1
|
Niu CX, Li JW, Li XL, Zhang LL, Lang Y, Song ZB, Yu CL, Yang XG, Zhao HF, Sun JL, Zheng LH, Wang X, Sun Y, Han XH, Wang GN, Bao YL. PRSS50-mediated inhibition of MKP3/ERK signaling is crucial for meiotic progression and sperm quality. Zool Res 2024; 45:1037-1047. [PMID: 39147718 PMCID: PMC11491780 DOI: 10.24272/j.issn.2095-8137.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 08/17/2024] Open
Abstract
Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.
Collapse
Affiliation(s)
- Chun-Xue Niu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia-Wei Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Li Li
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Lin-Lin Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yan Lang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Zhen-Bo Song
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| | - Chun-Lei Yu
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Guang Yang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hai-Feng Zhao
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Jia-Ling Sun
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Li-Hua Zheng
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Hong Han
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Guan-Nan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| |
Collapse
|
2
|
Zhang S, Zhang L, Zhang D, Guo Y, Gao Y, Jiang Z, Li S, Liu A, Cao X, Tian J, Zhao S, Yu Y, Yang W, Bai R, Huang L, Yan H, Zhao H, Sun J. Four and a half LIM domains 2 (FHL2) attenuates tumorigenesis of gastrointestinal stromal tumors (GISTs) by negatively regulating KIT signaling. Mol Carcinog 2024; 63:1334-1348. [PMID: 38629424 DOI: 10.1002/mc.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.
Collapse
Affiliation(s)
- Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Dan Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yue Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisha Gao
- Department of Pathology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Yang
- Department of Gastroenterology, Ningxia Hospital of Integrated Traditional Chinese and Western Medicine, Yinchuan, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Cao X, Tian J, Cheung MY, Zhang L, Liu Z, Jiang Z, Zhang S, Xiao K, Zhao S, Wang M, Ding F, Li S, Ma L, Zhao H, Sun J. Entry of ZSWIM4 to the nucleus is crucial for its inhibition of KIT and BMAL1 in gastrointestinal stromal tumors. Cell Biosci 2024; 14:87. [PMID: 38951864 PMCID: PMC11218225 DOI: 10.1186/s13578-024-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Zinc finger SWIM-type containing 4 (ZSWIM4) is a zinc finger protein with its function largely uncharacterized. In this study, we aimed to investigate the role of ZSWIM4 in gastrointestinal stromal tumors (GISTs). RESULTS We found that ZSWIM4 expression is inhibited by the predominantly mutated protein KIT in GISTs, while conversely, ZSWIM4 inhibits KIT expression and downstream signaling. Consistent with the observation, ZSWIM4 inhibited GIST cell survival and proliferation in vitro. RNA sequencing of GISTs from KITV558A/WT mice and KITV558A/WT/ZSWIM4-/- mice showed that loss of ZSWIM4 expression increases the expression of circadian clock pathway member BMAL1 which contributes to GIST cell survival and proliferation. In addition, we found that KIT signaling increases the distribution of ZSWIM4 in the nucleus of GIST cells, and which is important for its inhibition of KIT and BMAL1. In agreement with the results in vitro, the in vivo studies showed that ZSWIM4 deficiency increases the tumorigenesis of GISTs in KITV558A/WT mice. CONCLUSIONS Taken together, our results revealed that the entry of ZSWIM4 to the nucleus is important for its inhibition of KIT and BMAL1, ultimately attenuating GIST tumorigenesis. The results provide a novel insight in the understanding of signal transduction in GISTs and lay strong theoretical basis for the advancement of GIST treatment.
Collapse
Affiliation(s)
- Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Man Yee Cheung
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zimei Liu
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Feng Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lijun Ma
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
4
|
Zhao Y, Deng S, Li C, Cao J, Wu A, Chen M, Ma X, Wu S, Lian Z. The Role of Retinoic Acid in Spermatogenesis and Its Application in Male Reproduction. Cells 2024; 13:1092. [PMID: 38994945 PMCID: PMC11240464 DOI: 10.3390/cells13131092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China;
| | - Jingchao Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Aowu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi 830017, China
| | - Sen Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Biological Sciences, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Z.); (M.C.)
| |
Collapse
|
5
|
Li N, Rao W, Dai S, Iqbal MS, Shi H, Ding L, Hong M. Seasonal spermatogenesis in the red-eared slider (Trachemys scripta elegans): The roles of GnRH, actin cytoskeleton, and MAPK. Anim Reprod Sci 2023; 253:107253. [PMID: 37224664 DOI: 10.1016/j.anireprosci.2023.107253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Reproduction is the key to the ecological invasion of alien species. As an invasive species, the characteristic and regularity of red-eared slider (Trachemys scripta elegans) spermatogenesis is an index for evaluating reproduction and ecological adaptation. Here, we investigated the characteristics of spermatogenesis i.e., the gonadosomatic index (GSI), plasma reproductive hormone levels, and the histological structure of testes by HE and TUNEL staining, and then RNA-Seq in T. s. elegans. The histomorphological evidence confirmed that seasonal spermatogenesis in T. s. elegans has four successive phases: quiescence (December-May of the following year), early-stage (June-July), mid-stage (August-September), and late-stage (October-November). In contrast to 17β-estradiol, testosterone levels were higher during quiescence (breeding season) compared to mid-stage (non-breeding season). Based on RNA-seq transcriptional analysis, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to analyze the testis in the quiescent and mid-stage. Our study found that circannual spermatogenesis is regulated by interactive networks including gonadotropin-releasing hormone (GnRH) secretion, regulation of actin cytoskeleton, and MAPK signaling pathways. Moreover, the number of genes associated with proliferation and differentiation (srf, nr4a1), cell cycle (ppard, ccnb2), and apoptosis (xiap) were up-regulated in the mid-stage. With the maximum energy saving, this seasonal pattern of T. s. elegans determines optimal reproductive success and thus adapts better to the environment. These results provide the basis for the invasion mechanism of T. s. elegans and lay the foundation for deeper insight into the molecular mechanism of seasonal spermatogenesis in reptiles.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenzhuo Rao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shiyu Dai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Muhammad Shahid Iqbal
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
6
|
Yang F, Sun J, Wu X. Primary Cultures of Spermatogonia and Testis Cells. Methods Mol Biol 2023; 2656:127-143. [PMID: 37249869 DOI: 10.1007/978-1-0716-3139-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spermatogonial stem cells (SSCs) maintain adult spermatogenesis in mammals by undergoing self-renewal and differentiation into spermatozoa. In order to study the biology of SSCs as related to spermatogenesis, an in vitro, long-term expansion system of SSCs constitutes an ideal tool. In this chapter, we describe a robust culture system for mouse and rat SSCs in vitro. In the presence of GDNF, GFRα1, and bFGF, SSCs maintained on STO feeder layers with serum-free medium continuously proliferate for over 6 months. Complete spermatogenesis in infertile recipient mice can be attained following transplantation of the cultured mouse and rat SSCs. Using the in vitro SSC culture systems, elucidation of stem cell biology can be advanced that significantly advances our understanding of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Guida E, Tassinari V, Colopi A, Todaro F, Cesarini V, Jannini B, Pellegrini M, Botti F, Rossi G, Rossi P, Jannini EA, Dolci S. Mapk activation drives male and female mouse teratocarcinomas from late PGCs. J Cell Sci 2022; 135:274751. [PMID: 35297490 DOI: 10.1242/jcs.259375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Germ cell tumors (GCTs) are rare tumors that can develop in both sexes, peaking in adolescents. To understand the mechanisms that underlie germ cell transformation, we established a GCT mouse model carrying germ cell-specific BRafV600E mutation with or without heterozygous Pten deletion. Both male and female mice developed monolateral teratocarcinomas containing embryonal carcinoma (EC) cells that showed an aggressive phenotype and metastatic ability. Germ cell transformation started in fetal gonads and progressed after birth leading to gonadal invasion. Early postnatal testes showed foci of tumor transformation, while ovaries showed increased number of follicles, multi-ovular follicles (MOFs) and scattered metaphase I oocytes containing follicles. Our results indicate that Mapk over-activation in fetal germ cells of both sexes can expand their proliferative window leading to neoplastic transformation and metastatic behavior.
Collapse
Affiliation(s)
- Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Tassinari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Federica Todaro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Benedetto Jannini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy
| | - Flavia Botti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Pathology Department, S. Eugenio Hospital, Rome, Italy
| | - Gabriele Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Salazar-Anzures T, Pastén-Hidalgo K, Sicilia-Argumedo G, Riverón-Negrete L, Hernández-Vázquez ADJ, Fernanadez-Mejia C. Dietary biotin supplementation increases proliferation pathways in mice testes without affecting serum follicle-stimulating hormone levels and stem cell factor expression. Toxicol Appl Pharmacol 2021; 433:115774. [PMID: 34699867 DOI: 10.1016/j.taap.2021.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Supplements containing pharmacological concentrations of biotin are commercially available. The mechanisms by which biotin at pharmacological concentrations exerts its action have been the subject of multiple investigations, particularly for biotin's medicinal potential and wide use for cosmetic purposes. Several studies have reported that biotin supplementation increases cell proliferation; however, the mechanisms involved in this effect have not yet been characterized. In a previous study, we found that a biotin-supplemented diet increased spermatogonia proliferation. The present study was focused on investigating the molecular mechanisms involved in biotin-induced testis cell proliferation. Male BALB/cAnNHsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg biotin/kg diet) for eight weeks. Compared with the control group, the biotin-supplemented mice presented augmented protein abundance of the c-kit-receptor and pERK1/2Tyr204 and pAKTSer473, the active forms of ERK/AKT proliferation signaling pathways. No changes were observed in the testis expression of the stem cell factor and in the serum levels of the follicle-stimulating hormone. Analysis of mRNA abundance found an increase in cyclins Ccnd3, Ccne1, Ccna2; Kinases Cdk4, Cdk2; and E2F; and Sp1 & Sp3 transcription factors. Decreased expression of cyclin-dependent kinase inhibitor 1a (p21) was observed but not of Cdkn2a inhibitor (p16). The results of the present study identifies, for the first time, the mechanisms associated with biotin supplementation-induced cell proliferation, which raises concerns about the effects of biotin on male reproductive health because of its capacity to cause hyperplasia, especially because this vitamin is available in large amounts without regulation.
Collapse
Affiliation(s)
- Tonatiuh Salazar-Anzures
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Karina Pastén-Hidalgo
- Cátedra CONACYT, Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Gloria Sicilia-Argumedo
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Leticia Riverón-Negrete
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Alain de Jesús Hernández-Vázquez
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico
| | - Cristina Fernanadez-Mejia
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Pediatría, Avenida del Iman#1, 4th floor, Mexico City 04500, Mexico.
| |
Collapse
|
9
|
Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, Levasseur A, Wilmouth J, Pointud JC, Faucz FR, Kamilaris C, Lopez AG, Guillou F, Swain A, Vainio SJ, Tauveron I, Val P, Lefebvre H, Stratakis CA, Martinez A, Lefrançois-Martinez AM. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest 2021; 131:146910. [PMID: 34850745 DOI: 10.1172/jci146910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.
Collapse
Affiliation(s)
- Cyril Djari
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Amandine Septier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Ingrid Plotton
- UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Hospices Civils de Lyon, Bron, France
| | - Nathanaëlle Montanier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dufour
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Adrien Levasseur
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - James Wilmouth
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Igor Tauveron
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Val
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine Martinez
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | |
Collapse
|
10
|
Yang G, He Y, Yang H. The involvement of bioactive factors in the self-renewal and stemness maintenance of spermatogonial stem cells. Mol Cell Biochem 2021; 476:1813-1823. [PMID: 33459979 DOI: 10.1007/s11010-020-04028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is usually accompanied throughout mammalian lifetime, transmitting genetic information to the next generation, which is mainly dependent on the self-renewal and differentiation of spermatogonial stem cells (SSCs). With further investigation on profiles of SSCs, the previous prevailing orthodoxy that SSCs are unipotent stem cells to differentiate into spermatids only, has been challenged. More notably, accumulating evidence has demonstrated that SSCs are capable of giving rise to cell lineages of the three germ layers, highlighting potential important applications of SSCs for regenerative medicine. Nevertheless, it is unknown how the proliferation and stemness maintenance of SSCs are regulated intrinsically and strictly controlled in a special niche microenvironment in the seminiferous tubules. Based on the special niche microenvironment for SSCs, it is of vital interest to summarize the recent knowledge regarding several critical bioactive molecules in the self-renewal and stemness maintenance of SSCs. In this review, we discuss most recent findings about these critical bioactive factors and further address the new advances on the self-renewal and stemness maintenance of SSCs.
Collapse
Affiliation(s)
- Guoqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yuqing He
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, Shaanxi, China.
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
11
|
Desimio MG, Cesari E, Sorrenti M, De Felici M, Farini D. Stimulated by retinoic acid gene 8 (STRA8) interacts with the germ cell specific bHLH factor SOHLH1 and represses c-KIT expression in vitro. J Cell Mol Med 2020; 25:383-396. [PMID: 33236849 PMCID: PMC7810945 DOI: 10.1111/jcmm.16087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
STRA8 (Stimulated by Retinoic Acid Gene 8) controls the crucial decision of germ cells to engage meiotic division up and down‐regulating genes involved in the meiotic programme. It has been proven as an amplifier of genes involved in cell cycle control and chromosome events, however, how STRA8 functions as negative regulator are not well understood. In this study, we demonstrate that STRA8 can interact with itself and with other basic Helix‐Loop‐Helix (bHLH) transcription factors through its HLH domain and that this domain is important for its ability to negatively interfere with the Ebox‐mediated transcriptional activity of bHLH transcription factors. Significantly, we show that STRA8 interacts with TCF3/E47, a class I bHLH transcription factors, and with SOHLH1, a gonadal‐specific bHLH, in male germ cells obtained from prepuberal mouse testis. We demonstrated that STRA8, indirectly, is able to exert a negative control on the SOHLH1‐dependent stimulation of c‐KIT expression in late differentiating spermatogonia and preleptotene spermatocytes. Although part of this results were obtained only ‘in vitro’, they support the notion that STRA8 interacting with different transcription factors, besides its established role as ‘amplifier’ of meiotic programme, is able to finely modulate the balance between spermatogonia proliferation, differentiation and acquisition of meiotic competence.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Sorrenti
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL. In-vitro differentiation of early pig spermatogenic cells to haploid germ cells. Mol Hum Reprod 2020; 25:507-518. [PMID: 31328782 DOI: 10.1093/molehr/gaz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,Department of Medicine, Panzhihua University, Sichuan, Sichuan, People's Republic of China
| | - Bao-Lu Zhang
- Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People's Republic of China
| | - Han-Yu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Wu-Qi Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Su-Tian Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People's Republic of China
| | - De-Ping Han
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
14
|
Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020; 117:17832-17841. [PMID: 32661178 DOI: 10.1073/pnas.2000362117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for the generation of sperm and have potential therapeutic value for treating male infertility, which afflicts >100 million men world-wide. While much has been learned about rodent SSCs, human SSCs remain poorly understood. Here, we molecularly characterize human SSCs and define conditions favoring their culture. To achieve this, we first identified a cell-surface protein, PLPPR3, that allowed purification of human primitive undifferentiated spermatogonia (uSPG) highly enriched for SSCs. Comparative RNA-sequencing analysis of these enriched SSCs with differentiating SPG (KIT+ cells) revealed the full complement of genes that shift expression during this developmental transition, including genes encoding key components in the TGF-β, GDNF, AKT, and JAK-STAT signaling pathways. We examined the effect of manipulating these signaling pathways on cultured human SPG using both conventional approaches and single-cell RNA-sequencing analysis. This revealed that GDNF and BMP8B broadly support human SPG culture, while activin A selectively supports more advanced human SPG. One condition-AKT pathway inhibition-had the unique ability to selectively support the culture of primitive human uSPG. This raises the possibility that supplementation with an AKT inhibitor could be used to culture human SSCs in vitro for therapeutic applications.
Collapse
|
15
|
EZH2 expression and its role in spermatogonial stem cell self-renewal in goats. Theriogenology 2020; 155:222-231. [PMID: 32731005 DOI: 10.1016/j.theriogenology.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone H3 lysine 27 (H3K27) methyltransferase that plays vital roles in mouse spermatogenesis. However, the expression pattern and role of EZH2 in goat spermatogonial stem cells (SSCs) is unknown. In the present study, we investigated EZH2 expression in the testis of postpubertal goats and its effect on the biological characteristics of goat SSCs. We found that EZH2 mRNA (P < 0.01) and protein (P < 0.05) expression was increased in the testes of postpubertal goats compared to that of prepubertal goats. Moreover, EZH2 was more highly expressed in goat SSCs than in Leydig cells (P < 0.01) and Sertoli cells (P < 0.01) as determined by qPCR, Western blot, and immunofluorescence. Compared to a negative control (NC), cell proliferation (P < 0.01) and viability (P < 0.01) were decreased in SSCs in which EZH2 was knocked down, and the G2/M phase of the cell cycle was blocked (P < 0.01), as determined by Edu staining, CCK-8 assay, and flow cytometry analysis. Additionally, the expression of CASP3, CASP9, and BAX was significantly increased (P < 0.01) while BCL2 expression was decreased (P < 0.01) in EZH2 knockdown SSCs. Notably, the expression of GDNF, a SSCs marker gene, and DAZL, a spermatogenesis-related gene, were significantly decreased (P < 0.01) while GFRA1 expression was significantly up-regulated (P < 0.01) in EZH2 knockdown SSCs. Our data suggest that EZH2 plays a pivotal role in the self-renewal of goat SSCs, and knockdown of EZH2 might impair spermatogenesis in goats.
Collapse
|
16
|
Barchi M, Innocenzi E, Giannattasio T, Dolci S, Rossi P, Grimaldi P. Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells. Int J Mol Sci 2019; 21:ijms21010025. [PMID: 31861494 PMCID: PMC6981618 DOI: 10.3390/ijms21010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two main cannabinoid receptors type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes form the “endocannabinoid system” (ECS). In the last years, the relevance of endocannabinoids (eCBs) as critical modulators in various aspects of male reproduction has been pointed out. Mammalian male germ cells, from mitotic to haploid stage, have a complete ECS which is modulated during spermatogenesis. Compelling evidence indicate that in the testis an appropriate “eCBs tone”, associated to a balanced CB receptors signaling, is critical for spermatogenesis and for the formation of mature and fertilizing spermatozoa. Any alteration of this system negatively affects male reproduction, from germ cell differentiation to sperm functions, and might have also an impact on testicular tumours. Indeed, most of testicular tumours develop during early germ-cell development in which a maturation arrest is thought to be the first key event leading to malignant transformation. Considering the ever-growing number and complexity of the data on ECS, this review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny. Furthermore, we present new evidence on their relevance in testicular cancer.
Collapse
|
17
|
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019; 10:371. [PMID: 31275242 PMCID: PMC6593054 DOI: 10.3389/fendo.2019.00371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.
Collapse
Affiliation(s)
- Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Interdepartmental Center of Services (CIS) of Genomics, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- StemCell OpCo, Madrid, Spain
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- *Correspondence: Daniele Torella
| |
Collapse
|
18
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
19
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
20
|
Arena AC, Jorge BC, Silva MC, de Barros AL, Fernandes AAH, Nóbrega RH, Martinez ERM, Cardoso CAL, Anselmo-Franci JA, Muzzi RM. Acrocomia aculeataoil: Beneficial effects on cyclophosphamide-induced reproductive toxicity in male rats. Andrologia 2018; 50:e13028. [DOI: 10.1111/and.13028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- A. C. Arena
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - B. C. Jorge
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - M. C. Silva
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - A. L. de Barros
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - A. A. H. Fernandes
- Department of Chemistry and Biochemistry; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - R. H. Nóbrega
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | - E. R. M. Martinez
- Department of Morphology; Institute of Biosciences of Botucatu; Universidade Estadual Paulista; Botucatu SP Brazil
| | | | - J. A. Anselmo-Franci
- Department of Physiology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto SP Brazil
| | - R. M. Muzzi
- Federal University of Grande Dourados; Dourados MS Brazil
| |
Collapse
|
21
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Kawai Y, Oda A, Kanai Y, Goitsuka R. Germ cell-intrinsic requirement for the homeodomain transcription factor PKnox1/Prep1 in adult spermatogenesis. PLoS One 2018; 13:e0190702. [PMID: 29293683 PMCID: PMC5749842 DOI: 10.1371/journal.pone.0190702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 01/15/2023] Open
Abstract
PKnox1 (also known as Prep1) belongs to the TALE family of homeodomain transcription factors that are critical for regulating growth and differentiation during embryonic and postnatal development in vertebrates. We demonstrate here that PKnox1 is required for adult spermatogenesis in a germ cell-intrinsic manner. Tamoxifen-mediated PKnox1 loss in the adult testes, as well as its germ cell-specific ablation, causes testis hypotrophy with germ cell apoptosis and, as a consequence, compromised spermatogenesis. In PKnox1-deficient testes, spermatogenesis was arrested at the c-Kit+ spermatogonia stage, with a complete loss of the meiotic spermatocytes, and was accompanied by compromised differentiation of the c-Kit+ spermatogonia. Taken together, these results indicate that PKnox1 is a critical regulator of maintenance and subsequent differentiation of the c-Kit+ stage of spermatogonia in the adult testes.
Collapse
Affiliation(s)
- Yasuhiro Kawai
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihisa Oda
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Center for Animal Disease Models, Research Institute for Science & Technology, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
23
|
Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, Tian R, Li P, Yuan Q, Xue Y, Wan Z, Yang C, Gong Y, He Z, Li Z. VEGFC/VEGFR3 Signaling Regulates Mouse Spermatogonial Cell Proliferation via the Activation of AKT/MAPK and Cyclin D1 Pathway and Mediates the Apoptosis by affecting Caspase 3/9 and Bcl-2. Cell Cycle 2018; 17:225-239. [PMID: 29169284 DOI: 10.1080/15384101.2017.1407891] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that the transcript levels of Vegfc and its receptor Vegfr3 were high in spermatogonia and extremely low in spermatocytes and spermatids. However, it remains unknown about the functions and the mechanisms of VEGFC/VEGFR3 signaling in regulating the fate determinations of spermatogonia. To this end, here we explored the role and signaling pathways of VEGFC/VEGFR3 by using a cell line derived from immortalized mouse spermatogonia retaining markers of mitotic germ cells, namely GC-1 cells. VEGFR3 was expressed in mouse primary spermatogonia and GC-1 cells. VEGFC stimulated the proliferation and DNA synthesis of GC-1 cells and enhanced the phosphorylation of PI3K-AKT and MAPK, whereas LY294002 (an inhibitor for AKT) and CI-1040 (an inhibitor for MAPK) blocked the effect of VEGFC on GC-1 cell proliferation. Furthermore, VEGFC increased the transcripts of c-fos and Egr1 and protein levels of cyclin D1, PCNA and Bcl-2. Conversely, the blocking of VEGFC/VEGFR3 signaling by VEGFR3 knockdown reduced the phosphorylation of AKT/MAPK and decreased the levels of cyclin D1 and PCNA. Additionally, VEGFR3 knockdown not only resulted in more apoptosis of GC-1 cells but also led to a decrease of Bcl-2 and promoted the cleavage of Caspase-3/9 and PARP. Collectively, these data suggested that VEGFC/VEGFR3 signaling promotes the proliferation of GC-1 cells via the AKT /MAPK and cyclin D1 pathway and it inhibits the cell apoptosis through Caspase-3/9, PARP and Bcl-2. Thus, this study sheds a novel insight to the molecular mechanisms underlying the fate decisions of mammalian spermatogonia.
Collapse
Affiliation(s)
- Liangyu Zhao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zijue Zhu
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chencheng Yao
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuhua Huang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Erlei Zhi
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Huixing Chen
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Ruhui Tian
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Peng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Qingqing Yuan
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Yunjing Xue
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zhong Wan
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Chao Yang
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Yuehua Gong
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Zuping He
- b State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital , School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Zheng Li
- a Department of Andrology, Center for Men's Health, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
24
|
Cardoso HJ, Figueira MI, Socorro S. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. J Cell Commun Signal 2017; 11:297-307. [PMID: 28656507 PMCID: PMC5704042 DOI: 10.1007/s12079-017-0399-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/15/2017] [Indexed: 01/17/2023] Open
Abstract
The stem cell factor (SCF) is a cytokine that specifically binds the tyrosine kinase receptor c-KIT. The SCF/c-KIT interaction leads to receptor dimerization, activation of kinase activity and initiation of several signal transduction pathways that control cell proliferation, apoptosis, differentiation and migration in several tissues. The activity of SCF/c-KIT system is linked with the phosphatidylinositol 3-kinase (PI3-K), the Src, the Janus kinase/signal transducers and activators of transcription (JAK/STAT), the phospholipase-C (PLC-γ) and the mitogen-activated protein kinase (MAPK) pathways. Moreover, it has been reported that cancer cases display an overactivation of c-KIT due to the presence of gain-of-function mutations or receptor overexpression, which renders c-KIT a tempting target for cancer treatment. In the case of male cancers the most documented activated pathways are the PI3-K and Src, both enhancing abnormal cell proliferation. It is also known that the Src activity in prostate cancer cases depends on the presence of tr-KIT, the cytoplasmic truncated variant of c-KIT that is specifically expressed in tumour tissues and, thus, a very interesting target for drug development. The present review provides an overview of the signalling pathways activated by SCF/c-KIT and discusses the potential application of c-KIT inhibitors for treatment of testicular and prostatic cancers.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
25
|
Ulu F, Kim SM, Yokoyama T, Yamazaki Y. Dose-dependent functions of fibroblast growth factor 9 regulate the fate of murine XY primordial germ cells. Biol Reprod 2017; 96:122-133. [PMID: 28395336 PMCID: PMC5803787 DOI: 10.1095/biolreprod.116.143941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
Male differentiation of primordial germ cells (PGCs) is initiated by the inhibition of entry into meiosis and exposure to male-inducing factor(s), which are regulated by somatic elements of the developing gonad. Fibroblast growth factor 9 (FGF9) produced by pre-Sertoli cells is essential for male gonadal differentiation and also contributes to survival and male differentiation of XY PGCs. However, it is not clear how FGF9 regulates PGC fate. Using a PGC culture system, we identified dose-dependent, fate-determining functions of FGF9 in XY PGCs. Treatment with low levels of FGF9 (0.2 ng/ml) increased expression of male-specific Dnmt3L and Nanos2 in XY PGCs. Conversely, treatment with high levels of FGF9 (25 ng/ml) suppressed male-specific gene expression and stimulated proliferation of XY PGCs. Western blotting showed that low FGF9 treatment enhanced p38 MAPK (mitogen-activated protein kinase) phosphorylation in the same cells. In contrast, high FGF9 treatment significantly stimulated the ERK (extracellular signal-regulated kinase)1/2 signaling pathway in XY PGCs. We investigated the relationship between the ERK1/2 signaling pathway stimulated by high FGF9 and regulation of PGC proliferation. An ERK1/2 inhibitor (U0126) suppressed the PGC proliferation that would otherwise be stimulated by high FGF9 treatment, and increased Nanos2 expression in XY PGCs. Conversely, a p38 MAPK inhibitor (SB202190) significantly suppressed Nanos2 expression that would otherwise be stimulated by low FGF9 in XY PGCs. Taken together, our results suggest that stage-specific expression of FGF9 in XY gonads regulates the balance between proliferation and differentiation of XY PGCs in a dose-dependent manner.
Collapse
Affiliation(s)
- Ferhat Ulu
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Sung-Min Kim
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Toshifumi Yokoyama
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.,Department of Animal Science, Kobe University, Kobe, Hyogo, Japan
| | - Yukiko Yamazaki
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
26
|
Wang M, Zhang C, Huang C, Cheng S, He N, Wang Y, Ahmed MF, Zhao R, Jin J, Zuo Q, Zhang Y, Li B. Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells. J Cell Biochem 2017; 119:2396-2407. [PMID: 28898437 DOI: 10.1002/jcb.26402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factors (FGFs) are essential in regulating the formation of spermatogonial stem cells (SSCs). Here, we explored the effect of FGF8 on chicken SSCs formation by knockdown or overexpression of FGF8 in chicken embryonic stem cells (ESCs) both in vitro and in vivo. Our results showed that knockdown of FGF8 could facilitate the differentiation of ESCs into SSCs, overexpression of FGF8 could promote PGCs self-renewal, inhibit SSCs formation. This study further revealed the positive correlation between the expression level of FGF8 and MAPK/ERK signal. In the absence of FGF8, the expression of downstream genes such as FGFR2, GRB2, RAS, BRAF, RAF1, and MEK2 was not maintained, while overexpressing FGF8 enhances them. Thus, our study demonstrated that FGF8 can regulate germ cell fate by modulating the dynamic equilibrium between differentiation and self-renewal, which provides a new idea for the study of germ cell regulatory network.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Chuanli Huang
- Department of Life Sciences, Imperial College London, London, UK
| | - Shaoze Cheng
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Nana He
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Yilin Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Mahmoud F Ahmed
- College of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
27
|
|
28
|
|
29
|
Niu Z, Mu H, Zhu H, Wu J, Hua J. p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs). Cell Prolif 2016; 50. [PMID: 27868268 DOI: 10.1111/cpr.12314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. MATERIALS AND METHODS Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. RESULTS Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. CONCLUSIONS This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal.
Collapse
Affiliation(s)
- Zhiwei Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Di Siena S, Gimmelli R, Nori SL, Barbagallo F, Campolo F, Dolci S, Rossi P, Venneri MA, Giannetta E, Gianfrilli D, Feigenbaum L, Lenzi A, Naro F, Cianflone E, Mancuso T, Torella D, Isidori AM, Pellegrini M. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis 2016; 7:e2317. [PMID: 27468693 PMCID: PMC4973348 DOI: 10.1038/cddis.2016.205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival.
Collapse
Affiliation(s)
- S Di Siena
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - R Gimmelli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - S L Nori
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - F Barbagallo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - F Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - S Dolci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - P Rossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - M A Venneri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - E Giannetta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - D Gianfrilli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - L Feigenbaum
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer research, Frederick, MD, USA
| | - A Lenzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - F Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - E Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - T Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - D Torella
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - M Pellegrini
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| |
Collapse
|
31
|
Mei XX, Wang J, Wu J. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl 2016; 17:347-54. [PMID: 25657085 PMCID: PMC4430931 DOI: 10.4103/1008-682x.148080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs), the stem cells responsible for male fertility, are one of a small number of cells with the abilities of both self-renewal and generation of large numbers of haploid cells. Technology improvements, most importantly, transplantation assays and in vitro culture systems have greatly expanded our understanding of SSC self-renewal and differentiation. Many important molecules crucial for the balance between self-renewal and differentiation have been recently identified although the exact mechanism(s) remain largely undefined. In this review, we give a brief introduction to SSCs, and then focus on extrinsic and intrinsic factors controlling SSCs self-renewal and differentiation.
Collapse
Affiliation(s)
| | | | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio X Institutes, Shanghai Jiao Tong University, Shanghai 200240; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Vigueras-Villaseñor RM, Cortés-Trujillo L, Chávez-Saldaña M, Vázquez FG, Carrasco-Daza D, Cuevas-Alpuche O, Rojas-Castañeda JC. Analysis of POU5F1, c-Kit, PLAP, AP2γ and SALL4 in gonocytes of patients with cryptorchidism. Acta Histochem 2015; 117:752-61. [PMID: 26315991 DOI: 10.1016/j.acthis.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Cryptorchidism is a risk factor for the development of testicular germ cell tumors (TGCTs). The most common type of TGCT in cryptorchidism is seminoma. The intratubular germ cell neoplasia unclassified (ITGCNU) is a histological pattern preceding the development of seminomas and non-seminomas. It was suggested that in patients with cryptorchidism, the gonocytes remained undifferentiated with pluripotent abilities expressing proteins like POU domain class 5 transcription factor 1 (POU5F1), tyrosine kinase receptor c-Kit, placental-like alkaline phosphatase (PLAP), the transcription factor AP2γ and sal-like protein 4 (SALL4) that confer to the gonocytes this ability and therefore make them susceptible to develop ITGCNU. The aim of the present study was to determine if the gonocytes of patients with cryptorchidism express POU5F1, c-Kit, PLAP, AP2γ and SALL4 proteins after their differentiation period. Based on this, we evaluated samples of testicular tissue from newborns to 16-year old subjects with or without cryptorchidism in search of POU5F1, c-Kit, PLAP, AP2γ and SALL4 using immunocytochemical method, the results of which were validated by RT-PCR. The results showed that control subjects witnessed a down-regulation in the expression of these five proteins in the first year of life, which eventually disappeared. On the other hand, it was determined that 21.6% (8/37) of the patients with cryptorchidism continued to express, at least, one of the proteins analyzed in this study after the second year of life. And only 5.4% (2/37) of the patients were positive to the five markers. These data sustain the proposed hypothesis that in cryptorchid patients, ITGCNU arises from gonocytes that fail in their differentiation process to spermatogonia with conservation of the proteins (POU5F1, c-Kit, PLAP, AP2γ and SALL4) that maintain pluripotency and undifferentiated characteristics and which are responsible for making the gonocytes susceptible to malignancy. However, we cannot guarantee that these patients present neoplastic transformation.
Collapse
|
33
|
Gonadal development and germ cell tumors in mouse and humans. Semin Cell Dev Biol 2015; 45:114-23. [DOI: 10.1016/j.semcdb.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
|
34
|
Tassinari V, Campolo F, Cesarini V, Todaro F, Dolci S, Rossi P. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. Cell Death Dis 2015; 6:e1688. [PMID: 25766327 PMCID: PMC4385934 DOI: 10.1038/cddis.2015.56] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/20/2015] [Accepted: 02/03/2015] [Indexed: 01/04/2023]
Abstract
Both fibroblast growth factor 9 (Fgf9) and Kit Ligand (Kl) signal through tyrosine kinase receptors, yet they exert opposite effects on meiotic differentiation in postnatal spermatogonia, Fgf9 acting as a meiosis-inhibiting substance and Kl acting as a promoter of the differentiation process. To understand the molecular mechanisms that might underlie this difference, we tried to dissect the intracellular signaling elicited by these two growth factors. We found that both Fgf9 and Kl stimulate Erk1/2 activation in Kit+ (differentiating) spermatogonia, even though with different time courses, whereas Kl, but not Fgf9, elicits activation of the Pi3k-Akt pathway. Sustained Erk1/2 activity promoted by Fgf9 is required for induction of the autocrine Cripto-Nodal-Smad2/3 signaling loop in these cells. Nodal signaling, in turn, is essential to mediate Fgf9 suppression of the meiotic program, including inhibition of Stra8 and Scp3 expression and induction of the meiotic gatekeeper Nanos2. On the contrary, sustained activation of the Pi3k-Akt pathway is required for the induction of Stra8 expression elicited by Kl and retinoic acid. Moreover, we found that Kl treatment impairs Nodal mRNA expression and Fgf9-mediated Nanos2 induction, reinforcing the antagonistic effect of these two growth factors on the meiotic fate of male germ cells.
Collapse
Affiliation(s)
- V Tassinari
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - F Campolo
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - V Cesarini
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - F Todaro
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - S Dolci
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - P Rossi
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
35
|
Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol Reprod Dev 2014; 81:1064-79. [PMID: 25359157 DOI: 10.1002/mrd.22430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
36
|
Sahare M, Otomo A, Komatsu K, Minami N, Yamada M, Imai H. The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod Med Biol 2014; 14:17-25. [PMID: 29259399 DOI: 10.1007/s12522-014-0189-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022] Open
Abstract
Purpose Gonocytes are primitive male germ cells residing in the neonatal testes and are unipotent in nature, but also have pluripotent stem cell ability in mice under appropriate culture conditions. This study was performed to elucidate the molecular mechanisms of self-renewal and survival of cultured bovine gonocytes. Methods Gonocytes were isolated from neonatal bull calves and were cultured in DMEM/F12 supplemented with 15 % knock-out serum replacement (KSR) and glial cell-derived neurotrophic factor (GDNF). Cells were analyzed six days after culturing for cell-signaling molecular markers. Results Colony formation was observed 3-4 days after being cultured. Addition of GDNF enhanced mitogen-activated protein kinase 1/2 (MAPK1/2) phosphorylation and activated the MAPK signaling pathway. Inhibition of MAPK signaling reduced cell proliferation and abolished colony formation. However, inhibition of phosphoinositide 3-kinase-AKT (PI3K-AKT) signaling, a dominant pathway for self-renewal of mouse germ cells, did not show any effects on cultured bovine gonocytes. Expression of cell cycle-related regulators cyclin D2 and cyclin-dependent kinase 2 (CDK2) was downregulated with inhibition of MAPK signaling. Conclusions These results indicate activation of MAPK plays a critical role in self-renewal and survival of bovine gonocytes via cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mahesh Sahare
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Ayagi Otomo
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Kana Komatsu
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture Kyoto University 606-8502 Kyoto Japan
| |
Collapse
|
37
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van den Driesche S, Sharpe RM, Saunders PT, Mitchell RT. Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: A role for miRNAs? Semin Cell Dev Biol 2014; 29:76-83. [DOI: 10.1016/j.semcdb.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
|
39
|
Grimaldi P, Di Giacomo D, Geremia R. The endocannabinoid system and spermatogenesis. Front Endocrinol (Lausanne) 2013; 4:192. [PMID: 24379805 PMCID: PMC3864102 DOI: 10.3389/fendo.2013.00192] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/29/2013] [Indexed: 12/13/2022] Open
Abstract
Spermatogenesis is a complex process in which male germ cells undergo a mitotic phase followed by meiosis and by a morphogenetic process to form mature spermatozoa. Spermatogenesis is under the control of gonadotropins, steroid hormones and it is modulated by a complex network of autocrine and paracrine factors. These modulators ensure the correct progression of germ cell differentiation to form mature spermatozoa. Recently, it has been pointed out the relevance of endocannabinoids as critical modulators of male reproduction. Endocannabinoids are natural lipids able to bind to cannabinoid receptors and whose levels are regulated by specific biosynthetic and degradative enzymes. Together with their receptors and metabolic enzymes, they form the "endocannabinoid system" (ECS). In male reproductive tracts, they affect Sertoli cell activities, Leydig cell proliferation, germ cell differentiation, sperm motility, capacitation, and acrosome reaction. The ECS interferes with the pituitary-gonadal axis, and an intricate crosstalk between ECS and steroid hormones has been highlighted. This mini-review will focus on the involvement of the ECS in the control of spermatogenesis and on the interaction between ECS and steroid hormones.
Collapse
Affiliation(s)
- Paola Grimaldi
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: Paola Grimaldi, Section of Anatomy, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy e-mail:
| | - Daniele Di Giacomo
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Raffaele Geremia
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
40
|
Misiakiewicz K, Kolasa A, Kondarewicz A, Marchlewicz M, Wiszniewska B. Expression of the c-Kit receptor in germ cells of the seminiferous epithelium in rats with hormonal imbalance. Reprod Biol 2013; 13:333-40. [DOI: 10.1016/j.repbio.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022]
|
41
|
Rossi P, Dolci S. Paracrine mechanisms involved in the control of early stages of Mammalian spermatogenesis. Front Endocrinol (Lausanne) 2013; 4:181. [PMID: 24324457 PMCID: PMC3840353 DOI: 10.3389/fendo.2013.00181] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 01/08/2023] Open
Abstract
Within the testis, Sertoli-cell is the primary target of pituitary FSH. Several growth factors have been described to be produced specifically by Sertoli cells and modulate male germ cell development through paracrine mechanisms. Some have been shown to act directly on spermatogonia such as GDNF, which acts on self-renewal of spermatogonial stem cells (SSCs) while inhibiting their differentiation; BMP4, which has both a proliferative and differentiative effect on these cells, and KIT ligand (KL), which stimulates the KIT tyrosine-kinase receptor expressed by differentiating spermatogonia (but not by SSCs). KL not only controls the proliferative cycles of KIT-positive spermatogonia, but it also stimulates the expression of genes that are specific of the early phases of meiosis, whereas the expression of typical spermatogonial markers is down-regulated. On the contrary, FGF9 acts as a meiotic inhibiting substance both in fetal gonocytes and in post-natal spermatogonia through the induction of the RNA-binding protein NANOS2. Vitamin A, which is metabolized to Retinoic Acid in Sertoli cells, controls both SSCs differentiation through KIT induction and NANOS2 inhibition, and meiotic entry of differentiating spermatogonia through STRA8 upregulation.
Collapse
Affiliation(s)
- Pellegrino Rossi
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
- *Correspondence: Pellegrino Rossi, Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Via Montpellier 1, Rome 00133, Italy e-mail:
| | - Susanna Dolci
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
42
|
Chi Y, Jin Y, He Z, Yu T. Detection of cytokines in supernatant from hematopoietic stem/progenitor cells co-cultured with mesenchymal stem cells and endothelial progenitor cells. Cell Tissue Bank 2013; 15:397-402. [PMID: 24146301 DOI: 10.1007/s10561-013-9404-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/12/2013] [Indexed: 02/03/2023]
Abstract
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.
Collapse
Affiliation(s)
- Yue Chi
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, 130041, China
| | | | | | | |
Collapse
|
43
|
Shen FH, Jin J, Li J, Wang Y, Zhu SH, Lu YJ, Ou TM, Huang ZS, Huang M, Huang ZY. The G-quadruplex ligand, SYUIQ-FM05, targets proto-oncogene c-kit transcription and induces apoptosis in K562 cells. PHARMACEUTICAL BIOLOGY 2013; 51:447-454. [PMID: 23363047 DOI: 10.3109/13880209.2012.738424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT N'-(7-Fluoro-5-N-methyl-10H-indolo[3,2-b]quinolin-5-ium)-N,N-dimethylpropane-1,3-diamine iodide (SYUIQ-FM05) is a semi-synthetic derivative of cryptolepine which is from Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaeae). This ligand inhibits telomerase activity by stabilizing the G-quadruplex structure and induces growth arrest in cancer cells. OBJECTIVE The anticancer activity of SYUIQ-FM05 via inhibiting c-kit transcription was investigated in leukemic cells. MATERIALS AND METHODS The cytotoxicity of SYUIQ-FM05 in K562 cells was evaluated using a cell viability assay and flow cytometry (FCM) at 0.4, 2.0, 10.0 and 20.0 nM. Under the same concentrations of SYUIQ-FM05 or 100 nM imatinib mesylate (IM), quantitative polymerase chain reaction (Q-PCR) investigated transcription of c-kit and bcl-2, and western blotting analyzed the expression levels of c-Kit, total mitogen-activated protein kinase kinases (MEKs), phospho-MEK (p-MEK), total extracellular regulated protein kinases (ERKs), phospho-ERK (p-ERK), Bcl-2 and Bax. RESULTS SYUIQ-FM05 inhibited cellular growth with an IC(50) of 10.83 ± 0.05 nM in K562 cells. c-Kit transcription was suppressed 2.69-, 4.39-, 7.71- and 10.52-fold at 0.4, 2.0, 10.0 and 20.0 nM SYUIQ-FM05, respectively, which produced proportional loss of total c-Kit protein except IM. Both SYUIQ-FM05 and IM downregulated p-MEK and p-ERK. Furthermore, bcl-2 transcription was suppressed 1.58- and 1.86-fold at 10.0 and 20.0 nM SYUIQ-FM05, respectively, but 0.4 and 2.0 nM SYUIQ-FM05 had no effect. A decrease in Bcl-2 and an increase in Bax appeared in these treated cells. DISCUSSION AND CONCLUSION These findings demonstrate that SYUIQ-FM05 could induce apoptosis in a leukemic cell line through inhibiting c-kit transcription, which supports the anticancer potency of SYUIQ-FM05 in c-Kit-positive leukemic cells.
Collapse
Affiliation(s)
- Fei-Hai Shen
- Center of Preclinical Screening and Evaluation on New Drug, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rengaraj D, Lee BR, Choi JW, Lee SI, Seo HW, Kim TH, Choi HJ, Song G, Han JY. Gene pathways and cell cycle-related genes in cultured avian primordial germ cells. Poult Sci 2013; 91:3167-77. [PMID: 23155027 DOI: 10.3382/ps.2012-02279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Primordial germ cells (PGC) from early embryos are applicable to various kinds of research, including the production of transgenic animals. Primordial germ cells eventually migrate and differentiate into germ cells in the gonads, where they settle and rapidly proliferate. However, the proliferation rate of PGC is low in early embryos, and there are many significant pathways that mediate PGC activity. Therefore, in vitro culture of PGC from early embryos with efficient growth factors has been necessary. Recently, we cultured chicken PGC from embryonic d 2.5 with basic fibroblast growth factor and characterized the PGC through analysis of cell morphology, survival, proliferation, and apoptosis. However, large-scale analyses of genes expressed in cultured PGC and the genes involved in associated pathways are limited. The objective of the present investigation was to identify the signaling and metabolic pathways of expressed genes by microarray comparison between PGC and their somatic counterpart, chicken embryonic fibroblasts (CEF). We identified 795 genes that were expressed more predominantly in PGC and 824 genes that were expressed more predominantly in CEF. Among the predominant genes in PGC, 201 were differentially identified in 106 pathways. Among the predominant genes in CEF, 242 were differentially identified in 99 pathways. To further validate the genes involved in at least one candidate pathway, those involved in the cell cycle (12 predominant genes in PGC and 8 predominant genes in CEF) were examined by real-time PCR. To the best of our knowledge, this study is the first to investigate signaling and metabolic pathways in cultured PGC.
Collapse
Affiliation(s)
- D Rengaraj
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Anchoring ethinylestradiol induced gene expression changes with testicular morphology and reproductive function in the medaka. PLoS One 2012; 7:e52479. [PMID: 23300682 PMCID: PMC3530452 DOI: 10.1371/journal.pone.0052479] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/19/2012] [Indexed: 01/03/2023] Open
Abstract
Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.
Collapse
|
46
|
Kolasa A, Misiakiewicz K, Marchlewicz M, Wiszniewska B. The generation of spermatogonial stem cells and spermatogonia in mammals. Reprod Biol 2012; 12:5-23. [DOI: 10.1016/s1642-431x(12)60074-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Reddy N, Kasukurthi KB, Mahla RS, Pawar RM, Goel S. Expression of vascular endothelial growth factor (VEGF) transcript and protein in the testis of several vertebrates, including endangered species. Theriogenology 2011; 77:608-14. [PMID: 22056013 DOI: 10.1016/j.theriogenology.2011.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/10/2011] [Accepted: 08/30/2011] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is known to influence the testis function. To establish the role of VEGF in the testis of a variety of species, we analyzed the expression of VEGF transcript using human gene-specific primers by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis in the testes of 18 vertebrates, including a few endangered species. An amplicon of 566 bp representing VEGF(165) was identified in testis of all species in this study. Sequence analysis of these amplicons revealed 84 to 96% homology to available human VEGF sequence and to the VEGF sequences of other species in GenBank. Immunohistochemical analysis revealed expression of VEGF protein, primarily in Sertoli and Leydig cells and occasionally in the germ cells of the testis sections. It can be concluded from this study that expression of VEGF transcript is conserved in the testis of several vertebrates and may have a role in the process of spermatogenesis.
Collapse
Affiliation(s)
- Niranjan Reddy
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | |
Collapse
|
48
|
Merkwitz C, Lochhead P, Tsikolia N, Koch D, Sygnecka K, Sakurai M, Spanel-Borowski K, Ricken AM. Expression of KIT in the ovary, and the role of somatic precursor cells. ACTA ACUST UNITED AC 2011; 46:131-84. [DOI: 10.1016/j.proghi.2011.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
50
|
Zhang L, Tang J, Haines CJ, Feng HL, Lai L, Teng X, Han Y. c-kit and its related genes in spermatogonial differentiation. SPERMATOGENESIS 2011; 1:186-194. [PMID: 22319667 DOI: 10.4161/spmg.1.3.17760] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/13/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022]
Abstract
Spermatogenesis is the process of production of male gametes from SSCs. The SSCs are the stem cells that differentiate into male gametes in the testis. in the mean time, the Spg are remarkable for their potential multiple trans-differentiations, which make them greatly invaluable for clinical applications. However, the molecular mechanism controlling differentiation of the Spg is still not clear. Among the discovered spermatogenesis-related genes, c-kit seems to be expressed first by the Spgs thus may play a central role in switching on the differentiation process. Expression of Kit and the activation of the Kit/Kitl pathway coincide with the start of differentiation of Spgs. Several genes have been discovered to be related to the Kit/Kitl pathway. in this review, we have summarized the recent discoveries of c-kit and the Kit/Kitl pathway-related genes in the spermatogenic cells during different stages of spermatogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Obstetrics and Gynaecology; Prince of Wales Hospital; The Chinese University of Hong Kong; Hong Kong
| | | | | | | | | | | | | |
Collapse
|