1
|
Sahu A, Ruhal R. Immune system dynamics in response to Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2025; 11:104. [PMID: 40506442 PMCID: PMC12162861 DOI: 10.1038/s41522-025-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
Pseudomonas aeruginosa biofilms contribute to chronic infections by resisting immune attacks and antibiotics. This review explores how innate immunity, including neutrophils, macrophages, and dendritic cells, responds to biofilms and how adaptive mechanisms involving T cells, B cells, and immunoglobulins contribute to infection persistence. Additionally, it highlights immune evasion strategies and discusses emerging therapies such as immunotherapy, monoclonal antibodies, and vaccines, offering insights into enhancing biofilm clearance and improving treatment outcomes.
Collapse
Affiliation(s)
- Abhijeet Sahu
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Jiang X, Mortlock RD, Lomakin IB, Zhou J, Hu R, Cossio ML, Bunick CG, Choate KA. Autosomal dominant SLURP1 variants cause palmoplantar keratoderma and progressive symmetric erythrokeratoderma. Br J Dermatol 2025; 192:896-906. [PMID: 39913669 PMCID: PMC12036768 DOI: 10.1093/bjd/ljaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Epidermal differentiation disorders [EDDs; ichthyosis and palmoplantar keratoderma (PPK)] are heritable skin conditions characterized by localized or generalized skin scaling and erythema. OBJECTIVES To identify novel genetic variants that cause PPK and progressive symmetric erythrokeratoderma (PSEK) phenotypes. METHODS We performed whole-exome sequencing in a large cohort of people with EDD, including PPK and PSEK phenotypes, to identify novel genetic variants. We investigated the variant consequence using in silico predictions, assays in patient keratinocytes, high-resolution spatial transcriptomics and quantitative cytokine profiling. RESULTS We identified three unrelated kindreds with autosomal dominant transmission of heterozygous SLURP1 variants affecting the same amino acid within the signal peptide (c.65C > A, p.A22D and c.65C > T, p.A22V). One (p.A22V) had isolated PPK; the other two (p.A22D) had PSEK and PPK. In silico modelling suggested that both variants alter pro-SLURP1 cleavage, appending two amino acids to the secreted protein, which we subsequently confirmed with mass spectrometry. In patient keratinocytes we found increased differentiation-induced SLURP1 expression and secretion compared to healthy control cells. Spatial transcriptomics revealed increased nuclear factor-κB (NF-κB) signalling and innate immune activity, which may contribute to epidermal hyperproliferation in dominant SLURP1-PPK/PSEK. CONCLUSIONS Our results expand the phenotypic spectrum of EDD due to SLURP1 pathogenic variants. While autosomal recessive Mal de Meleda is due to biallelic loss-of-function SLURP1 variants, our finding of autosomal dominant SLURP1 pathogenic variants in kindreds with PPK and PSEK suggests a novel mechanism of action. We found that heterozygous p.A22V and p.A22D SLURP1 variants append two amino acids to secreted SLURP1, increase differentiation-induced SLURP1 expression and secretion and upregulate NF-κB signalling in people with PSEK.
Collapse
Affiliation(s)
- Xingyuan Jiang
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryland D Mortlock
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Zhou
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronghua Hu
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - María Laura Cossio
- Department of Dermatology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
O'Neill CG, Sawaya AP, Mehdizadeh S, Brooks SR, Hasneen K, Nayak S, Overmiller AM, Morasso MI. SOX2-Dependent Wound Repair Signature Triggers Prohealing Outcome in Hyperglycemic Wounds. J Invest Dermatol 2025; 145:451-455.e5. [PMID: 39127091 PMCID: PMC11745936 DOI: 10.1016/j.jid.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Christopher G O'Neill
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Spencer Mehdizadeh
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Gupta M, Arya S, Agrawal P, Gupta H, Sikka R. Unravelling the molecular tapestry of pterygium: insights into genes for diagnostic and therapeutic innovations. Eye (Lond) 2024; 38:2880-2887. [PMID: 38907016 PMCID: PMC11461965 DOI: 10.1038/s41433-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Pterygium, an ocular surface disorder, manifests as a wing-shaped extension from the corneoscleral limbus onto the cornea, impacting vision and causing inflammation. With a global prevalence of 12%, varying by region, the condition is linked to UV exposure, age, gender, and socioeconomic factors. This review focuses on key genes associated with pterygium, shedding light on potential therapeutic targets. Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, contribute to ECM remodelling and angiogenesis in pterygium. Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and is elevated in pterygium tissues. B-cell lymphoma-2, S100 proteins, DNA repair genes (hOGG1, XRCC1), CYP monooxygenases, p53, and p16 are implicated in pterygium development. A protein-protein interaction network analysis highlighted 28 edges between the aforementioned proteins, except for VEGF, indicating a high level of interaction. Gene ontology, microRNA and pathway analyses revealed the involvement of processes such as base excision repair, IL-17 and p53 signalling, ECM disassembly, oxidative stress, hypoxia, metallopeptidase activity and others that are essential for pterygium development. In addition, miR-29, miR-125, miR-126, miR-143, miR-200, miR-429, and miR-451a microRNAs were predicted, which were shown to have a role in pterygium development and disease severity. Identification of these molecular mechanisms provides insights for potential diagnostic and therapeutic strategies for pterygium.
Collapse
Affiliation(s)
- Mahak Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Shubhang Arya
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | | | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
5
|
Franz S, Torregrossa M, Anderegg U, Ertel A, Saalbach A. Dysregulated S100A9 Expression Impairs Matrix Deposition in Chronic Wounds. Int J Mol Sci 2024; 25:9980. [PMID: 39337466 PMCID: PMC11432490 DOI: 10.3390/ijms25189980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic non-healing wounds are characterized by persistent inflammation, excessive matrix-degrading proteolytic activity and compromised extracellular matrix (ECM) synthesis. Previous studies showed that S100A8/A9 are strongly dysregulated in delayed wound healing and impair the proper function of immune cells. Here, we demonstrate an unrecognized pathological function of S100A9 overexpression in wounds with impaired healing that directly affects ECM functions in fibroblasts. S100A9 was analyzed in two different mouse models mimicking the features of the two most prominent types of non-healing wounds in humans. Db/db mice were used as a model for diabetes-associated impaired wound healing. Iron-overloaded mice were used to mimic the conditions of impaired wound healing in chronic venous leg ulcers. The skin wounds of both mouse models are characterized by delayed wound closure, high and sustained expression of pro-inflammatory mediators and a substantially decreased ECM deposition, all together the hallmarks of non-healing wounds in humans. The wounds of both mouse models also present a solid and prolonged expression of S100A8 and S100A9 that coincides with a compromised ECM deposition and that was confirmed in chronic wounds in humans. Mechanistically, we reveal that S100A9 directly affects ECM deposition by shifting the balance of expression of ECM proteins and ECM degrading enzymes in fibroblasts via toll-like-receptor 4-dependent signaling. Consequently, blocking S100A9 during delayed wound healing in db/db mice restores fibroblast ECM functions eliciting increased matrix deposition. Our data indicate that the dysregulation of S100A9 directly contributes to a compromised ECM deposition in chronic wounds and further suggests S100A9 as a promising therapeutic target to improve tissue repair in chronic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, Max Bürger Research Centre, Medical Faculty, University Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (S.F.); (M.T.); (U.A.); (A.E.)
| |
Collapse
|
6
|
Fuchs C, Stalnaker KJ, Dalgard CL, Sukumar G, Hupalo D, Dreyfuss JM, Pan H, Wang Y, Pham L, Wu X, Jozic I, Anderson RR, Cho S, Meyerle JH, Tam J. Plantar Skin Exhibits Altered Physiology, Constitutive Activation of Wound-Associated Phenotypes, and Inherently Delayed Healing. J Invest Dermatol 2024; 144:1633-1648.e14. [PMID: 38237729 DOI: 10.1016/j.jid.2023.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 06/24/2024]
Abstract
Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.
Collapse
Affiliation(s)
- Christiane Fuchs
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine J Stalnaker
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Hupalo
- The American Genome Center, Uniformed Services University, Bethesda, Maryland, USA; Department of Anatomy, Physiology & Genetics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Linh Pham
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xunwei Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunghun Cho
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jon H Meyerle
- Department of Dermatology, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA; Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Ruchti F, Zwicky P, Becher B, Dubrac S, LeibundGut-Landmann S. Epidermal barrier impairment predisposes for excessive growth of the allergy-associated yeast Malassezia on murine skin. Allergy 2024; 79:1531-1547. [PMID: 38385963 DOI: 10.1111/all.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The skin barrier is vital for protection against environmental threats including insults caused by skin-resident microbes. Dysregulation of this barrier is a hallmark of atopic dermatitis (AD) and ichthyosis, with variable consequences for host immune control of colonizing commensals and opportunistic pathogens. While Malassezia is the most abundant commensal fungus of the skin, little is known about the host control of this fungus in inflammatory skin diseases. METHODS In this experimental study, MC903-treated mice were colonized with Malassezia spp. to assess the host-fungal interactions in atopic dermatitis. Additional murine models of AD and ichthyosis, including tape stripping, K5-Nrf2 overexpression and flaky tail mice, were employed to confirm and expand the findings. Skin fungal counts were enumerated. High parameter flow cytometry was used to characterize the antifungal response in the AD-like skin. Structural and functional alterations in the skin barrier were determined by histology and transcriptomics of bulk skin. Finally, differential expression of metabolic genes in Malassezia in atopic and control skin was quantified. RESULTS Malassezia grows excessively in AD-like skin. Fungal overgrowth could, however, not be explained by the altered immune status of the atopic skin. Instead, we found that by upregulating key metabolic genes in the altered cutaneous niche, Malassezia acquired enhanced fitness to efficiently colonise the impaired skin barrier. CONCLUSIONS This study provides evidence that structural and metabolic changes in the dysfunctional epidermal barrier environment provide increased accessibility and an altered lipid profile, to which the lipid-dependent yeast adapts for enhanced nutrient assimilation. Our findings reveal fundamental insights into the implication of the mycobiota in the pathogenesis of common skin barrier disorders.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Hsu CY, Yousif AM, Abullah KA, Abbas HH, Ahmad H, Eldesoky GE, Adil M, Hussein Z. Antimicrobial Peptides (AMPs): New Perspectives on Their Function in Dermatological Diseases. Int J Pept Res Ther 2024; 30:33. [DOI: 10.1007/s10989-024-10609-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 01/05/2025]
|
9
|
Medeiros CBA, de Lima IL, Cahú TB, Muniz BR, Ribeiro MHML, de Carvalho ÉH, Eberlin MN, Miranda MJB, de Souza Bezerra R, da Silva RA, de Lima Filho JL. Performance of collagen-based matrices from Nile tilapia skin: A pilot proteomic study in a murine model of wound healing. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e4988. [PMID: 38108530 DOI: 10.1002/jms.4988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Full-thickness cutaneous trauma, due to the lack of dermis, leads to difficulty in epithelialization by keratinocytes, developing a fibrotic scar, with less elasticity than the original skin, which may have disorders in predisposed individuals, resulting in hypertrophic scar and keloids. Biomedical materials have excellent characteristics, such as good biocompatibility and low immunogenicity, which can temporarily replace traditional materials used as primary dressings. In this work, we developed two dermal matrices based on Nile tilapia collagen, with (M_GAG) and without (M) glycosaminoglycans, using a sugarcane polymer membrane as a matrix support. To assess the molecular mechanisms driving wound healing, we performed qualitative proteomic analysis on the wound bed in an in vivo study involving immunocompetent murine models at 14 and 21 days post-full-thickness skin injury. Gene Ontology and Pathway analysis revealed that both skins were markedly represented by modulation of the immune system, emphasizing controlling the acute inflammation response at 14 and 21 days post-injury. Furthermore, both groups showed significant enrichment of pathways related to RNA and protein metabolism, suggesting an increase in protein synthesis required for tissue repair and proper wound closure. Other pathways, such as keratinization and vitamin D3 metabolism, were also enriched in the groups treated with M matrix. Finally, both matrices improved wound healing in a full post-thick skin lesion. However, our preliminary molecular data reveals that the collagen-mediated healing matrix lacking glycosaminoglycan (M) exhibited a phenotype more favorable to tissue repair, making it more suitable for use before skin grafts.
Collapse
Affiliation(s)
- Cláudia B A Medeiros
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Iasmim Lopes de Lima
- School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
- MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, Brazil
| | - Thiago Barbosa Cahú
- Biochemistry Department, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | | | | - Marcos Nogueira Eberlin
- School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
- MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
Liang F, Peng C, Luo X, Wang L, Huang Y, Yin L, Yue L, Yang J, Zhao X. A single-cell atlas of immunocytes in the spleen of a mouse model of Wiskott-Aldrich syndrome. Cell Immunol 2023; 393-394:104783. [PMID: 37944382 DOI: 10.1016/j.cellimm.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the Was gene, which is specifically expressed in hematopoietic cells. The spleen plays a major role in hematopoiesis and red blood cell clearance. However, to date, comprehensive analyses of the spleen in wild-type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptome level, have not been reported. In this study, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanisms underlying immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11,269 cells; these cell types included B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, monocytes, macrophages, granulocytes, stem cells and erythrocytes. Moreover, we evaluated gene expression differences among cell subtypes, identified differentially expressed genes (DEGs), and performed enrichment analyses to identify the reasons for the dysfunction in these different cell populations in WAS. Furthermore, some key genes were identified based on a comparison of the DEGs in each cell type involved in specific and nonspecific immune responses, and further analysis showed that these key genes were previously undiscovered pathology-related genes in WAS-KO mice. In summary, we present a landscape of immune cells in the spleen of WAS-KO mice based on detailed data obtained at single-cell resolution. These unprecedented data revealed the transcriptional characteristics of specific and nonspecific immune cells, and the key genes were identified, laying a foundation for future studies of WAS, especially studies into novel and underexplored mechanisms that may improve gene therapies for WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Xianze Luo
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Wang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Le Yin
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Luming Yue
- Singleron Biotechnologies, Nanjing, Jiangsu, China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Xiaodong Zhao
- Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Matas-Nadal C, Bech-Serra JJ, Gatius S, Gomez X, Ribes-Santolaria M, Guasch-Vallés M, Pedraza N, Casanova JM, Gómez CDLT, Garí E, Aguayo-Ortiz RS. Biomarkers found in the tumor interstitial fluid may help explain the differential behavior among keratinocyte carcinomas. Mol Cell Proteomics 2023; 22:100547. [PMID: 37059366 DOI: 10.1016/j.mcpro.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Basal Cell Carcinomas (BCC) and cutaneous Squamous Cell Carcinomas (SCC) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KC). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the Tumor Interstitial Fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing 7 BCCs, 16 SCCs, and 4 Normal Skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF-proteins that could explain the different metastatic behavior in both KC. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin1. Previous studies found their up-regulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KC provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.
Collapse
Affiliation(s)
- Clara Matas-Nadal
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dermatology department. Hospital Santa Caterina, Salt, Girona.
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Sònia Gatius
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Servei d'anatomia patològica, Hospital Universitari Arnau de Vilanova, Lleida
| | - Xavier Gomez
- Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marina Ribes-Santolaria
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Marta Guasch-Vallés
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Neus Pedraza
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Josep M Casanova
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida
| | | | - Eloi Garí
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida
| | - Rafael S Aguayo-Ortiz
- Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida); Dept. Ciències Mèdiques Bàsiques. Facultat de Medicina. Universitat de Lleida; Servei de Dermatologia, Hospital Universitari Arnau de Vilanova, Lleida; Cell cycle lab. Institut de Recerca Biomèdica de Lleida (IRB Lleida)
| |
Collapse
|
13
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
14
|
Walther M, Vestweber PK, Kühn S, Rieger U, Schäfer J, Münch C, Vogel-Kindgen S, Planz V, Windbergs M. Bioactive Insulin-Loaded Electrospun Wound Dressings for Localized Drug Delivery and Stimulation of Protein Expression Associated with Wound Healing. Mol Pharm 2023; 20:241-254. [PMID: 36538353 DOI: 10.1021/acs.molpharmaceut.2c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.
Collapse
Affiliation(s)
- Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Pia Katharina Vestweber
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Shafreena Kühn
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Ulrich Rieger
- Clinic for Plastic and Aesthetic Surgery, Reconstructive and Hand Surgery, Agaplesion Markus Clinic, Wilhelm-Epstein-Straße 4, 60431Frankfurt am Main, Germany
| | - Jasmin Schäfer
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7 / Building 75, 60590Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt am Main, Max-von-Laue Straße 9, 60438Frankfurt am Main, Germany
| |
Collapse
|
15
|
MIKOSIŃSKI J, KALOGEROPOULOS K, BUNDGAARD L, LARSEN CA, SAVICKAS S, HAACK AM, PAŃCZAK K, RYBOŁOWICZ K, GRZELA T, OLSZEWSKI M, CISZEWSKI P, SITEK-ZIÓŁKOWSKA K, TWARDOWSKA-SAUCHA K, KARCZEWSKI M, RABCZENKO D, SEGIET A, BUCZAK-KULA P, SCHOOF EM, EMING SA, SMOLA H, AUF DEM KELLER U. Longitudinal Evaluation of Biomarkers in Wound Fluids from Venous Leg Ulcers and Split-thickness Skin Graft Donor Site Wounds Treated with a Protease-modulating Wound Dressing. Acta Derm Venereol 2022; 102:adv00834. [PMID: 36250733 PMCID: PMC9811302 DOI: 10.2340/actadv.v102.325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Venous leg ulcers represent a clinical challenge and impair the quality of life of patients. This study examines impaired wound healing in venous leg ulcers at the molecular level. Protein expression patterns for biomarkers were analysed in venous leg ulcer wound fluids from 57 patients treated with a protease-modulating polyacrylate wound dressing for 12 weeks, and compared with exudates from 10 acute split-thickness wounds. Wound healing improved in the venous leg ulcer wounds: 61.4% of the 57 patients with venous leg ulcer achieved a relative wound area reduction of ≥ 40%, and 50.9% of the total 57 patients achieved a relative wound area reduction of ≥ 60%. Within the first 14 days, abundances of S100A8, S100A9, neutrophil elastase, matrix metalloproteinase-2, and fibronectin in venous leg ulcer exudates decreased significantly and remained stable, yet higher than in acute wounds. Interleukin-1β, tumour necrosis factor alpha, and matrix metalloproteinase-9 abundance ranges were similar in venous leg ulcers and acute wound fluids. Collagen (I) α1 abundance was higher in venous leg ulcer wound fluids and was not significantly regulated. Overall, significant biomarker changes occurred in the first 14 days before a clinically robust healing response in the venous leg ulcer cohort.
Collapse
Affiliation(s)
- Jacek MIKOSIŃSKI
- “MIKOMED”, Clinic for Peripheral Vascular Diseases, Łódź, Poland
| | - Konstantinos KALOGEROPOULOS
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Louise BUNDGAARD
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark,Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Cathrine Agnete LARSEN
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simonas SAVICKAS
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Aleksander Moldt HAACK
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Tomasz GRZELA
- Clinic of Phlebology,Medical University of Warsaw, Warsaw
| | - Michał OLSZEWSKI
- Pratia Ostrołęka Embedded Hospital Clinical Research Site, Ostrołęka
| | - Piotr CISZEWSKI
- WILMED Specialist Medical Clinic Non-public Healthcare Centre, Warszaw
| | | | | | - Marek KARCZEWSKI
- CSOLUMED Medical Centre,Poland Department of General and Transplant Surgery, Poznan University of Medical Sciences, Poznan
| | | | | | | | - Erwin M. SCHOOF
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Hans SMOLA
- Department of Dermatology, University of Cologne, Cologne,PAUL HARTMANN AG, Heidenheim, Germany
| | - Ulrich AUF DEM KELLER
- DTU Bioengineering, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Liao B, Ouyang Q, Song H, Wang Z, Ou J, Huang J, Liu L. Characteristic analysis of skin keratinocytes in patients with type 2 diabetes based on the single-cell levels. Chin Med J (Engl) 2022; 135:2461-2466. [PMID: 36583863 PMCID: PMC9943975 DOI: 10.1097/cm9.0000000000002323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Keratinocytes play an important role in wound healing; however, less is known about skin keratinocytes in patients with type 2 diabetes mellitus (T2DM). Therefore, this study aimed to search for the transcriptional characteristics of keratinocytes at the single-cell level from T2DM patients, and to provide experimental data for identifying the pathological mechanisms of keratinocytes under pathological conditions. METHODS We performed single-cell RNA sequencing on the skin tissue from two T2DM patients and one patient without diabetes-induced trauma using the BD Rhapsody™ Single-Cell Analysis System. With the help of bioinformatics R-based single-cell analysis software, we analyzed the results of single-cell sequencing to identify the single-cell subsets and transcriptional characteristics of keratinocytes at the single-cell level, including Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyzes. RESULTS In this study, we found specific highly expressed signature keratinocyte-related genes. We analyzed the transcriptome of keratinocytes from experimental and control groups and screened a total of 356 differential genes, which were subject to bioinformatics analysis. Enriched pathways included oxidative phosphorylation, antigen processing and presentation, prion and Huntingtons' diseases, bacterial invasion of epithelial cells, thermogenesis, vasopressin-regulated water reabsorption, and protein processing in the endoplasmic reticulum. CONCLUSIONS This study revealed the characteristics of keratinocytes at the single-cell level and screened a group of differentially expressed genes related to T2DM-associated keratinocytes, oxidative phosphorylation, cytokine receptor interactions, prion diseases, and other signaling pathways.
Collapse
Affiliation(s)
- Bingye Liao
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qiuyi Ouyang
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hongqin Song
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziqi Wang
- Wound Treatment Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jinhua Ou
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jinxin Huang
- Department of Operating Room, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liang Liu
- Wound Treatment Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| |
Collapse
|
17
|
Desjardins P, Le-Bel G, Ghio SC, Germain L, Guérin SL. The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. J Cell Physiol 2022; 237:2434-2450. [PMID: 35150137 DOI: 10.1002/jcp.30698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.
Collapse
Affiliation(s)
- Pascale Desjardins
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sergio C Ghio
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Lucie Germain
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
18
|
de Souza GS, de Jesus Sonego L, Santos Mundim AC, de Miranda Moraes J, Sales-Campos H, Lorenzón EN. Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides 2022; 148:170707. [PMID: 34896165 DOI: 10.1016/j.peptides.2021.170707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Chronic non-healing wounds caused by microbial infections extend the necessity for hospital care and constitute a public health problem and a great financial burden. Classic therapies include a wide range of approaches, from wound debridement to vascular surgery. Antimicrobial peptides (AMPs) are a preserved trait of the innate immune response among different animal species, with known effects on the immune system and microorganisms. Thus, AMPs may represent promising candidates for the treatment of chronic wounds with dual functionality in two of the main agents that lead to this condition, proliferation of microorganisms and uncontrolled inflammation. Here, our goal is to critically review AMPs with wound healing properties. We strongly believe that these dual-function peptides alone, or in combination with other wound healing strategies, constitute an underexplored field that researchers can take advantage of.
Collapse
Affiliation(s)
| | | | | | | | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Departamento de Biociências e Tecnologia, Universidade Federal de Goiás, Goiás, Brazil
| | | |
Collapse
|
19
|
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022; 17:5947-5990. [PMID: 36510620 PMCID: PMC9739148 DOI: 10.2147/ijn.s382796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial-infected wounds are a serious threat to public health. Bacterial invasion can easily delay the wound healing process and even cause more serious damage. Therefore, effective new methods or drugs are needed to treat wounds. Nanozyme is an artificial enzyme that mimics the activity of a natural enzyme, and a substitute for natural enzymes by mimicking the coordination environment of the catalytic site. Due to the numerous excellent properties of nanozymes, the generation of drug-resistant bacteria can be avoided while treating bacterial infection wounds by catalyzing the sterilization mechanism of generating reactive oxygen species (ROS). Notably, there are still some defects in the nanozyme antibacterial agents, and the design direction is to realize the multifunctionalization and intelligence of a single system. In this review, we first discuss the pathophysiology of bacteria infected wound healing, the formation of bacterial infection wounds, and the strategies for treating bacterially infected wounds. In addition, the antibacterial advantages and mechanism of nanozymes for bacteria-infected wounds are also described. Importantly, a series of nanomaterials based on nanozyme synthesis for the treatment of infected wounds are emphasized. Finally, the challenges and prospects of nanozymes for treating bacterial infection wounds are proposed for future research in this field.
Collapse
Affiliation(s)
- Fayin Mo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Duanping Sun; Tianhui You, Email ;
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
20
|
Tayem R, Niemann C, Pesch M, Morgner J, Niessen CM, Wickström SA, Aumailley M. Laminin 332 Is Indispensable for Homeostatic Epidermal Differentiation Programs. J Invest Dermatol 2021; 141:2602-2610.e3. [PMID: 33965403 DOI: 10.1016/j.jid.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
The skin epidermis is attached to the underlying dermis by a laminin 332 (Lm332)-rich basement membrane. Consequently, loss of Lm332 leads to the severe blistering disorder epidermolysis bullosa junctionalis in humans and animals. Owing to the indispensable role of Lm332 in keratinocyte adhesion in vivo, the severity of the disease has limited research into other functions of the protein. We have conditionally disrupted Lm332 expression in basal keratinocytes of adult mice. Although blisters develop along the interfollicular epidermis, hair follicle basal cells provide sufficient anchorage of the epidermis to the dermis, making inducible deletion of the Lama3 gene compatible with life. Loss of Lm332 promoted the thickening of the epidermis and exaggerated desquamation. Global RNA expression analysis revealed major changes in the expression of keratins, cornified envelope proteins, and cellular stress markers. These modifications of the keratinocyte genetic program are accompanied by changes in cell shape and disorganization of the actin cytoskeleton. These data indicate that loss of Lm332-mediated progenitor cell adhesion alters cell fate and disturbs epidermal homeostasis.
Collapse
Affiliation(s)
- Raneem Tayem
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Monika Pesch
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jessica Morgner
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany; Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carien M Niessen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Medical Faculty, Department of Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Monique Aumailley
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
21
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Laulund ASB, Trøstrup H, Lerche CJ, Thomsen K, Christophersen L, Calum H, Høiby N, Moser C. Synergistic effect of immunomodulatory S100A8/A9 and ciprofloxacin against Pseudomonas aeruginosa biofilm in a murine chronic wound model. Pathog Dis 2021; 78:5497298. [PMID: 31116394 DOI: 10.1093/femspd/ftz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
The majority of chronic wounds are associated with bacterial biofilms recalcitrant to antibiotics and host responses. Immunomodulatory S100A8/A9 is suppressed in Pseudomonas aeruginosa biofilm infected wounds. We aimed at investigating a possible additive effect between S100A8/A9 and ciprofloxacin against biofilms. MATERIALS/METHODS Thirty-two mice were injected with alginate-embedded P. aeruginosa following a third-degree burn. The mice were randomized into four groups receiving combination ciprofloxacin and S100A8/A9 or monotherapy ciprofloxacin, S100A8/A9 or a placebo and evaluated by host responses and quantitative bacteriology in wounds. In addition, in vitro checkerboard analysis was performed, with P. aeruginosa and ascending S100A8/A9 and ciprofloxacin concentrations. RESULTS S100A8/A9 augmented the effect of ciprofloxacin in vivo by lowering the bacterial quantity compared to the placebo arm and the two monointervention groups (P < 0.0001). S100A8 and 100A9 were increased in the double-treated group as compared to the monointervention groups (P = 0.032, P = 0.0023). Tissue inhibitor of metalloproteinases-1 and keratinocyte\chemokine chemoattractant-1 were increased in the double-intervention group compared to the S100A8/A9 group (P = 0.050, P = 0.050). No in vitro synergism was detected. CONCLUSION The observed ciprofloxacin-augmenting effect of S100A8/A9 in vivo was not confirmed by checkerboard analysis, indicating dependence on host cells for the S100A8/A9 effect. S100A8/A9 and ciprofloxacin is a promising therapy for optimizing chronic wound treatment.
Collapse
Affiliation(s)
- Anne Sofie Boe Laulund
- Department of Plastic Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Christian Johann Lerche
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kim Thomsen
- Department of Plastic Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Lars Christophersen
- Department of Plastic Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Amager and Hvidovre Hospital, Copenhagen University Hospital, Kettegaard Alle 30, 2650 Copenhagen, Denmark
| | - Niels Høiby
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Plastic Surgery, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark
| |
Collapse
|
23
|
Brunner G, Roux M, Böhm V, Meiners T. Cellular and molecular changes that predispose skin in chronic spinal cord injury to pressure ulcer formation. Int Wound J 2021; 18:728-737. [PMID: 33723924 PMCID: PMC8450792 DOI: 10.1111/iwj.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/04/2022] Open
Abstract
Patients with spinal cord injury have a predisposition to develop pressure ulcers. Specific characteristics of the patients' skin potentially involved have not yet been identified. The purpose of this investigation was to determine whether loss of neuronal control affects cellular and molecular homeostasis in the skin. Intact afflicted skin, wound edge of pressure ulcers, and control skin were analysed. Platelets, transforming growth factor‐β1, and activin A were identified by immunohistochemistry. Transforming growth factor‐β‐like activity was determined by bioassay, and gene expression by DNA microarray analysis or RT‐PCR. In afflicted skin, enhanced platelet extravasation was detected. Transforming growth factor‐β1 and activin A accumulated in the dermal‐epidermal junction zone. Transforming growth factor‐β‐like activity and activin A expression were increased in intact afflicted skin (compared to control skin) and were further enhanced in pressure ulcers. In vitro, activity was generated by fibroblast‐epithelial cell interactions, which also induced activin A. Thus, loss of neuronal control in spinal cord injury appears to trigger inappropriate wound healing processes in the patients' skin. Plasma leakage and increased transforming growth factor‐β‐like activity combined with shear forces potentially enhance the risk for pressure ulcer formation.
Collapse
Affiliation(s)
- Georg Brunner
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany.,Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Meike Roux
- Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Volker Böhm
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| | - Thomas Meiners
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| |
Collapse
|
24
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Christmann C, Zenker S, Martens L, Hübner J, Loser K, Vogl T, Roth J. Interleukin 17 Promotes Expression of Alarmins S100A8 and S100A9 During the Inflammatory Response of Keratinocytes. Front Immunol 2021; 11:599947. [PMID: 33643287 PMCID: PMC7906991 DOI: 10.3389/fimmu.2020.599947] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is one of the most common immune-mediated inflammatory skin diseases. Expression and secretion of two pro-inflammatory molecules of the S100-alarmin family, S100A8 and S100A9, in keratinocytes is a hallmark of psoriasis, which is also characterized by an altered differentiation of keratinocytes. Dimers of S100A8/S100A9 (calprotectin) bind to Toll-like receptor 4 and induce an inflammatory response in target cells. Targeted deletion of S100A9 reduced the inflammatory phenotype of psoriasis-like inflammation in mice. A role of S100-alarmins in differentiation and activation of keratinocytes was suggested but has been never shown in primary keratinocytes. We now confirm that induction of S100-alarmins in an imiquimod-induced murine model of psoriasis-like skin inflammation was associated with an increased expression of interleukin (IL)-1α, IL-6, IL-17A, or TNFα. This association was confirmed in transcriptome data obtained from controls, lesional and non-lesional skin of psoriasis patients, and a down-regulation of S100-alarmin expression after IL-17 directed therapy. However, analyzing primary S100A9−/− keratinocytes we found that expression of S100A8/S100A9 has no significant role for the maturation and inflammatory response pattern of keratinocytes. Moreover, keratinocytes are no target cells for the pro-inflammatory effects of S100A8/S100A9. However, different cytokines, especially IL-17A and F, highly abundant in psoriasis, strongly induced expression of S100-alarmins preferentially during early maturation stages of keratinocytes. Our data indicate that expression of S100A8 and S100A9 does not primarily influence maturation or activation of keratinocytes but rather represents the inflammatory response of these cells during psoriasis.
Collapse
Affiliation(s)
| | - Stefanie Zenker
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Leonie Martens
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Janina Hübner
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Karin Loser
- Department of Dermatology, University of Muenster, Muenster, Germany.,Department of Human Medicine, Institute of Immunology, Faculty VI - Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| |
Collapse
|
26
|
Defrêne J, Berrazouane S, Esparza N, Pagé N, Côté MF, Gobeil S, Aoudjit F, Tessier PA. Deletion of S100a8 and S100a9 Enhances Skin Hyperplasia and Promotes the Th17 Response in Imiquimod-Induced Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:505-514. [PMID: 33361205 DOI: 10.4049/jimmunol.2000087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/26/2020] [Indexed: 02/04/2023]
Abstract
High concentrations of the damage-associated molecular patterns S100A8 and S100A9 are found in skin and serum from patients suffering from psoriasis, an IL-17-related disease. Notably, although the expression of these proteins correlates with psoriatic disease severity, the exact function of S100A8 and S100A9 in psoriasis pathogenesis remains unclear. In this study, we investigated the role of S100A8 and S100A9 in psoriasis-associated skin hyperplasia and immune responses using S100a8-/- and S100a9-/- mice in an imiquimod-induced model of psoriasis. We found that S100a8-/- and S100a9-/- psoriatic mice exhibit worsened clinical symptoms relative to wild-type mice and increased expression of S100A9 and S100A8 proteins in keratinocytes, respectively. In addition, the loss of S100A8 enhances proliferation of keratinocytes and disrupts keratinocyte differentiation. We further detected elevated production of IL-17A and -F from CD4+ T cells in the absence of S100A8 and S100A9, as well as increased infiltration of neutrophils in the skin. In addition, treatment with anti-IL-17A and -F was found to reduce psoriasis symptoms and skin hyperplasia in S100a8-/- and S100a9-/- mice. These data suggest that S100A8 and S100A9 regulate psoriasis by inhibiting production of IL-17A and -F, thereby, to our knowledge, providing new insights into their biological functions.
Collapse
Affiliation(s)
- Joan Defrêne
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nayeli Esparza
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Marie-France Côté
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Stéphane Gobeil
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada; and
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada;
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
27
|
Munoz LD, Sweeney MJ, Jameson JM. Skin Resident γδ T Cell Function and Regulation in Wound Repair. Int J Mol Sci 2020; 21:E9286. [PMID: 33291435 PMCID: PMC7729629 DOI: 10.3390/ijms21239286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.
Collapse
Affiliation(s)
| | | | - Julie M. Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA; (L.D.M.); (M.J.S.)
| |
Collapse
|
28
|
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci 2020; 21:E8790. [PMID: 33233704 PMCID: PMC7699912 DOI: 10.3390/ijms21228790] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
As the most dominant cell type in the skin, keratinocytes play critical roles in wound repair not only as structural cells but also exerting important immune functions. This review focuses on the communications between keratinocytes and immune cells in wound healing, which are mediated by various cytokines, chemokines, and extracellular vesicles. Keratinocytes can also directly interact with T cells via antigen presentation. Moreover, keratinocytes produce antimicrobial peptides that can directly kill the invading pathogens and contribute to wound repair in many aspects. We also reviewed the epigenetic mechanisms known to regulate keratinocyte immune functions, including histone modifications, non-protein-coding RNAs (e.g., microRNAs, and long noncoding RNAs), and chromatin dynamics. Lastly, we summarized the current evidence on the dysregulated immune functions of keratinocytes in chronic nonhealing wounds. Based on their crucial immune functions in skin wound healing, we propose that keratinocytes significantly contribute to the pathogenesis of chronic wound inflammation. We hope this review will trigger an interest in investigating the immune roles of keratinocytes in chronic wound pathology, which may open up new avenues for developing innovative wound treatments.
Collapse
Affiliation(s)
| | | | - Ning Xu Landén
- Center for Molecular Medicine, Ming Wai Lau Centre for Reparative Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden; (M.P.); (D.L.)
| |
Collapse
|
29
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Trøstrup H, Laulund ASB, Moser C. Insights into Host-Pathogen Interactions in Biofilm-Infected Wounds Reveal Possibilities for New Treatment Strategies. Antibiotics (Basel) 2020; 9:E396. [PMID: 32664205 PMCID: PMC7400121 DOI: 10.3390/antibiotics9070396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Normal wound healing occurs in three phases-the inflammatory, the proliferative, and the remodeling phase. Chronic wounds are, for unknown reasons, arrested in the inflammatory phase. Bacterial biofilms may cause chronicity by arresting healing in the inflammatory state by mechanisms not fully understood. Pseudomonas aeruginosa, a common wound pathogen with remarkable abilities in avoiding host defense and developing microbial resistance by biofilm formation, is detrimental to wound healing in clinical studies. The host response towards P. aeruginosa biofilm-infection in chronic wounds and impact on wound healing is discussed and compared to our own results in a chronic murine wound model. The impact of P. aeruginosa biofilms can be described by determining alterations in the inflammatory response, growth factor profile, and count of leukocytes in blood. P. aeruginosa biofilms are capable of reducing the host response to the infection, despite a continuously sustained inflammatory reaction and resulting local tissue damage. A recent observation of in vivo synergism between immunomodulatory and antimicrobial S100A8/A9 and ciprofloxacin suggests its possible future therapeutic potential.
Collapse
Affiliation(s)
- Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Anne Sofie Boe Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, 2200 Copenhagen, Denmark; (A.S.B.L.); (C.M.)
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, 2200 Copenhagen, Denmark; (A.S.B.L.); (C.M.)
| |
Collapse
|
31
|
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes. Front Microbiol 2020; 11:1155. [PMID: 32582097 PMCID: PMC7283518 DOI: 10.3389/fmicb.2020.01155] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Keratinocytes, the main cells of the epidermis, are the first site of replication as well as the first line of defense against many viruses such as arboviruses, enteroviruses, herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication, these cells can sense virus associated molecular patterns leading to the initiation of an innate immune response composed of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. Human keratinocytes produce and secrete at least nine antimicrobial peptides: human cathelicidin LL-37, types 1–4 human β-defensins, S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin (S100A15), and RNase 7. These peptides can exert direct antiviral effects on the viral particle or its replication cycle, and indirect antiviral activity, by modulating the host immune response. The purpose of this review is to summarize current knowledge of antiviral and immunomodulatory properties of human keratinocyte antimicrobial peptides.
Collapse
Affiliation(s)
- Céline Chessa
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Clément Jousselin
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Michel Wehbe
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
32
|
Time course analysis of large-scale gene expression in incised muscle using correspondence analysis. PLoS One 2020; 15:e0230737. [PMID: 32210454 PMCID: PMC7094855 DOI: 10.1371/journal.pone.0230737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Studying the time course of gene expression in injured skeletal muscle would help to estimate the timing of injuries. In this study, we investigated large-scale gene expression in incision-injured mouse skeletal muscle by DNA microarray using correspondence analysis (CA). Biceps femoris muscle samples were collected 6, 12, and 24 hours after injury, and RNA was extracted and prepared for microarray analysis. On a 2-dimensional plot by CA, the genes (row score coordinate) located farther from each time series (column score coordinate) had more upregulation at particular times. Each gene was situated in 6 subdivided triangular areas according to the magnitude of the relationship of the fold change (FC) value at each time point compared to the control. In each area, genes for which the ratios of two particular FC values were close to 1 were distributed along the two border lines. There was a tendency for genes whose FC values were almost equal to be distributed near the intersection of these 6 areas. Therefore, the gene marker candidates for estimation of the timing of injuries were detectable according to the location on the CA plot. Moreover, gene sets created by a specific gene and its surrounding genes were composed of genes that showed similar or identical fluctuation patterns to the specific gene. In various analyses on these sets, significant gene ontology term and pathway activity may reflect changes in specific genes. In conclusion, analyses of gene sets based on CA plots is effective for investigation of the time-dependent fluctuation in gene expression after injury.
Collapse
|
33
|
Besold AN, Culbertson EM, Nam L, Hobbs RP, Boyko A, Maxwell CN, Chazin WJ, Marques AR, Culotta VC. Antimicrobial action of calprotectin that does not involve metal withholding. Metallomics 2019; 10:1728-1742. [PMID: 30206620 DOI: 10.1039/c8mt00133b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calprotectin is a potent antimicrobial that inhibits the growth of pathogens by tightly binding transition metals such as Mn and Zn, thereby preventing their uptake and utilization by invading microbes. At sites of infection, calprotectin is abundantly released from neutrophils, but calprotectin is also present in non-neutrophil cell types that may be relevant to infections. We show here that in patients infected with the Lyme disease pathogen Borreliella (Borrelia) burgdorferi, calprotectin is produced in neutrophil-free regions of the skin, in both epidermal keratinocytes and in immune cells infiltrating the dermis, including CD68 positive macrophages. In culture, B. burgdorferi's growth is inhibited by calprotectin, but surprisingly, the mechanism does not involve the classical withholding of metal nutrients. B. burgdorferi cells exposed to calprotectin cease growth with no reduction in intracellular Mn and no loss in activity of Mn enzymes including the SodA superoxide dismutase. Additionally, there is no obvious loss in intracellular Zn. Rather than metal depletion, we find that calprotectin inhibits B. burgdorferi growth through a mechanism that requires physical association of calprotectin with the bacteria. By comparison, calprotectin inhibited E. coli growth without physically interacting with the microbe, and calprotectin effectively depleted E. coli of intracellular Mn and Zn. Our studies with B. burgdorferi demonstrate that the antimicrobial capacity of calprotectin is complex and extends well beyond simple withholding of metal micronutrients.
Collapse
Affiliation(s)
- Angelique N Besold
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, Brooks SR, Murray J, Morasso MI, MacLeod AS. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 2019; 14:e0216249. [PMID: 31059533 PMCID: PMC6502346 DOI: 10.1371/journal.pone.0216249] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in non-healing wounds affecting body areas of high hair follicle and sweat gland density. The pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant activation of the innate immune system leading to excessive inflammation. Marked dysregulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may contribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from previously published studies and integrated these findings through a comparative analysis with a published wound healing data set and with immunofluorescence and qPCR analysis from new HS patient samples. Among the top differently expressed genes between lesional and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter known as a sweat gland-associated AMP and one of the most downregulated genes in HS lesions. Interestingly, many genes associated with sweat gland function, such as secretoglobins and aquaporin 5, were decreased in HS lesional skin and we discovered that these genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional and wounded skin shared a common gene signature including genes encoding for S100 proteins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland function, and may share a similar pathology with chronic wounds.
Collapse
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Paula Mariottoni
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Hélène Fradin Kirshner
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Tarannum Jaleel
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David A. Brown
- Department of Surgery, Duke University, Durham, NC, United States of America
| | - Stephen R. Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John Murray
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States of America
- Department of Immunology, Duke University, Durham, NC, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
35
|
Karna S, Shin YJ, Kim S, Kim HD. Salivary S100 proteins screen periodontitis among Korean adults. J Clin Periodontol 2019; 46:181-188. [PMID: 30592072 DOI: 10.1111/jcpe.13059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
AIM This study aims to evaluate the association of salivary S100A8 and A9 proteins with periodontitis and its screening ability for periodontitis cross-sectionally. MATERIAL AND METHODS We selected 326 participants from the Yangpyeong Cohort: 218 participants with periodontitis and 108 participants without periodontitis. Stage II-IV periodontitis according to the modification of new international classification of periodontitis was considered as periodontitis. S100A8 and A9 were assayed using enzyme-linked immunosorbent assay kit. Age, sex, education, smoking, drinking, exercise, and metabolic syndrome were factored as confounders. Analyses of covariance and logistic regression analysis were applied to evaluate the association of S100A8 and A9 with periodontitis. Receiver operating characteristic curve was applied for screening ability. RESULTS Those with periodontitis compared to those without periodontitis showed higher adjusted amount of S100A8 (3694 versus 6757 ng/ml, p < 0.001), but less adjusted amount of S100A9 (1341 versus 1030 ng/ml, p = 0.015). The screening ability of S100A8 and A9 on periodontitis was c-statistics of 0.69 (p < 0.001) for both S100A8 and A9, 0.67 for S100A8 and 0.63 (p < 0.001) for S100A9. CONCLUSIONS Overall, salivary S100A8 and S100A9 could be practical markers for periodontitis. Its screening ability for periodontitis could be beneficial in clinics and at home.
Collapse
Affiliation(s)
- Sandeep Karna
- Department of Preventive and Social Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| | - Yoo Jin Shin
- Department of Preventive and Social Dentistry, Seoul National University School of Dentistry, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, Korea.,Institute of Dental Research, Seoul National University School of Dentistry, Seoul, Korea
| | - Hyun-Duck Kim
- Department of Preventive and Social Dentistry, Seoul National University School of Dentistry, Seoul, Korea.,Institute of Dental Research, Seoul National University School of Dentistry, Seoul, Korea
| |
Collapse
|
36
|
Montoya A, López MC, Vélez ID, Robledo SM. Label-free quantitative proteomic analysis reveals potential biomarkers for early healing in cutaneous leishmaniasis. PeerJ 2019; 6:e6228. [PMID: 30648003 PMCID: PMC6330957 DOI: 10.7717/peerj.6228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background Leishmaniasis is a parasitic disease caused by more than 20 species of the Leishmania genus. The disease is globally distributed and is endemic in 97 countries and three territories in the tropical and subtropical regions. The efficacy of the current treatments is becoming increasingly low either due to incomplete treatment or resistant parasites. Failure of treatment is frequent, and therefore, the search for early biomarkers of therapeutic response in cutaneous leishmaniasis (CL) is urgently needed. Objective The aim of this study was to compare the proteomic profiles in patients with CL before and after 7 days of treatment and identify early biomarkers of curative response. Methods Four patients with a parasitological diagnosis of leishmaniasis with confirmation of species by PCR-RFLP were recruited. All patients had a single lesion, and a protein from the middle of the ulcer was quantified by liquid chromatography and mass spectrometry. Results A total of 12 proteins showed differential expression in the comparative LC-electrospray ionization MS/MS (LC-ESI-MS/MS) triplicate analysis. Seven of them were up-regulated and five of them were down-regulated. Calcium binding proteins A2, A8, and A9 and hemoglobin subunits alpha-2 and delta showed high correlation with epidermis development and immune response. Conclusion We identified changes in the profiles of proteins that had a positive therapeutic response to the treatment. The proteins identified with differential expression are related to the reduction of inflammation and increased tissue repair. These proteins can be useful as biomarkers for early monitoring of therapeutic response in CL.
Collapse
Affiliation(s)
- Andrés Montoya
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Manuel Carlos López
- Molecular Biology Department Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina "López Neyra", Granade, Spain
| | - Ivan D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
37
|
Zhou QY, Lin W, Zhu XX, Xu SL, Ying MX, Shi L, Lin BJ. Increased Plasma Levels of S100A8, S100A9, and S100A12 in Chronic Spontaneous Urticaria. Indian J Dermatol 2019; 64:441-446. [PMID: 31896840 PMCID: PMC6862366 DOI: 10.4103/ijd.ijd_375_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Chronic spontaneous urticaria (CSU) is a skin disorder with an important immunologic profile. S100A8, S100A9, and S100A12 are the members of S100 family that have been reported to play important role in autoimmune diseases, but the characteristics of these three S100 members have not been defined in CSU. Aims: This study was performed to investigate the levels of these three S100s in patients with CSU and to study whether they were associated with the severity and clinical characteristics of CSU. Materials and Methods: The levels of plasma S100A8, S100A9, and S100A12 were measured in 51 CSU patients and 20 healthy controls using enzyme linked immunosorbent assay kits. The values in the patient group and that of the healthy controls were statistically compared. The relationships between the different markers were evaluated by correlation analysis. Results: The plasma levels of S100A8, S100A9, and S100A12 were significantly higher in CSU patients than those in controls. Interestingly, the level of S100A12 was significantly correlated with S100A8 and S100A9 in CSU patients (P < 0.05 and P < 0.001, respectively). In addition, S100A8, S100A9, and S100A12 were all significantly inversely correlated with blood basophil percentage. Conclusions: Plasma S100A8, S100A9, and S100A12 levels were elevated in CSU patients. They might be useful biomarkers of CSU, with the potential role in the pathogenesis of CSU.
Collapse
Affiliation(s)
- Qiong-Yan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Lin
- Department of Pharmacy, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Xia Zhu
- Department of Dermatology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Su-Ling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Meng-Xia Ying
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Lei Shi
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Bing-Jiang Lin
- Department of Dermatology, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
38
|
The human olfactory cleft mucus proteome and its age-related changes. Sci Rep 2018; 8:17170. [PMID: 30464187 PMCID: PMC6249231 DOI: 10.1038/s41598-018-35102-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Age-related decreases in olfactory sensitivity are often accompanied by a decrease in the quality of life. However, the molecular mechanisms underlying these changes are not well described. Inhaled substances including odorants are detected by sensory neurons in the olfactory cleft covered with a layer of mucus. This olfactory mucus is the first molecular machinery responsible for tissue protection and for detection of environmental odorants. Yet, little is known about the molecular identities of the actors because of the lack of information on the mucus proteome and its age-related changes. Here, we sampled human mucus from different nasal locations and from young and elderly subjects. The composition of the mucus was extensively analyzed by shotgun proteomic analysis for a vast array of proteins. We also explored correlations between the levels of each mucus proteins with the olfactory sensitivity of subjects. This analysis revealed previously unrecognized proteins with potentially important functions in olfaction. Taken together, this report describes the most comprehensive catalogue of the nasal mucus proteins to date, their positional and age-related differences, and candidate proteins associated with olfaction. This catalogue will provide fundamental information useful for future studies, such as identification of olfactory auxiliary proteins, causes of age-related declines in olfaction, and biomarkers for neurodegenerative disorders.
Collapse
|
39
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
40
|
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol 2018; 9:1298. [PMID: 29942307 PMCID: PMC6004386 DOI: 10.3389/fimmu.2018.01298] [Citation(s) in RCA: 945] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
S100A8 and S100A9 (also known as MRP8 and MRP14, respectively) are Ca2+ binding proteins belonging to the S100 family. They often exist in the form of heterodimer, while homodimer exists very little because of the stability. S100A8/A9 is constitutively expressed in neutrophils and monocytes as a Ca2+ sensor, participating in cytoskeleton rearrangement and arachidonic acid metabolism. During inflammation, S100A8/A9 is released actively and exerts a critical role in modulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion. S100A8/A9 serves as a candidate biomarker for diagnosis and follow-up as well as a predictive indicator of therapeutic responses to inflammation-associated diseases. As blockade of S100A8/A9 activity using small-molecule inhibitors or antibodies improves pathological conditions in murine models, the heterodimer has potential as a therapeutic target. In this review, we provide a comprehensive and detailed overview of the distribution and biological functions of S100A8/A9 and highlight its application as a diagnostic and therapeutic target in inflammation-associated diseases.
Collapse
Affiliation(s)
- Siwen Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Rui Song
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Ziyi Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaocheng Jing
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Shaoxiong Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
41
|
Heimroth RD, Casadei E, Salinas I. Effects of Experimental Terrestrialization on the Skin Mucus Proteome of African Lungfish ( Protopterus dolloi). Front Immunol 2018; 9:1259. [PMID: 29915597 PMCID: PMC5994560 DOI: 10.3389/fimmu.2018.01259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Animal mucosal barriers constantly interact with the external environment, and this interaction is markedly different in aquatic and terrestrial environments. Transitioning from water to land was a critical step in vertebrate evolution, but the immune adaptations that mucosal barriers such as the skin underwent during that process are essentially unknown. Vertebrate animals such as the African lungfish have a bimodal life, switching from freshwater to terrestrial habitats when environmental conditions are not favorable. African lungfish skin mucus secretions contribute to the terrestrialization process by forming a cocoon that surrounds and protects the lungfish body. The goal of this study was to characterize the skin mucus immunoproteome of African lungfish, Protopterus dolloi, before and during the induction phase of terrestrialization as well as the immunoproteome of the gill mucus during the terrestrialization induction phase. Using LC-MS/MS, we identified a total of 974 proteins using a lungfish Illumina RNA-seq database, 1,256 proteins from previously published lungfish sequence read archive and 880 proteins using a lungfish 454 RNA-seq database for annotation in the three samples analyzed (free-swimming skin mucus, terrestrialized skin mucus, and terrestrialized gill mucus). The terrestrialized skin mucus proteome was enriched in proteins with known antimicrobial functions such as histones and S100 proteins compared to free-swimming skin mucus. In support, gene ontology analyses showed that the terrestrialized skin mucus proteome has predicted functions in processes such as viral process, defense response to Gram-negative bacterium, and tumor necrosis factor-mediated signaling. Importantly, we observed a switch in immunoglobulin heavy chain secretion upon terrestrialization, with IgW1 long form (IgW1L) and IgM1 present in free-swimming skin mucus and IgW1L, IgM1, and IgM2 in terrestrialized skin mucus. Combined, these results indicate an increase in investment in the production of unique immune molecules in P. dolloi skin mucus in response to terrestrialization that likely better protects lungfish against external aggressors found in land.
Collapse
Affiliation(s)
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
42
|
Konovalova MV, Zubareva AA, Lutsenko GV, Svirshchevskaya EV. Antimicrobial Peptides in Health and Disease (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. MICROBIOME 2018; 6:20. [PMID: 29378633 PMCID: PMC5789709 DOI: 10.1186/s40168-018-0404-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/18/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota. RESULTS A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract. CONCLUSIONS With this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.
Collapse
Affiliation(s)
- Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Georgia Sfyroera
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Ciara Gimblet
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Julia Bugayev
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brian Kim
- Department of Dermatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda S Tyldsley
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brendan P Hodkinson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Thriene K, Grüning BA, Bornert O, Erxleben A, Leppert J, Athanasiou I, Weber E, Kiritsi D, Nyström A, Reinheckel T, Backofen R, Has C, Bruckner-Tuderman L, Dengjel J. Combinatorial Omics Analysis Reveals Perturbed Lysosomal Homeostasis in Collagen VII-deficient Keratinocytes. Mol Cell Proteomics 2018; 17:565-579. [PMID: 29326176 DOI: 10.1074/mcp.ra117.000437] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix protein collagen VII is part of the microenvironment of stratified epithelia and critical in organismal homeostasis. Mutations in the encoding gene COL7A1 lead to the skin disorder dystrophic epidermolysis bullosa (DEB), are linked to skin fragility and progressive inflammation-driven fibrosis that facilitates aggressive skin cancer. So far, these changes have been linked to mesenchymal alterations, the epithelial consequences of collagen VII loss remaining under-addressed. As epithelial dysfunction is a principal initiator of fibrosis, we performed a comprehensive transcriptome and proteome profiling of primary human keratinocytes from DEB and control subjects to generate global and detailed images of dysregulated epidermal molecular pathways linked to loss of collagen VII. These revealed downregulation of interaction partners of collagen VII on mRNA and protein level, but also increased abundance of S100 pro-inflammatory proteins in primary DEB keratinocytes. Increased TGF-β signaling because of loss of collagen VII was associated with enhanced activity of lysosomal proteases in both keratinocytes and skin of collagen VII-deficient individuals. Thus, loss of a single structural protein, collagen VII, has extra- and intracellular consequences, resulting in inflammatory processes that enable tissue destabilization and promote keratinocyte-driven, progressive fibrosis.
Collapse
Affiliation(s)
- Kerstin Thriene
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany.,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany
| | - Björn Andreas Grüning
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany
| | - Olivier Bornert
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Anika Erxleben
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany
| | - Juna Leppert
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Ioannis Athanasiou
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Ekkehard Weber
- ‖Institute of Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Germany
| | - Dimitra Kiritsi
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Alexander Nyström
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Thomas Reinheckel
- **Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Rolf Backofen
- §Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,¶Department of Computer Science, University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Cristina Has
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany
| | - Leena Bruckner-Tuderman
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany; .,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany
| | - Jörn Dengjel
- From the ‡Department of Dermatology, Medical Center - University of Freiburg, Germany; .,§Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany.,‡‡Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Germany.,§§Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
45
|
Trøstrup H, Lerche CJ, Christophersen LJ, Thomsen K, Jensen PØ, Hougen HP, Høiby N, Moser C. Pseudomonas aeruginosa biofilm hampers murine central wound healing by suppression of vascular epithelial growth factor. Int Wound J 2017; 15:123-132. [PMID: 29178668 DOI: 10.1111/iwj.12846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/01/2017] [Indexed: 01/16/2023] Open
Abstract
Biofilm-infected wounds are clinically challenging. Vascular endothelial growth factor and host defence S100A8/A9 are crucial for wound healing but may be suppressed by biofilms. The natural course of Pseudomonas aeruginosa biofilm infection was compared in central and peripheral zones of burn-wounded, infection-susceptible BALB/c mice, which display delayed wound closure compared to C3H/HeN mice. Wounds were evaluated histopathologically 4, 7 or 10 days post-infection. Photoplanimetry evaluated necrotic areas. P. aeruginosa biofilm suppressed vascular endothelial growth factor levels centrally in BALB/c wounds but increased peripheral levels 4-7 days post-infection. Central zones of the burn wound displayed lower levels of central vascular endothelial growth factor as observed 4 and 7 days post-infection in BALB/c mice compared to their C3H/HeN counterparts. Biofilm suppressed early, centrally located S100A8/A9 in BALB/c and centrally and peripherally later on in C3H/HeN wounds as compared to uninfected mice. Peripheral polymorphonuclear-dominated inflammation and larger necrosis were observed in BALB/c wounds. In conclusion, P. aeruginosa biofilm modulates wounds by suppressing central, but inducing peripheral, vascular endothelial growth factor levels and reducing host response in wounds of BALB/c mice. This suppression is detrimental to the resolution of biofilm-infected necrosis.
Collapse
Affiliation(s)
- Hannah Trøstrup
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian J Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars J Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans Petter Hougen
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
46
|
Marshall NB, Lukomska E, Nayak AP, Long CM, Hettick JM, Anderson SE. Topical application of the anti-microbial chemical triclosan induces immunomodulatory responses through the S100A8/A9-TLR4 pathway. J Immunotoxicol 2017; 14:50-59. [PMID: 28121465 DOI: 10.1080/1547691x.2016.1258094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anti-microbial compound triclosan is incorporated into numerous consumer products and is detectable in the urine of 75% of the general United States population. Recent epidemiological studies report positive associations with urinary triclosan levels and allergic disease. Although not sensitizing, earlier studies previously found that repeated topical application of triclosan augments the allergic response to ovalbumin (OVA) though a thymic stromal lymphopoietin (TSLP) pathway in mice. In the present study, early immunological effects following triclosan exposure were further evaluated following topical application in a murine model. These investigations revealed abundant expression of S100A8/A9, which reportedly acts as an endogenous ligand for Toll-like Receptor 4 (TLR4), in skin tissues and in infiltrating leukocytes during topical application of 0.75-3.0% triclosan. Expression of Tlr4 along with Tlr1, Tlr2 and Tlr6 increased in skin tissues over time with triclosan exposure; high levels of TLR4 were expressed on skin-infiltrating leukocytes. In vivo antibody blockade of the TLR4/MD-2 receptor complex impaired local inflammatory responses after four days, as evidenced by decreased Il6, Tnfα, S100a8, S100a9, Tlr1, Tlr2, Tlr4 and Tlr6 expression in the skin and decreased lymph node cellularity and production of IL-4 and IL-13 by lymph node T-cells. After nine days of triclosan exposure with TLR4/MD-2 blockade, impaired T-helper cell type 2 (TH2) cytokine responses were sustained, but other early effects on skin and lymph node cellularity were lost; this suggested alternative ligands/receptors compensated for the loss of TLR4 signaling. Taken together, these data suggest the S100A8/A9-TLR4 pathway plays an early role in augmenting immunomodulatory responses with triclosan exposure and support a role for the innate immune system in chemical adjuvancy.
Collapse
Affiliation(s)
- Nikki B Marshall
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Ewa Lukomska
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Ajay P Nayak
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Carrie M Long
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA.,b Immunology and Microbial Pathogenesis Graduate Program , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Justin M Hettick
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Stacey E Anderson
- a Allergy and Clinical Immunology Branch , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
47
|
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. Biofilms and host response - helpful or harmful. APMIS 2017; 125:320-338. [PMID: 28407429 DOI: 10.1111/apm.12674] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/09/2023]
Abstract
Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hannah Trøstrup Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Suwanpradid J, Holcomb ZE, MacLeod AS. Emerging Skin T-Cell Functions in Response to Environmental Insults. J Invest Dermatol 2017; 137:288-294. [PMID: 27784595 PMCID: PMC5552043 DOI: 10.1016/j.jid.2016.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
Skin is the primary barrier between the body and the outside world, functioning not only as a physical barrier, but also as an immunologic first line of defense. A large number of T cells populate the skin. This review highlights the ability of these cutaneous T cells to regulate skin-specific environmental threats, including microbes, injuries, solar UV radiation, and allergens. Since much of this knowledge has been advanced from murine studies, we focus our review on how the mouse state has informed the human state, emphasizing the key parallels and differences.
Collapse
Affiliation(s)
- Jutamas Suwanpradid
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary E Holcomb
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA
| | - Amanda S MacLeod
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA; Pinnell Center for Investigative Dermatology and Skin Disease Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
49
|
Wakabayashi M, Yoshioka T, Higashino K, Numata Y, Igarashi Y, Kihara A. Decreases in 15-lipoxygenase metabolites in Olmsted syndrome model rats. J Dermatol Sci 2016; 85:186-196. [PMID: 28024685 DOI: 10.1016/j.jdermsci.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Olmsted syndrome (OS) is a congenital dermatosis characterized by palmoplantar keratoderma and periorificial keratotic plaque. TRPV3 (transient receptor potential vanilloid subtype 3) encodes a thermosensitive Ca2+ channel and is the causative gene of OS. However, the molecular mechanism that causes the pathological development of OS is unclear. OBJECTIVE We aimed to investigate the molecular mechanisms underlying OS pathology from the perspective of lipid metabolism. METHODS Comprehensive lipidomics and microarray analyses were conducted on tissue samples from a non-lesional skin area of OS model rats (Ht rats) and from wild type (WT) rats as the control. RESULTS Infiltration of leukocytes such as eosinophils and neutrophils and an increase in the fibrotic region were detected in the unaffected skin area of Ht rats compared with the WT rats. Among about 600 lipid species examined, the levels of 15-lipoxygenase (LOX) metabolites, the precursors of anti-inflammatory and pro-resolving lipid mediators, and dihydroceramides decreased by ≥16-fold in Ht rats compared with WT rats. Consistent with the decreases in the 15-LOX metabolites, expression levels of the genes that encode the 15-LOXs, Alox15 and Alox15b, were largely reduced. Conversely, increased expression levels were detected of Il36b, Ccl20, Cxcl1, and Cxcl2, which encode cytokines/chemokines, and S100a8 and S100a9, which encode the Ca2+ binding proteins that are implicated in epidermal proliferation. CONCLUSION The pro-inflammatory state in the unaffected skin of Ht rats caused by decreases in 15-LOX metabolites and increases in cytokines/chemokines may contribute to the pathogenesis of OS.
Collapse
Affiliation(s)
- Masato Wakabayashi
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo 001-0021, Japan; Laboratory of Biochemistry, Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
50
|
Rajagopalan P, Nanjappa V, Raja R, Jain AP, Mangalaparthi KK, Sathe GJ, Babu N, Patel K, Cavusoglu N, Soeur J, Pandey A, Roy N, Breton L, Chatterjee A, Misra N, Gowda H. How Does Chronic Cigarette Smoke Exposure Affect Human Skin? A Global Proteomics Study in Primary Human Keratinocytes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:615-626. [PMID: 27828771 DOI: 10.1089/omi.2016.0123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10-7), cystatin A (3.6-fold, p value 3.2 × 10-3), and periplakin (2.4-fold, p value 1.2 × 10-8). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10-2) and filaggrin (3.6-fold, p value 5.4 × 10-7), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10-3) and histone H1.0 (2.5-fold, p value 6.3 × 10-3) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.
Collapse
Affiliation(s)
- Pavithra Rajagopalan
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Vishalakshi Nanjappa
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Remya Raja
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Kiran K Mangalaparthi
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Gajanan J Sathe
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 4 Manipal University , Manipal, India
| | - Niraj Babu
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Jeremie Soeur
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Akhilesh Pandey
- 6 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 7 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 8 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 9 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Nita Roy
- 10 L'Oréal India, Bangalore, India
| | - Lionel Breton
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | | | - Harsha Gowda
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| |
Collapse
|