1
|
Eto M. Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond. Biomolecules 2025; 15:344. [PMID: 40149880 PMCID: PMC11939891 DOI: 10.3390/biom15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
PHI-1, encoded by PPP1R14B, regulates cellular protein phosphatase-1 (PP1) signaling and has emerged as both a biomarker and therapeutic target. Initially identified as a phospholipase-neighboring gene (PNG), PHI-1 is now known for its phosphorylation-dependent inhibition of PP1 holoenzymes, with bi-directional roles depending on its expression levels. Under physiological conditions, PHI-1 selectively regulates PP1 activity to maintain cellular homeostasis, whereas its pathological upregulation promotes oncogenic pathways, stabilizes tumor-promoting proteins, and modulates immune responses. This article explores PHI-1's emerging role as a pan-cancer biomarker in parallel with emphasizing its physiological functions in signaling networks, smooth muscle contraction, cytoskeletal dynamics, and selective proteostasis. The mechanistic insights highlight PHI-1's potential in precision oncology, offering opportunities for developing diagnostics and therapies that target its conditional functions.
Collapse
Affiliation(s)
- Masumi Eto
- Graduate School of Veterinary Science, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan
| |
Collapse
|
2
|
Chen Z, Wang S, Meng Z, Ye Y, Shan G, Wang X, Zhao X, Jin Y. Tau protein plays a role in the mechanism of cognitive disorders induced by anesthetic drugs. Front Neurosci 2023; 17:1145318. [PMID: 36937655 PMCID: PMC10015606 DOI: 10.3389/fnins.2023.1145318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Cognitive disorders are mental health disorders that can affect cognitive ability. Surgery and anesthesia have been proposed to increase the incidence of cognitive dysfunction, including declines in memory, learning, attention and executive function. Tau protein is a microtubule-associated protein located in the axons of neurons and is important for microtubule assembly and stability; its biological function is mainly regulated by phosphorylation. Phosphorylated tau protein has been associated with cognitive dysfunction mediated by disrupting the stability of the microtubule structure. There is an increasing consensus that anesthetic drugs can cause cognitive impairment. Herein, we reviewed the latest literature and compared the relationship between tau protein and cognitive impairment caused by different anesthetics. Our results substantiated that tau protein phosphorylation is essential in cognitive dysfunction caused by anesthetic drugs, and the possible mechanism can be summarized as "anesthetic drugs-kinase/phosphatase-p-Tau-cognitive impairment".
Collapse
|
3
|
Hertz DL, Douglas JA, Miller RM, Kidwell KM, Gersch CL, Desta Z, Storniolo AM, Stearns V, Skaar TC, Hayes DF, Henry NL, Rae JM. Genome-wide association study of aromatase inhibitor discontinuation due to musculoskeletal symptoms. Support Care Cancer 2022; 30:8059-8067. [PMID: 35776183 PMCID: PMC9529953 DOI: 10.1007/s00520-022-07243-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Aromatase inhibitors (AIs) are commonly used to treat hormone receptor positive (HR +) breast cancer. AI-induced musculoskeletal syndrome (AIMSS) is a common toxicity that causes AI treatment discontinuation. The objective of this genome-wide association study (GWAS) was to identify genetic variants associated with discontinuation of AI therapy due to AIMSS and attempt to replicate previously reported associations. METHODS In the Exemestane and Letrozole Pharmacogenetics (ELPh) study, postmenopausal patients with HR + non-metastatic breast cancer were randomized to letrozole or exemestane. Genome-wide genotyping of germline DNA was conducted followed by imputation. Each imputed variant was tested for association with time-to-treatment discontinuation due to AIMSS using a Cox proportional hazards model assuming additive genetic effects and adjusting for age, baseline pain score, prior taxane treatment, and AI arm. Secondary analyses were conducted within each AI arm and analyses of candidate variants previously reported to be associated with AIMSS risk. RESULTS Four hundred ELPh participants were included in the combined analysis. Two variants surpassed the genome-wide significance level in the primary analysis (p value < 5 × 10-8), an intronic variant (rs79048288) within CCDC148 (HR = 4.42, 95% CI: 2.67-7.33) and an intergenic variant (rs912571) upstream of PPP1R14C (HR = 0.30, 95% CI: 0.20-0.47). In the secondary analysis, rs74418677, which is known to be associated with expression of SUPT20H, was significantly associated with discontinuation of letrozole therapy due to AIMSS (HR = 5.91, 95% CI: 3.16-11.06). We were able to replicate associations for candidate variants previously reported to be associated with AIMSS in this cohort, but were not able to replicate associations for any other variants previously reported in other patient cohorts. CONCLUSIONS Our GWAS findings identify several candidate variants that may be associated with AIMSS risk from AI generally or letrozole specifically. Validation of these associations in independent cohorts is needed before translating these findings into clinical practice to improve treatment outcomes in patients with HR + breast cancer.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St., Room 3054, Ann Arbor, MI, 48109-1065, USA.
| | - Julie A Douglas
- Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, NY, 12866, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert M Miller
- Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Vered Stearns
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel F Hayes
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - N Lynn Henry
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Lee HC, Hsieh CC, Tsai HJ. KEPI plays a negative role in the repression that accompanies translational inhibition guided by the uORF element of human CHOP transcript during stress response. Gene X 2022; 817:146160. [PMID: 35031423 DOI: 10.1016/j.gene.2021.146160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022] Open
Abstract
Translation of the downstream coding sequence of some mRNAs may be repressed by the upstream open reading frame (uORF) at their 5'-end. The mechanism underlying this uORF-mediated translational inhibition (uORF-MTI) is not fully understood in vivo. Recently, it was found that zebrafish Endouc or its human orthologue ENDOU (Endouc/ENDOU) plays a positive role in repressing the uORF-MTI of human CHOP (uORFchop-MTI) during stress by blocking its activity However, the repression of uORFchop-MTI assisted by an as-yet unidentified negative effector remains to be elucidated. Compared to the upregulated CHOP transcript, we herein report that the kepi (kinase-enhanced PP1 inhibitor) transcript was downregulated in the zebrafish embryos treated with both heat shock and hypoxia. Quantitative RT-PCR also revealed that the level of kepi mRNA was noticeably decreased in both heat-shock-treated and hypoxia-exposed embryos. When kepi mRNA was microinjected into the one-celled embryos from transgenic line huORFZ, the translation of downstream GFP reporter controlled by the uORFchop-MTI was reduced in the hypoxia-exposed embryos. In contrast, when kepi was knocked down by injection of antisense Morpholino oligonucleotide, the translation of downstream GFP reporter was induced and expressed in the brain and spinal cord of injected embryos in the absence of stress. During normal condition, overexpression of KEPI increased eIF2α phosphorylation, resulting in inducing the translation of uORF-tag mRNA, such as ATF4 and CHOP mRNAs. However, during stress condition, overexpression of KEPI decreased eIF2α phosphorylation, resulting in reducing the GFP reporter and CHOP proteins. This is the first report to demonstrate that KEPI plays a negative role in uORFchop - mediated translation during ER stress.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chi-Cheng Hsieh
- The Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Jian Y, Kong L, Xu H, Shi Y, Huang X, Zhong W, Huang S, Li Y, Shi D, Xiao Y, Yang M, Li S, Chen X, Ouyang Y, Hu Y, Chen X, Song L, Ye R, Wei W. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta. Clin Transl Med 2022; 12:e725. [PMID: 35090098 PMCID: PMC8797469 DOI: 10.1002/ctm2.725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is fast-growing and highly metastatic with the poorest prognosis among the breast cancer subtypes. Inactivation of glycogen synthase kinase 3 beta (GSK3β) plays a vital role in the aggressiveness of TNBC; however, the underlying mechanism for sustained GSK3β inhibition remains largely unknown. Here, we find that protein phosphatase 1 regulatory inhibitor subunit 14C (PPP1R14C) is upregulated in TNBC and relevant to poor prognosis in patients. Overexpression of PPP1R14C facilitates cell proliferation and the aggressive phenotype of TNBC cells, whereas the depletion of PPP1R14C elicits opposite effects. Moreover, PPP1R14C is phosphorylated and activated by protein kinase C iota (PRKCI) at Thr73. p-PPP1R14C then represses Ser/Thr protein phosphatase type 1 (PP1) to retain GSK3β phosphorylation at high levels. Furthermore, p-PPP1R14C recruits E3 ligase, TRIM25, toward the ubiquitylation and degradation of non-phosphorylated GSK3β. Importantly, the blockade of PPP1R14C phosphorylation inhibits xenograft tumorigenesis and lung metastasis of TNBC cells. These findings provide a novel mechanism for sustained GSK3β inactivation in TNBC and suggest that PPP1R14C might be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunting Jian
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong ProvinceThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hongyi Xu
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinjian Huang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Wenjing Zhong
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yue Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Dongni Shi
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yunyun Xiao
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Muwen Yang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Siqi Li
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Ying Ouyang
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yameng Hu
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xin Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Guangzhou Institute of OncologyTumor Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Runyi Ye
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental Research, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Breast SurgerySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
6
|
Shu Y, Hassan F, Ostrowski MC, Mehta KD. Role of hepatic PKCβ in nutritional regulation of hepatic glycogen synthesis. JCI Insight 2021; 6:149023. [PMID: 34622807 PMCID: PMC8525638 DOI: 10.1172/jci.insight.149023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep-/-) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep-/- liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faizule Hassan
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael C Ostrowski
- Department of Biochemistry & Molecular Biology, Holling Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal D Mehta
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Instacare Therapeutics, Dublin, Ohio, USA
| |
Collapse
|
7
|
Voronkov M, Ataiants J, Cocchiaro B, Stock JB, Lankenau SE. A vicious cycle of neuropathological, cognitive and behavioural sequelae of repeated opioid overdose. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 97:103362. [PMID: 34314956 DOI: 10.1016/j.drugpo.2021.103362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023]
Abstract
In the midst of an escalating U.S. opioid crisis, the immediate focus of public health interventions is on fatal overdose prevention. Few studies, however, have sought to examine the long-term health consequences of exposure to repeated nonfatal opioid overdose. We reviewed recent literature to examine three corresponding downstream health outcomes of repeated overdose: a) neurodegenerative processes; b) cognition and memory; and c) overdose risk behaviours. We found a remarkable congruency among available biochemical and cognitive data on how nonfatal overdose precipitates various pathological feedforward and feedback loops that affect people who use opioids for years to come. We found however that downstream behavioural implications of neurodegenerative and cognitive sequelae are less studied despite being most proximal to an overdose. Findings point to a vicious cycle of nonfatal overdose leading to neurodegeneration - closely resembling Alzheimer Disease - that results in cognitive decline that in turn leads to potentially reduced adherence to safe drug use behaviours. The collected evidence not only brings into the focus the long-term health consequences of nonfatal overdose from the perspectives of biology, neuroscience, and public health, but also creates new cross-disciplinary context and awareness in the research and public health community that should benefit people at risk.
Collapse
Affiliation(s)
| | - Janna Ataiants
- Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA.
| | - Benjamin Cocchiaro
- Center for Public Health Initiatives, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffry B Stock
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stephen E Lankenau
- Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Does a hypoxic injury from a non-fatal overdose lead to an Alzheimer Disease? Neurochem Int 2020; 143:104936. [PMID: 33309980 DOI: 10.1016/j.neuint.2020.104936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Long term consequence of non-fatal overdose in people who use opioids are not well understood. The intermittent exposure to non-fatal overdose leads to a tauopathy that is often accompanied by abrogated neuroprotective response, abnormal amyloid processing and other pathologies. The scope and limitations of available literature are discussed including neuropathologies associated with opioid and overdose exposures, contributing comorbidities and proteinopathies. Contrasting postmortem data of overdose victims with animal models of opioid neuropathologies and hypoxic injury paints a picture distinct from other proteinopathies as well as effects of moderate opioid exposure. Furthermore the reported biochemical changes and potential targets for therapeutic intervention were mapped pointing to underlying imbalance between tau kinases and phosphatases that is characteristic of Alzheimer Disease.
Collapse
|
9
|
Lang I, Virk G, Zheng DC, Young J, Nguyen MJ, Amiri R, Fong M, Arata A, Chadaideh KS, Walsh S, Weiser DC. The Evolution of Duplicated Genes of the Cpi-17/Phi-1 ( ppp1r14) Family of Protein Phosphatase 1 Inhibitors in Teleosts. Int J Mol Sci 2020; 21:ijms21165709. [PMID: 32784920 PMCID: PMC7460850 DOI: 10.3390/ijms21165709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.
Collapse
Affiliation(s)
- Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Guneet Virk
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Jason Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Rojin Amiri
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michelle Fong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Alisa Arata
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Katia S. Chadaideh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susan Walsh
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA;
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Correspondence: ; Tel.: +1-209-946-2955
| |
Collapse
|
10
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
11
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
12
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J 2018; 475:3745-3761. [DOI: 10.1042/bcj20170961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Abstract
LIMK1 and LIMK2 (LIMKs, LIM kinases) are kinases that play a crucial role in cytoskeleton dynamics by independently regulating both actin filament and microtubule remodeling. LIMK1 and, more recently, LIMK2 have been shown to be involved in cancer development and metastasis, resistance of cancer cells to microtubule-targeted treatments, neurological diseases, and viral infection. LIMKs have thus recently emerged as new therapeutic targets. Databanks describe three isoforms of human LIMK2: LIMK2a, LIMK2b, and LIMK2-1. Evidence suggests that they may not have completely overlapping functions. We biochemically characterized the three isoforms to better delineate their potential roles, focusing on LIMK2-1, which has only been described at the mRNA level in a single study. LIMK2-1 has a protein phosphatase 1 (PP1) inhibitory domain at its C-terminus which its two counterparts do not. We showed that the LIMK2-1 protein is indeed synthesized. LIMK2-1 does not phosphorylate cofilin, the canonical substrate of LIMKs, although it has kinase activity and promotes actin stress fiber formation. Instead, it interacts with PP1 and partially inhibits its activity towards cofilin. Our data suggest that LIMK2-1 regulates actin cytoskeleton dynamics by preventing PP1-mediated cofilin dephosphorylation, rather than by directly phosphorylating cofilin as its two counterparts, LIMK2a and LIMK2b. This specificity may allow for tight regulation of the phospho-cofilin pool, determining the fate of the cell.
Collapse
|
14
|
Unverricht-Yeboah M, Giesen U, Kriehuber R. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. JOURNAL OF RADIATION RESEARCH 2018; 59:411-429. [PMID: 29800458 PMCID: PMC6054186 DOI: 10.1093/jrr/rry038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.
Collapse
Affiliation(s)
- Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Grey J, Jones D, Wilson L, Nakjang S, Clayton J, Temperley R, Clark E, Gaughan L, Robson C. Differential regulation of the androgen receptor by protein phosphatase regulatory subunits. Oncotarget 2018; 9:3922-3935. [PMID: 29423094 PMCID: PMC5790511 DOI: 10.18632/oncotarget.22883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022] Open
Abstract
The Androgen Receptor (AR) is a key molecule in the development, maintenance and progression of prostate cancer (PC). However, the relationship between the AR and co-regulatory proteins that facilitate AR activity in castrate resistant settings remain understudied. Here we show that protein phosphatase 1 regulatory subunits, identified from a phosphatase RNAi screen, direct PP1 catalytic subunits to a varied yet significant response in AR function. As such, we have characterised the PP1β holoenzyme, myosin phosphatase (MLCP), as a novel ligand independent regulator of the AR. Sustained MLCP activity through down-regulation of the MLCP inhibitory subunit, PPP1R14C, results in impaired AR nuclear translocation, protein stability and transcriptional activity in distinct models of PC progression, culminating in restoration of a non-malignant prostate genotype. Phenotypically, a marked reduction in cell proliferation and migration, characterised by G1 cell cycle arrest is observed, confirming PP1 holoenzyme disruption as a novel treatment approach in PC.
Collapse
Affiliation(s)
- James Grey
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dominic Jones
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jake Clayton
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Richard Temperley
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Clark
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Xiong L, Xia WF, Tang FL, Pan JX, Mei L, Xiong WC. Retromer in Osteoblasts Interacts With Protein Phosphatase 1 Regulator Subunit 14C, Terminates Parathyroid Hormone's Signaling, and Promotes Its Catabolic Response. EBioMedicine 2016; 9:45-60. [PMID: 27333042 PMCID: PMC4972523 DOI: 10.1016/j.ebiom.2016.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 12/02/2022] Open
Abstract
Parathyroid hormone (PTH) plays critical, but distinct, roles in bone remodeling, including bone formation (anabolic response) and resorption (catabolic response). Although its signaling and function have been extensively investigated, it just began to be understood how distinct functions are induced by PTH activating a common receptor, the PTH type 1 receptor (PTH1R), and how PTH1R signaling is terminated. Here, we provide evidence for vacuolar protein sorting 35 (VPS35), a major component of retromer, in regulating PTH1R trafficking, turning off PTH signaling, and promoting its catabolic function. VPS35 is expressed in osteoblast (OB)-lineage cells. VPS35-deficiency in OBs impaired PTH(1–34)-promoted PTH1R translocation to the trans-Golgi network, enhanced PTH(1–34)-driven signaling, and reduced PTH(1–34)'s catabolic response in culture and in mice. Further mechanical studies revealed that VPS35 interacts with not only PTH1R, but also protein phosphatase 1 regulatory subunit 14C (PPP1R14C), an inhibitory subunit of PP1 phosphatase. PPP1R14C also interacts with PTH1R, which is necessary for the increased endosomal PTH1R signaling and decreased PTH(1–34)'s catabolic response in VPS35-deficient OB-lineage cells. Taken together, these results suggest that VPS35 deregulates PTH1R-signaling likely by its interaction with PTH1R and PPP1R14C. This event is critical for the control of PTH(1–34)-signaling dynamics, which may underlie PTH-induced catabolic response and adequate bone remodeling. VPS35 terminates PTH(1-34)-induced cell surface and endosomal signalings Osteoblastic VPS35 promotes PTH(1-34)-driven catabolic response VPS35 interacts with PPP1R14C PPP1R14C also interacts with PTH1R and promotes PTH(1-34)-induced endosomal signaling PPP1R14C is necessary for the increased endosomal PTH1R signaling and decreased PTH(1-34)’s catabolic response in VPS35-deficient OB-lineage cells
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Wen-Fang Xia
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fu-Lei Tang
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Jin-Xiu Pan
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States.
| |
Collapse
|
17
|
Regan PM, Langford TD, Khalili K. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis. J Cell Physiol 2016; 231:976-85. [PMID: 26529364 PMCID: PMC4728022 DOI: 10.1002/jcp.25237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology.
Collapse
Affiliation(s)
- Patrick M. Regan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - T. Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Perrino BA. Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 2016; 22:213-25. [PMID: 26701920 PMCID: PMC4819859 DOI: 10.5056/jnm15186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
An increase in intracellular Ca2+ is the primary trigger of contraction of gastrointestinal (GI) smooth muscles. However, increasing the Ca2+ sensitivity of the myofilaments by elevating myosin light chain phosphorylation also plays an essential role. Inhibiting myosin light chain phosphatase activity with protein kinase C-potentiated phosphatase inhibitor protein-17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation is considered to be the primary mechanism underlying myofilament Ca2+ sensitization. The relative importance of Ca2+ sensitization mechanisms to the diverse patterns of GI motility is likely related to the varied functional roles of GI smooth muscles. Increases in CPI-17 and MYPT1 phosphorylation in response to agonist stimulation regulate myosin light chain phosphatase activity in phasic, tonic, and sphincteric GI smooth muscles. Recent evidence suggests that MYPT1 phosphorylation may also contribute to force generation by reorganization of the actin cytoskeleton. The mechanisms responsible for maintaining constitutive CPI-17 and MYPT1 phosphorylation in GI smooth muscles are still largely unknown. The characteristics of the cell-types comprising the neuroeffector junction lead to fundamental differences between the effects of exogenous agonists and endogenous neurotransmitters on Ca2+ sensitization mechanisms. The contribution of various cell-types within the tunica muscularis to the motor responses of GI organs to neurotransmission must be considered when determining the mechanisms by which Ca2+ sensitization pathways are activated. The signaling pathways regulating Ca2+ sensitization may provide novel therapeutic strategies for controlling GI motility. This article will provide an overview of the current understanding of the biochemical basis for the regulation of Ca2+ sensitization, while also discussing the functional importance to different smooth muscles of the GI tract.
Collapse
Affiliation(s)
- Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
19
|
Dedinszki D, Kiss A, Márkász L, Márton A, Tóth E, Székely L, Erdődi F. Inhibition of protein phosphatase-1 and -2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs. Cell Signal 2014; 27:363-72. [PMID: 25435424 DOI: 10.1016/j.cellsig.2014.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023]
Abstract
The phosphorylation of key proteins balanced by protein kinases and phosphatases are implicated in the regulation of cell cycle and apoptosis of malignant cells and influences anticancer drug actions. The efficacy of daunorubicin (DNR) in suppression of leukemic cell survival was investigated in the presence of tautomycin (TM) and calyculin A (CLA), specific membrane permeable inhibitors of protein phosphatase-1 (PP1) and -2A (PP2A), respectively. CLA (50 nM) or TM (1μM) suppressed viability of THP-1 and KG-1 myeloid leukemia cell lines to moderate extents; however, they significantly increased survival upon DNR-induced cell death. CLA increased the phosphorylation level of Erk1/2 and PKB/Akt kinases, the retinoblastoma protein (pRb), decreased caspase-3 activation by DNR and increased the phosphorylation level of the inhibitory sites (Thr696 and Thr853) in the myosin phosphatase (MP) target subunit (MYPT1) as well as in a 25kDa kinase-enhanced phosphatase inhibitor (KEPI)-like protein. TM induced enhanced phosphorylation of pRb only, suggesting that this event may be a common factor upon CLA-induced PP2A and TM-induced PP1 inhibitory influences on cell survival. Silencing PP1 by siRNA in HeLa cells, or overexpression of Flag-KEPI in MCF-7 cells coupled with inducing its phosphorylation by PMA or CLA, resulted in increased phosphorylation of pRb. Our results indicate that PP1 directly dephosphorylates pRb, while PP2A might have an indirect influence via mediating the phosphorylation level of PP1 inhibitory proteins. These data imply the importance of PP1 inhibitory proteins in controlling the phosphorylation state of key proteins and regulating drug sensitivity and apoptosis in leukemic cells.
Collapse
Affiliation(s)
- Dóra Dedinszki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Márkász
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Adrienn Márton
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Székely
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
20
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
21
|
Dippold RP, Fisher SA. A bioinformatic and computational study of myosin phosphatase subunit diversity. Am J Physiol Regul Integr Comp Physiol 2014; 307:R256-70. [PMID: 24898838 PMCID: PMC4121627 DOI: 10.1152/ajpregu.00145.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/25/2014] [Indexed: 01/01/2023]
Abstract
Variability in myosin phosphatase (MP) subunits may provide specificity in signaling pathways that regulate muscle tone. We utilized public databases and computational algorithms to investigate the phylogenetic diversity of MP regulatory (PPP1R12A-C) and inhibitory (PPP1R14A-D) subunits. The comparison of exonic coding sequences and expression data confirmed or refuted the existence of isoforms and their tissue-specific expression in different model organisms. The comparison of intronic and exonic sequences identified potential expressional regulatory elements. As examples, smooth muscle MP regulatory subunit (PPP1R12A) is highly conserved through evolution. Its alternative exon E24 is present in fish through mammals with two invariant features: 1) a reading frame shift generating a premature termination codon and 2) a hexanucleotide sequence adjacent to the 3' splice site hypothesized to be a novel suppressor of exon splicing. A characteristic of the striated muscle MP regulatory subunit (PPP1R12B) locus is numerous and phylogenetically variable transcriptional start sites. In fish this locus only codes for the small (M21) subunit, suggesting the primordial function of this gene. Inhibitory subunits show little intragenic variability; their diversity is thought to have arisen by expansion and tissue-specific expression of different gene family members. We demonstrate differences in the regulatory landscape between smooth muscle enriched (PPP1R14A) and more ubiquitously expressed (PPP1R14B) family members and identify deeply conserved intronic sequence and predicted transcriptional cis-regulatory elements. This bioinformatic and computational study has uncovered a number of attributes of MP subunits that supports selection of ideal model organisms and testing of hypotheses regarding their physiological significance and regulated expression.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| | - Steven A Fisher
- Department of Medicine, Cardiology, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
22
|
Doyle GA, Schwebel CL, Ruiz SE, Chou AD, Lai AT, Wang MJ, Smith GG, Buono RJ, Berrettini WH, Ferraro TN. Analysis of candidate genes for morphine preference quantitative trait locus Mop2. Neuroscience 2014; 277:403-16. [PMID: 25058503 DOI: 10.1016/j.neuroscience.2014.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
Compared to DBA/2J (D2), C57BL/6J (B6) inbred mice exhibit strong morphine preference when tested using a two-bottle choice drinking paradigm. A morphine preference quantitative trait locus (QTL), Mop2, was originally mapped to proximal chromosome (Chr) 10 using a B6xD2 F2 intercross population, confirmed with reciprocal congenic strains and fine mapped with recombinant congenic strains. These efforts identified a ∼ 10-Million base pair (Mbp) interval, underlying Mop2, containing 35 genes. To further reduce the interval, mice from the D2.B6-Mop2-P1 congenic strain were backcrossed to parental D2 mice and two new recombinant strains of interest were generated: D2.B6-Mop2-P1.pD.dB and D2.B6-Mop2-P1.pD.dD. Results obtained from testing these strains in the two-bottle choice drinking paradigm suggest that the gene(s) responsible for the Mop2 QTL is one or more of 22 remaining within the newly defined interval (∼ 7.6 Mbp) which includes Oprm1 and several other genes related to opioid pharmacology. Real-time qRT-PCR analysis of Oprm1 and opioid-related genes Rgs17, Ppp1r14c, Vip, and Iyd revealed both between-strain and within-strain expression differences in comparisons of saline- and morphine-treated B6 and D2 mice. Analysis of Rgs17 protein levels also revealed both between-strain and within-strain differences in comparisons of saline- and morphine-treated B6 and D2 mice. Results suggest that the Mop2 QTL represents the combined influence of multiple genetic variants on morphine preference in these two strains. Relative contributions of each variant remain to be determined.
Collapse
Affiliation(s)
- G A Doyle
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - C L Schwebel
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S E Ruiz
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A D Chou
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - A T Lai
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M-J Wang
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - G G Smith
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Research Services, Department of Veterans Affairs Medical Center, Coatesville, PA, USA
| | - R J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - W H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - T N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
23
|
Günther J, Vogt N, Hampel K, Bikker R, Page S, Müller B, Kandemir J, Kracht M, Dittrich-Breiholz O, Huber R, Brand K. Identification of two forms of TNF tolerance in human monocytes: differential inhibition of NF-κB/AP-1- and PP1-associated signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:3143-55. [PMID: 24574500 DOI: 10.4049/jimmunol.1301610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of TNF tolerance is poorly understood. In human monocytes we detected two forms of TNF refractoriness, as follows: absolute tolerance was selective, dose dependently affecting a small group of powerful effector molecules; induction tolerance represented a more general phenomenon. Preincubation with a high TNF dose induces both absolute and induction tolerance, whereas low-dose preincubation predominantly mediates absolute tolerance. In cells preincubated with the high TNF dose, we observed blockade of IκBα phosphorylation/proteolysis and nuclear p65 translocation. More prominent in cells preincubated with the high dose, reduced basal IκBα levels were found, accompanied by increased IκBα degradation, suggesting an increased IκBα turnover. In addition, a nuclear elevation of p50 was detected in tolerant cells, which was more visible following high-dose preincubation. TNF-induced phosphorylation of p65-Ser(536), p38, and c-jun was inhibited, and basal inhibitory p65-Ser(468) phosphorylation was increased in tolerant cells. TNF tolerance induced by the low preincubation dose is mediated by glycogen synthesis kinase-3, whereas high-dose preincubation-mediated tolerance is regulated by A20/glycogen synthesis kinase-3 and protein phosphatase 1-dependent mechanisms. To our knowledge, we present the first genome-wide analysis of TNF tolerance in monocytic cells, which differentially inhibits NF-κB/AP-1-associated signaling and shifts the kinase/phosphatase balance. These forms of refractoriness may provide a cellular paradigm for resolution of inflammation and may be involved in immune paralysis.
Collapse
Affiliation(s)
- Johannes Günther
- Institute of Clinical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang Q, Zhang XF, Van Goor D, Dunn AP, Hyland C, Medeiros N, Forscher P. Protein kinase C activation decreases peripheral actin network density and increases central nonmuscle myosin II contractility in neuronal growth cones. Mol Biol Cell 2013; 24:3097-114. [PMID: 23966465 PMCID: PMC3784383 DOI: 10.1091/mbc.e13-05-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PKC activation enhances myosin II contractility in the central growth cone domain while decreasing actin density and increasing actin network flow rates in the peripheral domain. This dual mode of action has mechanistic implications for interpreting reported effects of PKC on growth cone guidance and neuronal regeneration. Protein kinase C (PKC) can dramatically alter cell structure and motility via effects on actin filament networks. In neurons, PKC activation has been implicated in repulsive guidance responses and inhibition of axon regeneration; however, the cytoskeletal mechanisms underlying these effects are not well understood. Here we investigate the acute effects of PKC activation on actin network structure and dynamics in large Aplysia neuronal growth cones. We provide evidence of a novel two-tiered mechanism of PKC action: 1) PKC activity enhances myosin II regulatory light chain phosphorylation and C-kinase–potentiated protein phosphatase inhibitor phosphorylation. These effects are correlated with increased contractility in the central cytoplasmic domain. 2) PKC activation results in significant reduction of P-domain actin network density accompanied by Arp2/3 complex delocalization from the leading edge and increased rates of retrograde actin network flow. Our results show that PKC activation strongly affects both actin polymerization and myosin II contractility. This synergistic mode of action is relevant to understanding the pleiotropic reported effects of PKC on neuronal growth and regeneration.
Collapse
Affiliation(s)
- Qing Yang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | | | | | | | | | | | | |
Collapse
|
25
|
Giampietro PF, Baker MW, Basehore MJ, Jones JR, Seroogy CM. Novel mutation in TP63 associated with ectrodactyly ectodermal dysplasia and clefting syndrome and T cell lymphopenia. Am J Med Genet A 2013; 161A:1432-5. [PMID: 23613309 DOI: 10.1002/ajmg.a.35885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/09/2013] [Indexed: 11/11/2022]
Abstract
A male child with clinical features consistent with EEC/EECUT plus syndrome (ectrodactyly, ectodermal dysplasia, clefting, urinary tract abnormalities, and thymic abnormalities) including mild ectodermal abnormalities, ectrodactyly of hands and feet, cleft palate, bilateral hydronephrosis, and T cell lymphopenia is reported. He was noted to have T cell receptor excision circle (TREC) analysis below the cutoff for normal on newborn screening and T cell lymphopenia on further immunologic evaluation. A novel, presumably pathogenic de novo 3 bp deletion in exon 7 of TP63 (c.970_972delATT; NCBI Reference Sequence NM_003722.4) was identified. This observation provides supporting evidence for the association between TP63 mutations and EECUT plus syndrome. Clinicians caring for infants presenting with EEC spectrum disorders in the newborn period should also consider the possibility of T cell lymphopenia.
Collapse
Affiliation(s)
- Philip F Giampietro
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705-9345, USA.
| | | | | | | | | |
Collapse
|
26
|
Eto M, Brautigan DL. Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life 2012; 64:732-9. [PMID: 22815089 DOI: 10.1002/iub.1067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 01/23/2023]
Abstract
Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes, acting in addition to, not instead of, regulatory subunits. The cellular actions of the endogenous inhibitors are controlled by phosphorylation, connecting them to kinase pathways. More recent progress has unveiled additional functions of PP1 inhibitor-2 (I-2), including regulation of protein kinases. Transcriptional mechanisms govern the expression levels of CPI-17 in response to stimuli. If true for other inhibitor proteins, they have the potential of being diagnostic markers for pathological conditions. We discuss specific examples of PP1 inhibitor proteins regulating particular cellular functions and the rationale for incorporating phosphatase inhibitor proteins in development of new therapeutic strategies.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
27
|
Ruiz-Loredo AY, López-Colomé AM. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:85-121. [PMID: 22251559 DOI: 10.1016/b978-0-12-394304-0.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.
Collapse
Affiliation(s)
- Ariadna Yolanda Ruiz-Loredo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico DF, Mexico
| | | |
Collapse
|
28
|
Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem 2010; 284:35273-7. [PMID: 19846560 DOI: 10.1074/jbc.r109.059972] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The regulatory circuit controlling cellular protein phosphatase-1 (PP1), an abundant group of Ser/Thr phosphatases, involves phosphorylation of PP1-specific inhibitor proteins. Malfunctions of these inhibitor proteins have been linked to a variety of diseases, including cardiovascular disease and cancer. Upon phosphorylation at Thr(38), the 17-kDa PP1 inhibitor protein, CPI-17, selectively inhibits a specific form of PP1, myosin light chain phosphatase, which transduces multiple kinase signals into the phosphorylation of myosin II and other proteins. Here, the mechanisms underlying PP1 inhibition and the kinase/PP1 cross-talk mediated by CPI-17 and its related proteins, PHI, KEPI, and GBPI, are discussed.
Collapse
Affiliation(s)
- Masumi Eto
- Department of Molecular Physiology and Biophysics and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
29
|
Effect of KEPI (Ppp1r14c) deletion on morphine analgesia and tolerance in mice of different genetic backgrounds: when a knockout is near a relevant quantitative trait locus. Neuroscience 2009; 165:882-95. [PMID: 19819304 DOI: 10.1016/j.neuroscience.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/23/2009] [Accepted: 10/03/2009] [Indexed: 01/01/2023]
Abstract
We previously identified KEPI as a morphine-regulated gene using subtractive hybridization and differential display PCR. Upon phosphorylation by protein kinase C, KEPI becomes a powerful inhibitor of protein phosphatase 1. To gain insights into KEPI functions, we created KEPI knockout (KO) mice on mixed 129S6xC57BL/6 genetic backgrounds. KEPI maps onto mouse chromosome 10 close to the locus that contains the mu-opioid receptor (Oprm1) and provides a major quantitative trait locus for morphine effects. Analysis of single nucleotide polymorphisms in and near the Oprm1 locus identified a doubly-recombinant mouse with C57BL/6 markers within 1 Mb on either side of the KEPI deletion. This strategy minimized the amount of 129S6 DNA surrounding the transgene and documented the C57BL/6 origin of the Oprm1 gene in this founder and its offspring. Recombinant KEPIKO mice displayed (a) normal analgesic responses and normal locomotion after initial morphine treatments, (b) accelerated development of tolerance to analgesic effects of morphine, (c) elevated activity of protein phosphatase 1 in thalamus, (d) attenuated morphine reward as assessed by conditioned place preference. These data support roles for KEPI action in adaptive responses to repeated administration of morphine that include analgesic tolerance and drug reward.
Collapse
|
30
|
Doyle GA, Furlong PJ, Schwebel CL, Smith GG, Lohoff FW, Buono RJ, Berrettini WH, Ferraro TN. Fine mapping of a major QTL influencing morphine preference in C57BL/6 and DBA/2 mice using congenic strains. Neuropsychopharmacology 2008; 33:2801-9. [PMID: 18288093 DOI: 10.1038/npp.2008.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
C57BL/6J (B6) and DBA/2J (D2) mice differ in behaviors related to substance abuse, including voluntary morphine consumption and preference in a two-bottle choice paradigm. Two major quantitative trait loci (QTL) for morphine consumption and preference exist between these strains on chromosomes (Chrs.) 6 and 10 when the two-bottle choice involves morphine in saccharin vs quinine in saccharin. Here, we report the refinement of the Chr. 10 QTL in subcongenic strains of D2.B6-Mop2 congenic mice described previously. With these subcongenic mouse strains, we have divided the introgressed region of Chr. 10 containing the QTL gene(s) into two segments, one between the acromere and Stxbp5 (in D2.B6-Mop2-P1 mice) and the other between marker D10Mit211 and marker D10Mit51 (in D2.B6-Mop2-D1 mice). We find that, similar to B6 mice, the D2.B6-Mop2-P1 congenic mice exhibit a strong preference for morphine over quinine, whereas D2.B6-Mop2-D1 congenic mice avoid morphine (similar to D2 mice). We have also created a line of double congenic mice, B6.D2-Mop2.Qui, which contains both Chr. 10 and Chr. 6 QTL. We find that they are intermediate in their morphine preference scores when compared with B6 and D2 animals. Overall, these data suggest that the gene(s) involved in morphine preference in the morphine-quinine two-bottle choice paradigm are contained within the proximal region of Chr. 10 (which harbors Oprm1) between the acromere and Stxbp5, as well as on distal Chr. 6 between marker D6Mit10 and the telomere.
Collapse
Affiliation(s)
- Glenn A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Murthy KS. Contractile agonists attenuate cGMP levels by stimulating phosphorylation of cGMP-specific PDE5; an effect mediated by RhoA/PKC-dependent inhibition of protein phosphatase 1. Br J Pharmacol 2008; 153:1214-24. [PMID: 18204475 DOI: 10.1038/sj.bjp.0707686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE In gastrointestinal smooth muscle cGMP levels in response to relaxant agonists are regulated by PKG-mediated phosphorylation and activation of phosphodiesterase 5 (PDE5). The aim of the present study was to determine whether contractile agonists modulate cGMP levels by cross-regulating PDE5 activity and to identify the mechanism of action. EXPERIMENTAL APPROACH Dispersed and cultured muscle cells from rabbit stomach were treated with the nitric oxide donor, S-nitrosoglutathione (GSNO), or with a contractile agonist, ACh and GSNO. PDE5 phosphorylation and activity, and cGMP levels were determined. KEY RESULTS GSNO stimulated PDE5 phosphorylation and activity and increased cGMP levels in gastric smooth muscle cells. Concurrent activation of cells with ACh augmented GSNO-stimulated PDE5 phosphorylation and activity, and attenuated cGMP levels. The effect of ACh was blocked by the m3 receptor antagonist and by inhibitors of protein kinase C (PKC) or RhoA, but not by the m2 receptor antagonist or inhibitors of PI hydrolysis. The effects of ACh on PDE5 phosphorylation and activity, and cGMP levels were mimicked by a low concentration of tautomycin (10 nM), and a high (1 microM) but not low (1 nM) concentration of okadaic acid. PDE5 was associated with protein phosphatase 1 (PP1) and dephosphorylated by the catalytic subunit of PP1 but not PP2A. CONCLUSION AND IMPLICATIONS In gastrointestinal smooth muscle cGMP levels are cross-regulated by contractile agonists via a mechanism that involves RhoA-dependent, PKC-mediated inhibition of PP1 activity. This leads to augmentation of PDE5 phosphorylation and activity, and inhibition of cGMP levels.
Collapse
Affiliation(s)
- K S Murthy
- Department of Physiology and Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
32
|
Korzh A, Keren O, Gafni M, Bar-Josef H, Sarne Y. Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Res 2007; 1189:23-32. [PMID: 18068691 DOI: 10.1016/j.brainres.2007.10.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/17/2007] [Accepted: 10/28/2007] [Indexed: 11/30/2022]
Abstract
In the present study we investigated the signal transduction pathways leading to the activation of extracellular signal-regulated kinase (ERK) by opioid or cannabinoid drugs, when their receptors are coexpressed in the same cell-type. In N18TG2 neuroblastoma cells, the opioid agonist etorphine and the cannabinoid agonist CP-55940 induced the phosphorylation of ERK by a similar mechanism that involved activation of delta-opioid receptors or CB1 cannabinoid receptors coupled to Gi/Go proteins, matrix metalloproteases, vascular endothelial growth factor (VEGF) receptors and MAPK/ERK kinase (MEK). In HEK-293 cells, these two drugs induced the phosphorylation of ERK by separate mechanisms. While CP-55940 activated ERK by transactivation of VEGFRs, similar to its effect in N18TG2 cells, the opioid agonist etorphine activated ERK by a mechanism that did not involve transactivation of a receptor tyrosine kinase. Interestingly, the activation of ERK by etorphine was resistant to the inhibition of MEK, suggesting the possible existence of a novel, undescribed yet mechanism for the activation of ERK by opioids. This mechanism was found to be specific to etorphine, as activation of ERK by the micro-opioid receptor (MOR) agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol] enkephalin) was mediated by MEK in these cells, suggesting that etorphine and DAMGO activate distinct, ligand-specific, conformations of MOR. The characterization of cannabinoid- and opioid-induced ERK activation in these two cell-lines enables future studies into possible interactions between these two groups of drugs at the level of MAPK signaling.
Collapse
Affiliation(s)
- Alexander Korzh
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
33
|
Caselli R, Mencarelli MA, Papa FT, Uliana V, Schiavone S, Strambi M, Pescucci C, Ariani F, Rossi V, Longo I, Meloni I, Renieri A, Mari F. A 2.6 Mb deletion of 6q24.3-25.1 in a patient with growth failure, cardiac septal defect, thin upperlip and asymmetric dysmorphic ears. Eur J Med Genet 2007; 50:315-21. [PMID: 17512813 DOI: 10.1016/j.ejmg.2007.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
We report a female patient with neurodevelopmental delay and peculiar facial features. She has postnatal growth failure and an atrial septal defect. Patent duct arteriosis and tricuspidal insufficiency were also noted at birth. Characteristic facial features include medial flare eyebrows, dysmorphic helix of the right ear, cupshaped left ear, anteverted nares, long and smooth philtrum, thin upper lip, high vaulted palate. Array-CGH analysis demonstrated the presence of a 2.6 Mb deletion in 6q24.3-25.1. The phenotypic features of this case are very similar to those previously reported in a patient with a 7Mb overlapping deletion, pointing to a specific new syndrome. Twenty-two genes are present in the common critical deleted region. Among them, there is the PPP1R14C gene that encodes for KEPI, a PKC-potentiated inhibitory protein for type-1 Ser/Thr protein phosphatase. Its selective distribution in brain and heart well correlates with developmental delay and cardiac anomalies observed in the patient.
Collapse
Affiliation(s)
- R Caselli
- Medical Genetics, University of Siena, Molecular Biology Department, V.Le Bracci, 53100 Siena, SI, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wenzel K, Daskalow K, Herse F, Seitz S, Zacharias U, Schenk JA, Schulz H, Hubner N, Micheel B, Schlag PM, Osterziel KJ, Ozcelik C, Scherneck S, Jandrig B. Expression of the protein phosphatase 1 inhibitor KEPI is downregulated in breast cancer cell lines and tissues and involved in the regulation of the tumor suppressor EGR1 via the MEK-ERK pathway. Biol Chem 2007; 388:489-95. [PMID: 17516844 DOI: 10.1515/bc.2007.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
KEPI is a protein kinase C-potentiated inhibitory protein for type 1 Ser/Thr protein phosphatases. We found no or reduced expression of KEPI in breast cancer cell lines, breast tumors and metastases in comparison to normal breast cell lines and tissues, respectively. KEPI protein expression and ubiquitous localization was detected with a newly generated antibody. Ectopic KEPI expression in MCF7 breast cancer cells induced differential expression of 95 genes, including the up-regulation of the tumor suppressors EGR1 (early growth response 1) and PTEN (phosphatase and tensin homolog), which is regulated by EGR1. We further show that the up-regulation of EGR1 in MCF7/KEPI cells is mediated by MEK-ERK signaling. The inhibition of this pathway by the MEK inhibitor UO126 led to a strong decrease in EGR1 expression in MCF7/KEPI cells. These results reveal a novel role for KEPI in the regulation of the tumor suppressor gene EGR1 via activation of the MEK-ERK MAPK pathway.
Collapse
Affiliation(s)
- Katrin Wenzel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ocaña M, Entrena JM, Baeyens JM, Del Pozo E. The antinociceptive effect of morphine is reversed by okadaic acid in morphine-naive but not in morphine-tolerant mice. Pharmacol Biochem Behav 2006; 86:21-6. [PMID: 17234262 DOI: 10.1016/j.pbb.2006.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
The activation of specific subtypes of serine/threonine protein phosphatases (PPs) plays a role in the antinociceptive effect of acute morphine, but it is not known whether these enzymes are involved in morphine-induced antinociception in morphine-tolerant animals. We evaluated the effects of both okadaic acid (a selective inhibitor of some serine/threonine PPs) and its inactive analogue L-norokadaone on the antinociception induced by morphine in morphine-naive and -tolerant female mice in the tail-flick test. Okadaic acid (0.01 and 1 pg/mouse, i.c.v.), but not L-norokadaone (1 pg/mouse, i.c.v.), antagonized in a dose-dependent way the antinociception induced by morphine (1-16 mg/kg, s.c.) in morphine-naive animals. However, both okadaic acid (0.01 and 1 pg/mouse, i.c.v.) and L-norokadaone (1 pg/mouse, i.c.v.) were unable to modify the antinociceptive effect of morphine in morphine-tolerant mice. These results suggest that in morphine-induced thermal analgesia, the role of serine/threonine PPs highly sensitive to okadaic acid is different in morphine-tolerant and morphine-naive female mice.
Collapse
Affiliation(s)
- María Ocaña
- Department of Pharmacology and Neuroscience Institute, School of Medicine, University of Granada, Avenida de Madrid 12, E-18012 Granada, Spain
| | | | | | | |
Collapse
|
36
|
Jin H, Sperka T, Herrlich P, Morrison H. Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 2006; 442:576-9. [PMID: 16885985 DOI: 10.1038/nature04856] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 05/02/2006] [Indexed: 11/08/2022]
Abstract
The tumour suppressor protein merlin (encoded by the neurofibromatosis type 2 gene NF2) is an important regulator of proliferation in many cell and tissue types. Merlin is activated by dephosphorylation at serine 518 (S518), which occurs on serum withdrawal or on cell-cell or cell-matrix contact. However, the relevant phosphatase that activates merlin's tumour suppressor function is unknown. Here we identify this enzyme as the myosin phosphatase (MYPT-1-PP1delta). The cellular MYPT-1-PP1delta-specific inhibitor CPI-17 causes a loss of merlin function characterized by merlin phosphorylation, Ras activation and transformation. Constitutively active merlin (S518A) reverses CPI-17-induced transformation, showing that merlin is the decisive substrate of MYPT-1-PP1delta in tumour suppression. In addition we show that CPI-17 levels are raised in several human tumour cell lines and that the downregulation of CPI-17 induces merlin dephosphorylation, inhibits Ras activation and abolishes the transformed phenotype. MYPT-1-PP1delta and its substrate merlin are part of a previously undescribed tumour suppressor cascade that can be hindered in two ways, by mutation of the NF2 gene and by upregulation of the oncoprotein CPI-17.
Collapse
Affiliation(s)
- Hongchuan Jin
- Leibniz Institute of Age Research-Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | |
Collapse
|
37
|
Ishiguro H, Liu QR, Gong JP, Hall FS, Ujike H, Morales M, Sakurai T, Grumet M, Uhl GR. NrCAM in addiction vulnerability: positional cloning, drug-regulation, haplotype-specific expression, and altered drug reward in knockout mice. Neuropsychopharmacology 2006; 31:572-84. [PMID: 16123759 DOI: 10.1038/sj.npp.1300855] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several lines of evidence support roles for the cell adhesion molecule NrCAM in addictions. Fine mapping within a chromosome 7 region that contains previously linked and associated genomic markers identifies NrCAM haplotypes that are associated with substance abuse vulnerabilities in four samples of abusers and controls. Differential display identifies NrCAM as a drug regulated gene. NrCAM is expressed in neurons linked to reward and memory. NrCAM displays haplotype-specific gene expression in human post-mortem brain samples. Knockout mice display reduced opiate- and stimulant-conditioned place preferences. These observations support NrCAM as a positionally cloned and drug-regulated gene whose variants are likely to change expression and alter substance abuse vulnerabilities in human addictions and animal models of drug reward.
Collapse
MESH Headings
- Amphetamine-Related Disorders/genetics
- Amphetamine-Related Disorders/psychology
- Animals
- Blotting, Northern
- Brain Chemistry/drug effects
- Brain Chemistry/genetics
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/physiology
- Chromosome Mapping
- Cloning, Molecular
- Cocaine/pharmacology
- Cocaine-Related Disorders/genetics
- Cocaine-Related Disorders/psychology
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Genome, Human
- Genotype
- Haplotypes
- Humans
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Morphine/pharmacology
- Narcotics/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reward
- Substance-Related Disorders/genetics
- Substance-Related Disorders/physiopathology
- Substance-Related Disorders/psychology
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Molecular Neurobiology Branch, NIDA-IRP, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gong JP, Liu QR, Zhang PW, Wang Y, Uhl GR. Mouse brain localization of the protein kinase C-enhanced phosphatase 1 inhibitor KEPI (Kinase C-Enhanced PP1 Inhibitor). Neuroscience 2005; 132:713-27. [PMID: 15837133 DOI: 10.1016/j.neuroscience.2004.11.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
We recently identified the protein kinase C-enhanced protein phosphatase 1 (PP1) inhibitor KEPI based on its morphine-induced upregulation in striatum. Regulation of protein serine/threonine dephosphorylation by PP1 can modulate important brain signaling pathways. To improve understanding of KEPI's role in the brain, we have developed anti-KEPI sera in rabbits immunized with a hemocyanin conjugate of KEPI residues 66-80, characterized the specificity that this serum provides, mapped the distribution of immunoreactive KEPI (iKEPI) in mouse brain, rat dorsal root ganglia and striatal cultures and documented KEPI binding to PP1 in vitro. Staining is found in apparently neuronal processes and, often less intensely, in neuronal perikarya in primary cultures and in neurons and neuronal elements from a number of brain regions. iKEPI fiber/terminal patterns are relatively densely distributed in striatum, nucleus accumbens, septum, bed nucleus of the stria terminalis, hippocampus, paraventricular thalamus, ventromedial hypothalamus, interpeduncular nucleus, raphe nuclei, nucleus caudalis of the spinal tract of the trigeminal and dorsal horn of the spinal cord. iKEPI-positive cell bodies lie in the nucleus accumbens, striatum, lateral septal nucleus, granular layer of dentate gyrus, interpeduncular nucleus, dorsal root ganglia and cerebellar vermis. These expression patterns point to possible roles for KEPI in regulating protein dephosphorylation by inhibiting PP1 activities in a number of brain pathways likely to use several different neurotransmitters and to participate in a number of brain functions. Dense KEPI immunoreactivity in nucleus accumbens perikarya, combined with evidence for its regulation by opiates, supports possible roles for KEPI in molecular signal transduction pathways important for drug reward and addiction.
Collapse
Affiliation(s)
- J-P Gong
- Molecular Neurobiology, NIDA-IRP, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
39
|
Liu QR, Gong JP, Uhl GR. Families of Protein Phosphatase 1 Modulators Activated by Protein Kinases A and C: Focus on Brain. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:371-404. [PMID: 16096033 DOI: 10.1016/s0079-6603(04)79008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, NIDA-IRP, National Institute of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
40
|
Eto M, Kitazawa T, Brautigan DL. Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Natl Acad Sci U S A 2004; 101:8888-93. [PMID: 15184667 PMCID: PMC428442 DOI: 10.1073/pnas.0307812101] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Indexed: 11/18/2022] Open
Abstract
Inhibition of myosin phosphatase is critical for agonist-induced contractility of vascular smooth muscle. The protein CPI-17 is a phosphorylation-dependent inhibitor of myosin phosphatase and, in response to agonists, Thr-38 is phosphorylated by protein kinase C, producing a >1,000-fold increase in inhibitory potency. Here, we addressed how CPI-17 could selectively inhibit myosin phosphatase among other protein phosphatase-1 (PP1) holoenzymes. PP1 in cell lysates was separated by sequential affinity chromatography into at least two fractions, one bound specifically to thiophospho-CPI-17, and another bound specifically to inhibitor-2. The MYPT1 regulatory subunit of myosin phosphatase was concentrated only in the fraction bound to thiophospho-CPI-17. This binding was eliminated by addition of excess microcystin-LR to the lysate, showing that binding at the active site of PP1 is required. Phospho-CPI-17 failed to inhibit glycogen-bound PP1 from skeletal muscle, composed primarily of PP1 with the striated muscle glycogen-targeting subunit (G(M)) regulatory subunit. Phospho-CPI-17 was dephosphorylated during assay of glycogen-bound PP1, not MYPT1-associated PP1, even though these two holoenzymes have the same PP1 catalytic subunit. Phosphorylation of CPI-17 in rabbit arteries was enhanced by calyculin A but not okadaic acid or fostriecin, consistent with PP1-mediated dephosphorylation. We propose that CPI-17 binds at the PP1 active site where it is dephosphorylated, but association of MYPT1 with PP1C allosterically retards this hydrolysis, resulting in formation of a complex of MYPT1.PP1C.P-CPI-17, leading to an increase in smooth muscle contraction.
Collapse
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
41
|
Hartshorne DJ, Ito M, Erdödi F. Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem 2004; 279:37211-4. [PMID: 15136561 DOI: 10.1074/jbc.r400018200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- David J Hartshorne
- Muscle Biology Group, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
42
|
Eisinger DA, Schulz R. Extracellular signal-regulated kinase/mitogen-activated protein kinases block internalization of delta-opioid receptors. J Pharmacol Exp Ther 2004; 309:776-85. [PMID: 14742744 DOI: 10.1124/jpet.103.061788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Translocation of G protein-coupled receptors (GPCRs) from the cell membrane to cytosol depends on the kind of ligand activating the receptor. This principle is clearly demonstrated for opioid receptors, because diverse opiate agonists rapidly induce receptor internalization, whereas morphine almost fails. We report here the impact of mitogen-activated protein (MAP) kinase isoforms extracellular signal-regulated kinase (ERK)1/2 on the internalization of delta-opioid receptors (DORs) expressed in human embryonic kidney (HEK)293 cells. Receptor activation by etorphine turned out to transiently phosphorylate ERK/MAP kinases and bring about DOR internalization within 20 min. In contrast, prolonged exposure of HEK293 cells to morphine excited persistent phosphorylation of ERK/MAP kinases, and those cells failed to internalize the opioid receptor. When ERK/MAP kinase phosphorylation was blocked by 2'-Amino-3'-methoxyflavone (PD98059), morphine gained the ability to strongly induce DOR endocytosis. The importance of activated MAP kinases for DOR internalization is further demonstrated by glutamate and paclitaxel because these substances induce phosphorylation of ERK1/2 and concomitantly prevent DOR sequestration by etorphine. In addition, receptor internalization by morphine was facilitated by inhibition of protein kinase C and opioid-mediated transactivation of epidermal growth factor receptor (EGFR), both activating ERK/MAP kinases by opioids. The mechanism affording DOR internalization by PD98059 may relate to arrestin, which uncouples GPCRs and thus triggers receptor internalization. Arrestin considerably translocates toward the cell membrane upon DOR activation by morphine in presence of the MAP kinase blocker, but it fails in the absence of PD98059. We conclude that ERK/MAP kinase activity prevents opioid receptor desensitization and sequestration by blocking arrestin 2 interaction with activated DORs.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Germany.
| | | |
Collapse
|
43
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 506] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Zemlickova E, Johannes FJ, Aitken A, Dubois T. Association of CPI-17 with protein kinase C and casein kinase I. Biochem Biophys Res Commun 2004; 316:39-47. [PMID: 15003508 DOI: 10.1016/j.bbrc.2004.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Indexed: 11/15/2022]
Abstract
The protein kinase C-potentiated inhibitor protein of 17kDa, called CPI-17, specifically inhibits myosin light chain phosphatase (MLCP). Phosphorylation of Thr-38 in vivo highly potentiates the ability of CPI-17 to inhibit MLCP. Thr-38 has been shown to be phosphorylated in vitro by a number of protein kinases including protein kinase C (PKC), Rho-associated coiled-coil kinase (ROCK), and protein kinase N (PKN). In this study we have focused on the association of protein kinases with CPI-17. Using affinity chromatography and Western blot analysis, we found interaction with all PKC isotypes and casein kinase I isoforms, CKIalpha and CKI. By contrast, ROCK and PKN did not associate with CPI-17, suggesting that PKC may be the relevant kinase that phosphorylates Thr-38 in vivo. CPI-17 interacted with the cysteine-rich domain of PKC and was phosphorylated by all PKC isotypes. We previously found that CPI-17 co-purified with casein kinase I in brain suggesting they are part of a complex and we now show that CPI-17 associates with the kinase domain of CKI isoforms.
Collapse
Affiliation(s)
- Eva Zemlickova
- University of Edinburgh, Division of Biomedical and Clinical Laboratory Sciences, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
45
|
Liu QR, Zhang PW, Lin Z, Li QF, Woods AS, Troncoso J, Uhl GR. GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein, is activated by PKC and inactivated by PKA. Biochem J 2004; 377:171-81. [PMID: 12974676 PMCID: PMC1223837 DOI: 10.1042/bj20030128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 09/10/2003] [Accepted: 09/16/2003] [Indexed: 11/17/2022]
Abstract
The activities of PP1 (protein phosphatase 1), a principal cellular phosphatase that reverses serine/threonine protein phosphorylation, can be altered by inhibitors whose activities are themselves regulated by phosphorylation. We now describe a novel PKC (protein kinase C)-dependent PP1 inhibitor, namely GBPI (gut and brain phosphatase inhibitor). The shorter mRNA that encodes this protein, GBPI-1, is expressed in brain, stomach, small intestine, colon and kidney, whereas a longer GBPI-2 splice variant mRNA is found in testis. Human GBPI-1 mRNA encodes a 145-amino-acid, 16.5 kDa protein with pI 7.92. GBPI contains a consensus PP1-binding motif at residues 21-25 and consensus sites for phosphorylation by enzymes, including PKC, PKA (protein kinase A or cAMP-dependent protein kinase) and casein kinase II. Recombinant GBPI-1-fusion protein inhibits PP1 activity with IC50=3 nM after phosphorylation by PKC. Phospho-GBPI can even enhance PP2A activity by >50% at submicromolar concentrations. Non-phosphorylated GBPI-1 is inactive in both assays. Each of the mutations in amino acids located in potential PP1-binding sequences, K21E+K22E and W25A, decrease the ability of GBPI-1 to inhibit PP1. Mutations in the potential PKC phosphoacceptor site T58E also dramatically decrease the ability of GBPI-1 to inhibit PP1. Interestingly, when PKC-phosphorylated GBPI-1 is further phosphorylated by PKA, it no longer inhibits PP1. Thus, GBPI-1 is well positioned to integrate PKC and PKA modulation of PP1 to regulate differentially protein phosphorylation patterns in brain and gut. GBPI, its closest family member CPI (PKC-potentiated PP1 inhibitor) and two other family members, kinase-enhanced phosphatase inhibitor and phosphatase holoenzyme inhibitor, probably modulate integrated control of protein phosphorylation states in these and other tissues.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, NIH, Department of Health and Human Services, Box 5180, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Erdodi F, Kiss E, Walsh MP, Stefansson B, Deng JT, Eto M, Brautigan DL, Hartshorne DJ. Phosphorylation of protein phosphatase type-1 inhibitory proteins by integrin-linked kinase and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun 2003; 306:382-7. [PMID: 12804574 DOI: 10.1016/s0006-291x(03)00976-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.
Collapse
Affiliation(s)
- Ferenc Erdodi
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, 18/B, Bem tér, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ohki SY, Eto M, Shimizu M, Takada R, Brautigan DL, Kainosho M. Distinctive solution conformation of phosphatase inhibitor CPI-17 substituted with aspartate at the phosphorylation-site threonine residue. J Mol Biol 2003; 326:1539-47. [PMID: 12595264 DOI: 10.1016/s0022-2836(03)00048-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We present solution NMR structures for wild-type and mutated forms of CPI-17, a phosphoinhibitor for protein phosphatase 1. Phosphorylation of Thr38 of CPI-17 produces a >1000-fold increase in inhibitory potency for myosin phosphatase. We compared the 1H-15N heteronuclear single quantum coherence spectroscopy (HSQC) chemical shifts of wild-type CPI-17, partially phosphorylated CPI-17 and CPI-17 with Thr38 replaced with Asp to introduce a negative charge. There was a switch in the protein conformation due to either Asp substitution or phosphorylation, so we determined the solution NMR structure of the CPI-17 T38D mutant as a model for the active (phospho-) conformation. The structures reveal a molecular switch in conformation that involves the rotation of two of the four helices in the four helix bundle. Despite this conformational switch, there was little increase in the inhibitory potency with T38D. We propose that for this inhibitor, a negative charge at residue 38 is sufficient to trigger an active conformation, but a phosphoryl group is required for full inhibitory potency against protein phosphatase-1.
Collapse
Affiliation(s)
- Shin ya Ohki
- CREST and Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
49
|
Eto M, Bock R, Brautigan DL, Linden DJ. Cerebellar long-term synaptic depression requires PKC-mediated activation of CPI-17, a myosin/moesin phosphatase inhibitor. Neuron 2002; 36:1145-58. [PMID: 12495628 DOI: 10.1016/s0896-6273(02)01107-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cerebellar LTD requires brief activation of PKC and is expressed as a functional downregulation of AMPA receptors. Modulation of vascular smooth-muscle contraction by G protein-coupled receptors (called Ca(2+) sensitization) also involves PKC phosphorylation and activation of a specific inhibitor of myosin/moesin phosphatase (MMP). This inhibitor, called CPI-17, is also expressed in brain. Here, we tested the hypothesis that LTD, like Ca(2+) sensitization, employs a PKC/CPI-17 cascade. Introduction of activated recombinant CPI-17 into cells produced a use-dependent attenuation of glutamate-evoked responses and occluded subsequent LTD. Moreover, the requirement for endogenous CPI-17 in LTD was demonstrated with neutralizing antibodies plus gene silencing by siRNA. These interventions had no effect on basal synaptic strength but blocked LTD induction. Thus, a biochemical circuit that involves PKC-mediated activation of CPI-17 modulates the distinct physiological processes of vascular contractility and cerebellar LTD.
Collapse
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
50
|
Eto M, Elliott E, Prickett TD, Brautigan DL. Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J Biol Chem 2002; 277:44013-20. [PMID: 12221103 DOI: 10.1074/jbc.m208035200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centrosome separation is regulated by balance of in situ protein kinase/phosphatase activities during the cell cycle. The mammalian NimA-related kinase Nek2 forms a complex with the catalytic subunit of protein phosphatase-1 (PP1C). This complex is located at centrosomes and has been implicated in regulation of the cycle of duplication and separation. Inhibitor-2 (Inh2) is an inhibitor protein specific for PP1C, and its expression level fluctuates during the cell cycle. Here we report cellular regulation of the Nek2.PP1C complex by Inh2. PP1C-binding segments of Nek2 were isolated by yeast two-hybrid screening using Inh2 bait. Inh2 indirectly associates with Nek2 via PP1C, which binds to both proteins, forming a bridged heterotrimeric complex. Double Ala mutation of the PP1C-binding site (KVHF) in Nek2 eliminated both PP1C and Inh2 interactions in both a yeast conjugation assay and an in vitro binding assay. The kinase activity of Nek2.PP1C was enhanced 2-fold by addition of recombinant Inh2, with EC(50) = 10 nm. Immunofluorescence showed concentration of endogenous Inh2 at centrosomes and in a region surrounding the centrosomes. Transient expression of wild-type Inh2 increased by 5-fold dispersed/split centrosomes in fibroblasts, mimicking the phenotype produced by overexpression of Nek2. Deletion of the Inh2 C-terminal domain yielded Inh2-(1-118), which failed to interact with or activate the Nek2.PP1C complex, suggesting that the C-terminal region of Inh2 is required for regulation of the Nek2.PP1C complex. Thus, Inh2 can enhance the kinase activity of the Nek2.PP1C complex via inhibition of phosphatase activity to initiate centrosome separation.
Collapse
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|