1
|
Jabłońska K, Kmiecik A, Nowińska K, Piotrowska A, Suchański J, Ratajczak-Wielgomas K, Partyńska A, Romanowicz H, Smolarz B, Matkowski R, Dzięgiel P. Association of Selected STAT Inhibitors with Prolactin-Induced Protein (PIP) in Breast Cancer. Int J Mol Sci 2025; 26:1416. [PMID: 40003884 PMCID: PMC11855718 DOI: 10.3390/ijms26041416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and a higher level of prolactin-induced protein (PIP) is associated with better responses to adjuvant chemotherapy. The signal transducer and activator of transcription 5 (STAT5) is a potential regulator of the PIP gene. Prolactin (PRL) and its receptor (PRLR) activate JAK2/STAT5 signaling in BC, which is modulated by inhibitors like suppressors of cytokine signaling (SOCS) proteins and protein inhibitors of activated STAT (PIAS). Using real-time PCR and immunohistochemistry, we studied the relationship between PIP and STAT5 inhibitors in BC. Our findings indicated that PIP and STAT5 levels decrease with a higher tumor grade, size, and tumor/nodes/metastasis (TNM) clinical stage, while nuclear PIAS3 levels increase with tumor progression. Both STAT inhibitors are linked to estrogen and progesterone receptor status. Notably, STAT5 correlates positively with PIP, SOCS3, and PIAS3, suggesting that it may be a favorable prognostic factor. Among the STAT inhibitors, only nuclear PIAS3 expression correlates with PIP. In vitro studies indicated that silencing PIAS3 in T47D cells does not affect PIP expression or sensitivity to doxorubicin (DOX), but T47D control cells with a higher PIP expression are more sensitive to DOX, highlighting the need for further investigation into these mechanisms.
Collapse
Affiliation(s)
- Karolina Jabłońska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Katarzyna Nowińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Aleksandra Partyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Beata Smolarz
- Department of Pathology, Polish Mother Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (H.R.); (B.S.)
| | - Rafał Matkowski
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (K.N.); (A.P.); (K.R.-W.); (A.P.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| |
Collapse
|
2
|
Xu L, Ji J, Wang L, Pan J, Xiao M, Zhang C, Gan Y, Xie G, Tan M, Wang X, Wen C, Fan Y, Chin YE. LIF Promotes Sec15b-Mediated STAT3 Exosome Secretion to Maintain Stem Cell Pluripotency in Mouse Embryonic Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407971. [PMID: 39475099 DOI: 10.1002/advs.202407971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Indexed: 12/28/2024]
Abstract
LIF maintains self-renewal growth in mouse embryonic stem cells (mESC) by activating STAT3, which translocates into nucleus for pluripotent gene induction. However, the ERK signaling pathway activated by LIF at large counteract with pluripotent gene induction during self-renewal growth. Here, it is reported that in mESC STAT3 undergoes multivesicular endosomes (MVEs) translocation and subsequent secretion, LIF-activated STAT3 is acetylated on K177/180 and phosphorylated on Y293 residues within the N-terminal coiled-coil domain, which is responsible for the interaction between STAT3 and Secl5b, an exocyst complex component 6B (EXOC6B). STAT3 translocation into MVEs resulted in the downregulation of T202/Y204-ERK1/2 phosphorylation and up-regulation of S9-GSK3β phosphorylation for maintaining mESC self-renewal growth. STAT3 with K177R/K180R or Y293F substitution fails to execute MVEs translocation and Secl5b-dependent secretion. Mice expressing K177RK180R substitution (STAT3mut/mut) are partially embryonic lethal. In STAT3mut/mut embryos, gene expressions related to hematological system function changed significantly and those living ones carry a series of abnormalities in the hematopoietic system. Furthermore, mice with Secl5b knockout exhibit embryonic lethality. Thus, Secl5b mediated STAT3 MVEs translocation regulates the balance of ERK and GSK3β signaling pathways and maintain mESC self-renewal growth, which is involved in regulating the stability of hematopoietic system.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Lingbo Wang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jieli Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingzhe Xiao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenxi Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Gan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingdian Tan
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Marques-Mourlet C, Di Iorio R, Fairfield H, Reagan MR. Obesity and myeloma: Clinical and mechanistic contributions to disease progression. Front Endocrinol (Lausanne) 2023; 14:1118691. [PMID: 36909335 PMCID: PMC9996186 DOI: 10.3389/fendo.2023.1118691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity and obesogenic behaviors are positively associated with both monoclonal gammopathy of unknown significance (MGUS) and multiple myeloma (MM). As the only known modifiable risk factor, this association has emerged as a new potential target for MM prevention, but little is known about the mechanistic relationship of body weight with MM progression. Here we summarize epidemiological correlations between weight, body composition, and the various stages of myeloma disease progression and treatments, as well as the current understanding of the molecular contributions of obesity-induced changes in myeloma cell phenotype and signaling. Finally, we outline groundwork for the future characterization of the relationship between body weight patterns, the bone marrow microenvironment, and MM pathogenesis in animal models, which have the potential to impact our understanding of disease pathogenesis and inform MM prevention messages.
Collapse
Affiliation(s)
- Constance Marques-Mourlet
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Strasbourg, Pharmacology Department, Strasbourg, France
| | - Reagan Di Iorio
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of New England, College of Osteopathic Medicine, Biddeford, ME, United States
| | - Heather Fairfield
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Padmanabhan RA, Zyju DP, Subramaniam AG, Nautiyal J, Laloraya M. Son of sevenless 1 (SOS1), the RasGEF, interacts with ERα and STAT3 during embryo implantation. J Mol Endocrinol 2023; 70:e220089. [PMID: 36103132 DOI: 10.1530/jme-22-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
Estrogen accounts for several biological processes in the body; embryo implantation and pregnancy being one of the vital events. This manuscript aims to unearth the nuclear role of Son of sevenless1 (SOS1), its interaction with estrogen receptor alpha (ERα), and signal transducer and activator of transcription 3 (STAT3) in the uterine nucleus during embryo implantation. SOS1, a critical cytoplasmic linker between receptor tyrosine kinase and rat sarcoma virus signaling, translocates into the nucleus via its bipartite nuclear localization signal (NLS) during the 'window of implantation' in pregnant mice. SOS1 associates with chromatin, interacts with histones, and shows intrinsic histone acetyltransferase (HAT) activity specifically acetylating lysine 16 (K16) residue of histone H4. SOS1 is a coactivator of STAT3 and a co-repressor of ERα. SOS1 creates a partial mesenchymal-epithelial transition by acting as a transcriptional modulator. Finally, our phylogenetic tree reveals that the two bipartite NLS surface in reptiles and the second acetyl coenzymeA (CoA) (RDNGPG) important for HAT activity emerges in mammals. Thus, SOS1 has evolved into a moonlighting protein, the special class of multi-tasking proteins, by virtue of its newly identified nuclear functions in addition to its previously known cytoplasmic function.
Collapse
Affiliation(s)
- Renjini A Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Damodaranpillai P Zyju
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Anand G Subramaniam
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College, London, UK
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Ng ASN, Zhang S, Mak VCY, Zhou Y, Yuen Y, Sharma R, Lu Y, Zhuang G, Zhao W, Pang HH, Cheung LWT. AKTIP loss is enriched in ERα-positive breast cancer for tumorigenesis and confers endocrine resistance. Cell Rep 2022; 41:111821. [PMID: 36516775 PMCID: PMC9837615 DOI: 10.1016/j.celrep.2022.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent deletion of 16q12.2 is observed in luminal breast cancer, yet the causal genomic alterations in this region are largely unknown. In this study, we identify that loss of AKTIP, which is located on 16q12.2, drives tumorigenesis of estrogen receptor alpha (ERα)-positive, but not ERα-negative, breast cancer cells and is associated with poor prognosis of patients with ERα-positive breast cancer. Intriguingly, AKTIP-depleted tumors have increased ERα protein level and activity. Cullin-associated and neddylation-dissociated protein 1 (CAND1), which regulates the cullin-RING E3 ubiquitin ligases, protects ERα from cullin 2-dependent proteasomal degradation. Apart from ERα signaling, AKTIP loss triggers JAK2-STAT3 activation, which provides an alternative survival signal when ERα is inhibited. AKTIP-depleted MCF7 cells and ERα-positive patient-derived organoids are more resistant to ERα antagonists. Importantly, the resistance can be overcome by co-inhibition of JAK2/STAT3. Together, our results highlight the subtype-specific functional consequences of AKTIP loss and provide a mechanistic explanation for the enriched AKTIP copy-number loss in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Angel S N Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Yuen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core, Center for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei Zhao
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Herbert H Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Meng J, Zhao X, Jiang D, Liang C, Ji X, Dong M. Efficacy Evaluation of Inflammatory Mediators in the Treatment of Multiple Myeloma with Daratumumab. JOURNAL OF ONCOLOGY 2022; 2022:9350211. [PMID: 36065307 PMCID: PMC9440780 DOI: 10.1155/2022/9350211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aimed to investigate the regulatory ability and clinical therapeutic effect of daratumumab on inflammatory mediators in patients with multiple myeloma. Method The Multiple Myeloma Public Genetic Data Array download GSE125361 dataset was collected. The GO analysis and KEGG analysis were performed on the differential genes to elucidate the multiple myeloma cytokine-related gene pathways. Daratumumab is a CD38 monoclonal antibody used to treat multiple myeloma. Patients with newly diagnosed multiple myeloma were treated with monoclonal antibodies containing CD38, and the control group was treated with a regimen without daratumumab. The serum levels of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ were measured in the two groups before and after treatment and the therapeutic effects of the two groups were compared. Result The KEGG analysis showed that the Th17 cell differentiation, apoptosis, and cytokine-cytokine receptor interaction pathways were differentially expressed in multiple myeloma. The expression levels of serum IL-2, IL-6, IL-10, and TNF-α in patients in the daratumumab group were lower than those in the control group after chemotherapy. The overall effective rate of patients treated with daratumumab after chemotherapy was higher than that of the control group. Conclusion Daratumumab can effectively improve the levels of IL-2, IL-6, IL-10, and TNF-α in patients with multiple myeloma and improve the therapeutic effect.
Collapse
Affiliation(s)
- Jie Meng
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, China
| | - Xiaoyu Zhao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, Heilongjiang, China
| | - Duanfeng Jiang
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, China
| | - Changjiu Liang
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, China
| | - Xunxiu Ji
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, China
| | - Min Dong
- The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan, China
| |
Collapse
|
7
|
tRNA Derivatives in Multiple Myeloma: Investigation of the Potential Value of a tRNA-Derived Molecular Signature. Biomedicines 2021; 9:biomedicines9121811. [PMID: 34944627 PMCID: PMC8698603 DOI: 10.3390/biomedicines9121811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy arising from the clonal proliferation of malignant plasma cells. tRNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNAs, deriving from specific enzymatic cleavage of tRNAs. To the best of our knowledge, this is one of few studies to uncover the potential clinical significance of tRFs in MM. Total RNA was extracted from CD138+ plasma cells of MM and smoldering MM patients, and in vitro polyadenylated. First-strand cDNA synthesis was performed, priming from an oligo-dT-adaptor sequence. Next, real-time quantitative PCR (qPCR) assays were developed for the quantification of six tRFs. Biostatistical analysis was performed to assess the results and in silico analysis was conducted to predict the function of one of the tRFs. Our results showed that elevated levels of five out of six tRFs are indicators of favorable prognosis in MM, predicting prolonged overall survival (OS), while two of them constitute potential molecular biomarkers of favorable prognosis in terms of disease progression. Moreover, three tRFs could be used as surrogate prognostic biomarkers along with the R-ISS staging system to predict OS. In conclusion, tRFs show molecular biomarker utility in MM, while their mechanisms of function merit further investigation.
Collapse
|
8
|
Tsoi H, Man EPS, Chau KM, Khoo US. Targeting the IL-6/STAT3 Signalling Cascade to Reverse Tamoxifen Resistance in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13071511. [PMID: 33806019 PMCID: PMC8036560 DOI: 10.3390/cancers13071511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary This study identifies the molecular mechanisms through which BQ323636.1 can enhance IL-6 and IL-6R expression, which leads to the activation of STAT3 and the development of tamoxifen resistance in ER+ breast cancer. We demonstrated a statistically significant association of IL-6R with tamoxifen resistance; patients with high IL-6R expression had poorer survival outcome. In vitro and in vivo studies confirmed that targeting IL-6R with Tocilizumab reduced tamoxifen resistance, providing the basis for potential use for disease management Abstract Breast cancer is the most common female cancer. About 70% of breast cancer patients are estrogen receptor α (ERα) positive (ER+) with tamoxifen being the most commonly used anti-endocrine therapy. However, up to 50% of patients who receive tamoxifen suffer recurrence. We previously identified BQ323636.1 (BQ), a novel splice variant of NCOR2, can robustly predict tamoxifen resistance in ER+ primary breast cancer. Here we show that BQ can enhance IL-6/STAT3 signalling. We demonstrated that through interfering with NCOR2 suppressive activity, BQ favours the binding of ER to IL-6 promoter and the binding of NF-ĸB to IL-6 receptor (IL-6R) promoter, leading to the up-regulation of both IL-6 and IL-6R and thus the activation of STAT3. Knockdown of IL-6R could compromise tamoxifen resistance mediated by BQ. Furthermore, Tocilizumab (TCZ), an antibody that binds to IL-6R, could effectively reverse tamoxifen resistance both in vitro and in vivo. Analysis of clinical breast cancer samples confirmed that IL-6R expression was significantly associated with BQ expression and tamoxifen resistance in primary breast cancer, with high IL-6R expression correlating with poorer survival. Multivariate Cox-regression analysis confirmed that high IL-6R expression remained significantly associated with poor overall as well as disease-specific survival in ER+ breast cancer.
Collapse
|
9
|
Wiegertjes R, van de Loo FAJ, Blaney Davidson EN. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology (Oxford) 2021; 59:2681-2694. [PMID: 32691066 PMCID: PMC7516110 DOI: 10.1093/rheumatology/keaa248] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Joint inflammation is present in the majority of OA patients and pro-inflammatory mediators, such as IL-6, are actively involved in disease progression. Increased levels of IL-6 in serum or synovial fluid from OA patients correlate with disease incidence and severity, with IL-6 playing a pivotal role in the development of cartilage pathology, e.g. via induction of matrix-degrading enzymes. However, IL-6 also increases expression of anti-catabolic factors, suggesting a protective role. Until now, this dual role of IL-6 is incompletely understood and may be caused by differential effects of IL-6 classic vs trans-signalling. Here, we review current evidence regarding the role of IL-6 classic- and trans-signalling in local joint pathology of cartilage, synovium and bone. Furthermore, we discuss targeting of IL-6 in experimental OA models and provide future perspective for OA treatment by evaluating currently available IL-6 targeting strategies.
Collapse
Affiliation(s)
- Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esmeralda N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2019; 381:114710. [PMID: 31415774 DOI: 10.1016/j.taap.2019.114710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Cardiovascular diseases (CVD) are more frequent among postmenopausal women due to the decline of estrogen concentration in plasma. However, the role of the vascular modulator effect of estrogen is controversial, since it occurs both in physiological and pathological conditions, increasing or reducing vascular reactivity. As mercury is widely associated with the development of CVD, we investigated putative hazardous effects on the mechanisms that modulate vascular reactivity in aortic rings of female Wistar rats promoted by acute mercury exposure. Mercury increased vascular reactivity and oxidative stress possibly due to NADPH oxidase participation, increased production of cyclooxygenase-2 (COX-2) and thromboxane A2 (TXA2) formation. The metal also induced endothelial denudation in the aorta by reducing the bioavailability of nitric oxide (NO) and enhancing the activity of the PI3K/Akt signaling pathway. Mercury exposure also induced nuclear estrogen receptors (ERα, ERβ) to act as vasoconstrictors. Our findings suggest that mercury might increase the chances of developing cardiovascular diseases in females and should be considered an important environmental risk factor.
Collapse
Affiliation(s)
- Evellyn Rodrigues Cordeiro
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402, Brazil.
| |
Collapse
|
11
|
Hsieh RW, Go RS, Abeykoon JP, Kapoor P, Kumar SK, Gertz MA, Buadi FK, Leung N, Gonsalves WI, Kourelis TV, Warsame RM, Dispenzieri A, Lacy MQ, Kyle RA, Rajkumar SV, Paludo J. Characteristics of long‐term survivors with multiple myeloma: A National Cancer Data Base analysis. Cancer 2019; 125:3574-3581. [DOI: 10.1002/cncr.32357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/10/2019] [Accepted: 05/26/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Ronan W. Hsieh
- Department of Medicine Albert Einstein Medical Center Philadelphia Pennsylvania
| | - Ronald S. Go
- Division of Hematology Mayo Clinic Rochester Minnesota
| | | | | | | | | | | | - Nelson Leung
- Division of Hematology Mayo Clinic Rochester Minnesota
| | | | | | | | | | | | | | | | - Jonas Paludo
- Division of Hematology Mayo Clinic Rochester Minnesota
| |
Collapse
|
12
|
Chong PSY, Chng WJ, de Mel S. STAT3: A Promising Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11050731. [PMID: 31130718 PMCID: PMC6562880 DOI: 10.3390/cancers11050731] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy for which novel treatment options are required. Signal Transducer and Activator of Transcription 3 (STAT3) overexpression in MM appears to be mediated by a variety of factors including interleukin-6 signaling and downregulation of Src homology phosphatase-1 (SHP-1). STAT3 overexpression in MM is associated with an adverse prognosis and may play a role in microenvironment-dependent treatment resistance. In addition to its pro-proliferative role, STAT3 upregulates anti-apoptotic proteins and leads to microRNA dysregulation in MM. Phosphatase of regenerating liver 3 (PRL-3) is an oncogenic phosphatase which is upregulated by STAT3. PRL-3 itself promotes STAT-3 phosphorylation resulting in a positive feedback loop. PRL-3 is overexpressed in a subset of MM patients and may cooperate with STAT3 to promote survival of MM cells. Indirectly targeting STAT3 via JAK (janus associated kinase) inhibition has shown promise in early clinical trials. Specific inhibitors of STAT3 showed in vitro efficacy but have failed in clinical trials while several STAT3 inhibitors derived from herbs have been shown to induce apoptosis of MM cells in vitro. Optimising the pharmacokinetic profiles of novel STAT3 inhibitors and identifying how best to combine these agents with existing anti-myeloma therapy are key questions to be addressed in future clinical trials.
Collapse
Affiliation(s)
- Phyllis S Y Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore.
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore.
| |
Collapse
|
13
|
Endo S, Nishimura N, Kawano Y, Ueno N, Ueno S, Tatetsu H, Komohara Y, Takeya M, Hata H, Mitsuya H, Masao M, Okuno Y. MUC1/KL-6 expression confers an aggressive phenotype upon myeloma cells. Biochem Biophys Res Commun 2018; 507:246-252. [PMID: 30420285 DOI: 10.1016/j.bbrc.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
The sialic glycoprotein, MUC1, is known to be involved in the pathogenesis of various types of cancers. KL-6 is one of the surface antigens of MUC1 and also a marker of interstitial pneumonitis. A fraction of patients with myeloma (3.9%) have elevated serum KL-6 levels without any evidence of interstitial pneumonitis and their myeloma cells have high MUC1 expression. We established a myeloma cell line designated EMM1 from a patient with multiple myeloma accompanied with elevated serum KL-6. EMM1 cells expressed high levels of MUC1 compared with other myeloma cell lines. Knockdown of MUC1 in EMM1 cells induced cell cycle arrest during S phase and apoptosis, suggesting that the MUC1 expression is involved in accelerated growth of EMM1 cells. RNA-seq analysis suggests that MUC1 expression activates k-ras and TNFα-induced NFκB pathways in EMM1 cells. We injected EMM1 cells subcutaneously into Rag2-/-Jak3-/- Balb/c mice to establish a mouse xenograft model. These mice had aggressive tumor growth that was accompanied by high serum KL-6 levels. In addition, MUC1 knockdown in EMM1 cells led to inhibited tumor growth. These findings demonstrate that MUC1 serves as a potential target for developing drugs for treatment of patients with KL-6+ myeloma, and EMM1 cells and EMM1-engrafted mice are useful tools for the development of such novel agents.
Collapse
Affiliation(s)
- Shinya Endo
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nao Nishimura
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yawara Kawano
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Niina Ueno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shikiko Ueno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiro Tatetsu
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiroyuki Hata
- Division of Informative Clinical Sciences, Faculty of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Matsuoka Masao
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Okuno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
14
|
Tang H, Bai Y, Shen W, Wei Y, Xu M, Zhou X, Zhao J. Clinical significance of combined detection of interleukin-6 and tumour markers in lung cancer. Autoimmunity 2018; 51:191-198. [PMID: 29869537 DOI: 10.1080/08916934.2018.1477133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hexiao Tang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wulin Shen
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Abstract
Svoronos and colleagues observed estrogen receptor alpha-positive cells in the tumor stroma of patients with ovarian cancer that appeared to be independent of both the tumor's estrogen receptor status and tumor type. These cells were identified as immunosuppressive myeloid-derived suppressor cells (MDSC) and could be targeted by antiestrogen therapy, thereby leading to the hypothesis that endocrine therapy when combined with immunotherapy may provide a potential therapeutic benefit by helping to reduce immunosuppressive MDSCs. Cancer Discov; 7(1); 17-9. ©2017 AACRSee related article by Svoronos et al., 72.
Collapse
Affiliation(s)
- Thomas Welte
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
16
|
Hetzler KL, Hardee JP, LaVoie HA, Murphy EA, Carson JA. Ovarian function's role during cancer cachexia progression in the female mouse. Am J Physiol Endocrinol Metab 2017; 312:E447-E459. [PMID: 28292759 PMCID: PMC5451525 DOI: 10.1152/ajpendo.00294.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/14/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The ApcMin/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female ApcMin/+ mouse. Our study of ovarian reproductive function in female ApcMin/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female ApcMin/+ mice.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Holly A LaVoie
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina; and
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina; and
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, South Carolina;
- Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
17
|
Mostaghel EA, Martin PS, Mongovin S, Frayo S, Zhang A, Edlefsen KL, Press OW, Gopal AK. Androgen receptor expression in mantle cell lymphoma: Potential novel therapeutic implications. Exp Hematol 2017; 49:34-38.e2. [PMID: 28115200 PMCID: PMC5393923 DOI: 10.1016/j.exphem.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Mantle cell lymphoma (MCL) affects approximately 4500 patients/year in the US and demonstrates a male to female ratio of approximately 4:1. While the pathobiology underlying this ratio is unknown, the hematopoietic system is characterized by sex-related differences in androgen receptor (AR) expression, leading us to hypothesize that the male-biased incidence of MCL may reflect sex-related differences in AR signaling during MCL lymphomagenesis. To explore the AR axis in MCL, we evaluated AR expression in MCL cell lines and human tumors, and tested the impact of androgen pathway inhibition on MCL proliferation. AR transcript levels ranged up to ~26 fold higher in MCL lines vs non-MCL NHL lines (p = 0.006) and were correlated with expression of the canonical AR-regulated gene, prostate-specific antigen (PSA; r = 0.715, p = 0.001), consistent with functional AR activity. Patient-derived MCL samples demonstrated a range of AR expression. Treatment of four different MCL lines with the potent AR antagonist enzalutamide demonstrated suppression of proliferation across both male and female-derived cell lines. These data suggest androgen-axis blockade may represent a novel therapeutic modality in MCL. This novel treatment approach is currently under investigation in a phase II clinical trial of AR inhibition in patients with relapsed/refractory MCL.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paul S Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephen Mongovin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shani Frayo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ailin Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kerstin L Edlefsen
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Oliver W Press
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ajay K Gopal
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Ploeger C, Waldburger N, Fraas A, Goeppert B, Pusch S, Breuhahn K, Wang XW, Schirmacher P, Roessler S. Chromosome 8p tumor suppressor genes SH2D4A and SORBS3 cooperate to inhibit interleukin-6 signaling in hepatocellular carcinoma. Hepatology 2016; 64:828-42. [PMID: 27311882 PMCID: PMC5098049 DOI: 10.1002/hep.28684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Several chronic inflammatory liver diseases, e.g., chronic hepatitis B or C viral infection and steatohepatitis, have been shown to predispose to the development of hepatocellular carcinoma (HCC). In patients with chronic liver disease, interleukin-6 (IL-6) serum levels are elevated and increase even more when HCC develops. However, the impact and regulatory mechanisms of IL-6 signaling during hepatocarcinogenesis are still poorly defined. Here, we show that gene expression profiles of patients with chromosome 8p loss correlate with increased IL-6 signaling. In addition, the chromosome 8p tumor suppressor genes Src homology 2 domain containing 4A (SH2D4A) and Sorbin and Src homology 3 domain containing 3 (SORBS3) together exerted greater inhibition of cell growth and clonogenicity compared to a single gene. Overexpression of SH2D4A and SORBS3 in HCC cells led to decreased IL-6 target gene expression and reduced signal transducer and activator of transcription 3 (STAT3) signaling. In situ and in vitro coimmunoprecipitation assays revealed that SH2D4A directly interacts with STAT3, thereby retaining STAT3 in the cytoplasm and inhibiting STAT3 transcriptional activity. On the other hand, SORBS3 coactivated estrogen receptor α signaling, leading indirectly to repression of STAT3 signaling. In human HCC tissues, SH2D4A was positively associated with infiltrating regulatory and cytotoxic T-cell populations, suggesting distinct immunophenotypes in HCC subgroups with chromosome 8p loss. Thus, the genetically linked tumor suppressors SH2D4A and SORBS3 functionally cooperate to inhibit STAT3 signaling in HCC. CONCLUSION The chromosome 8p tumor suppressor genes SORBS3 and SH2D4A are physically and functionally linked and provide a molecular mechanism of inhibiting STAT3-mediated IL-6 signaling in HCC cells. (Hepatology 2016;64:828-842).
Collapse
Affiliation(s)
- Carolin Ploeger
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Waldburger
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Fraas
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Breuhahn
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter Schirmacher
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Chakraborty R, Muchtar E, Kumar SK, Buadi FK, Dingli D, Dispenzieri A, Hayman SR, Hogan WJ, Kapoor P, Lacy MQ, Leung N, Gertz MA. Impact of pre-transplant bone marrow plasma cell percentage on post-transplant response and survival in newly diagnosed multiple myeloma. Leuk Lymphoma 2016; 58:308-315. [DOI: 10.1080/10428194.2016.1201572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Yang SF, Hou MF, Chen FM, Ou-Yang F, Wu YC, Chai CY, Yeh YT. Prognostic value of protein inhibitor of activated STAT3 in breast cancer patients receiving hormone therapy. BMC Cancer 2016; 16:20. [PMID: 26768588 PMCID: PMC4714466 DOI: 10.1186/s12885-016-2063-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/10/2016] [Indexed: 12/12/2022] Open
Abstract
Background Deregulated signal transducer and activator of transcription 3 (STAT3) signaling has been well documented in certain cancers. Alterations in specific negative regulators, such as protein inhibitor of activated STAT3 (PIAS3), may contribute to cancer development. Methods The expression of total PIAS3 was determined in 100 paired cancerous and non-cancerous breast tissues by immunoblotting and was statistically analyzed along with the clinicopathological characteristics and overall survival of the patients. XTT, immunoblotting, and chromatin immunoprecipitation (Chip) were used to examine the biological effect of PIAS3 in breast cancer cells. Results Hormone therapy failed to improve the overall survival in patients presenting with increased PIAS3 expression. Ectopic PIAS3 overexpression increased the proliferation and expression of cyclin D1 in estrogen receptor (ER)-positive MCF-7 and T47D cells, but decreased those in ER-negative MDA-MB-231 and SKBR3 cells. Furthermore, PIAS3 overexpression attenuated cytotoxicity of tamoxifen and increased proliferation and cyclin D1 expression in MCF-7 cells. PIAS3 also decreased the binding of itself on the cyclin D1 promoter and this decreased binding was not affected by tamoxifen. Conclusion PIAS3 may serve as a biomarker for predicting hormone therapy stratification, although it is limited to those breast cancer patients receiving hormone therapy Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2063-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheau-Fang Yang
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan.,Department of Laboratory, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan
| | - Fu Ou-Yang
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, No. 68, Zhonghua 3rd Rd, Qianjin Dist, Kaohsiung, 801, R O C, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung, R O C, 40402, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, R O C, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shiquan 1st Rd, Sanmin Dist, Kaohsiung, 807, R O C, Taiwan.
| | - Yao-Tsung Yeh
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, No.151, Jinxue Rd, Daliao Dist, Kaohsiung, 831, R O C, Taiwan.
| |
Collapse
|
21
|
Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARγ signaling. Mol Med Rep 2015; 13:1320-8. [PMID: 26647854 DOI: 10.3892/mmr.2015.4639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
The liver is crucial for systemic inflammation in cancer cachexia. Previous studies have shown that L-carnitine, as the key regulator of lipid metabolism, exerts an anti-inflammatory effect in several diseases, and ameliorates the symptoms of cachexia by regulating the expression and activity of carnitine palmitoyltransferase (CPT) in the liver. However, the effect of L-carnitine on the liver inflammatory response in cancer cachexia remains to be elucidated. The aim of the present study was to examine the role of the CPT I-dependent peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in the ameliorative effect of L-carnitine on the liver inflammatory response. This was investigated in a colon-26 tumor-bearing mouse model with cancer cachexia. Liver sections were immunohistochemically analyzed, and mRNA and protein levels of representative molecules of the CPT-associated PPARγ signaling pathway were assessed using PCR and western blot analysis, respectively. The results showed that oral administration of L-carnitine in these mice improved hepatocyte necrosis, liver cell cord derangement and hydropic or fatty degeneration of the liver cells in the liver tissues, decreased serum levels of malondialdehyde, increased serum levels of superoxide dismutase and glutathione peroxidase, and elevated the expression levels of PPARα and PPARγ at the mRNA and protein levels. These changes induced by L-carnitine were reversed by treatment with etomoxir, an inhibitor of CPT I. The inhibitory effect of L-carnitine on the increased expression level of nuclear factor (NF)-κB p65 in the peripheral blood mononuclear cells was markedly weakened by GW9662, a selective inhibitor of PPAR-γ. GW9662 also eliminated the inhibitory effect of L-carnitine on the expression of cyclooxygenase-2 (Cox-2) in the liver, and on the serum expression levels of pro-inflammatory prostaglandin E2, C-reactive protein, tumor necrosis factor-α and interleukin-6 in the cancer cachexia model mice. This reversing effect of GW9662 on L-carnitine was restored by pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB signaling. Taken together, these results demonstrated that L-carnitine ameliorated liver inflammation and serum pro-inflammatory markers in cancer cachexia through regulating CPT I-dependent PPARγ signaling, including the downstream molecules of NF-κB p65 and Cox-2.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Zongqi Zhang
- Department of Cardiology, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201900, P.R. China
| | - Yi Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianping Wu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Li Yu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| | - Su Liu
- Department of Gastroenterology, Zhabei District Central Hospital, Shanghai 200070, P.R. China
| |
Collapse
|
22
|
Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 2015; 26:475-87. [DOI: 10.1016/j.cytogfr.2015.07.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
|
23
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
24
|
Takamatsu H, Honda S, Miyamoto T, Yokoyama K, Hagiwara S, Ito T, Tomita N, Iida S, Iwasaki T, Sakamaki H, Suzuki R, Sunami K. Changing trends in prognostic factors for patients with multiple myeloma after autologous stem cell transplantation during the immunomodulator drug/proteasome inhibitor era. Cancer Sci 2015; 106:179-85. [PMID: 25530023 PMCID: PMC4399028 DOI: 10.1111/cas.12594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022] Open
Abstract
We evaluated the clinical significance of prognostic factors including the International Staging System (ISS) and modified European Group for Blood and Marrow Transplantation response criteria in 1650 Japanese patients with multiple myeloma (MM) who underwent upfront single autologous stem cell transplantation (ASCT). We categorized patients into two treatment cohorts: pre-novel agent era (1995–2006) and novel agent era (2008–2011). The combined percentage of pre-ASCT complete response and very good partial response cases (463 of 988, 47%) significantly increased during the novel agent era compared with the pre-novel agent era (164 of 527, 31%; P < 0.0001). The 2-year overall survival (OS) rate of 87% during the novel agent era was a significant improvement relative to that of 82% during the pre-novel agent era (P = 0.019). Although significant differences in OS were found among ISS stages during the pre-novel agent era, no significant difference was observed between ISS I and II (P = 0.107) during the novel agent era. The factors independently associated with a superior OS were female gender (P = 0.002), a good performance status (P = 0.024), lower ISS (P < 0.001), pre-ASCT response at least partial response (P < 0.001) and ASCT during the novel agent era (P = 0.017). These results indicate that the response rate and OS were significantly improved, and the ISS could not clearly stratify the prognoses of Japanese patients with MM who underwent upfront single ASCT during the novel agent era.
Collapse
Affiliation(s)
- Hiroyuki Takamatsu
- Cellular Transplantation Biology (Hematology/Respirology), Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM, Carson JA. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta Mol Basis Dis 2014; 1852:816-25. [PMID: 25555992 DOI: 10.1016/j.bbadis.2014.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - J Mark Davis
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA.
| |
Collapse
|
26
|
Liu CJ, Kuo FC, Hu HM, Chen CY, Huang YB, Cheng KH, Yokoyama KK, Wu DC, Hsieh S, Kuo CH. 17β-Estradiol inhibition of IL-6-Src and Cas and paxillin pathway suppresses human mesenchymal stem cells-mediated gastric cancer cell motility. Transl Res 2014; 164:232-43. [PMID: 24801617 DOI: 10.1016/j.trsl.2014.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/24/2023]
Abstract
Epidemiological studies demonstrate that the incidence and mortality of gastric cancer in women are lower than in men worldwide. Many studies have reported the delayed menopause and hormone replacement therapy are associated with a reduced risk for gastric cancer. It has been reported that endogenous estrogen lowers gastric cancer incidence in women, and cancer patients treated with estrogens have a lower subsequent risk of gastric cancer. It has been reported that estrogen decreases the progression of gastric cancer by inhibiting erbB-2 oncogene expression. Overexpression of estrogen receptor might inhibit the proliferation and invasion of MKN28 gastric cancer cells. Accumulating evidence suggests that bone marrow mesenchymal stem cells contribute to the progression of gastric cancer. However, it is unknown if 17β-estradiol (E2) treatment is sufficient to inhibit human bone marrow mesenchymal stem cells (HBMMSCs)-mediated cell motility in human gastric cancer cells. The results from human cytokine arrays have shown that HBMMSCs notably secrete interleukin 6 (IL-6) protein. Administration of IL-6-specific neutralizing antibody significantly inhibits HBMMSCs-mediated motility activity in human gastric cancer cells. Treatment of recombinant IL-6 soluble protein confirmed the role of IL-6 in mediating HBMMSCs-upregulated cell motility. IL-6 mainly upregulates motility activity via activation of Src signaling pathway in human gastric cancer cells. We further observed that E2 treatment inhibits HBMMSCs-induced cellular motility via suppressing the activation of IL-6-Src/Cas/paxillin signaling pathway in human gastric cancer cells. Collectively, these results suggest that E2 treatment significantly inhibits HBMMSCs-induced cellular motility in human gastric cancer cells.
Collapse
Affiliation(s)
- Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Hospital, Kaohsiung, Taiwan
| | - Huang-Ming Hu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiao-Yun Chen
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Radiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yaw-Bin Huang
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers (Basel) 2014; 6:926-57. [PMID: 24743778 PMCID: PMC4074810 DOI: 10.3390/cancers6020926] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.
Collapse
Affiliation(s)
- Ailian Xiong
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhengduo Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yicheng Shen
- College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Renjini AP, Titus S, Narayan P, Murali M, Jha RK, Laloraya M. STAT3 and MCL-1 associate to cause a mesenchymal epithelial transition. J Cell Sci 2014; 127:1738-50. [PMID: 24481815 DOI: 10.1242/jcs.138214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryo implantation is effected by a myriad of signaling cascades acting on the embryo-endometrium axis. Here we show, by using MALDI TOF analysis, far-western analysis and colocalization and co-transfection studies, that STAT3 and MCL-1 are interacting partners during embryo implantation. We show in vitro that the interaction between the two endogenous proteins is strongly regulated by estrogen and progesterone. Implantation, pregnancy and embryogenesis are distinct from any other process in the body, with extensive, but controlled, proliferation, cell migration, apoptosis, cell invasion and differentiation. Cellular plasticity is vital during the early stages of development for morphogenesis and organ homeostasis, effecting the epithelial to mesenchymal transition (EMT) and, the reverse process, mesenchymal to epithelial transition (MET). STAT3 functionally associates with MCL-1 in the mammalian breast cancer cell line MCF7 that overexpresses STAT3 and MCL-1, which leads to an increased rate of apoptosis and decreased cellular invasion, disrupting the EMT. Association of MCL-1 with STAT3 modulates the normal, anti-apoptotic, activity of MCL-1, resulting in pro-apoptotic effects. Studying the impact of the association of STAT3 with MCL-1 on MET could lead to an enhanced understanding of pregnancy and infertility, and also metastatic tumors.
Collapse
Affiliation(s)
- A P Renjini
- Utero-Embryo Repromics Lab, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | | | | | | | | | | |
Collapse
|
29
|
Wood SL, Brown JE. The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers. CANCER METASTASIS - BIOLOGY AND TREATMENT 2014:125-153. [DOI: 10.1007/978-94-007-7569-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Xiong Q, Zhong Q, Zhang J, Yang M, Li C, Zheng P, Bi LJ, Ge F. Identification of novel miR-21 target proteins in multiple myeloma cells by quantitative proteomics. J Proteome Res 2012; 11:2078-90. [PMID: 22316494 DOI: 10.1021/pr201079y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substantial evidence indicates that microRNA-21 (miR-21) is a key oncomiR in carcinogenesis and is significantly elevated in multiple myeloma (MM). In this study, we explored the role of miR-21 in human MM cells and searched for miR-21 targets. By knocking down the expression of endogenous miR-21 in U266 myeloma cells, we observed reduced growth, an arrested cell cycle, and increased apoptosis. To further understand its molecular mechanism in the pathogenesis of MM, we employed a SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative proteomic strategy to systematically identify potential targets of miR-21. In total, we found that the expression of 178 proteins was up-regulated significantly by miR-21 inhibition, implying that they could be potential targets of miR-21. Among these, the protein inhibitor of activated STAT3 (PIAS3) was confirmed as a direct miR-21 target by Western blotting and reporter gene assays. We further demonstrated that miR-21 enhances the STAT3-dependent signal pathway by inhibiting the function of PIAS3 and that down-regulation of PIAS3 contributes to the oncogenic function of miR-21. This elucidation of the role of PIAS3 in the miR-21-STAT3 positive regulatory loop not only may shed light on the molecular basis of the biological effects of miR-21 observed in MM cells but also has direct implications for the development of novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zheng P, Zhong Q, Xiong Q, Yang M, Zhang J, Li C, Bi LJ, Ge F. QUICK identification and SPR validation of signal transducers and activators of transcription 3 (Stat3) interacting proteins. J Proteomics 2011; 75:1055-66. [PMID: 22075167 DOI: 10.1016/j.jprot.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/05/2011] [Accepted: 10/23/2011] [Indexed: 12/16/2022]
Abstract
Signal transducers and activators of transcription 3 (Stat3) has been reported to be involved in the pathogenesis of various human diseases and is constitutively active in human multiple myeloma (MM) U266 cells. The Stat3-regulated mechanisms involved in these processes, however, are not fully defined. To further understand the regulation of Stat3 activity, we performed a systematic proteomic analysis of Stat3 interacting proteins in U266 cells. This analysis, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture (SILAC), immunoprecipitation, and quantitative MS. As a result, quantitative mass spectrometry analysis allowed us to distinguish specific Stat3 interacting proteins from background proteins and led to the identification of a total of 38 proteins. Three Stat3 interacting proteins - 14-3-3ζ, PRKCB and Hsp90 - were further confirmed by reciprocal co-immunoprecipitations and surface plasmon resonance (SPR) analysis. Our results therefore not only uncover a number of Stat3 interacting proteins that possess a variety of cellular functions, but also provide new insight into the mechanisms that regulate Stat3 activity and function in MM cells.
Collapse
Affiliation(s)
- Peng Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mitsui T, Ishida M, Izawa M, Kagami Y, Arita J. Inhibition of Bcl3 gene expression mediates the anti-proliferative action of estrogen in pituitary lactotrophs in primary culture. Mol Cell Endocrinol 2011; 345:68-78. [PMID: 21787835 DOI: 10.1016/j.mce.2011.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 07/08/2011] [Indexed: 01/13/2023]
Abstract
In addition to their well-known stimulatory action, estrogens have an anti-proliferative effect. The present study was undertaken to investigate the mechanism by which 17β-estradiol (E2) inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation in vitro in the rat pituitary lactotroph, a typical estrogen-responsive cell. E2 treatment of pituitary cells did not change levels of IGF-1-induced phosphorylation of proliferation-related protein kinases such as Erk1/2 and Akt. We performed global gene expression profiling by DNA microarray analysis and identified 177 genes regulated by E2 in the presence of IGF-1. These results were verified by quantitative real time PCR. The estrogen-regulated genes included several NFκB family related genes. As pharmacological inhibition of the NFκB pathway blocked IGF-1-induced lactotroph proliferation, we chose to investigate whether one NFκB pathway gene, Bcl3, was involved in the anti-proliferative action of E2. RNA interference-mediated knockdown of Bcl3 expression attenuated IGF-1-induced lactotroph proliferation. Even minimal induced overexpression of Bcl3 blocked the anti-proliferative action of E2. In contrast, Nfkb2, another E2-downregulated protein, required maximal overexpression to block the anti-proliferative action of E2. These results suggest that inhibition of Bcl3 expression is involved in the anti-proliferative action of estrogens in pituitary lactotrophs in culture.
Collapse
Affiliation(s)
- Tetsuo Mitsui
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | | | | | | | | |
Collapse
|
33
|
A Role for PPARgamma in the Regulation of Cytokines in Immune Cells and Cancer. PPAR Res 2011; 2008:961753. [PMID: 18566687 PMCID: PMC2430015 DOI: 10.1155/2008/961753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/22/2008] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. PPARγ and its ligands appear to serve diverse biological functions. In addition to the well-studied effects of PPARγ on metabolism and cellular differentiation, abundant evidence suggests that PPARγ is an important regulator of the immune system and cancers. Since cytokines are not only key modulators of inflammation with pro- and anti-inflammatory functions but they also can either stimulate or inhibit tumor growth and progression, this review summarizes the role for PPARγ in the regulation of cytokine production and cytokine-mediated signal transduction pathways in immune cells and cancer.
Collapse
|
34
|
Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res 2011; 3:177-89. [PMID: 21625400 PMCID: PMC3101113 DOI: 10.2147/cmr.s18101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 12/25/2022] Open
Abstract
Metastatic events to the bone occur frequently in numerous cancer types such as breast, prostate, lung, and renal carcinomas, melanoma, neuroblastoma, and multiple myeloma. Accumulating evidence suggests that the inflammatory cytokine interleukin (IL)-6 is frequently upregulated and is implicated in the ability of cancer cells to metastasize to bone. IL-6 is able to activate various cell signaling cascades that include the STAT (signal transducer and activator of transcription) pathway, the PI3K (phosphatidylinositol-3 kinase) pathway, and the MAPK (mitogen-activated protein kinase) pathway. Activation of these pathways may explain the ability of IL-6 to mediate various aspects of normal and pathogenic bone remodeling, inflammation, cell survival, proliferation, and pro-tumorigenic effects. This review article will discuss the role of IL-6: 1) in bone metabolism, 2) in cancer metastasis to bone, 3) in cancer prognosis, and 4) as potential therapies for metastatic bone cancer.
Collapse
Affiliation(s)
- Ken Tawara
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | | | | |
Collapse
|
35
|
Choi JH, Lee KT, Leung PCK. Estrogen receptor alpha pathway is involved in leptin-induced ovarian cancer cell growth. Carcinogenesis 2010; 32:589-96. [PMID: 21173433 DOI: 10.1093/carcin/bgq276] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previously, we demonstrated that leptin, a pleiotropic hormone produced by adipocytes, stimulates the growth of BG-1 ovarian cancer cells via the extracellular signal-regulated kinase signaling pathway. In this study, we further investigated the involvement of estrogen receptor (ER) pathway in the mechanism of leptin-induced ovarian cancer cell growth. Treatment with leptin (100 ng/ml) resulted in a significant increase in the cell growth of ERα-transfected OVCAR-3 and A2780 cells, whereas no significant difference was observed in ERβ-transfected cells. Downregulation of ERα using small interfering RNA completely reversed leptin-induced growth of BG-1 cells. Treatment with leptin resulted in ER transcriptional activation, i.e. nuclear localization of ER and increased expression of pS2, an estrogen-dependent gene. Luciferase reporter assay revealed that treatment of BG-1 cells with leptin (100 ng/ml) stimulated the expression of the reporter gene in the absence of estradiol (E2). To examine an involvement of Janus kinase 2/signal transducers and activators of transcription 3 (STAT-3) and phosphatidyl-inositol 3-kinase (PI3K)/Akt in leptin-induced pathway, we demonstrated that leptin increased phosphorylation of STAT-3 and Akt in BG-1 cells in a time- and dose-dependent manner. On the other hand, leptin-induced cell growth and ER transactivation were effectively blocked by specific STAT-3 inhibitor AG490 and, to a lesser extent, by PI3K inhibition. Further study with coimmunoprecipitation assay revealed that stimulation with leptin induced STAT-3 binding to ERα. Taken together, these results indicate that the stimulation of ovarian cancer cell growth by leptin involves, at least in part, ER transcriptional activation via the STAT-3 signaling pathways.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | | | | |
Collapse
|
36
|
Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L, Bromberg J. Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 2010; 12:R80. [PMID: 20929542 PMCID: PMC3096973 DOI: 10.1186/bcr2725] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 10/07/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Tyrosine phosphorylated signal transducer and activator of transcription 3 (pStat3) is expressed in numerous cancers and is required for mediating tumorigenesis. Autocrine and paracrine interleukin (IL)-6 signaling is the principal mechanism by which Stat3 is persistently phosphorylated in epithelial tumors including breast, lung, colon and gastric cancer. The Ras oncogene mediates cellular transformation without evidence of pStat3 in cultured cells. However, non-tyrosine phosphorylated Stat3 was shown to function as a transcriptional activator, localize to the mitochondria and regulate ATP synthesis and mediate cell migration. Here we examined the role of Stat3 in Ras mediated transformation. Methods Ha-rasV12 transformed mammary epithelial cells (MCF10A-Ras) cells were transduced with a Stat3shRNA, IL-6shRNA and/or treated with inhibitors of Janus kinases (JAKs) to examine the role of the IL-6 signaling pathway in Ras mediated migration, invasion and tumorigenesis. Results Cellular migration, invasion, anchorage independent growth and tumorigenesis were largely abrogated in the Stat3-reduced cells compared to control cells. Analysis of MCF10A-Ras tumors revealed high levels of pStat3 and interleukin-6. Tumors derived from transgenic MMTV-K-Ras mice were also found to express pStat3 and IL-6. MCF10A-Ras cells, when grown in a three-dimensional Matrigel culture system revealed the appearance of the junctional protein E-Cadherin as a consequence of reducing Stat3 levels or inhibiting Stat3 activity. Decreasing IL-6 levels in the MCF10A-Ras cells abrogated tumorigenesis and reduced cell migration. By isolating Ras-expressing primary tumors and serially passaging these cells in two-dimensional culture led to a decrease in IL-6 and pStat3 levels with the reappearance of E-Cadherin. Conclusions The cellular and environmental context can lead to differential IL-6/pStat3 signaling and a dependency on this cytokine and transcription factor for migration, invasion and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Leslie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yagil Z, Nechushtan H, Kay G, Yang CM, Kemeny DM, Razin E. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol 2010; 31:199-204. [PMID: 20181527 DOI: 10.1016/j.it.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/09/2023]
Abstract
Protein inhibitor of activated STAT3 (PIAS3), the main cellular inhibitor of signal transducers and activator of transcription 3 (STAT3), has been described as a modulator of DNA binding transcription factors. The exploration of the emerging roles of PIAS3 in immune regulation is a growing and fascinating field. Recent discoveries have shed new light on the key role of PIAS3 in the regulation of transcriptional activity, and on the molecular mechanism involved. These findings suggest that the known functions of this signalling molecule are merely the "tip of the iceberg". This article reviews the challenging questions regarding the link between PIAS3 and the intracellular signalling in immune cells. Some of the known functions of PIAS3 that potentially modulate key proteins in the immune system will also be discussed.
Collapse
Affiliation(s)
- Zohar Yagil
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Kluge A, Dabir S, Kern J, Nethery D, Halmos B, Ma P, Dowlati A. Cooperative interaction between protein inhibitor of activated signal transducer and activator of transcription-3 with epidermal growth factor receptor blockade in lung cancer. Int J Cancer 2009; 125:1728-34. [PMID: 19569236 DOI: 10.1002/ijc.24553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) targeting in nonsmall cell lung cancer (NSCLC) is an established treatment modality; however, it only benefits a minority of patients. STAT3 (signal transducer and activator of transcription-3) plays an important role in the oncogenic signal transduction pathway of NSCLC. Inhibition of STAT3 results in NSCLC growth inhibition and apoptosis. We have previously shown that combined inhibition of EGFR and STAT3 by small molecules resulted in improved therapeutic efficacy as compared with blocking EGFR alone. However, the STAT3 protein has a number of endogenous negative regulators including PIAS3 (Protein Inhibitor of Activated STAT3). In this study, we investigated for the first time the role of PIAS3 in modulating oncogenic EGFR-STAT3 signaling pathway in lung cancer and the anti-proliferative effect of using PIAS3 in conjunction with EGFR blockade in NSCLC. We demonstrate that PIAS3 is expressed in variable degrees in all NSCLC cells. EGF and IL-6 stimulation resulted in the association of PIAS3 with STAT3. The PIAS3/STAT3 complex then bound the STAT3 DNA binding sequence resulting in STAT3 regulated gene expression. Over-expression of PIAS3, using a PIAS3 expression construct, decreases STAT3 transcriptional activity. Furthermore, over-expression of PIAS3 consistently decreased proliferation. EGFR blockade and PIAS3 over-expression in combination had significantly greater anti-proliferative effects as compared with either EGFR blockade or PIAS3 over-expression alone. In conclusion, PIAS3 is expressed in NSCLC cell lines and its over-expression decreased STAT3 transcriptional activity, decreased proliferation of NSCLC cells and when used in conjunction with EGFR inhibitors, increased the anti-proliferative effects.
Collapse
Affiliation(s)
- Amy Kluge
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible? Bioessays 2009; 31:629-41. [DOI: 10.1002/bies.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Yagil Z, Kay G, Nechushtan H, Razin E. A Specific Epitope of Protein Inhibitor of Activated STAT3 Is Responsible for the Induction of Apoptosis in Rat Transformed Mast Cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2168-75. [DOI: 10.4049/jimmunol.0803030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Li Q, Yu K, Tian X, Kong F, You Y, Chen Z, Zou P. 17beta-Estradiol overcomes human myeloma RPMI8226 cell suppression of growth, ALP activity, and mineralization in rat osteoblasts and improves RANKL/OPG balance in vitro. Leuk Res 2009; 33:1266-71. [PMID: 19167063 DOI: 10.1016/j.leukres.2008.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/04/2008] [Accepted: 12/12/2008] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by a high capacity to induce osteolytic bone lesions. MM patients with osteolytic bone lesions have lower numbers of osteoblasts and decreased bone formation, which plays a critical role in the bone-destructive process. Although the mechanism of estrogen action on bone cells and myeloma cells has been widely investigated, estrogen action on bone cells in MM is unknown. In this study, the effects of the gonadal hormone 17beta-estradiol on cell growth, alkaline phosphatase (ALP) activity, mineralization capacity, and RANKL/OPG ratios in primary rat osteoblasts cultured with MM cell conditioned medium (CM) or co-cultured with RPMI8226 cells were investigated. Treatments of 10(-2) to 10 nM 17beta-estradiol reversed inhibition of proliferation and ALP activity of osteoblasts by myeloma cells in a dose-dependent manner, and 10(-2) to 1 nM 17beta-estradiol reversed inhibition of the mineralization capacity of osteoblasts by myeloma cells. In co-culture experiments with primary rat osteoblasts and myeloma cells, treatments of 10(-2) to 10 nM 17beta-estradiol down-regulated transcription and secretion of RANKL and up-regulated transcription and secretion of OPG in the osteoblasts, reversing the effects of co-cultured myeloma cells. These findings suggest that 17beta-estradiol may temper the inhibitory effects of myeloma cells on osteoblasts and improve RANKL/OPG balance, providing a new agent for treatment of bone disease in myeloma.
Collapse
Affiliation(s)
- Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dascher C, Kovats S. Estradiol acts directly on bone marrow myeloid progenitors to differentially regulate GM-CSF or Flt3 ligand-mediated dendritic cell differentiation. THE JOURNAL OF IMMUNOLOGY 2008; 180:727-38. [PMID: 18178810 DOI: 10.4049/jimmunol.180.2.727] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Estrogen receptor (ER) ligands modulate hemopoiesis and immunity in the normal state, during autoimmunity, and after infection or trauma. Dendritic cells (DC) are critical for initiation of innate and adaptive immune responses. We demonstrate, using cytokine-driven culture models of DC differentiation, that 17-beta-estradiol exerts opposing effects on differentiation mediated by GM-CSF and Flt3 ligand, the two cytokines that regulate DC differentiation in vivo. We also show that estradiol acts on the same highly purified Flt3+ myeloid progenitors (MP) to differentially regulate the DC differentiation in each model. In GM-CSF-supplemented cultures initiated from MP, physiological amounts of estradiol promoted differentiation of Langerhans-like DC. Conversely, in Flt3 ligand-supplemented cultures initiated from the same MP, estradiol inhibited cell survival in a dose-dependent manner, thereby decreasing the yield of plasmacytoid and conventional myeloid and lymphoid DC. Experiments with bone marrow cells from ER-deficient mice and the ER antagonist ICI182,780 showed that estradiol acted primarily via ERalpha to regulate DC differentiation. Thus, depending on the cytokine environment, pathways of ER signaling and cytokine receptor signaling can differentially interact in the same Flt3+ MP to regulate DC development. Because the Flt3 ligand-mediated differentiation pathway is important during homeostasis, and GM-CSF-mediated pathways are increased by inflammation, our data suggest that endogenous or pharmacological ER ligands may differentially affect DC development during homeostasis and disease, with consequent effects on DC-mediated immunity.
Collapse
Affiliation(s)
- Esther Carreras
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sola B, Renoir JM. Estrogenic or antiestrogenic therapies for multiple myeloma? Mol Cancer 2007; 6:59. [PMID: 17888187 PMCID: PMC2082328 DOI: 10.1186/1476-4598-6-59] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 09/24/2007] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy which remains incurable due to both intrinsic and acquired resistance to conventional or more novel drugs. Estrogenic and antiestrogenic compounds are very promising drugs for the treatment of MM. Indeed, they inhibit cell proliferation in vitro. They block cell cycle and/or induce apoptosis even in drug-resistant MM cells but not normal B cells. They interfere with survival pathways often deregulated in myelomas. They co-operate with conventional drugs to enhance apoptosis or to overcome resistance. In vivo, they act also on tumoral angiogenesis in xenograft models. As a whole, they possess all the criteria which render them attractive for a new therapeutic strategy. Importantly, they are well-tolerated at the doses tested in vitro or in vivo, encouraging the rapid onset of critical trials.
Collapse
Affiliation(s)
- Brigitte Sola
- Biologie moléculaire et cellulaire de la signalisation, IFR 146, Université de Caen, Caen, France
| | - Jack-Michel Renoir
- Pharmacologie cellulaire et moléculaire des anticancéreux, CNRS UMR 8612, Châtenay-Malabry, France
- Université de Paris-Sud, IFR 141, Orsay, France
| |
Collapse
|
44
|
Wang LH, Yang XY, Zhang X, Farrar WL. Inhibition of adhesive interaction between multiple myeloma and bone marrow stromal cells by PPARgamma cross talk with NF-kappaB and C/EBP. Blood 2007; 110:4373-84. [PMID: 17785586 PMCID: PMC2234797 DOI: 10.1182/blood-2006-07-038026] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Binding of multiple myeloma (MM) cells to bone marrow stromal cells (BMSCs) triggers expression of adhesive molecules and secretion of interleukin-6 (IL-6), promoting MM cell growth, survival, drug resistance, and migration, which highlights the possibility of developing and validating novel anti-MM therapeutic strategies targeting MM cells-host BMSC interactions and their sequelae. Recently, we have found that expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands can potently inhibit IL-6-regulated MM cell growth. Here we demonstrate that PPARgamma agonists 15-d-PGJ2 and troglitazone significantly suppress cell-cell adhesive events, including expression of adhesion molecules and IL-6 secretion from BMSCs triggered by adhesion of MM cells, as well as overcome drug resistance by a PPARgamma-dependent mechanism. The synthetic and natural PPARgamma agonists have diverging and overlapping mechanisms blocking transactivation of transcription factors NF-kappaB and 5'-CCAAT/enhancer-binding protein beta (C/EBPbeta). Both 15-d-PGJ2 and troglitazone blocked C/EBPbeta transcriptional activity by forming PPARgamma complexes with C/EBPbeta. 15-d-PGJ2 and troglitazone also blocked NF-kappaB activation by recruiting the coactivator PGC-1 from p65/p50 complexes. In addition, 15-d-PGJ2 had a non-PPARgamma-dependent effect by inactivation of phosphorylation of IKK and IkappaB. These studies provide the framework for PPARgamma-based pharmacological strategies targeting adhesive interactions of MM cells with the bone marrow microenvironment.
Collapse
Affiliation(s)
- Li Hua Wang
- Basic Research Program, SAIC-Frederick, Frederick, MD, USA.
| | | | | | | |
Collapse
|
45
|
Kristinsson SY, Landgren O, Dickman PW, Derolf AR, Björkholm M. Patterns of survival in multiple myeloma: a population-based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol 2007; 25:1993-9. [PMID: 17420512 DOI: 10.1200/jco.2006.09.0100] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To define patterns of survival among all multiple myeloma (MM) patients diagnosed in Sweden during a 30-year period. PATIENTS AND METHODS A total of 14,381 MM patients (7,643 males; 6,738 females) were diagnosed in Sweden from 1973 to 2003 (median age, 69.9 years; range 19 to 101 years). Patients were categorized into six age categories and four calendar periods (1973 to 1979, 1980 to 1986, 1987 to 1993, and 1994 to 2003). We computed relative survival ratios (RSRs) as measures of patient survival. RESULTS One-year survival improved (P < .001) over time in all age groups and RSRs were 0.73, 0.78, 0.80, and 0.82 for the four calendar periods; however, improvement in 5-year (P < .001) and 10-year (P < .001) RSR was restricted to patients younger than 70 years and younger than 60 years, respectively. For the first time, in analyses restricted to MM patients diagnosed at age younger than 60 years, we found a 29% (P < .001) reduced 10-year mortality in the last calendar period (1994 to 2003) compared with the preceding calendar period (1987 to 1993). Females with MM had a 3% (P = .024) lower excess mortality than males. CONCLUSION One-year MM survival has increased for all age groups during the last decades; 5-year and 10-year MM survival has increased in younger patients (younger than 60 to 70 years). High-dose melphalan with subsequent autologous stem-cell transplantation, thalidomide, and a continuous improvement in supportive care measures are probably the most important factors contributing to this finding. New effective agents with a more favorable toxicity profile are needed to improve survival further, particularly in the elderly.
Collapse
Affiliation(s)
- Sigurdur Yngvi Kristinsson
- Division of Hematology, Department of Medicine, Karolinska Karolinska University Hospital and Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 2007; 1091:151-69. [PMID: 17341611 DOI: 10.1196/annals.1378.063] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent evidence indicates a convergence of molecular targets for both prevention and therapy of cancer. Signal-transducer-and-activator-of-transcription-3 (STAT3), a member of a family of six different transcription factors, is closely linked with tumorigenesis. Its role in cancer is indicated by numerous avenues of evidence, including the following: STAT3 is constitutively active in tumor cells; STAT3 is activated by growth factors (e.g., EGF, TGF-alpha, IL-6, hepatocyte growth factor) and oncogenic kinases (e.g., Src); STAT3 regulates the expression of genes that mediate proliferation (e.g., c-myc and cyclin D1), suppress apoptosis (e.g., Bcl-x(L) and survivin), or promote angiogenesis (e.g, VEGF); STAT3 activation has been linked with chemoresistance and radioresistance; and chemopreventive agents have been shown to suppress STAT3 activation. Thus inhibitors of STAT3 activation have potential for both prevention and therapy of cancer. Besides small peptides and oligonucleotides, numerous small molecules have been identified as blockers of STAT3 activation, including synthetic molecules (e.g., AG 490, decoy peptides, and oligonucleotides) and plant polyphenols (e.g., curcumin, resveratrol, flavopiridol, indirubin, magnolol, piceatannol, parthenolide, EGCG, and cucurbitacin). This article discusses these aspects of STAT3 in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sekine Y, Ikeda O, Hayakawa Y, Tsuji S, Imoto S, Aoki N, Sugiyama K, Matsuda T. DUSP22/LMW-DSP2 regulates estrogen receptor-alpha-mediated signaling through dephosphorylation of Ser-118. Oncogene 2007; 26:6038-49. [PMID: 17384676 DOI: 10.1038/sj.onc.1210426] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the previous study, we demonstrated the involvement of dual specificity phosphatase 22 (DUSP22/LMW-DSP2) in regulating the leukemia inhibitory factor/interleukin-6/signal transducer and activator of transcription 3-mediated signaling pathway. In this study, we show beta-estradiol (E2)-induced DUSP22 mRNA expression in estrogen receptor alpha (ERalpha)-positive breast cancer cells, whereas E2-induced phosphorylation and activation of ERalpha was suppressed by overexpression of DUSP22 but not catalytically inactive mutants. Furthermore, small-interfering RNA-mediated reduction of DUSP22 expression enhanced ERalpha-mediated transcription and endogenous gene expression. In fact, DUSP22 associated with ERalpha in vivo and both endogenous proteins interacted in ERalpha-positive breast cancer T47D cells. These results strongly suggest that DUSP22 acts as a negative regulator of the ERalpha-mediated signaling pathway.
Collapse
Affiliation(s)
- Y Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Landgren O, Zhang Y, Zahm SH, Inskip P, Zheng T, Baris D. Risk of multiple myeloma following medication use and medical conditions: a case-control study in Connecticut women. Cancer Epidemiol Biomarkers Prev 2006; 15:2342-7. [PMID: 17132770 DOI: 10.1158/1055-9965.epi-06-0097] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Certain commonly used drugs and medical conditions characterized by chronic immune dysfunction and/or antigen stimulation have been suggested to affect important pathways in multiple myeloma tumor cell growth and survival. We conducted a population-based case-control study to investigate the role of medical history in the etiology of multiple myeloma among Connecticut women. METHODS A total of 179 incident multiple myeloma cases (21-84 years, diagnosed 1996-2002) and 691 population-based controls was included in this study. Information on medical conditions, medications, and medical radiation was obtained by in-person interviews. We calculated odds ratios (OR) as measures of relative risks using logistic regression models. RESULTS A reduced multiple myeloma risk was found among women who had used antilipid statin therapy [OR, 0.4; 95% confidence interval (95% CI), 0.2-0.8] or estrogen replacement therapy (OR, 0.6; 95% CI, 0.4-0.99) or who had a medical history of allergy (OR, 0.4; 95% CI, 0.3-0.7), scarlet fever (OR, 0.5; 95% CI, 0.2-0.9), or bursitis (OR, 0.4; 95% CI, 0.2-0.7). An increased risk of multiple myeloma was found among women who used prednisone (OR, 5.1; 95% CI, 1.8-14.4), insulin (OR, 3.1; 95% CI, 1.1-9.0), or gout medication (OR, 6.7; 95% CI, 1.2-38.0). CONCLUSIONS If our results are confirmed, mechanistic studies examining how prior use of insulin, prednisone, and, perhaps, gout medication might promote increased occurrence of multiple myeloma and how antilipid statins, estrogen replacement therapy, and certain medical conditions might protect against multiple myeloma may provide insights to the as yet unknown etiology of multiple myeloma.
Collapse
Affiliation(s)
- Ola Landgren
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, Building EPS/Room 7110, Bethesda, MD 20892-7236, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Maillard S, Gauduchon J, Marsaud V, Gouilleux F, Connault E, Opolon P, Fattal E, Sola B, Renoir JM. Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 2006; 100:67-78. [PMID: 16753295 DOI: 10.1016/j.jsbmb.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In most of multiple myeloma (MM) cells, the "pure" antiestrogen (AE) RU 58668 (RU) induced either a G1-arrest (LP-1, OPM-2, NCI-H929, U266 cells) or apoptosis (RPMI 8226 cells). In RPMI 8226 cells, RU activates a caspase-dependent cell death pathway leading to the release of cytochrome c, the decrease of the essential MM survival factor Mcl-1, the cleavage of Bid and the activation of caspases-3 and -8. Incorporation of RU in pegylated cholesterol-containing liposomes allowed a controlled RU release, improving its anti-proliferative and apoptotic effects in cells. In RPMI 8226 xenografts, i.v. injected RU-liposomes but not free RU, exhibited antitumor activity. In vivo, RU-liposomes triggered the mitochondrial death pathway, concomitantly with a down-regulation of Mcl-1 and Bid cleavage. The decrease of CD34 immunoreactivity indicated a reduction of angiogenesis. The decrease of VEGF secretion in vitro supported a direct effect of RU on angiogenesis. These pro-apoptotic and antiangiogenic effects were explained by a prolonged exposure to the drug and to the endocytosis capacity of liposomes which might increase RU uptake and bypass a membrane export of free RU. Thus, these combined enhanced activities of RU-liposomes support that such a delivery of an AE may constitute a strategy of benefit for MM treatment.
Collapse
|
50
|
Desrivières S, Kunz C, Barash I, Vafaizadeh V, Borghouts C, Groner B. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia 2006; 11:75-87. [PMID: 16947086 DOI: 10.1007/s10911-006-9014-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) comprise a unique family of transcription factors, which transmit the interactions of cytokines, hormones and growth factors with their cell surface receptors into transcriptional programs. The mechanism of STAT activation has been well-established and comprises tyrosine phosphorylation, dimerization, nuclear translocation, binding to specific DNA response elements, recruitment of co-activators or co-repressors and transcriptional induction or repression of target genes. Gene deletion, microarrays, proteomics and chromatin immunoprecipitation experiments have revealed target genes with a broad range of functions regulated by STAT3 and STAT5. In the mammary gland, STAT5-induced genes contribute mainly to the prolactin dependent lobulo-alveolar development, whereas STAT3 induced genes control apoptosis during involution. Crucial effects have also been observed in other tissues. The germ line deletion of STAT3 or STAT5 causes early embryonal or perinatal lethality in mice. STAT5 is also required for proliferation of T- and B-cells and hematopoietic stem cell self-renewal. Deregulated STAT activity is often found associated with tumorigenesis and activated STATs seem to be limiting components in tumor cells. This review summarizes the functions of STAT3 and STAT5 in different cell types and the strategies that are used to counteract their action in tumor cells.
Collapse
Affiliation(s)
- Sylvane Desrivières
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42, D-60596 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|