1
|
Weck JM, Nair R, Kesici MZ, Shang X, Gavrilović S, Monzel C, Heuer-Jungemann A. Effects of DNA Origami-Based Nanoagent Design on Apoptosis Induction in a Large 3D Cancer Spheroid Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502490. [PMID: 40277317 DOI: 10.1002/smll.202502490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Indexed: 04/26/2025]
Abstract
DNA origami offers highly accurate control over shape and addressability on the nanoscale. This precise control makes it highly valuable in various fields, particularly precision nanotherapeutics. For cancer treatment, the extrinsic activation of programmed cell death by Fas receptor (FasR)/CD95-based nanoagents is a promising, minimally invasive strategy. However, treating large, solid tumors poses challenges for the design of DNA origami-based therapeutics, including drug distribution and altered cellular behavior. Here, these challenges are addressed by establishing design principles for nanoagents and testing them in a 3D cancer spheroid model. First, the ability of DNA origami nanostructures are assessed to penetrate large cancer spheroids, finding that penetration is influenced by the DNA origami size rather than its structural flexibility. Second, the capability of FasL-DNA origami-based nanoagents are evaluated to induce apoptosis in cancer spheroids, representing a more biologically relevant environment, compared to 2D studies. It is found that apoptosis induction is primarily determined by the FasL attachment strategy rather than the underlying DNA origami structure. The most effective nanoagents constructed in this study halted spheroid growth and eradicated all cancer cells within the spheroids. This study offers important insights into critical design considerations for DNA-based therapeutics for complex cellular environments, advancing DNA origami nanotherapeutic development.
Collapse
Affiliation(s)
- Johann M Weck
- Max Planck Institute of Biochemistry, Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Munich, Germany
| | - Riya Nair
- Max Planck Institute of Biochemistry, Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Munich, Germany
| | - Merve-Z Kesici
- Max Planck Institute of Biochemistry, Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Munich, Germany
| | - Xiaoyue Shang
- Experimental Medical Physics, Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Svetozar Gavrilović
- Max Planck Institute of Biochemistry, Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Munich, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry, Martinsried and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Munich, Germany
| |
Collapse
|
2
|
Lu QQ, Zheng WW, Zhang ZY, Cong PK, Guo X, Zhang Y, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. Trichinella spiralis excretory/secretory proteins mediated larval invasion via inducing gut epithelial apoptosis and barrier disruption. PLoS Negl Trop Dis 2025; 19:e0012842. [PMID: 39847596 PMCID: PMC11793818 DOI: 10.1371/journal.pntd.0012842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intestinal larva invasion is a crucial step of Trichinella spiralis infection. Intestinal infective larvae (IIL) and their excretory/secretory proteins (ESP) interact with gut epithelium, which often results in gut epithelium barrier injuries. Previous studies showed when T. spiralis invaded intestinal epithelium cells, the IIL ESP disrupted the tight junctions (TJs) of Caco-2 monolayer, but the mechanism is not clear. The IIL ESP might cause gut epithelial apoptosis, weaken the gut barrier and aid the larval invasion. The aim of this study was to investigate whether T. spiralis IIL ESP participate in enterocyte apoptosis and disrupt gut epithelial barrier to promote the larval invasion. METHODOLOGY/PRINCIPAL FINDINGS Cell viability was assessed by CCK-8 assay and the results showed that 200 μg/ml of IIL ESP incubated with Caco-2 cells for 18 h inhibited the Caco-2 cell viability. The results of trans-epithelial electrical resistance (TEER) and FITC-dextran showed that IIL ESP decreased the TEER, increased FITC-dextran flux in Caco-2 monolayer. qPCR, Western blot and immunofluorescence test (IFT) showed that IIL ESP decreased the mRNA and protein expression of TJs (ZO-1, E-cad, Occludin and Claudin-1). The IIL ESP-induced Caco-2 cell apoptosis was observed by DAPI, Hoechst 33358, TUNEL and Annexin V/PI staining. Besides, flow cytometry revealed an increasing apoptosis rate in Caco-2 cells after the IIL ESP treatment. qPCR and Western blot analysis indicated that IIL ESP activated caspases (Caspase 3, Caspase 9 and Caspase 8), up-regulated the pro-apoptotic factors (Bax and Cytochrome c) and down-regulated the anti-apoptosis molecule Bcl-2. Interestingly, pretreatment of Caco-2 cells with apoptosis inhibitor Z-VAD-FMK abrogated and recovered the barrier function of Caco-2 monolayer destroyed by IIL ESP. Furthermore, the Z-VAD-FMK pretreatment also impeded the in vitro larva invasion of Caco-2 monolayer. CONCLUSIONS T. spiralis IIL ESP induced gut epithelial apoptosis, reduced the TJs expression, damaged gut epithelial integrity and barrier function, and promoted larval invasion. These findings provided a basis of further understanding the interaction mechanism between T. spiralis and host gut epithelium, and they were valuable to the development new prevention and therapeutic strategy of early T. spiralis infection.
Collapse
Affiliation(s)
- Qi Qi Lu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhao Yu Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Appiah C, Chen S, Pori AI, Retyunskiy V, Tzeng C, Zhao Y. Study of alloferon, a novel immunomodulatory antimicrobial peptide (AMP), and its analogues. Front Pharmacol 2024; 15:1359261. [PMID: 38434708 PMCID: PMC10904621 DOI: 10.3389/fphar.2024.1359261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Antimicrobial peptides (AMPs) are widely distributed throughout the biosphere and represent a class of conserved peptide molecules with intrinsic antimicrobial properties. Their broad-spectrum antimicrobial activity and low risk to induce resistance have led to increased interest in AMPs as potential alternatives to traditional antibiotics. Among the AMPs, alloferon has been addressed due to its immunomodulatory properties that augment both innate and adaptive immune responses against various pathogens. Alloferon and its analogues have demonstrated pharmaceutical potential through their ability to enhance Natural Killer (NK) cell cytotoxicity and stimulate interferon (IFN) synthesis in both mouse and human models. Additionally, they have shown promise in augmenting antiviral and antitumor activities in mice. In this article, we provide a comprehensive review of the biological effects of alloferon and its analogues, incorporating our own research findings as well. These insights may contribute to a deeper understanding of the therapeutic potential of these novel AMPs.
Collapse
Affiliation(s)
- Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Afia Ibnat Pori
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | | | - Chimeng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Qin Y, Wan W, Li J, Wang Z, Yang Y, Li J, Ma H, Yu Z, Xiang Z, Zhang Y. A novel Fas ligand plays an important role in cell apoptosis of Crassostrea hongkongensis: molecular cloning, expression profiles and functional identification of ChFasL. Front Immunol 2023; 14:1267772. [PMID: 37868973 PMCID: PMC10585096 DOI: 10.3389/fimmu.2023.1267772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Background Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.
Collapse
Affiliation(s)
- Yanping Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Weitao Wan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhongyu Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yue Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Research Institute of Marine Ecological Environment Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Cheng L. Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Pharmacol 2021; 12:588063. [PMID: 33981213 PMCID: PMC8107822 DOI: 10.3389/fphar.2021.588063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions are a public health issue that draws widespread attention, especially for Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune response has been extensively studied, our understanding of the mechanism is far from satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized. Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation test has been exploited to aid in identifying the causative drugs. Critical questions on the pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN? What makes the skin and mucous membrane so special to be targeted? Do they relate to skin/mucous expression of transporters? What is the common machinery underlying different HLA-B alleles associated with SJS/TEN and common metabolites?
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Trivedi PM, Fynch S, Kennedy LM, Chee J, Krishnamurthy B, O'Reilly LA, Strasser A, Kay TWH, Thomas HE. Soluble FAS ligand is not required for pancreatic islet inflammation or beta-cell destruction in non-obese diabetic mice. Cell Death Discov 2019; 5:136. [PMID: 31552143 PMCID: PMC6755132 DOI: 10.1038/s41420-019-0217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
CD8+ T cells play a central role in beta-cell destruction in type 1 diabetes. CD8+ T cells use two main effector pathways to kill target cells, perforin plus granzymes and FAS ligand (FASL). We and others have established that in non-obese diabetic (NOD) mice, perforin is the dominant effector molecule by which autoreactive CD8+ T cells kill beta cells. However, blocking FASL pharmacologically was shown to protect NOD mice from diabetes, indicating that FASL may have some role. FASL can engage with its receptor FAS on target cells either as membrane bound or soluble FASL. It has been shown that membrane-bound FASL is required to stimulate FAS-induced apoptosis in target cells, whereas excessive soluble FASL can induce NF-κB-dependent gene expression and inflammation. Because islet inflammation is a feature of autoimmune diabetes, we tested whether soluble FASL could be important in disease pathogenesis independent of its cell death function. We generated NOD mice deficient in soluble FASL, while maintaining expression of membrane-bound FASL due to a mutation in the FASL sequence required for cleavage by metalloproteinase. NOD mice lacking soluble FASL had normal numbers of lymphocytes in their spleen and thymus. Soluble FASL deficient NOD mice had similar islet inflammation as wild-type NOD mice and were not protected from diabetes. Our data indicate that soluble FASL is not required in development of autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak M Trivedi
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,5Present Address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Stacey Fynch
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Lucy M Kennedy
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Jonathan Chee
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,6Present Address: University of Western Australia, Nedlands, Western Australia 6009 Australia
| | | | - Lorraine A O'Reilly
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas W H Kay
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| | - Helen E Thomas
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| |
Collapse
|
8
|
Williams JW, Ferreira CM, Blaine KM, Rayon C, Velázquez F, Tong J, Peter ME, Sperling AI. Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Front Immunol 2018; 9:2521. [PMID: 30443253 PMCID: PMC6221963 DOI: 10.3389/fimmu.2018.02521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
Fas (CD95/APO-1) and its ligand (FasL/CD95L) promote the resolution of type 2 lung inflammation and eosinophilia. We previously found that Fas-deficiency on T cells, but not eosinophils, delayed resolution of inflammation. However, Fas can signal both cell death and have a positive signaling function that can actually activate cells. In this study, we investigated whether Fas-induced death or Fas-activated signaling pathways promote resolution of allergic lung inflammation. By increasing T cell survival through two Fas-independent pathways, using Bim-deficient T cells or Bcl-xL overexpressing T cells, no differences in resolution of Th2-mediated inflammation was observed. Furthermore, Th2 cells were inherently resistant to Fas-mediated apoptosis and preferentially signaled through non-apoptotic pathways following FasL treatment. Utilizing Fas-mutant mice deficient in apoptotic but sufficient for non-apoptotic Fas signaling pathways, we demonstrate that non-apoptotic Fas signaling in T cells drives resolution of Th2-mediated airway inflammation. Our findings reveal a previously unknown role for non-apoptotic Fas signaling on Th2 cells in the induction of resolution of type 2 inflammation.
Collapse
Affiliation(s)
- Jesse W. Williams
- Committee on Molecular Pathology and Molecular Medicine, Chicago, IL, United States
| | - Caroline M. Ferreira
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, United States
| | - Kelly M. Blaine
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, United States
| | - Crystal Rayon
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, United States
| | - Francisco Velázquez
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, United States
| | - Jiankun Tong
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Marcus E. Peter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Anne I. Sperling
- Committee on Molecular Pathology and Molecular Medicine, Chicago, IL, United States
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chicago, IL, United States
- Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Interleukin-15 Is Associated with Severity and Mortality in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. J Invest Dermatol 2016; 137:1065-1073. [PMID: 28011147 DOI: 10.1016/j.jid.2016.11.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Early diagnosis and prognosis monitoring for Stevens-Johnson syndrome/toxic epidermal necrolysis (TEN) still remain a challenge. This study aims to explore any cytokine/chemokine with prognostic potential in Stevens-Johnson syndrome/TEN. Through screening a panel of 28 serological factors, IL-6, IL-8, IL-15, tumor necrosis factor-α, and granulysin were upregulated in patients with Stevens-Johnson syndrome/TEN and selected for the further validation in total 155 patients with Stevens-Johnson syndrome/TEN, including 77 from Taiwan and 78 from the Registry of Severe Cutaneous Adverse Reactions. Among these factors evaluated, the levels of IL-15 (r = 0.401; P < 0.001) and granulysin (r = 0.223; P = 0.026) were significantly correlated with the disease severity in 112 samples after excluding patients with insufficient data to calculate the score of TEN. In addition, IL-15 was also associated with mortality (P = 0.002; odds ratio, 1.09; 95% confidence interval, 1.03-1.14; P = 0.001; adjusted odds ratio, 1.10; 95% confidence interval, 1.04-1.16). Consistent results were obtained after the exclusion of Taiwanese patients with sepsis to rule out possible confounders. Moreover, IL-15 was shown to enhance cytotoxicity of cultured natural killer cells and blister cells from patients with TEN. Our findings highlight a usefulness of IL-15 in prognosis monitoring and therapeutic intervention of this devastating condition.
Collapse
|
10
|
Divan A, Budd RC, Tobin RP, Newell-Rogers MK. γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol 2015; 97:653-63. [PMID: 25605869 DOI: 10.1189/jlb.2ru0714-343rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lyme disease is a multisystem infection transmitted by tick vectors with an incidence of up to 300,000 individuals/yr in the United States. The primary treatments are oral or i.v. antibiotics. Despite treatment, some individuals do not recover and have prolonged symptoms affecting multiple organs, including the nervous system and connective tissues. Inflammatory arthritis is a common symptom associated with Lyme pathology. In the past decades, γδ T cells have emerged as candidates that contribute to the transition from innate to adaptive responses. These cells are also differentially regulated within the synovia of patients affected by RLA. Here, we review and discuss potential cellular mechanisms involving γδ T cells and DCs in RLA. TLR signaling and antigen processing and presentation will be the key concepts that we review in aid of understanding the impact of γδ T cells in RLA.
Collapse
Affiliation(s)
- Ali Divan
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Ralph C Budd
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Richard P Tobin
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - M Karen Newell-Rogers
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
11
|
Kuhla A, Thrum M, Schaeper U, Fehring V, Schulze-Topphoff U, Abshagen K, Vollmar B. Liver-specific Fas silencing prevents galactosamine/lipopolysaccharide-induced liver injury. Apoptosis 2015; 20:500-11. [DOI: 10.1007/s10495-015-1088-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Targeting the Fas/FasL system in Rheumatoid Arthritis therapy: Promising or risky? Cytokine 2014; 75:228-33. [PMID: 25481649 DOI: 10.1016/j.cyto.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA.
Collapse
|
13
|
O'Reilly LA, Hughes P, Lin A, Waring P, Siebenlist U, Jain R, Gray DHD, Gerondakis S, Strasser A. Loss of c-REL but not NF-κB2 prevents autoimmune disease driven by FasL mutation. Cell Death Differ 2014; 22:767-78. [PMID: 25361085 DOI: 10.1038/cdd.2014.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/24/2023] Open
Abstract
FASL/FAS signaling imposes a critical barrier against autoimmune disease and lymphadenopathy. Mutant mice unable to produce membrane-bound FASL (FasL(Δm/Δm)), a prerequisite for FAS-induced apoptosis, develop lymphadenopathy and systemic autoimmune disease with immune complex-mediated glomerulonephritis. Prior to disease onset, FasL(Δm/Δm) mice contain abnormally high numbers of leukocytes displaying activated and elevated NF-κB-regulated cytokine levels, indicating that NF-κB-dependent inflammation may be a key pathological driver in this multifaceted autoimmune disease. We tested this hypothesis by genetically impairing canonical or non-canonical NF-κB signaling in FasL(Δm/Δm) mice by deleting the c-Rel or NF-κB2 genes, respectively. Although the loss of NF-κB2 reduced the levels of inflammatory cytokines and autoantibodies, the impact on animal survival was minor due to substantially accelerated and exacerbated lymphoproliferative disease. In contrast, a marked increase in lifespan resulting from the loss of c-REL coincided with a striking reduction in classical parameters of autoimmune pathology, including the levels of cytokines and antinuclear autoantibodies. Notably, the decrease in regulatory T-cell numbers associated with loss of c-REL did not exacerbate autoimmunity in FasL(Δm/Δm)c-rel(-/-) mice. These findings indicate that selective inhibition of c-REL may be an attractive strategy for the treatment of autoimmune pathologies driven by defects in FASL/FAS signaling that would be expected to circumvent many of the complications caused by pan-NF-κB inhibition.
Collapse
Affiliation(s)
- L A O'Reilly
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - P Hughes
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Nephrology, The Royal Melbourne Hospital, Parkville 3052, Victoria, Australia
| | - A Lin
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | - P Waring
- Department of Pathology, The University of Melbourne, Parkville 3010 Victoria, Australia
| | - U Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - R Jain
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - D H D Gray
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - S Gerondakis
- Australian Centre for Blood Diseases and Department of Clinical Hematology, Monash University Central Clinical School, Melbourne 3004, Victoria, Australia
| | - A Strasser
- 1] Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia [2] Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
14
|
Chrysin alleviates testicular dysfunction in adjuvant arthritic rats via suppression of inflammation and apoptosis: Comparison with celecoxib. Toxicol Appl Pharmacol 2014; 279:129-40. [DOI: 10.1016/j.taap.2014.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
|
15
|
Su SC, Chung WH. Cytotoxic proteins and therapeutic targets in severe cutaneous adverse reactions. Toxins (Basel) 2014; 6:194-210. [PMID: 24394640 PMCID: PMC3920257 DOI: 10.3390/toxins6010194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 11/16/2022] Open
Abstract
Severe cutaneous adverse reactions (SCARs), such as Stevens-Johnson syndrome (SJS) and toxic epidermal necrosis (TEN), are rare but life-threatening conditions induced mainly by a variety of drugs. Until now, an effective treatment for SJS/TEN still remains unavailable. Current studies have suggested that the pathobiology of drug-mediated SJS and TEN involves major histocompatibility class (MHC) I-restricted activation of cytotoxic T lymphocytes (CTLs) response. This CTLs response requires several cytotoxic signals or mediators, including granulysin, perforin/granzyme B, and Fas/Fas ligand, to trigger extensive keratinocyte death. In this article, we will discuss the cytotoxic mechanisms of severe cutaneous adverse reactions and their potential applications on therapeutics for this disease.
Collapse
Affiliation(s)
- Shih-Chi Su
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Taipei, Linkou, and Keelung, 33305, Taiwan.
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Taipei, Linkou, and Keelung, 33305, Taiwan.
| |
Collapse
|
16
|
Brint E, O’Callaghan G, Houston A. Life in the Fas lane: differential outcomes of Fas signaling. Cell Mol Life Sci 2013; 70:4085-99. [PMID: 23579628 PMCID: PMC11113183 DOI: 10.1007/s00018-013-1327-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.
Collapse
Affiliation(s)
- Elizabeth Brint
- Department of Pathology, University College Cork, National University of Ireland, Cork, Ireland
| | - Grace O’Callaghan
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
17
|
Danciu C, Falamas A, Dehelean C, Soica C, Radeke H, Barbu-Tudoran L, Bojin F, Pînzaru SC, Munteanu MF. A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior. Cancer Cell Int 2013; 13:75. [PMID: 23890195 PMCID: PMC3750233 DOI: 10.1186/1475-2867-13-75] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/15/2013] [Indexed: 11/13/2022] Open
Abstract
Background One of the most popular and versatile model of murine melanoma is by inoculating B16 cells in the syngeneic C57BL6J mouse strain. A characterization of different B16 modified cell sub-lines will be of real practical interest. For this aim, modern analytical tools like surface enhanced Raman spectroscopy/scattering (SERS) and MTT were employed to characterize both chemical composition and proliferation behavior of the selected cells. Methods High quality SERS signal was recorded from each of the four types of B16 cell sub-lines: B164A5, B16GMCSF, B16FLT3, B16F10, in order to observe the differences between a parent cell line (B164A5) and other derived B16 cell sub-lines. Cells were incubated with silver nanoparticles of 50–100 nm diameter and the nanoparticles uptake inside the cells cytoplasm was proved by transmission electron microscopy (TEM) investigations. In order to characterize proliferation, growth curves of the four B16 cell lines, using different cell numbers and FCS concentration were obtained employing the MTT proliferation assay. For correlations doubling time were calculated. Results SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids. An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles. MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity. Regarding B16FLT3 cells and B16GMCSF cells, they present proliferation ability in between with slight slower potency for B16GMCSF cells. Conclusion Molecular fingerprint and proliferation behavior of four B16 melanoma cell sub-lines were elucidated by associating SERS investigations with MTT proliferation assay.
Collapse
Affiliation(s)
- Corina Danciu
- Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", EftimieMurgu Square, No. 2, 300041 Timişoara, România
| | - Alexandra Falamas
- Biomedical Physics, Biomedical, Theoretical Physics, and Molecular Spectroscopy Department, Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, RO 400084 Cluj-Napoca, România
| | - Cristina Dehelean
- Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", EftimieMurgu Square, No. 2, 300041 Timişoara, România
| | - Codruta Soica
- Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", EftimieMurgu Square, No. 2, 300041 Timişoara, România
| | - Heinfried Radeke
- Pharmazentrum Frankfurt/Center for Drug Research, Development and Safety, Clinic of J.W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center Faculty of Biology & Geology "Babes-Bolyai", University of Cluj-Napoca, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Florina Bojin
- Department of Physiology and Immunology, University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Simona Cîntă Pînzaru
- Biomedical Physics, Biomedical, Theoretical Physics, and Molecular Spectroscopy Department, Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, RO 400084 Cluj-Napoca, România
| | - Melania F Munteanu
- Department of Clinical Laboratory and Sanitary Chemistry, "Vasile Goldis" University, 1 Feleacului Str., Arad 310396 Romania
| |
Collapse
|
18
|
Marques-Fernandez F, Planells-Ferrer L, Gozzelino R, Galenkamp KMO, Reix S, Llecha-Cano N, Lopez-Soriano J, Yuste VJ, Moubarak RS, Comella JX. TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death Dis 2013; 4:e493. [PMID: 23412386 PMCID: PMC3734812 DOI: 10.1038/cddis.2013.25] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the transcription factor nuclear factor-kappa B (NF-κB) to the nucleus and activation of survival-related genes such as FLICE-like inhibitory protein long form (FLIP-L) or IAPs. Nonetheless, we previously reported an NF-κB-independent contribution of Bcl-xL to cell survival after TNFα treatment. Here, we demonstrate that NF-κB-induced increase in FLIP-L expression levels is essential for mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) activation. We demonstrate that FLIP-L behaves as a Raf-1 activator through both protein-protein interaction and Raf-1 kinase activation, without the requirement of the classical Ras activation. Importantly, prevention of FLIP-L increase by NF-κB inhibition or knockdown of endogenous FLIP-L blocks MAPK/ERK activation after TNFα treatment. From a functional point of view, we show that inhibition of the MAPK/ERK pathway and the NF-κB pathway are equally relevant to render PC12 cells sensitive to cell death induced by TNFα. Apoptosis induced by TNFα under these conditions is dependent on jun nuclear kinase1/2 JNK1/2-dependent Bim upregulation. Therefore, we report a previously undescribed and essential role for MAPK/ERK activation by FLIP-L in the decision between cell survival and apoptosis upon TNFα stimulation.
Collapse
Affiliation(s)
- F Marques-Fernandez
- Cell Signaling and Apoptosis Group, Fundació Institut de recerca de l'Hospital Universitari de la Vall d'Hebron, Edifici Collserola, Laboratori 203, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jacobo PV, Fass M, Pérez CV, Jarazo-Dietrich S, Lustig L, Theas MS. Involvement of soluble Fas Ligand in germ cell apoptosis in testis of rats undergoing autoimmune orchitis. Cytokine 2012; 60:385-92. [PMID: 22892327 DOI: 10.1016/j.cyto.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/05/2012] [Accepted: 07/14/2012] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune orchitis (EAO) is a model of chronic inflammation and infertility useful for studying immune and germ cell (GC) interactions. EAO is characterized by severe damage of seminiferous tubules (STs) with GCs that undergo apoptosis and sloughing. Based on previous results showing that Fas-Fas Ligand (L) system is one of the main mediators of apoptosis in EAO, in the present work we studied the involvement of Fas and the soluble form of FasL (sFasL) in GC death induction. EAO was induced in rats by immunization with testis homogenate and adjuvants; control (C) rats were injected with adjuvants; a group of non-immunized normal (N) rats was also studied. Activation of Fas employing an anti-Fas antibody decreased viability (trypan blue exclusion test) and induced apoptosis (TUNEL) of GCs from STs of N and EAO rats, an effect more pronounced on GCs from EAO STs. By Western blot we detected an increase in sFasL content in the testicular fluid of rats with severe EAO compared to N and C rats. By intratesticular injection of FasL conjugated to Strep-Tag molecule (FasL-Strep, BioTAGnology) and its immunofluorescent localization, we demonstrated that sFasL is able to enter the adluminal compartment of the STs. Moreover, FasL-Strep induced GC apoptosis in testicular fragments of N rats. By flow cytometry, we detected an increase in the number of membrane FasL-expressing CD4+ and CD8+ T cells in testis during EAO development but no expression of FasL by macrophages. Our results demonstrate that sFasL is locally produced in the chronically inflamed testis and that this molecule is able to enter the adluminal compartment of STs and induce apoptosis of Fas-bearing GCs.
Collapse
Affiliation(s)
- Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
20
|
Teoh H, Quan A, Creighton AK, Annie Bang KW, Singh KK, Shukla PC, Gupta N, Pan Y, Lovren F, Leong-Poi H, Al-Omran M, Verma S. BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis. Gene Ther 2012; 20:51-61. [DOI: 10.1038/gt.2011.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Järvinen K, Hotti A, Santos L, Nummela P, Hölttä E. Caspase-8, c-FLIP, and caspase-9 in c-Myc-induced apoptosis of fibroblasts. Exp Cell Res 2011; 317:2602-15. [DOI: 10.1016/j.yexcr.2011.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 01/02/2023]
|
22
|
Kober AMM, Legewie S, Pforr C, Fricker N, Eils R, Krammer PH, Lavrik IN. Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis 2011; 2:e212. [PMID: 21975294 PMCID: PMC3219090 DOI: 10.1038/cddis.2011.93] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimulation of CD95/Fas/APO-1 results in the induction of both apoptotic and non-apoptotic signaling pathways. The processes regulating these two opposing pathways have not been thoroughly elucidated to date. In this study, using quantitative immunoblots, imaging, and mathematical modeling, we addressed the dynamics of the DED proteins of the death-inducing signaling complex (DISC), procaspase-8, and cellular FLICE inhibitory proteins (c-FLIPs) to the onset of CD95-mediated ERK1/2 and p38 mitogen-activated protein kinase (MAPK) activation. We found that CD95 DISC-induced caspase-8 activity is important for the initiation of ERK1/2 and p38 MAPK activation. The long c-FLIP isoform, c-FLIP(L), and the short c-FLIP isoform, c-FLIP(R), inhibited MAPK induction by blocking caspase-8 processing at the DISC. Furthermore, we built a mathematical model describing CD95 DISC-mediated MAPK activation and apoptosis. The model quantitatively defined the dynamics of DED proteins, procaspase-8, and c-FLIP, which lead to caspase-8 activation and induction of apoptotic and non-apoptotic signaling pathways. In conclusion, the combination of biochemical analysis with mathematical modeling provides evidence for an important role of caspase-8 in CD95-mediated activation of MAPKs, while c-FLIP exerts a regulatory function in this process.
Collapse
Affiliation(s)
- A M M Kober
- Division of Immunogenetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schütze S. Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol 2011; 90:467-75. [DOI: 10.1016/j.ejcb.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023] Open
|
24
|
de Claro RA, Zhu X, Tang J, Morgan-Stevenson V, Schwartz BR, Iwata A, Liles WC, Raines EW, Harlan JM. Hematopoietic Fas deficiency does not affect experimental atherosclerotic lesion formation despite inducing a proatherogenic state. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2931-7. [PMID: 21550016 DOI: 10.1016/j.ajpath.2011.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 12/20/2010] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
The Fas death receptor (CD95) is expressed on macrophages, smooth muscle cells, and T cells within atherosclerotic lesions. Given the dual roles of Fas in both apoptotic and nonapoptotic signaling, the aim of the present study was to test the effect of hematopoietic Fas deficiency on experimental atherosclerosis in low-density lipoprotein receptor-null mice (Ldlr(-/-)). Bone marrow from Fas(-/-) mice was used to reconstitute irradiated Ldlr(-/-) mice as a model for atherosclerosis. After 16 weeks on an 0.5% cholesterol diet, no differences were noted in brachiocephalic artery lesion size, cellularity, or vessel wall apoptosis. However, Ldlr(-/-) mice reconstituted with Fas(-/-) hematopoietic cells had elevated hyperlipidemia [80% increase, relative to wild-type (WT) controls; P < 0.001] and showed marked elevation of plasma levels of CXCL1/KC, CCL2/MCP-1, IL-6, IL-10, IL-12 subunit p70, and soluble Fas ligand (P < 0.01), as well as systemic microvascular inflammation. It was not possible to assess later stages of atherosclerosis because of increased mortality in Fas(-/-) bone marrow recipients. Our data indicate that hematopoietic Fas deficiency does not affect early atherosclerotic lesion development in Ldlr(-/-) mice.
Collapse
Affiliation(s)
- R Angelo de Claro
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Choi K, Ni L, Jonakait GM. Fas ligation and tumor necrosis factor α activation of murine astrocytes promote heat shock factor-1 activation and heat shock protein expression leading to chemokine induction and cell survival. J Neurochem 2010; 116:438-48. [PMID: 21114495 DOI: 10.1111/j.1471-4159.2010.07124.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Death-inducing ligands tumor necrosis factor alpha (TNFα) and Fas ligand (FasL) do not kill cultured astrocytes; instead they induce a variety of chemokines including macrophage-inflammatory protein-1α/CC chemokine ligand 3 (CCL3), monocyte chemoattractant protein-1 (CC CCL-2), macrophage-inflammatory protein-2/CXC chemokine ligand 2 (CXCL2, a murine homologue of interleukin 8), and interferon-induced protein of 10 kDa (CXCL10). Induction is enhanced by protein synthesis inhibition suggesting the existence of endogenous inhibitors. ERK, NF-κB, heat shock factor-1 (HSF-1) and heat shock proteins were examined for their possible roles in signal transduction. Inhibition of ERK activation by PD98059 partially inhibited expression of all but FasL-induced CXCL10. Although inhibition of NF-κB DNA binding inhibited chemokine induction, PD98059 did not inhibit TNFα-induced NF-κB DNA binding suggesting that ERK serves an NF-κB-independent pathway. Heat shock itself induced astrocytic chemokine expression; both TNFα and FasL induced HSF-1 DNA binding and Hsp72 production; and Hsp72-induced chemokine expression. Inhibition of either HSF-1 binding with quercetin or heat shock protein synthesis with KNK437 compromised chemokine induction without compromising cell survival. These data suggest that the induction of heat shock proteins via HSF-1 contribute to the TNFα- and FasL-induced expression of chemokines in astrocytes.
Collapse
Affiliation(s)
- Kuicheon Choi
- Federated Department of Biological Sciences, New Jersey Institute of Technology/Rutgers University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
26
|
Hattori Y, Takano KI, Teramae H, Yamamoto S, Yokoo H, Matsuda N. Insights into sepsis therapeutic design based on the apoptotic death pathway. J Pharmacol Sci 2010; 114:354-65. [PMID: 21081836 DOI: 10.1254/jphs.10r04cr] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Sepsis remains the leading cause of death in critically ill patients. A major problem contributing to sepsis-related high mortality is the lack of effective medical treatment. Thus, the key goal in critical care medicine is to develop novel therapeutic strategies that will impact favorably on septic patient outcome. While it is generally accepted that sepsis is an inflammatory state resulting from the systemic response to infection, apoptosis is implicated to be an important mechanism of the death of lymphocytes, gastrointestinal and lung epithelial cells, and vascular endothelial cells associated with the development of multiple organ failure in sepsis. The pivotal role of cell apoptosis is now highlighted by multiple studies demonstrating that prevention of cell apoptosis can improve survival in clinically relevant animal models of sepsis. In this review article, we address the scientific rationale for remedying apoptotic cell death in sepsis and propose that therapeutic efforts aimed at blocking cell signaling pathways leading to apoptosis may represent an attractive target for sepsis therapy.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Fluhr H, Wenig H, Spratte J, Heidrich S, Ehrhardt J, Zygmunt M. Non-apoptotic Fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol Hum Reprod 2010; 17:127-34. [DOI: 10.1093/molehr/gaq082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol 2010; 30:5582-96. [PMID: 20876301 DOI: 10.1128/mcb.00134-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Fas/CD95 receptor mediates apoptosis but is also capable of triggering nonapoptotic signals. However, the mechanisms that selectively regulate these opposing effects are not yet fully understood. Here we demonstrate that the activation of Fas or stimulation with lysophosphatidic acid (LPA) induces cytoskeletal reorganization, leading to the association of Fas with actin stress fibers and the adaptor protein TRIP6. TRIP6 binds to the cytoplasmic juxtamembrane domain of Fas and interferes with the recruitment of FADD to Fas. Furthermore, through physical interactions with NF-κB p65, TRIP6 regulates nuclear translocation and the activation of NF-κB upon Fas activation or LPA stimulation. As a result, TRIP6 antagonizes Fas-induced apoptosis and further enhances the antiapoptotic effect of LPA in cells that express high levels of TRIP6. On the other hand, TRIP6 promotes Fas-mediated cell migration in apoptosis-resistant glioma cells. This effect is regulated via the Src-dependent phosphorylation of TRIP6 at Tyr-55. As TRIP6 is overexpressed in glioblastomas, this may have a significant impact on enhanced NF-κB activity, resistance to apoptosis, and Fas-mediated cell invasion in glioblastomas.
Collapse
|
29
|
The role of FasL and Fas in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:64-93. [PMID: 19760067 DOI: 10.1007/978-0-387-89520-8_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The FS7-associated cell surface antigen (Fas, also named CD95, APO-1 or TNFRSF6) attracted considerable interest in the field of apoptosis research since its discovery in 1989. The groups of Shin Yonehara and Peter Krammer were the first reporting extensive apoptotic cell death induction upon treating cells with Fas-specific monoclonal antibodies.1,2 Cloning of Fas3 and its ligand,4,5 FasL (also known as CD178, CD95L or TNFSF6), laid the cornerstone in establishing this receptor-ligand system as a central regulator of apoptosis in mammals. Therapeutic exploitation of FasL-Fas-mediated cytotoxicity was soon an ambitous goal and during the last decade numerous strategies have been developed for its realization. In this chapter, we will briefly introduce essential general aspects of the FasL-Fas system before reviewing its physiological and pathophysiological relevance. Finally, FasL-Fas-related therapeutic tools and concepts will be addressed.
Collapse
|
30
|
Janbandhu VC, Singh AK, Mukherji A, Kumar V. p65 Negatively regulates transcription of the cyclin E gene. J Biol Chem 2010; 285:17453-64. [PMID: 20385564 DOI: 10.1074/jbc.m109.058974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NF-kappaB family members play a pivotal role in many cellular and organismal functions, including the cell cycle. As an activator of cyclin D1 and p21(Waf1) genes, NF-kappaB has been regarded as a critical modulator of cell cycle. To study the involvement of NF-kappaB in G(1)/S phase regulation, the levels of selected transcriptional regulators were monitored following overexpression of NF-kappaB or its physiological induction by tumor necrosis factor-alpha. Cyclin E gene was identified as a major transcriptional target of NF-kappaB. Recruitment of NF-kappaB to the cyclin E promoter was correlated with the transrepression of cyclin E gene. Ligation-mediated PCR and micrococcal nuclease-Southern assays suggested the nucleosomal nature of this region while chromatin immunoprecipitation analysis confirmed the exchange of cofactors following tumor necrosis factor-alpha treatment or release from serum starvation. There was a progressive reduction in cyclin E transcription along with the accumulation of catalytically inactive cyclin E-cdk2 complexes and arrest of cells in G(1)/S-phase. Thus, our study clearly establishes NF-kappaB as a negative regulator of cell cycle through transcriptional repression of cyclin E.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
31
|
Prokaryotic expression, purification, and production of polyclonal antibody against novel human serum inhibited related protein I (SI1). Protein J 2010; 29:75-80. [PMID: 20087636 DOI: 10.1007/s10930-009-9224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A novel serum inhibited related gene (SI1) has been cloned in our lab by using mRNA differential display analysis of U251 cells in the presence or absence of serum, the expression of SI1 was dramatically inhibited by the addition of serum to serum starved cells. Previous reports suggested the potential significance of SI1 in regulating the cell cycle. In this study, the plasmid construction, protein expression and purification, as well as the generation of anti-SI1 polyclonal antibody are described. A full-length cDNA of Si1 was inserted in a prokaryotic expression plasmid pET28-b(+) and efficiently expressed in E. coli Rosetta (DE3) strain after induction by isopropyl-b-D: -thiogalactoside. The expressed 6His-tagged SI1 fusion protein was purified by Ni(+) affinity column and then used to immunize Balb/C mice, and the anti-SI1 polyclonal antibody was purified by protein A column. To determine the sensitivity and specificity of the antibody against SI1, a cell lysate of pEGFP-N2-SI1 plasmid transiently transfected Hela cell was identified by anti-GFP monoclonal antibody and anti-SI1 polyclonal antibody. Both the GFP-SI1 fusion protein and endogenous SI1 protein in Hela cell can be recognized by the anti-SI1 polyclonal antibody. The anti-SI1 polyclonal antibody will provide a useful tool for further characterization of SI1.
Collapse
|
32
|
Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-kappaB signaling pathways and augmented by ubiquitin-proteasome inhibition. Toxicol In Vitro 2009; 24:898-904. [PMID: 20005289 DOI: 10.1016/j.tiv.2009.11.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/29/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022]
Abstract
Evodiamine, a major alkaloidal component of Evodiae fructus exhibits anti-tumor activities. We have previously reported that evodiamine has a marked inhibitory effect on IL-1 sensitive human melanoma A375-S2 cells proliferation, and this action might be through inactivation of PI3K signaling. However, the detailed molecular mechanisms of evodiamine-induced cell death remains poorly understood. In present study, we further confirmed that Akt is the main effector molecule involved in this pathway. Evodiamine also led to IkappaBalpha phosphorylation and degradation that reflect translocation of NF-kappaB. Pretreatment of A375-S2 cells with ubiquitin-proteasome inhibitor MG132 was shown to aggregate the evodiamine caused cell death at 24h. In addition, MG132 reduced ERK phosphorylation, increased caspase-3 activation, Fas-L expression and Bcl-2 cleavage in evodiamine-treated A375-S2 cells. These results suggested the PI3K/Akt/caspase and Fas-L/NF-kappaB signaling pathways might account for the responses of A375-S2 cell death induced by evodiamine, and these signals could be augmented by ubiquitin-proteasome pathway.
Collapse
|
33
|
Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 2009; 461:659-63. [PMID: 19794494 PMCID: PMC2785124 DOI: 10.1038/nature08402] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 08/14/2009] [Indexed: 12/22/2022]
Abstract
Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family and its receptor, Fas, are critical for shutdown of chronic immune responses1-3 and prevention of autoimmunity4,5. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice6,7 and humans8,9. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding10,11. We generated gene-targeted mice that selectively lack either secreted FasL (ΔsFasL) or membrane-bound FasL (ΔmFasL) to resolve which of these forms is required for cell killing and to explore their hypothetical non-apoptotic activities. Mice lacking sFasL (FasLΔs/Δs) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasLΔm/Δm) could not kill cells through Fas activation. FasLΔm/Δm mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasLgld/gld mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, (on a C57BL/6 background) FasLΔm/Δm mice succumbed to SLE-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and considerably later in FasLgld/gld mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.
Collapse
|
34
|
Li H, Fan X, Stoicov C, Liu JH, Zubair S, Tsai E, Ste. Marie R, Wang TC, Lyle S, Kurt-Jones E, Houghton J. Human and mouse colon cancer utilizes CD95 signaling for local growth and metastatic spread to liver. Gastroenterology 2009; 137:934-44, 944.e1-4. [PMID: 19524576 PMCID: PMC2763556 DOI: 10.1053/j.gastro.2009.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/20/2009] [Accepted: 06/04/2009] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Analysis of clinical colon cancer specimens show alterations in the CD95 (Fas Ag/Fas L) pathway as tumors progress from local to metastatic disease, suggesting that this pathway may play a role in invasive behavior of colon cancer. However, direct causality between these alterations and clinical disease progression has not been shown. METHODS Surgically resected metastatic colon cancer samples were evaluated for Fas Ag/L and apoptosis. Alterations in the Fas-signaling pathway found in human samples were recreated through a series of staged transfection experiments in the MC38 mouse colon cancer cell line and the effects on growth tested in vitro and in vivo. RESULTS Expression of FLICE-like inhibitory protein confers apoptosis resistance, increasing the incidence of primary tumors through a survival advantage by avoiding apoptosis and inducing Fas-mediated proliferation. Coexpression of Fas L enables colon cancer cells to metastasize to the liver from local tumors as well as from intravenous injection of cells. MC38-FasL/FLICE-like inhibitory protein colon cancer cells induce apoptosis in hepatocytes via activation of type II Fas Ag signaling, thus creating a niche conducive to tumor growth and fueling their own growth via Fas proliferative signaling. CONCLUSIONS Alterations in the Fas Ag pathway which inhibit apoptosis and increase Fas-mediated proliferation directly increase local colon cancer growth, and enhance metastasis to the liver. Delineating points in the pathway responsible for growth and metastasis will offer targets that may be exploited for therapy.
Collapse
Affiliation(s)
- Hanchen Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635
| | - Xueli Fan
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635
| | - Calin Stoicov
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635,Department of Medicine, UMass Memorial Health Care System, Worcester MA 01635
| | - Jian Hua Liu
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635
| | - Sharif Zubair
- Department of Medicine, UMass Memorial Health Care System, Worcester MA 01635
| | - Elena Tsai
- Department of Medicine, UMass Memorial Health Care System, Worcester MA 01635
| | - Ronald Ste. Marie
- Department of Medicine, UMass Memorial Health Care System, Worcester MA 01635
| | - Timothy C. Wang
- Columbia University Medical Center, Irving Cancer Research Center, New York, NY 10032
| | - Stephen Lyle
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester MA 01635
| | - Evelyn Kurt-Jones
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635
| | - JeanMarie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester MA 01635,Department of Cancer Biology, University of Massachusetts Medical School, Worcester MA 01635,Address correspondence to; JeanMarie Houghton MD PhD, Associate Professor of Medicine, University of Massachusetts Medical School, LRB Second floor- 209, 364 Plantation Street, Worcester MA 01635, 508 856-6441, Fax- 508 856-4770, email :
| |
Collapse
|
35
|
Molina V, Haj-Yahia S, Solodeev I, Levy Y, Blank M, Shoenfeld Y. Immunomodulation of experimental pulmonary fibrosis by intravenous immunoglobulin (IVIG). Autoimmunity 2009; 39:711-7. [PMID: 17178568 DOI: 10.1080/08916930601061272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To assess the immunomodulatory effect of intravenous immunoglobulin (IVIG) using an experimental model of bleomycin-induced pulmonary fibrosis. METHODS Pulmonary fibrosis was induced in C57BL/6 mice by direct intratracheal injection of bleomycin. Mice were treated with IVIG 1 week prior to (prevention protocol), or 10 days following bleomycin injection, when the disease was in progress. The controls used in the study included mice given phosphate buffered saline (PBS) and mice subjected to a commercial individual-IgG. Collagen-I deposits in the affected lungs were detected by Sirius red staining of paraffin embedded lung sections. The collagen-I content was measured by employing the hydroxyproline assay. RESULTS Prevention of bleomycin-induced pulmonary fibrosis by IVIG has been demonstrated by reduced expression of collagen-I protein in the affected lungs. The hydroxyproline levels in the lungs of the IVIG-treated mice were 214.33 +/- 13.56 microg/1 g tissue, compared to the higher levels in lungs of IgG treated mice (342.44 +/- 35.60 microg/1 g tissue) or untreated controls 328.00 +/- 45.55 microg/1 g tissue, (p < 0.0001). Effective treatment of bleomycin-induced pulmonary fibrosis by IVIG has been demonstrated by the reduced expression of collagen-I protein in the affected lungs, detected by sirius red histological staining. The hydroxyproline levels in the lungs of the IVIG-treated mice were 261.00 +/- 18.81 microg/1 g tissue, in comparison to the higher levels in the lungs of the IgG treated mice (342.43 +/- 32.89 microg/1 g tissue) and of untreated controls (344.33 +/- 49.85 microg/1 g tissue), (p < 0.001). CONCLUSIONS Based on these preliminary studies, we conclude that IVIG may have a beneficial effect in the down regulation of collagen-I levels in the lungs of mice with bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Vered Molina
- Department of Medicine B, The Sackler School of Medicine, The Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. THE JOURNAL OF IMMUNOLOGY 2009; 182:3801-8. [PMID: 19265159 DOI: 10.4049/jimmunol.0801548] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fas/FasL system has been extensively investigated with respect to its capacity to induce cellular apoptosis. However, accumulated evidences show that Fas signaling also exhibits nonapoptotic functions, such as induction of cell proliferation and differentiation. Lung cancer is one of cancer's refractory to the immunotherapy, however, the underlying mechanisms remain to be fully understood. In this study, we show that Fas overexpression does not affect in vitro growth of 3LL cells, but promotes lung cancer growth in vivo. However, such tumor-promoting effect is not observed in FasL-deficient (gld) mice, and also not observed in the immune competent mice once inoculation with domain-negative Fas-overexpressing 3LL cells, suggesting the critical role of Fas signal in the promotion of lung cancer growth in vivo. More accumulation of myeloid-derived suppressor cells (MDSC) and Foxp3(+) regulatory T cells is found in tumors formed by inoculation with Fas-overexpressing 3LL cells, but not domain-negative Fas-overexpressing 3LL cells. Accordingly, Fas-ligated 3LL lung cancer cells can chemoattract more MDSC but not regulatory T cells in vitro. Furthermore, Fas ligation induces 3LL lung cancer cells to produce proinflammatory factor PGE(2) by activating p38 pathway, and in turn, 3LL cells-derived PGE(2) contribute to the Fas ligation-induced MDSC chemoattraction. Furthermore, in vivo administration of cyclooxygenase-2 inhibitor can significantly reduce MDSC accumulation in the Fas-overexpressing tumor. Therefore, our results demonstrate that Fas signal can promote lung cancer growth by recruiting MDSC via cancer cell-derived PGE(2), thus providing new mechanistic explanation for the role of inflammation in cancer progression and immune escape.
Collapse
Affiliation(s)
- Yongliang Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Chakour R, Allenbach C, Desgranges F, Charmoy M, Mauel J, Garcia I, Launois P, Louis J, Tacchini-Cottier F. A new function of the Fas-FasL pathway in macrophage activation. J Leukoc Biol 2009; 86:81-90. [PMID: 19380712 DOI: 10.1189/jlb.1008590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.
Collapse
Affiliation(s)
- Reza Chakour
- World Health Organization Immunology Research and Training Centre, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen TY, Chi KH, Wang JS, Chien CL, Lin WW. Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic Biol Med 2009; 46:643-55. [PMID: 19111607 DOI: 10.1016/j.freeradbiomed.2008.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 11/06/2008] [Accepted: 11/27/2008] [Indexed: 01/19/2023]
Abstract
Fas-mediated caspase-dependent cell apoptosis has been well investigated. However, recent studies have shown that Fas can induce nonapoptotic caspase-independent cell death (CICD) when caspase activity is inhibited. Currently, the molecular mechanism of this alternative cell death mediated by Fas remains unclear. In this study, we investigated the signaling pathway of Fas-induced CICD in mouse embryonic fibroblasts (MEFs) whose caspase function was disrupted by the pan-caspase inhibitor Z-VAD-FMK and its coupling to inflammatory responses. Our results revealed that receptor-interacting protein 1 and tumor necrosis factor receptor-associated factor 2 play important roles in FasL-induced CICD. This death is associated with intracellular reactive oxygen species (ROS) production from mitochondria, as a ROS scavenger (BHA), antioxidants (trolox, NAC), and a mitochondrial respiratory chain uncoupler (rotenone) could prevent this event. Furthermore, delayed and sustained JNK activation, mitochondrial membrane potential breakdown, and loss of intracellular GSH were observed. In addition to CICD, FasL also induces cyclooxygenase-2 and MIP-2 gene upregulation, and both responses are attributed to ROS-dependent JNK activation. Taken together, these results demonstrate alternative signaling pathways of Fas upon caspase inhibition in MEFs that are unrelated to the classical apoptotic pathway, but steer cells toward necrosis and an inflammatory response through ROS production.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
39
|
Matsuda N, Yamamoto S, Takano KI, Kageyama SI, Kurobe Y, Yoshihara Y, Takano Y, Hattori Y. Silencing of fas-associated death domain protects mice from septic lung inflammation and apoptosis. Am J Respir Crit Care Med 2009; 179:806-15. [PMID: 19201926 DOI: 10.1164/rccm.200804-534oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A better understanding of the molecular mechanisms involved in the pathogenesis of sepsis and its resultant organ failure and new therapeutic approaches and targets are urgently needed. Accumulating evidence suggests that apoptosis plays an important role in the pathophysiology of sepsis and that apoptosis may be detrimental in septic acute lung injury (ALI). OBJECTIVES We tested the hypothesis that systemic administration of small interfering RNA (siRNA) targeting Fas-associated death domain (FADD), which recruits procaspase-8 into the death-inducing signaling complex, may be protective in septic ALI and mortality. METHODS Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. In vivo delivery of siRNA was performed by using a transfection reagent at 10 hours after CLP. As a negative control, animals received nonsense (scrambled) siRNA. MEASUREMENTS AND MAIN RESULTS In CLP-induced septic mice, surface expression of death receptors was up-regulated, and FADD was highly expressed. DNA fragmentation ladder and transferase-mediated dUTP nick end labeling assays showed that treatment with FADD siRNA suppressed apoptosis induction in septic lungs. This siRNA treatment prevented the ALI development in CLP mice, as indicated by the findings that blood-gas derangements, histologic lung damage, and increased pulmonary inflammatory cells were greatly improved. Finally, FADD siRNA administration dramatically improved the survival of CLP mice. CONCLUSIONS These results indicate the pathophysiologic significance of the death receptor apoptotic pathway, including FADD, in septic ALI and the potential usefulness of FADD siRNA for gene therapy of the septic syndrome.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schütze S, Schneider-Brachert W. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results Probl Cell Differ 2009; 49:63-85. [PMID: 19132322 DOI: 10.1007/400_2008_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-kappaB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell. In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the biological significance of TNF receptor compartmentalization for immunosurveillance.
Collapse
Affiliation(s)
- Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105, Kiel, Germany.
| | | |
Collapse
|
41
|
Ha JE, Choi YE, Jang J, Yoon CH, Kim HY, Bae YS. FLIP and MAPK play crucial roles in the MLN51-mediated hyperproliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. FEBS J 2008; 275:3546-55. [DOI: 10.1111/j.1742-4658.2008.06500.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 2008; 9:655-62. [PMID: 18545270 DOI: 10.1038/nrm2430] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The death receptors tumour-necrosis factor receptor-1 (TNFR1) and CD95 (also known as FAS and APO-1) transduce signals that promote cell death by apoptosis. However, these receptors are also capable of inducing anti-apoptotic signals through the activation of the transcription factor nuclear factor-kappaB (NF-kappaB) or through activation of the proliferative mitogen-activated protein kinase (MAPK) cascade. Recent findings reveal a role for receptor internalization and endosomal trafficking in selectively transmitting the signals that lead either to apoptosis or to the survival of the cell.
Collapse
|
43
|
Abstract
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.
Collapse
Affiliation(s)
- Sun-Mi Park
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| | - Marcus E. Peter
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| |
Collapse
|
44
|
Ruan W, Lee CT, Desbarats J. A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Rac1 and controls neurite growth. Mol Biol Cell 2008; 19:3192-202. [PMID: 18508927 DOI: 10.1091/mbc.e08-02-0161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Members of the tumor necrosis factor receptor (TNFR) superfamily control cell fate determination, including cell death and differentiation. Fas (CD95) is the prototypical "death receptor" of the TNFR superfamily and signals apoptosis through well established pathways. In the adult nervous system, Fas induces apoptosis in the context of neuropathology such as stroke or amyotrophic lateral sclerosis. However, during nervous system development, Fas promotes neurite growth and branching. The molecular mechanisms underlying Fas-induced process formation and branching have remained unknown to date. Here, we define the molecular pathway linking Fas to process growth and branching in cell lines and in developing neurons. We describe a new cytoplasmic membrane proximal domain (MPD) that is essential for Fas-induced process growth and that is conserved in members of the TNFR superfamily. We show that the Fas MPD recruits ezrin, a molecule that links transmembrane proteins to the cytoskeleton, and activates the small GTPase Rac1. Deletion of the MPD, but not the death domain, abolished Rac1 activation and process growth. Furthermore, an ezrin-derived inhibitory peptide prevented Fas-induced neurite growth in primary neurons. Our results define a new domain, topologically and functionally distinct from the death domain, which regulates neuritogenesis via recruitment of ezrin and activation of Rac1.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
45
|
Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G263-75. [PMID: 17991709 DOI: 10.1152/ajpgi.00267.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When cells within the gastric mucosa progress from metaplasia to dysplasia to cancer, they acquire a Fas Ag apoptosis-resistant phenotype. It is unusual to completely abolish the pathway, suggesting other forms of Fas Ag signaling may be important or even necessary for gastric cancer to progress. Little is known about alternate signaling of the Fas Ag pathway in gastric mucosal cells. Using a cell culture model of rat gastric mucosal cells, we show that gastric mucosal cells utilize a type II signaling pathway for apoptosis. Under conditions of low receptor stimulation or under conditions where apoptosis is blocked downstream of the death-inducing signal complex, Fas Ag signaling proceeds toward proliferative signaling. Under conditions favoring proliferative signaling, cFLIP is recruited to the Fas-associated death domain-like interleukin-1beta-converting enzyme at the death-inducing signal complex and activates ERK1/2. ERK1/2 in turn activates NF-kappaB. ERK1/2 stimulates proliferation, whereas NF-kappaB activation results in upregulation of the antiapoptotic protein survivin, further promoting proliferation over apoptosis. These results suggest that factors that inhibit apoptosis confer a growth advantage to the cells beyond the survival advantage of avoiding apoptosis and in effect convert the Fas Ag signaling pathway from a tumor suppressor to a tumor promoter.
Collapse
Affiliation(s)
- Hanchen Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kim WU, Kwok SK, Hong KH, Yoo SA, Kong JS, Choe J, Cho CS. Soluble Fas ligand inhibits angiogenesis in rheumatoid arthritis. Arthritis Res Ther 2007; 9:R42. [PMID: 17459170 PMCID: PMC1906820 DOI: 10.1186/ar2181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/12/2007] [Accepted: 04/26/2007] [Indexed: 02/08/2023] Open
Abstract
The characteristics of rheumatoid arthritis (RA) pathology include the infiltration of inflammatory leukocytes, the proliferation of synovial cells, and the presence of extensive angiogenesis, referred to as rheumatoid pannus. Fas ligand is critical to the homeostatic regulation of the immune response, but its role in the angiogenic process of RA remains to be defined. In this study, we investigated whether soluble Fas ligand (sFasL) induces synoviocyte apoptosis and regulates angiogenesis of endothelial cells in RA. The levels of sFasL were elevated in the synovial fluids of RA patients when compared to those of osteoarthritis (OA) patients, and they correlated inversely with vascular endothelial growth factor165 (VEGF165) concentrations. sFasL, ranging from 10 to 100 ng/ml, induced the apoptosis of RA fibroblast-like synoviocytes (FLS) in vitro, and thereby decreased VEGF165 production. In addition, sFasL inhibited VEGF165-induced migration and chemotaxis of endothelial cells to basal levels in a manner independent of the Fas-mediated cell death. sFasL dose-dependently suppressed the VEGF165-stimulated increase in pAkt expression in endothelial cells, which might be associated with its anti-migratory effect on endothelial cells. Moreover, sFasL strongly inhibited neovascularization in the Matrigel plug in vivo. Our data suggest that sFasL shows anti-angiogenic activity within RA joints not only by inducing apoptosis of VEGF165-producing cells but also by blocking VEGF165-induced migration of endothelial cells, independent of Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Kyung-Hee Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Seung-Ah Yoo
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Jin-Sun Kong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University College of Medicine, Chunchon, Kangwon 200-701, Korea
| | - Chul-Soo Cho
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
47
|
Matsumoto N, Imamura R, Suda T. Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production. FEBS J 2007; 274:2376-84. [PMID: 17403042 DOI: 10.1111/j.1742-4658.2007.05772.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite a dogma that apoptosis does not induce inflammation, Fas ligand (FasL), a well-known death factor, possesses pro-inflammatory activity. For example, FasL induces nuclear factor kappaB (NF-kappaB) activity and interleukin 8 (IL-8) production by engagement of Fas in human cells. Here, we found that a dominant negative mutant of c-Jun, a component of the activator protein-1 (AP-1) transcription factor, inhibits FasL-induced AP-1 activity and IL-8 production in HEK293 cells. Selective inhibition of AP-1 did not affect NF-kappaB activation and vice versa, indicating that their activations were not sequential events. The FasL-induced AP-1 activation could be inhibited by deleting or introducing the lymphoproliferation (lpr)-type point mutation into the Fas death domain (DD), knocking down the Fas-associated DD protein (FADD), abrogating caspase-8 expression with small interfering RNAs, or using inhibitors for pan-caspase and caspase-8 but not caspase-1 or caspase-3. Furthermore, wildtype, but not a catalytically inactive mutant, of caspase-8 reconstituted the FasL-induced AP-1 activation in caspase-8-deficient cells. Fas ligand induced the phosphorylation of two of the three major mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but not p38 MAPK. Unexpectedly, an inhibitor for JNK but not for MAPK/ERK kinase inhibited the FasL-induced AP-1 activation and IL-8 production. These results demonstrate that FasL-induced AP-1 activation is required for optimal IL-8 production, and this process is mediated by FADD, caspase-8, and JNK.
Collapse
Affiliation(s)
- Norihiko Matsumoto
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Japan
| | | | | |
Collapse
|
48
|
Pearl-Yafe M, Yolcu ES, Stein J, Kaplan O, Yaniv I, Shirwan H, Askenasy N. Fas ligand enhances hematopoietic cell engraftment through abrogation of alloimmune responses and nonimmunogenic interactions. Stem Cells 2007; 25:1448-55. [PMID: 17363551 DOI: 10.1634/stemcells.2007-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early after transplantation, donor lineage-negative bone marrow cells (lin(-) BMC) constitutively upregulated their expression of Fas ligand (FasL), suggesting an involvement of the Fas/FasL axis in engraftment. Following the observation of impaired engraftment in the presence of a dysfunctional Fas/FasL axis in FasL-defective (gld) donors or Fas-defective (lpr) recipients, we expressed a noncleavable FasL chimeric protein on the surface of donor lin(-) BMC. Despite a short life span of the protein in vivo, expression of FasL on the surface of all the donor lin(-) BMC improved the efficiency of engraftment twofold. The FasL-coated donor cells efficiently blunted the host alloimmune responses in primary recipients and retained their hematopoietic reconstituting potential in secondary transplants. Surprisingly, FasL protein improved the efficiency of engraftment in syngeneic transplants. The deficient engraftment in lpr recipients was not reversed in chimeric mice with Fas(-) stroma and Fas(+) BMC, demonstrating that the host marrow stroma was also a target of donor cell FasL. Hematopoietic stem and progenitor cells are insensitive to Fas-mediated apoptosis and thus can exploit the constitutive expression of FasL to exert potent veto activities in the early stages of engraftment. Manipulation of the donor cells using ectopic FasL protein accentuated the immunogenic and nonimmunogenic interactions between the donor cells and the host, alleviating the requirement for a megadose of transplanted cells to achieve a potent veto effect. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Michal Pearl-Yafe
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Qian Y, Conway KL, Lu X, Seitz HM, Matsushima GK, Clarke SH. Autoreactive MZ and B-1 B-cell activation by Faslpr is coincident with an increased frequency of apoptotic lymphocytes and a defect in macrophage clearance. Blood 2006; 108:974-82. [PMID: 16861350 PMCID: PMC1895857 DOI: 10.1182/blood-2005-12-006858] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine autoreactive anti-Smith (Sm) B cells are negatively regulated by anergy and developmental arrest, but are also positively selected into the marginal zone (MZ) and B-1 B-cell populations. Despite positive selection, anti-Sm production occurs only in autoimmune-prone mice. To investigate autoreactive B-cell activation, an anti-Sm transgene was combined with the lpr mutation, a mutation of the proapoptotic gene Fas (Fas(lpr)), on both autoimmune (MRL) and nonautoimmune backgrounds. Fas(lpr) induces a progressive and autoantigen-specific loss of anti-Sm MZ and B-1 B cells in young adult Fas(lpr) and MRL/Fas(lpr) mice that does not require that Fas(lpr) be B-cell intrinsic. This loss is accompanied by a bypass of the early pre-plasma cell (PC) tolerance checkpoint. Although the MRL bkg does not lead to a progressive loss of anti-Sm MZ or B-1 B cells, it induces a robust bypass of the early pre-PC tolerance checkpoint. Fas(lpr) mice have a high frequency of apoptotic lymphocytes in secondary lymphoid tissues and a macrophage defect in apoptotic cell phagocytosis. Since Sm is exposed on the surface of apoptotic cells, we propose that anti-Sm MZ and B-1 B-cell activation is the result of a Fas(lpr)-induced defect in apoptotic cell clearance.
Collapse
Affiliation(s)
- Ye Qian
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
50
|
Mitsiades CS, Poulaki V, Fanourakis G, Sozopoulos E, McMillin D, Wen Z, Voutsinas G, Tseleni-Balafouta S, Mitsiades N. Fas signaling in thyroid carcinomas is diverted from apoptosis to proliferation. Clin Cancer Res 2006; 12:3705-12. [PMID: 16778096 DOI: 10.1158/1078-0432.ccr-05-2493] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The death receptor Fas is present in thyroid carcinomas, yet fails to trigger apoptosis. Interestingly, Fas has been reported to be actually overexpressed in papillary thyroid carcinomas, suggesting that it may confer a survival advantage. EXPERIMENTAL DESIGN We investigated the expression and activation status of Fas pathway mediators in thyroid carcinoma cell lines and tumor specimens. RESULTS All cell lines tested express Fas-associated death domain, procaspase-8, procaspase-9, and procaspase-3; resistance to Fas-mediated apoptosis could not be attributed to lack of any of these apoptosis mediators. Moreover, Fas death domain mutations were not found in our study. The proteasome inhibitors MG132 and PS-341 (bortezomib, Velcade), which lead to accumulation of the nuclear factor kappaB (NF-kappaB) inhibitor IkappaB, did not sensitize SW579 cells to Fas-mediated apoptosis, suggesting that resistance to Fas-mediated apoptosis is not due to proteasome or NF-kappaB activity. Cross-linking of Fas in vitro induced recruitment of Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (FLIP) instead of procaspase-8. Inhibition of FLIP expression with a FLIP antisense oligonucleotide resulted in significant sensitization to Fas-mediated apoptosis. Fas cross-linking promoted BrdUrd incorporation; activated the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase, NF-kappaB, and activator protein-1 pathways in thyroid carcinoma cells in vitro; and protected cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. We also found that good prognosis papillary thyroid carcinoma specimens exhibited higher immunoreactivity for cleaved (activated) caspase-8 than poor prognosis tumors. CONCLUSIONS In thyroid carcinomas, the proteolytic cleavage and activation of caspase-8 depends on the balance between expression levels for procaspase-8 and FLIP and correlates with favorable clinical prognosis. Fas may actually stimulate proliferation and confer a survival advantage to thyroid cancer cells.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Room M555, Mayer Building, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|