progeny, arresting late into conjugation. This arrest phenotype is accompanied by a failure to organize the essential DNA rearrangement protein Pdd1p into DNA elimination bodies and execute DNA elimination and chromosome breakage. These results implicate zygotically expressed Drb2p in the maturation of these nuclear structures, which are necessary for reorganization of the somatic genome.
Collapse
Affiliation(s)
- Jason A. Motl
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| | - Douglas L. Chalker
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, Missouri 63130-4899
| |
Collapse
|
36
|
The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 2011; 31:4832-43. [PMID: 21969602 DOI: 10.1128/mcb.05849-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor 90 (NF90), an RNA-binding protein implicated in the regulation of gene expression, exists as a heterodimeric complex with NF45. We previously reported that depletion of the NF90/NF45 complex results in a multinucleated phenotype. Time-lapse microscopy revealed that binucleated cells arise by incomplete abscission of progeny cells followed by fusion. Multinucleate cells arose through aberrant division of binucleated cells and displayed abnormal metaphase plates and anaphase chromatin bridges suggestive of DNA repair defects. NF90 and NF45 are known to interact with the DNA-dependent protein kinase (DNA-PK), which is involved in telomere maintenance and DNA repair by nonhomologous end joining (NHEJ). We hypothesized that NF90 modulates the activity of DNA-PK. In an in vitro NHEJ assay system, DNA end joining was reduced by NF90/NF45 immunodepletion or by RNA digestion to an extent similar to that for catalytic subunit DNA-PKcs immunodepletion. In vivo, NF90/NF45-depleted cells displayed increased γ-histone 2A.X foci, indicative of an accumulation of double-strand DNA breaks (DSBs), and increased sensitivity to ionizing radiation consistent with decreased DSB repair. Further, NF90/NF45 knockdown reduced end-joining activity in vivo. These results identify the NF90/NF45 complex as a regulator of DNA damage repair mediated by DNA-PK and suggest that structured RNA may modulate this process.
Collapse
|
37
|
Interleukin enhancer-binding factor 3 functions as a liver receptor homologue-1 co-activator in synergy with the nuclear receptor co-activators PRMT1 and PGC-1α. Biochem J 2011; 437:531-40. [PMID: 21554248 DOI: 10.1042/bj20101793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LRH-1 (liver receptor homologue-1), a transcription factor and member of the nuclear receptor superfamily, regulates the expression of its target genes, which are involved in bile acid and cholesterol homoeostasis. However, the molecular mechanisms of transcriptional control by LRH-1 are not completely understood. Previously, we identified Ku80 and Ku70 as LRH-1-binding proteins and reported that they function as co-repressors. In the present study, we identified an additional LRH-1-binding protein, ILF3 (interleukin enhancer-binding factor 3). ILF3 formed a complex with LRH-1 and the other two nuclear receptor co-activators PRMT1 (protein arginine methyltransferase 1) and PGC-1α (peroxisome proliferator-activated receptor γ co-activator-1α). We demonstrated that ILF3, PRMT1 and PGC-1α were recruited to the promoter region of the LRH-1-regulated SHP (small heterodimer partner) gene, encoding one of the nuclear receptors. ILF3 enhanced SHP gene expression in co-operation with PRMT1 and PGC-1α through the C-terminal region of ILF3. In addition, we found that the small interfering RNA-mediated down-regulation of ILF3 expression led to a reduction in the occupancy of PGC-1α at the SHP promoter and SHP expression. Taken together, our results suggest that ILF3 functions as a novel LRH-1 co-activator by acting synergistically with PRMT1 and PGC-1α, thereby promoting LRH-1-dependent gene expression.
Collapse
|
38
|
Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB. HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410:917-32. [PMID: 21763496 DOI: 10.1016/j.jmb.2011.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) exploits cellular proteins during its replicative cycle and latent infection. The positive transcription elongation factor b (P-TEFb) is a key cellular transcription factor critical for these viral processes and is a drug target. During viral replication, P-TEFb is recruited via interactions of its cyclin T1 subunit with the HIV Tat (transactivator of transcription) protein and TAR (transactivation response) element. Through RNA silencing and over-expression experiments, we discovered that nuclear factor 90 (NF90), a cellular RNA binding protein, regulates P-TEFb expression. NF90 depletion reduced cyclin T1 protein levels by inhibiting translation initiation. Regulation was mediated by the 3' untranslated region of cyclin T1 mRNA independently of microRNAs. Cyclin T1 induction is involved in the escape of HIV-1 from latency. We show that the activation of viral replication by phorbol ester in latently infected monocytic cells requires the posttranscriptional induction of NF90 and cyclin T1, implicating NF90 in protein kinase C signaling pathways. This investigation reveals a novel mechanism of cyclin T1 regulation and establishes NF90 as a regulator of HIV-1 replication during both productive infection and induction from latency.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
39
|
Viranaicken W, Gasmi L, Chaumet A, Durieux C, Georget V, Denoulet P, Larcher JC. L-Ilf3 and L-NF90 traffic to the nucleolus granular component: alternatively-spliced exon 3 encodes a nucleolar localization motif. PLoS One 2011; 6:e22296. [PMID: 21811582 PMCID: PMC3139624 DOI: 10.1371/journal.pone.0022296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins.
Collapse
Affiliation(s)
- Wildriss Viranaicken
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Laila Gasmi
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Alexandre Chaumet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Christiane Durieux
- Institut Jacques Monod, UMR7592 CNRS - Université Denis Diderot, Paris, France
| | - Virginie Georget
- UPMC Université Paris 06, IFR 83, Institut de Biologie Intégrative, Paris, France
| | - Philippe Denoulet
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
| | - Jean-Christophe Larcher
- UPMC Univ Paris 06, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- CNRS, UMR 7622, Laboratoire de Biologie du Développement, Paris, France
- * E-mail:
| |
Collapse
|
40
|
Yang J, Wang L, Huang M, Wang L, Gai Y, Qiu L, Zhang H, Song L. An interleukin-2 enhancer binding factor 2 homolog involved in immune response from Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1303-1309. [PMID: 21439385 DOI: 10.1016/j.fsi.2011.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/12/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates IL-2 gene at level of transcription, splicing and translation in vertebrates and plays significant roles in immune system. In this study, an ILF2 homolog was identified from Chinese mitten crab Eriocheir sinensis (designated as EsILF) by expressed sequence tag (EST) analysis. The full-length cDNA of EsILF was of 2159bp, containing a 5' untranslated region (UTR) of 90bp, a 3' UTR of 866bp with a poly (A) tail, and an open reading frame (ORF) of 1203bp encoding a polypeptide of 400 amino acids with the predicted molecular weight of 44.3kDa, which shared 59.6-64.5% identities with vertebrate ILF2. There were a conserved N-terminal RGG-rich single-stranded RNA-binding domain and a DZF zinc-finger nucleic acid binding domain in the primary structure, strongly suggesting that EsILF was a homolog of vertebrate ILF2. The mRNA of EsILF was constitutively expressed in all tested tissues of untreated crabs, including hepatopancreas, gill, gonad, muscle, heart and hemocytes, with highest expression in muscle and relative lower levels in hemocytes and gonad. The mRNA expression of EsILF in hemocytes was regulated differently after the crabs were stimulated by bacteria Listonella anguillarum and fungi Pichia pastoris GS115. The expression level was significantly (P<0.05) down-regulated to 0.35- and 0.29-fold compared with blank group at 6h and 12h after the stimulation of L. anguillarum, while P. pastoris significantly (P<0.05) up-regulated the expression level to 3.2-fold compared with the blank group at 6h post treatment. The results indicated that EsILF was involved in the immune response of crab toward both L. anguillarum and P. pastoris.
Collapse
Affiliation(s)
- Jialong Yang
- Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Corso C, Pisapia L, Citro A, Cicatiello V, Barba P, Cigliano L, Abrescia P, Maffei A, Manco G, Del Pozzo G. EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Res 2011; 39:7263-75. [PMID: 21624892 PMCID: PMC3167597 DOI: 10.1093/nar/gkr278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3'UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of 'RNA operon' may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3'UTR with same proteins.
Collapse
Affiliation(s)
- Carmela Corso
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Alessandra Citro
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Valeria Cicatiello
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Pasquale Barba
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luisa Cigliano
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Paolo Abrescia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Antonella Maffei
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giuseppe Manco
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
42
|
Smith NL, Miskimins WK. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44:147-55. [PMID: 21401756 DOI: 10.1111/j.1365-2184.2011.00742.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. MATERIALS AND METHODS Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. RESULTS Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. CONCLUSIONS Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site.
Collapse
Affiliation(s)
- N L Smith
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
43
|
Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB. The evolution and expression of the snaR family of small non-coding RNAs. Nucleic Acids Res 2011; 39:1485-500. [PMID: 20935053 PMCID: PMC3045588 DOI: 10.1093/nar/gkq856] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/06/2010] [Accepted: 09/11/2010] [Indexed: 11/12/2022] Open
Abstract
We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation.
Collapse
Affiliation(s)
- Andrew M. Parrott
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Michael Tsai
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Priyanka Batchu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Karen Ryan
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Harvey L. Ozer
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, Graduate School of Biomedical Sciences, UMDNJ, Newark and Department of Microbiology and Molecular Genetics, New Jersey Medical School/University Hospital Cancer Center, UMDNJ - New Jersey Medical School, New Jersey, USA
| |
Collapse
|
44
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
45
|
Boltaña S, Reyes-Lopez F, Morera D, Goetz F, MacKenzie SA. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages. BMC Genomics 2011; 12:34. [PMID: 21235753 PMCID: PMC3087353 DOI: 10.1186/1471-2164-12-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 01/14/2011] [Indexed: 12/24/2022] Open
Abstract
Background Pathogen-associated molecular patterns (PAMPs) are structural components of pathogens such as lipopolysaccharide (LPS) and peptidoglycan (PGN) from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss) macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan) from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4) over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36) and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12) generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO) highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis) highlight the different sensitivity of the macrophage to slight differences (serotype) in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
46
|
Harashima A, Guettouche T, Barber GN. Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev 2010; 24:2640-53. [PMID: 21123651 DOI: 10.1101/gad.1965010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we describe a new mechanism of host defense that involves the nuclear factors associated with dsRNA (NFAR1 [90 kDa] and NFAR2 [110 kDa]), which constitute part of the shuttling ribonuclear protein (RNP) complex. Activation of the dsRNA-activated protein kinase PKR by viral RNA enabled phosphorylation of NFAR1 and NFAR2 on Thr 188 and Thr 315, an event found to be evolutionarily conserved in Xenopus. Phosphorylated NFAR1 and NFAR2 became dissociated from nuclear factor 45 (NF45), which was requisite for NFAR reshuttling, causing the NFARs to be retained on ribosomes, associate with viral transcripts, and impede viral replication. Cre-loxP animals with depletion of the NFARs in the thymus were exquisitely sensitive to the cytoplasmic replicating virus VSV (vesicular stomatitis virus). Thus, the NFARs constitute a novel, conserved mechanism of host defense used by the cell to detect and impede aberrant translation events.
Collapse
Affiliation(s)
- Ai Harashima
- Department of Medicine, University of Miami School of Medicine, Florida 33136, USA
| | | | | |
Collapse
|
47
|
Mouton-Liger F, Paquet C, Hugon J. Biogenesis and regulation of microRNA: implication in Alzheimer’s disease. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent an intriguing class of small, endogenous noncoding RNAs. miRNAs post-transcriptionally inhibit the expression of their specific target mRNAs, primarily by imperfect base pairing with the 3´ untranslated region. In the nervous system, interest in the functions of miRNAs has recently expanded to include their roles in neurodegeneration. Recent investigations have revealed the influence of miRNAs on neuronal death and in the β-amyloid cascade associated with Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Claire Paquet
- Inserm UMRS 839 Institut du Fer à Moulin, Paris, France
- The Departments of Histology, Lariboisière Hospital, Paris, France
- The Clinical Memory Center, Lariboisière Hospital, Paris, France
- Paris VII University, 75010 Paris, France
| | - Jacques Hugon
- Inserm UMRS 839 Institut du Fer à Moulin, Paris, France
- The Departments of Histology, Lariboisière Hospital, Paris, France
- The Clinical Memory Center, Lariboisière Hospital, Paris, France
- Paris VII University, 75010 Paris, France
| |
Collapse
|
48
|
Stricker RLO, Behrens SE, Mundt E. Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. J Virol 2010; 84:10592-605. [PMID: 20702628 PMCID: PMC2950606 DOI: 10.1128/jvi.02506-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 08/03/2010] [Indexed: 12/24/2022] Open
Abstract
Two of the central issues in developing new strategies to interfere with viral infections concern the identification of cellular proteins involved in viral replication and/or antiviral measures and the dissection of the underlying molecular mechanisms. To gain initial insight into the role of host proteins in the life cycle of infectious bursal disease virus (IBDV), a double-stranded RNA virus, we examined the cellular nuclear factor 45 (NF45). NF45 was previously indicated to be involved in the replication process of other types of RNA viruses. Interestingly, by performing immunofluorescence studies, we found that in IBDV-infected cells the mainly nuclear NF45 accumulated at the sites of viral replication in the cytoplasm. NF45 was shown to specifically colocalize with the viral RNA-dependent RNA polymerase VP1, the capsid protein VP2, and the ribonucleoprotein VP3. Immunoprecipitation experiments indicated protein-protein associations between NF45 and VP1, VP2, and VP3. Expression of the individual VP3 or the combination of expression of VP1 and VP3 did not result in a cytoplasmic accumulation of NF45, which, among other data, showed that recruitment of the cellular protein in infected cells functionally correlates with the viral replication process. Since small interfering RNA(siRNA)-mediated downregulation of NF45 resulted in an approximately 5-fold increase of virus yield, our study suggests that NF45, by association with viral proteins, is part of a yet-uncharacterized cellular defense mechanism against IBDV infections.
Collapse
Affiliation(s)
- Ruth L. O. Stricker
- Poultry Diagnostic and Research Center, The University of Georgia, 953 College Station Road, Athens, Georgia 30602, Institute of Biochemistry and Biotechnology, Faculty of Life-Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Poultry Diagnostic and Research Center, The University of Georgia, 953 College Station Road, Athens, Georgia 30602, Institute of Biochemistry and Biotechnology, Faculty of Life-Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Egbert Mundt
- Poultry Diagnostic and Research Center, The University of Georgia, 953 College Station Road, Athens, Georgia 30602, Institute of Biochemistry and Biotechnology, Faculty of Life-Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
49
|
Neplioueva V, Dobrikova EY, Mukherjee N, Keene JD, Gromeier M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS One 2010; 5:e11710. [PMID: 20668518 PMCID: PMC2909144 DOI: 10.1371/journal.pone.0011710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra- or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype.
Collapse
Affiliation(s)
- Valentina Neplioueva
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
50
|
Abstract
Innate immunity is the first line of defense against viral infections. It is based on a mechanism of sensing pathogen-associated molecular patterns through host germline-encoded pattern recognition receptors. dsRNA is arguably the most important viral pathogen-associated molecular pattern due to its expression by almost all viruses at some point during their replicative cycle. Viral dsRNA has been studied for over 55 years, first as a toxin, then as a type I interferon inducer, a viral mimetic and an immunomodulator for therapeutic purposes. This article will focus on dsRNA, its structure, generation (both endogenous and viral), host sensing mechanisms and induction of type I interferons. The possible therapeutic applications of these findings will also be discussed. The goal of this article is to give an overview of these mechanisms, highlighting novel findings, while providing a historical perspective.
Collapse
Affiliation(s)
- Stephanie J DeWitte-Orr
- McMaster University, Department of Pathology & Molecular Medicine, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|