1
|
van Veen S, Kourti A, Ausloos E, Van Asselberghs J, Van den Haute C, Baekelandt V, Eggermont J, Vangheluwe P. ATP13A4 Upregulation Drives the Elevated Polyamine Transport System in the Breast Cancer Cell Line MCF7. Biomolecules 2023; 13:918. [PMID: 37371498 DOI: 10.3390/biom13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Antria Kourti
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elke Ausloos
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joris Van Asselberghs
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Azfar M, van Veen S, Houdou M, Hamouda NN, Eggermont J, Vangheluwe P. P5B-ATPases in the mammalian polyamine transport system and their role in disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119354. [PMID: 36064065 DOI: 10.1016/j.bbamcr.2022.119354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are physiologically relevant molecules that are ubiquitous in all organisms. The vitality of PAs to the healthy functioning of a cell is due to their polycationic nature causing them to interact with a vast plethora of cellular players and partake in numerous cellular pathways. Naturally, the homeostasis of such essential molecules is tightly regulated in a strictly controlled interplay between intracellular synthesis and degradation, uptake from and secretion to the extracellular compartment, as well as intracellular trafficking. Not surprisingly, dysregulated PA homeostasis and signaling are implicated in multiple disorders, ranging from cancer to neurodegeneration; leading many to propose rectifying the PA balance as a potential therapeutic strategy. Despite being well characterized in bacteria, fungi and plants, the molecular identity and properties of the PA transporters in animals are poorly understood. This review brings together the current knowledge of the cellular function of the mammalian PA transport system (PTS). We will focus on the role of P5B-ATPases ATP13A2-5 which are PA transporters in the endosomal system that have emerged as key players in cellular PA uptake and organelle homeostasis. We will discuss recent breakthroughs on their biochemical and structural properties as well as their implications for disease and therapy.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Marine Houdou
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium
| | - Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Gorle AK, Haselhorst T, Katner SJ, Everest-Dass AV, Hampton JD, Peterson EJ, Koblinski JE, Katsuta E, Takabe K, von Itzstein M, Berners-Price SJ, Farrell NP. Conformational Modulation of Iduronic Acid-Containing Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angew Chem Int Ed Engl 2021; 60:3283-3289. [PMID: 33174390 PMCID: PMC7902481 DOI: 10.1002/anie.202013749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/19/2022]
Abstract
1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.
Collapse
Affiliation(s)
- Anil K. Gorle
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Samantha J. Katner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
- Department of Biochemistry, Chemistry and Geology, Minnesota State University, Mankato, Mankato, Minnesota 56001, USA
| | - Arun V. Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - James D. Hampton
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Erica J. Peterson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Jennifer E. Koblinski
- Department of Pathology, Division of Cellular and Molecular Pathogenesis, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, New York, 14203, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, New York, 14203, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Susan J. Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Nicholas P. Farrell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
5
|
Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Cortés Calabuig Á, Swinnen JV, Agostinis P, Baekelandt V, Annaert W, Impens F, Verhelst SHL, Eggermont J, Martin S, Vangheluwe P. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem 2020; 296:100182. [PMID: 33310703 PMCID: PMC7948421 DOI: 10.1074/jbc.ra120.013908] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.
Collapse
Affiliation(s)
- Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rupert Mayer
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Oncology, VIB-KU Leuven Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Francis Impens
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Gorle AK, Haselhorst T, Katner SJ, Everest‐Dass AV, Hampton JD, Peterson EJ, Koblinski JE, Katsuta E, Takabe K, Itzstein M, Berners‐Price SJ, Farrell NP. Conformational Modulation of Iduronic Acid‐Containing Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anil K. Gorle
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Thomas Haselhorst
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Samantha J. Katner
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Department of Biochemistry, Chemistry and Geology Minnesota State University Mankato, Mankato MN 56001 USA
| | - Arun V. Everest‐Dass
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - James D. Hampton
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Erica J. Peterson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Jennifer E. Koblinski
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
- Department of Pathology Division of Cellular and Molecular Pathogenesis Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Eriko Katsuta
- Department of Surgical Oncology Roswell Park Comprehensive Cancer Center University at Buffalo Buffalo NY 14203 USA
| | - Kazuaki Takabe
- Department of Surgical Oncology Roswell Park Comprehensive Cancer Center University at Buffalo Buffalo NY 14203 USA
| | - Mark Itzstein
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| |
Collapse
|
7
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Cerezo-Magaña M, Bång-Rudenstam A, Belting M. The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment. Semin Cancer Biol 2019; 62:99-107. [PMID: 31276785 DOI: 10.1016/j.semcancer.2019.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Compartmental exchange between cells through extracellular vesicles (EVs), including exosomes and microvesicles, has emerged as a central mechanism that coordinates the complex communication between malignant and stromal cells during tumor initiation and evolution. Some of the most critical processes of EV-mediated communication, including EV biogenesis and EV uptake, can be mediated by heparan sulfate proteoglycans (HSPGs) that reside on the surface of producer and recipient cells as well as on EVs. With interestingly similar, HSPG-dependent, pathways as the ones exploited by some viruses, EVs may, in an evolutionary perspective, be viewed as endogenous counterparts of viral particles. Cancer cell-derived EVs exert their protumorigenic effects by direct interactions of biologically active surface molecules, by transfer of proteins and nucleic acids into recipient cells or by transfer of metabolites that can be utilized as an energy source by the recipient cell. Here, we discuss the pleiotropic role of the HSPG family in these different contexts of EV communication with a specific focus on tumor development. We propose EV-associated PGs as dynamic reservoirs and chaperones of signaling molecules with potential implications in ligand exchange between EVs and tumor target cells. The protumorigenic consequences of EV mediated communication through HSPG should motivate the development of therapeutic approaches targeting EV-HSPG interactions as a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- M Cerezo-Magaña
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - A Bång-Rudenstam
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - M Belting
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Levin RA, Lund ME, Truong Q, Wu A, Shore ND, Saltzstein DR, Concepcion RS, Paivanas TA, van Breda A, Beebe-Dimmer J, Ruterbusch JJ, Wissmueller S, Campbell DH, Walsh BJ. Development of a reliable assay to measure glypican-1 in plasma and serum reveals circulating glypican-1 as a novel prostate cancer biomarker. Oncotarget 2018; 9:22359-22367. [PMID: 29854284 PMCID: PMC5976470 DOI: 10.18632/oncotarget.25009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/11/2018] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is responsible for hundreds of thousands of annual deaths worldwide. The current gold standard in early detection of prostate cancer, the prostate specific antigen test, boasts a high sensitivity but low specificity, resulting in many unnecessary prostate biopsies. Thus, emphasis has been placed on identifying new biomarkers to improve prostate cancer detection. Glypican-1 has recently been proposed as one such biomarker, however further exploration into its predictive power has been hindered by a lack of available, dependable glypican-1 immunoassays. Previously, we identified human glypican-1 as the antigenic target of the MIL-38 monoclonal antibody. Additionally, we have now generated another monoclonal antibody, 3G5, that also recognizes human glypican-1. Here we report the development of a reliable, custom Luminex® assay that enables precise quantitation of circulating human glypican-1 in plasma and serum. Using this assay, we show for the first time that circulating glypican-1 levels can differentiate non-cancer (normal and benign prostatic hyperplasia) patients from prostate cancer patients, as well as benign prostatic hyperplasia patients alone from prostate cancer patients. Our findings strongly promote future investigation into the use of glypican-1 for early detection of prostate cancer.
Collapse
Affiliation(s)
- Rachel A Levin
- Minomic International Ltd, Sydney, New South Wales, Australia
| | - Maria E Lund
- Minomic International Ltd, Sydney, New South Wales, Australia
| | - Quach Truong
- Minomic International Ltd, Sydney, New South Wales, Australia
| | - Angela Wu
- Minomic International Ltd, Sydney, New South Wales, Australia
| | - Neal D Shore
- CUSP LLC Research Consortium, Annandale, VA, USA
| | | | | | | | | | - Jennifer Beebe-Dimmer
- Barbara Ann Karmanos Cancer Institute and Wayne State University, School of Medicine, Department of Oncology, Detroit, MI, USA
| | - Julie J Ruterbusch
- Barbara Ann Karmanos Cancer Institute and Wayne State University, School of Medicine, Department of Oncology, Detroit, MI, USA
| | | | | | - Bradley J Walsh
- Minomic International Ltd, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hinderer C, Katz N, Louboutin JP, Bell P, Tolar J, Orchard PJ, Lund TC, Nayal M, Weng L, Mesaros C, de Souza CFM, Dalla Corte A, Giugliani R, Wilson JM. Abnormal polyamine metabolism is unique to the neuropathic forms of MPS: potential for biomarker development and insight into pathogenesis. Hum Mol Genet 2018; 26:3837-3849. [PMID: 28934395 DOI: 10.1093/hmg/ddx277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are rare genetic disorders marked by severe somatic and neurological symptoms. Development of treatments for the neurological manifestations of MPS has been hindered by the lack of objective measures of central nervous system disease burden. Identification of biomarkers for central nervous system disease in MPS patients would facilitate the evaluation of new agents in clinical trials. High throughput metabolite screening of cerebrospinal fluid (CSF) samples from a canine model of MPS I revealed a marked elevation of the polyamine, spermine, in affected animals, and gene therapy studies demonstrated that reduction of CSF spermine reflects correction of brain lesions in these animals. In humans, CSF spermine was elevated in neuropathic subtypes of MPS (MPS I, II, IIIA, IIIB), but not in subtypes in which cognitive function is preserved (MPS IVA, VI). In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease and was reduced following hematopoietic stem cell transplantation, which is the only therapy currently capable of improving cognitive outcomes. Additional studies in cultured neurons from MPS I mice showed that elevated spermine was essential for the abnormal neurite overgrowth exhibited by MPS neurons. These findings offer new insights into the pathogenesis of CNS disease in MPS patients, and support the use of spermine as a new biomarker to facilitate the development of next generation therapeutics for MPS.
Collapse
Affiliation(s)
- Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Pierre Louboutin
- Section of Anatomy, Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Troy C Lund
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Mohamad Nayal
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liwei Weng
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clementina Mesaros
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolina F M de Souza
- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, RS Porto Alegre 90035-903, Brazil
| | - Amauri Dalla Corte
- Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, RS Porto Alegre 90035-903, Brazil.,Post-Graduate Course in Medical Sciences, UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, HCPA.,Post-Graduate Course in Medical Sciences, UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Frevert CW, Felgenhauer J, Wygrecka M, Nastase MV, Schaefer L. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem 2018; 66:213-227. [PMID: 29290139 DOI: 10.1369/0022155417740880] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is evident that components of the extracellular matrix (ECM) act as danger-associated molecular patterns (DAMPs) through direct interactions with pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and inflammasomes. Through these interactions, ECM-derived DAMPs autonomously trigger sterile inflammation or prolong pathogen-induced responses through the production of proinflammatory mediators and the recruitment of leukocytes to sites of injury and infection. Recent research, however, suggests that ECM-derived DAMPs are additionally involved in the resolution and fine-tuning of inflammation by orchestrating the production of anti-inflammatory mediators that are required for the resolution of tissue inflammation and the transition to acquired immunity. Thus, in this review, we discuss the current knowledge of the interplay between ECM-derived DAMPs and the innate immune signaling pathways that are activated to provide temporal control of innate immunity.
Collapse
Affiliation(s)
- Charles W Frevert
- Center for Lung Biology, University of Washington, Seattle, Washington
| | | | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany.,National Institute for Chemical-Pharmaceutical Research and Development, Bucharest, Romania
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1. Exp Cell Res 2017; 360:171-179. [DOI: 10.1016/j.yexcr.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022]
|
13
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
14
|
Cheng F, Bourseau-Guilmain E, Belting M, Fransson LÅ, Mani K. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction. Glycobiology 2016; 26:623-34. [DOI: 10.1093/glycob/cww007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
|
15
|
Cheng F, Cappai R, Lidfeldt J, Belting M, Fransson LÅ, Mani K. Amyloid precursor protein (APP)/APP-like protein 2 (APLP2) expression is required to initiate endosome-nucleus-autophagosome trafficking of glypican-1-derived heparan sulfate. J Biol Chem 2015; 289:20871-8. [PMID: 24898256 DOI: 10.1074/jbc.m114.552810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anhydromannose (anMan)-containing heparan sulfate (HS) derived from the proteoglycan glypican-1 is generated in endosomes by an endogenously or ascorbate-induced S-nitrosothiolcatalyzed reaction. Processing of the amyloid precursor protein (APP) and APP-like protein 2 (APLP2) by β- and γ-secretases into amyloid β(A) and Aβ-like peptides also takes place in these compartments. Moreover, anMan-containing HS suppresses the formation of toxic Aβ assemblies in vitro. We showed by using deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody as well as (35)S labeling experiments that expression of APP/APLP2 is required for ascorbate-induced transport of HS from endosomes to the nucleus. Nuclear translocation was observed in wild-type mouse embryonic fibroblasts (WT MEFs), Tg2576 MEFs, and N2a neuroblastoma cells but not in APP(-/-) and APLP2(-/-) MEFs. Transfection of APP(-/-) cells with a vector encoding APP restored nuclear import of anMan-containing HS. In WT MEFs and N2a neuroblastoma cells exposed to β- or γ-secretase inhibitors, nuclear translocation was greatly impeded, suggesting involvement of APP/APLP2 degradation products. In Tg2576 MEFs, the β-inhibitor blocked transport, but the γ-inhibitor did not. During chase in ascorbate- free medium, anMan-containing HS disappeared from the nuclei of WT MEFs. Confocal immunofluorescence microscopy showed that they appeared in acidic, LC3-positive vesicles in keeping with an autophagosomal location. There was increased accumulation of anMan-containing HS in nuclei and cytosolic vesicles upon treatment with chloroquine, indicating that HS was degraded in lysosomes. Manipulations of APP expression and processing may have deleterious effects upon HS function in the nucleus.
Collapse
|
16
|
Cheng F, Fransson LÅ, Mani K. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts. Glycobiology 2014; 25:548-56. [DOI: 10.1093/glycob/cwu185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Proteoglycans of reactive rat cortical astrocyte cultures: abundance of N-unsubstituted glucosamine-enriched heparan sulfate. Matrix Biol 2014; 41:8-18. [PMID: 25483985 DOI: 10.1016/j.matbio.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022]
Abstract
"Reactive" astrocytes and other glial cells in the injured CNS produce an altered extracellular matrix (ECM) that influences neuronal regeneration. We have profiled the glycosaminoglycan (GAG) component of proteoglycans (PGs) produced by reactive neonatal rat cortical astrocytes, and have quantified their neurite-outgrowth inhibitory activity. PGs extracted from cell layers and medium were fractionated on DEAE-Sephacel with a gradient of NaCl from 0.15 to 1.0 M. Monosaccharide analysis of the major peaks eluting at 0.6 M NaCl indicated an excess of GlcNH₂ to GalNH₂, suggesting an approximate HS/CS ratio of 6.2 in the cell layer and 4.2 in the medium. Chondroitinase ABC-generated disaccharide analysis of cell and medium PGs showed a >5-fold excess of chondroitin 4-sulfate over chondroitin 6-sulfate. Heparin lyase-generated disaccharides characteristic of the highly sulfated S-domain regions within HS were more abundant in cell layer than medium-derived PGs. Cell layer and medium HS disaccharides contained ~20% and ~40% N-unsubstituted glucosamine respectively, which is normally rare in HS isolated from most tissues. NGF-stimulated neurite outgrowth assays using NS-1 (PC12) neuronal cells on adsorbed substrata of PGs isolated from reactive astrocyte medium showed pronounced inhibition of neurite outgrowth, and aggregation of NS-1 cells. Cell layer PGs from DEAE-Sephacel pooled fractions having high charge density permitted greater NGF-stimulated outgrowth than PGs with lower charge density. Our results indicate the synthesis of both inhibitory and permissive PGs by activated astrocytes that may correlate with sulfation patterns and HS/CS ratios.
Collapse
|
18
|
Nadanaka S, Purunomo E, Takeda N, Tamura JI, Kitagawa H. Heparan sulfate containing unsubstituted glucosamine residues: biosynthesis and heparanase-inhibitory activity. J Biol Chem 2014; 289:15231-43. [PMID: 24753252 DOI: 10.1074/jbc.m113.545343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Degradation of heparan sulfate (HS) in the extracellular matrix by heparanase is linked to the processes of tumor invasion and metastasis. Thus, a heparanase inhibitor can be a potential anticancer drug. Because HS with unsubstituted glucosamine residues accumulates in heparanase-expressing breast cancer cells, we assumed that these HS structures are resistant to heparanase and can therefore be utilized as a heparanase inhibitor. As expected, chemically synthetic HS-tetrasaccharides containing unsubstituted glucosamine residues, GlcAβ1-4GlcNH3 (+)(6-O-sulfate)α1-4GlcAβ1-4GlcNH3 (+)(6-O-sulfate), inhibited heparanase activity and suppressed invasion of breast cancer cells in vitro. Bifunctional NDST-1 (N-deacetylase/N-sulfotransferase-1) catalyzes the modification of N-acetylglucosamine residues within HS chains, and the balance of N-deacetylase and N-sulfotransferase activities of NDST-1 is thought to be a determinant of the generation of unsubstituted glucosamine. We also report here that EXTL3 (exostosin-like 3) controls N-sulfotransferase activity of NDST-1 by forming a complex with NDST-1 and contributes to generation of unsubstituted glucosamine residues.
Collapse
Affiliation(s)
- Satomi Nadanaka
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Eko Purunomo
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan
| | - Naoko Takeda
- the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8552, Japan, and
| | - Jun-ichi Tamura
- the Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8552, Japan, and the Department of Regional Environment, Faculty of Regional Sciences, Tottori University, Tottori, Tottori 680-8551, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo 658-8558, Japan,
| |
Collapse
|
19
|
Cheng F, Ruscher K, Fransson LÅ, Mani K. Non-toxic amyloid beta formed in the presence of glypican-1 or its deaminatively generated heparan sulfate degradation products. Glycobiology 2013; 23:1510-9. [PMID: 24026238 DOI: 10.1093/glycob/cwt079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The amyloid beta (Aβ) peptides (mainly Aβ40 and Aβ42), which are derived from the amyloid precursor protein (APP), can oligomerize into antibody A11-positive, neurotoxic species, believed to be involved in Alzheimer's disease. Interestingly, APP binds strongly to the heparan sulfate (HS) proteoglycan (PG) glypican-1 (Gpc-1) in vitro and both proteins are colocalized inside cells. In endosomes, APP is proteolytically processed to yield Aβ peptides. The HS chains of S-nitrosylated (SNO) Gpc-1 PG are cleaved into anhydromannose (anMan)-containing di- and oligosaccharides by an NO-dependent reaction in the same compartments. Here, we have studied the toxicity of oligomers/aggregates of Aβ40 and Aβ42, as well as Aβ40/42 mixtures that were formed in the presence of immobilized Gpc-1 PG or immobilized HS oligosaccharides. Afterwards, Aβ was displaced from the matrices, analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and assayed for A11 immunoreactivity, for effects on growth of mouse N2a neuroblastoma cells and for membrane leakage in rat cortical neurons. HS generally promoted and accelerated Aβ multimerization into oligomers as well as larger aggregates that were mostly A11 positive and showed toxic effects. However, non-toxic Aβ was formed in the presence of Gpc-1 PG or when anMan-containing HS degradation products were simultaneously generated. Both toxic and non-toxic Aβ peptides were taken up by the cells but toxic forms appeared to enter the nuclei to a larger extent. The protection afforded by the presence of HS degradation products may reflect a normal intracellular function for the Aβ peptides.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group
| | | | | | | |
Collapse
|
20
|
Cheng F, Svensson G, Fransson LÅ, Mani K. Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage. Glycobiology 2012; 22:1480-6. [DOI: 10.1093/glycob/cws111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Bjelakovic G, Beninati S, Bjelakovic B, Sokolovic D, Jevtovic T, Stojanovic I, Rossi S, Tabolacci C, Kocić G, Pavlovic D, Saranac L, Zivic S. Does polyamine oxidase activity influence the oxidative metabolism of children who suffer of diabetes mellitus? Mol Cell Biochem 2010; 341:79-85. [PMID: 20405312 DOI: 10.1007/s11010-010-0439-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/11/2010] [Indexed: 11/24/2022]
Abstract
Diabetes mellitus is a metabolic disease characterized by inadequate secretion of insulin. Polyamine oxidase (PAO), a FAD-containing enzyme is involved in the biodegradation of Sp and Spd, catalyzing the oxidative deamination of Sp and Spd, resulting in production of ammonia (NH(3)), corresponding amino aldehydes and H(2)O(2). Malondialdehyde (MDA) and acrolein (CH2=CHCHO), potentially toxic agents, which induce oxidative stress in mammalian cells, are then spontaneously formed from aminoaldehydes. The main signs of oxidative stress in diabetic children were the values of HbA1c and MDA levels. Polyamines have an insulin-like action. Antiglycation property of spermine and spermidine has been recently confirmed. There are no data in the literature about plasma polyamine oxidase (PAO) activities in children with type 1 diabetes. The idea of this study was to evaluate the polyamine metabolism through the estimation of polyamine oxidase activity. We have study children with newly diagnosed type 1 diabetes mellitus (n = 35, age group of 5-16 years, as well as age-matched healthy control subjects (n = 25). The biochemical investigations were done on diabetic children who have the pathological values of glucose (9.11-17.33 mmol/l) and glycosylated Hb (7.57-14.49% HbA(1c)). The children in the control group have referent values of glucose and glycated hemoglobin (4.11-5.84 mmol/L and HbA(1c) 4.22-6.81% of the total Hb. Glucose levels in blood plasma and glycosylated hemoglobin in erythrocythes hemolysates (HbA1c) were measured by using standard laboratory methods. PAO activity in venous blood plasma and the amount of malondialdehyde (MDA) were measured by the spectrophotometric methods. PAO activity, glycemia, HbA1c and MDA were significantly increased in diabetic children compared to the control subjects. PAO activity in children with type 1 diabetes mellitus was very high. The findings of higher blood HbA(1C) and MDA levels confirm the presence of oxidant stress in children with type 1 diabetes mellitus and demonstrate that PAO activity may participate in these circumstances.
Collapse
Affiliation(s)
- G Bjelakovic
- Faculty of Medicine, Institute of Biochemistry, University of Nis, 18000 Nis, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
S-Nitrosylation of secreted recombinant human glypican-1. Glycoconj J 2010; 26:1247-57. [PMID: 19479373 DOI: 10.1007/s10719-009-9243-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/29/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Glypican-1 is a glycosylphosphatidylinositol anchored cell surface S-nitrosylated heparan sulfate proteoglycan that is processed by nitric oxide dependent degradation of its side chains. Cell surface-bound glypican-1 becomes internalized and recycles via endosomes, where the heparan sulphate chains undergo nitric oxide and copper dependent autocleavage at N-unsubstituted glucosamines, back to the Golgi. It is not known if the S-nitrosylation occurs during biosynthesis or recycling of the protein. Here we have generated a recombinant human glypican-1 lacking the glycosylphosphatidylinositol-anchor. We find that this protein is directly secreted into the culture medium both as core protein and proteoglycan form and is not subjected to internalization and further modifications during recycling. By using SDS-PAGE, Western blotting and radiolabeling experiments we show that the glypican-1 can be S-nitrosylated. We have measured the level of S-nitrosylation in the glypican-1 core protein by biotin switch assay and find that the core protein can be S-nitrosylated in the presence of copper II ions and NO donor. Furthermore the glypican-1 proteoglycan produced in the presence of polyamine synthesis inhibitor, alpha-difluoromethylornithine, was endogenously S-nitrosylated and release of nitric oxide induced deaminative autocleavage of the HS side chains of glypican-1. We also show that the N-unsubstituted glucosamine residues are formed during biosynthesis of glypican-1 and that the content increased upon inhibition of polyamine synthesis. It cannot be excluded that endogenous glypican-1 can become further S-nitrosylated during recycling.
Collapse
|
23
|
Abstract
Although ascorbic acid is an important water-soluble antioxidant and enzyme cofactor in plants and animals, humans and some other species do not synthesize ascorbate due to the lack of the enzyme catalyzing the final step of the biosynthetic pathway, and for them it has become a vitamin. This review focuses on the role of ascorbate in various hydroxylation reactions and in the redox homeostasis of subcellular compartments including mitochondria and endoplasmic reticulum. Recently discovered functions of ascorbate in nucleic acid and histone dealkylation and proteoglycan deglycanation are also summarized. These new findings might delineate a role for ascorbate in the modulation of both pro- and anti-carcinogenic mechanisms. Recent advances and perspectives in therapeutic applications are also reviewed. On the basis of new and earlier observations, the advantages of the lost ability to synthesize ascorbate are pondered. The increasing knowledge of the functions of ascorbate and of its molecular sites of action can mechanistically substantiate a place for ascorbate in the treatment of various diseases.
Collapse
Affiliation(s)
- J Mandl
- Department of Medical Chemistry, Molecular Biology and Patobiochemistry, Semmelweis University Budapest, Budapest, Hungary.
| | | | | |
Collapse
|
24
|
Abstract
The functions of heparan sulfate (HS) depend on the expression of structural domains that interact with protein partners. Glycosaminoglycans (GAGs) exhibit a high degree of polydispersity in their composition, chain length, sulfation, acetylation, and epimerization patterns. It is essential for the understanding of GAG biochemistry to produce detailed structural information as a function of spatial and temporal factors in biological systems. Toward this end, we developed a set of procedures to extract GAGs from various rat organ tissues and examined and compared HS expression levels using liquid chromatography/mass spectrometry. Here we demonstrate detailed variations in HS GAG chains as a function of organ location. These studies shed new light on the structural variation of GAG chains with respect to average length, disaccharide composition, and expression of low abundance structural epitopes, including unsubstituted amino groups and lyase-resistant oligosaccharides. The data show the presence of a disaccharide with an unsubstituted amino group that is endogenous and widely expressed in mammalian organ tissues.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
25
|
Potentiation of naphthoxyloside cytotoxicity on human tumor cells by difluoromethylornithine and spermine-NONOate. Cancer Lett 2009; 273:148-54. [DOI: 10.1016/j.canlet.2008.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 05/22/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
|
26
|
Roy UKB, Rial NS, Kachel KL, Gerner EW. Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog 2008; 47:538-53. [PMID: 18176934 DOI: 10.1002/mc.20414] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endocytic pathways have been implicated in polyamine transport in mammalian cells, but specific mechanisms have not been described. We have shown that expression of a dominant negative (DN) form of the GTPase Dynamin, but not Eps15, diminished polyamine uptake in colon cancer cells indicating a caveolar and nonclathrin uptake mode. Polyamines co-sediment with lipid raft/caveolin-1 rich fractions, of the plasma membrane in a sucrose density gradient. Knock down of caveolin-1 significantly increased polyamine uptake. Conversely, ectopic expression of this protein resulted in diminished polyamine uptake. We also found that presence of an activated K-RAS oncogene significantly increased polyamine uptake by colon cancer cells. This effect is through an increase in caveolin-1 phosphorylation at tyrosine residue 14. Caveolin-1 is a negative regulator of caveolar endocytosis and phosphorylation in a K-RAS dependent manner leads to an increase in caveolar endocytosis. In cells expressing wild type K-RAS, addition of exogenous uPA was sufficient to stimulate caveolar endocytosis of polyamines. This effect was abrogated by the addition of a SRC kinase inhibitor. These data indicate that polyamine transport follows a dynamin-dependent and clathrin-independent endocytic uptake route, and this route is positively regulated by the oncogenic expression of K-RAS in a caveolin-1 dependent manner.
Collapse
Affiliation(s)
- Upal K Basu Roy
- Biochemistry and Molecular and Cellular Biology Graduate Program, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
27
|
Mani K, Sandgren S, Lilja J, Cheng F, Svensson K, Persson L, Belting M. HIV-Tat protein transduction domain specifically attenuates growth of polyamine deprived tumor cells. Mol Cancer Ther 2007; 6:782-8. [PMID: 17308074 DOI: 10.1158/1535-7163.mct-06-0370] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyamines are essential for tumor cell growth, and the polyamine pathway represents an attractive target for cancer treatment. Several polyamine transport proteins have been cloned and characterized in bacteria and yeast cells; however, the mechanism of polyamine entry into mammalian cells remains poorly defined, although a role for proteoglycans has been suggested. Here, we show that the HIV-Tat transduction peptide, which is known to enter cells via a proteoglycan-dependent pathway, efficiently inhibits polyamine uptake. Polyamine uptake-deficient mutant cells with intact proteoglycan biosynthesis (CHO MGBG) displayed unperturbed HIV-Tat uptake activity compared with wild-type cells, supporting the notion that HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than a putative downstream transporter. HIV-Tat specifically inhibited growth of human carcinoma cells made dependent on extracellular polyamines by treatment with the polyamine biosynthesis inhibitor alpha-difluoromethylornithine; accordingly, the Tat peptide prevented intracellular accumulation of exogenous polyamines. Moreover, combined treatment with alpha-difluoromethylornithine and HIV-Tat efficiently blocked tumor growth in an experimental mouse model. We conclude that HIV-Tat transduction domain and polyamines enter cells through a common pathway, which can be used to target polyamine-dependent tumor growth in the treatment of cancer.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Clinical Sciences, Section of Oncology, Lund University, Barngatan 2:1, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Wittrup A, Sandgren S, Lilja J, Bratt C, Gustavsson N, Mörgelin M, Belting M. Identification of proteins released by mammalian cells that mediate DNA internalization through proteoglycan-dependent macropinocytosis. J Biol Chem 2007; 282:27897-904. [PMID: 17623661 DOI: 10.1074/jbc.m701611200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naked DNA plasmid represents the simplest vehicle for gene therapy and DNA-based vaccination purposes; however, the molecular mechanisms of DNA uptake in mammalian cells are poorly understood. Here, we show that naked DNA uptake occurs via proteoglycan-dependent macropinocytosis, thus challenging the concept of a specific DNA-internalizing receptor. Cells genetically deficient in proteoglycans, which constitute a major source of cell-surface polyanions, exhibited substantially decreased uptake of likewise polyanionic DNA. The apparent paradox was explained by the action of DNA-transporting proteins present in conditioned medium. Complexes between these proteins and DNA require proteoglycans for cellular entry. Mass spectrometry analysis of cell medium components identified several proteins previously shown to associate with DNA and to participate in membrane transport of macromolecular cargo. The major pathway for proteoglycan-dependent DNA uptake was macropinocytosis, whereas caveolae-dependent and clathrin-dependent pathways were not involved, as determined by using caveolin-1 knock-out cells, dominant-negative constructs for dynamin and Eps15, and macropinocytosis-disruptive drugs, as well as confocal fluorescence co-localization studies. Importantly, a significant fraction of internalized DNA was translocated to the nucleus for expression. Our results provide novel insights into the mechanism of DNA uptake by mammalian cells and extend the emerging role of proteoglycans in macromolecular transport.
Collapse
Affiliation(s)
- Anders Wittrup
- Department of Clinical Sciences, Lund University, SE-221 85 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Mani K, Cheng F, Fransson LA. Heparan Sulfate Degradation Products Can Associate with Oxidized Proteins and Proteasomes. J Biol Chem 2007; 282:21934-44. [PMID: 17540770 DOI: 10.1074/jbc.m701200200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The S-nitrosylated proteoglycan glypican-1 recycles via endosomes where its heparan sulfate chains are degraded into anhydromannose-containing saccharides by NO-catalyzed deaminative cleavage. Because heparan sulfate chains can be associated with intracellular protein aggregates, glypican-1 autoprocessing may be involved in the clearance of misfolded recycling proteins. Here we have arrested and then reactivated NO-catalyzed cleavage in the absence or presence of proteasome inhibitors and analyzed the products present in endosomes or co-precipitating with proteasomes using metabolic radiolabeling and immunomagnet isolation as well as by confocal immunofluorescence microscopy. Upon reactivation of deaminative cleavage in T24 carcinoma cells, [(35)S]sulfate-labeled degradation products appeared in Rab7-positive vesicles and co-precipitated with a 20 S proteasome subunit. Simultaneous inhibition of proteasome activity resulted in a sustained accumulation of degradation products. We also demonstrated that the anhydromannose-containing heparan sulfate degradation products are detected by a hydrazide-based method that also identifies oxidized, i.e. carbonylated, proteins that are normally degraded in proteasomes. Upon inhibition of proteasome activity, pronounced colocalization between carbonyl-staining, anhydro-mannose-containing degradation products, and proteasomes was observed in both T24 carcinoma and N2a neuroblastoma cells. The deaminatively generated products that co-precipitated with the proteasomal subunit contained heparan sulfate but were larger than heparan sulfate oligosaccharides and resistant to both acid and alkali. However, proteolytic degradation released heparan sulfate oligosaccharides. In Niemann-Pick C-1 fibroblasts, where deaminative degradation of heparan sulfate is defective, carbonylated proteins were abundant. Moreover, when glypican-1 expression was silenced in normal fibroblasts, the level of carbonylated proteins increased raising the possibility that deaminative heparan sulfate degradation is involved in the clearance of misfolded proteins.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Experimental Medical Science, Section of Neuroscience, Lund University, Biomedical Centre A13, Lund, Sweden.
| | | | | |
Collapse
|
30
|
Fransson LA, Mani K. Novel aspects of vitamin C: how important is glypican-1 recycling? Trends Mol Med 2007; 13:143-9. [PMID: 17344097 DOI: 10.1016/j.molmed.2007.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/06/2007] [Accepted: 02/22/2007] [Indexed: 02/04/2023]
Abstract
The reduced form of vitamin C, ascorbic acid, is well known for its function as an antioxidant and as a protective agent against scurvy. However, many recent studies indicate other functions for vitamin C in mammalian cells. Novel findings provide possible explanations for observed beneficial effects of a high intake of vitamin C on cell growth, gene transcription, host resistance to infection, uptake of polyamines and clearance of misfolded proteins. Vitamin C exerts its effects indirectly via hypoxia-inducible factor, nitric oxide synthase and the heparan sulfate proteoglycan glypican-1, which is deglycanated in a vitamin C- and copper-dependent reaction.
Collapse
Affiliation(s)
- Lars-Ake Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Biomedical Centre A13, Lund University, Lund, Sweden. lars-ake@
| | | |
Collapse
|
31
|
Cheng F, Lindqvist J, Haigh CL, Brown DR, Mani K. Copper-dependent co-internalization of the prion protein and glypican-1. J Neurochem 2006; 98:1445-57. [PMID: 16923158 DOI: 10.1111/j.1471-4159.2006.03981.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heparan sulfate chains have been found to be associated with amyloid deposits in a number of diseases including transmissible spongiform encephalopathies. Diverse lines of evidence have linked proteoglycans and their glycosaminoglycan chains, and especially heparan sulfate, to the metabolism of the prion protein isoforms. Glypicans are a family of glycosylphosphatidylinositol-anchored, heparan sulfate-containing, cell-associated proteoglycans. Cysteines in glypican-1 can become nitrosylated by endogenously produced nitric oxide. When glypican-1 is exposed to a reducing agent, such as ascorbate, nitric oxide is released and autocatalyses deaminative cleavage of heparan sulfate chains. These processes take place while glypican-1 recycles via a non-classical, caveolin-associated pathway. We have previously demonstrated that prion protein provides the Cu2+ ions required to nitrosylate thiol groups in the core protein of glypican-1. By using confocal immunofluorescence microscopy and immunomagnetic techniques, we now show that copper induces co-internalization of prion protein and glypican-1 from the cell surface to perinuclear compartments. We find that prion protein is controlling both the internalization of glypican-1 and its nitric oxide-dependent autoprocessing. Silencing glypican-1 expression has no effect on copper-stimulated prion protein endocytosis, but in cells expressing a prion protein construct lacking the copper binding domain internalization of glypican-1 is much reduced and autoprocessing is abrogated. We also demonstrate that heparan sulfate chains of glypican-1 are poorly degraded in prion null fibroblasts. The addition of either Cu2+ ions, nitric oxide donors, ascorbate or ectopic expression of prion protein restores heparan sulfate degradation. These results indicate that the interaction between glypican-1 and Cu2+-loaded prion protein is required both for co-internalization and glypican-1 self-pruning.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Ahn SC, Kim BY, Oh WK, Park YM, Kim HM, Ahn JS. Colorimetric heparinase assay for alternative anti-metastatic activity. Life Sci 2006; 79:1661-5. [PMID: 16806278 DOI: 10.1016/j.lfs.2006.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/13/2006] [Accepted: 05/25/2006] [Indexed: 11/28/2022]
Abstract
Heparanase has been previously associated with the metastatic potential, inflammation, and angiogenesis of tumor cells. Heparanase activity has been detected by means of UV absorption, radiolabeled substrates, electrophoretic migration, and heparan sulfate affinity assays. However, those methods have proven to be somewhat problematic with regards to application to actual biological samples, the accessibility of the immobilized substrates, experimental sensitivity, and the separation of degraded products. Rather than focusing on heparanase activity, then, we have developed a rapid, alternative colorimetric heparinase assay, on the basis of the recent finding that sulfated disaccharides generated from heparin by bacterial heparinase exhibit biological properties comparable to those from heparan sulfate by mammalian heparanase. In this study, the concentrations of porcine heparin and bacterial heparinase I were determined using a Sigma Diagnostics Kit. Morus alba was selected as a candidate through this assay system, and an inhibitor, resveratrol, was purified from its methanol extract. Its anti-metastatic effects on the pulmonary metastasis of murine B16 melanoma cells were also evaluated. Our findings suggest that this assay may prove useful as a diagnostic tool for heparinase inhibition, as an alternative anti-metastatic target.
Collapse
Affiliation(s)
- S C Ahn
- Department of Microbiology and Immunology, Pusan National University College of Medicine, Ami-dong 1-10, Seo-ku, Pusan 602-739, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Belting M, Mani K, Jönsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson LA. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J Biol Chem 2003; 278:47181-9. [PMID: 12972423 DOI: 10.1074/jbc.m308325200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are essential for growth and survival of all cells. When polyamine biosynthesis is inhibited, there is up-regulation of import. The mammalian polyamine transport system is unknown. We have previously shown that the heparan sulfate (HS) side chains of recycling glypican-1 (Gpc-1) can sequester spermine, that intracellular polyamine depletion increases the number of NO-sensitive N-unsubstituted glucosamines in HS, and that NO-dependent cleavage of HS at these sites is required for spermine uptake. The NO is derived from S-nitroso groups in the Gpc-1 protein. Using RNA interference technology as well as biochemical and microscopic techniques applied to both normal and uptake-deficient cells, we demonstrate that inhibition of Gpc-1 expression abrogates spermine uptake and intracellular delivery. In unperturbed cells, spermine and recycling Gpc-1 carrying HS chains rich in N-unsubstituted glucosamines were co-localized. By exposing cells to ascorbate, we induced release of NO from the S-nitroso groups, resulting in HS degradation and unloading of the sequestered polyamines as well as nuclear targeting of the deglycanated Gpc-1 protein. Polyamine uptake-deficient cells appear to have a defect in the NO release mechanism. We have managed to restore spermine uptake partially in these cells by providing spermine NONOate and ascorbate. The former bound to the HS chains of recycling Gpc-1 and S-nitrosylated the core protein. Ascorbate released NO, which degraded HS and liberated the bound spermine. Recycling HS proteoglycans of the glypican-type may be plasma membrane carriers for cargo taken up by caveolar endocytosis.
Collapse
Affiliation(s)
- Mattias Belting
- Department of Cell and Molecular Biology, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mani K, Cheng F, Havsmark B, Jönsson M, Belting M, Fransson LA. Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate. J Biol Chem 2003; 278:38956-65. [PMID: 12732622 DOI: 10.1074/jbc.m300394200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.
Collapse
Affiliation(s)
- Katrin Mani
- Department of Cell and Molecular Biology, Section for Cell and Matrix Biology, Lund University, BMC C13, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, Wick M, Nemenoff RA, Geraci MW, Voelkel NF. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res 2003; 92:1162-9. [PMID: 12714563 DOI: 10.1161/01.res.0000073585.50092.14] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PPARgamma is a member of a family of nuclear receptors/ligand-dependent transcription factors, which bind to hormone response elements on target gene promoters. An antiproliferative and proapoptotic action profile of PPARgamma has been described and PPARgamma may function as a tumor suppressor gene, but little is known about the role of PPARgamma in vascular remodeling. One group of human diseases that shows impressive vascular remodeling exclusively in the lungs is the group of severe pulmonary hypertensive disorders, which is characterized by complex, endothelial cell-proliferative lesions of lung precapillary arterioles composed of clusters of phenotypically altered endothelial cells that occlude the vessel lumen and contribute to the elevation of the pulmonary arterial pressure and reduce local lung tissue blood flow. In the present study, we report the ubiquitous PPARgamma expression in normal lungs, and in contrast, a reduced lung tissue PPARgamma gene and protein expression in the lungs from patients with severe PH and loss of PPARgamma expression in their complex vascular lesions. We show that fluid shear stress reduces PPARgamma expression in ECV304 endothelial cells, that ECV304 cells that stably express dominant-negative PPARgamma (DN-PPARgamma ECV304) form sprouts when placed in matrigel and that DN-PPARgamma ECV304 cells, after tail vein injection in nude mice, form lumen-obliterating lung vascular lesions. We conclude that fluid shear stress decreases the expression of PPARgamma in endothelial cells and that loss of PPARgamma expression characterizes an abnormal, proliferating, apoptosis-resistant endothelial cell phenotype.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Division
- Cell Line
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/transplantation
- Female
- Gene Expression
- Genes, Dominant
- Humans
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Immunohistochemistry
- Lung/blood supply
- Lung/metabolism
- Lung/pathology
- Male
- Middle Aged
- Neovascularization, Physiologic/genetics
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Stress, Mechanical
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Shingo Ameshima
- Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, Colo, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A family of lipid-linked heparan sulfate (HS) proteoglycans, later named glypicans, were identified some 15 years ago. The discoveries that mutations in genes involved in glypican assembly cause developmental defects have brought them into focus. Glypicans have a characteristic pattern of 14 conserved cysteine residues. There are also two-three attachment sites for HS side-chains near the membrane anchor. The HS side-chains consist of a repeating disaccharide back-bone that is regionally and variably modified by epimerization and different types of sulfations, creating a variety of binding sites for polycationic molecules, especially growth factors. Recycling forms of glypican-1 are potential vehicles for transport of cargo into and through cells. The glypican-1 core protein is S-nitrosylated and nitric oxide released from these sites cleave the HS chains at glucosamine units lacking N-substitution. This processing is necessary for polyamine uptake.
Collapse
Affiliation(s)
- Lars-Ake Fransson
- Department of Cell and Molecular Biology, BMC C13, Lund University, SE-221 84, Lund, Sweden.
| |
Collapse
|
37
|
Westling C, Lindahl U. Location of N-unsubstituted glucosamine residues in heparan sulfate. J Biol Chem 2002; 277:49247-55. [PMID: 12374790 DOI: 10.1074/jbc.m209139200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.
Collapse
Affiliation(s)
- Camilla Westling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, P. O. Box 582, SE-75123 Uppsala, Sweden
| | | |
Collapse
|
38
|
Grobe K, Ledin J, Ringvall M, Holmborn K, Forsberg E, Esko JD, Kjellén L. Heparan sulfate and development: differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:209-15. [PMID: 12417402 DOI: 10.1016/s0304-4165(02)00386-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heparan sulfates (HSs) are N- and O-sulfated polysaccharide components of proteoglycans, which are important constituents of the cell surface as well as the extracellular matrix. Heparin, with extensive clinical application as an anticoagulant, is a highly sulfated form of HS present within the granules of connective tissue type mast cells. The diverse functions of HS, which include the modulation of growth factor/cytokine activity, interaction with matrix proteins and binding of enzymes to cell surfaces, depend greatly on the presence of specific, high affinity regions on the chains. N-acetylglucosamine N-deacetylase/N-sulfotransferases, NDSTs, are an important group of enzymes in HS biosynthesis, initiating the sulfation of the polysaccharide chains and thus determining the generation of the high affinity sites. Here, we review the role of the four vertebrate NDSTs in HS biosynthesis as well as their regulated expression. The main emphasis is the phenotypes of mice lacking one or more of the NDSTs.
Collapse
Affiliation(s)
- Kay Grobe
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cheng F, Mani K, van den Born J, Ding K, Belting M, Fransson LA. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J Biol Chem 2002; 277:44431-9. [PMID: 12226079 DOI: 10.1074/jbc.m205241200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Cell and Molecular Biology, Lund University, BMC C13, SE-221 84, Lund, Sweden and the Department of Cell Biology, Free University of Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 2002; 277:38877-83. [PMID: 12163493 DOI: 10.1074/jbc.m205395200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New therapies based on gene transfer and protein delivery require a better understanding of the basic mechanisms of macromolecular membrane transport. We have studied cellular uptake of macromolecular polyanions, i.e. DNA and glycosaminoglycans, and a polybasic HIV-Tat derived peptide (GRKKRRQRRRPPQC) using fluorescence assisted cell sorting and confocal fluorescence microscopy. The transactivator of HIV transcription (Tat) peptide stimulated cellular uptake of both DNA and heparan sulfate in a time-, concentration-, and temperature-dependent manner. Peptide-polyanion complexes accumulated in large, acidic, cytoplasmic vesicles formed de novo. This was followed by transfer of polyanion into the nuclear compartment and subsequent disappearance of the endolysosomal vesicles. In the absence of polyanion the Tat peptide displayed rapid accumulation in the nuclear compartment. However, in the presence of polyanion the peptide was almost exclusively retained in cytoplasmic vesicles. Cell-surface proteoglycans played a pivotal role in the uptake of complexes exhibiting a relatively high peptide to polyanion ratio, corresponding to a net positive charge of the complexes. Uptake of polyanions per se or complexes with a relatively low peptide to polyanion ratio was favored by proteoglycan deficiency in the recipient cells, indicating the existence of distinct transport mechanisms. Moreover, expression of full-length HIV-Tat as well as exogenous addition of HIV-Tat peptide resulted in cellular accumulation of endogenous proteoglycans. We conclude that an HIV-Tat derived peptide efficiently targets extraneous DNA and glycosaminoglycans to the nuclear compartment and that proteoglycans serve a regulatory role in these processes, which may have implications for directed gene and drug delivery in vivo.
Collapse
Affiliation(s)
- Staffan Sandgren
- Department of Cell and Molecular Biology, Section of Cell and Matrix Biology, Lund University, BMC, C13, S-221 84 Lund, Sweden
| | | | | |
Collapse
|
41
|
Ding K, Mani K, Cheng F, Belting M, Fransson LA. Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols. J Biol Chem 2002; 277:33353-60. [PMID: 12084716 DOI: 10.1074/jbc.m203383200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 371-376). Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1, there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges (Ding, K., Sandgren, S., Mani, K., Belting, M., and Fransson, L.-A. (2001) J. Biol. Chem. 276, 46779-46791). Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as slightly charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. These glycoforms were converted to highly charged species upon treatment of cells with 1 mm l-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-Nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu(2+)/Cu(+) redox cycle. Under cell-free conditions, purified S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO release was triggered by l-ascorbate. The heparan sulfate fragments generated in cells during this autocatalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols, whereas Cu(2+) is reduced to Cu(+). Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein, whereas Cu(+) is oxidized to Cu(2+).
Collapse
Affiliation(s)
- Kan Ding
- Department of Cell and Molecular Biology, Section for Cell and Matrix Biology, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|