1
|
Tatsumi M, Cruz C, Kamakura N, Kuwabara R, Nakamura G, Ikuta T, Abrol R, Inoue A. Identification of Gα 12-vs-Gα 13-coupling determinants and development of a Gα 12/13-coupled designer GPCR. Sci Rep 2024; 14:11119. [PMID: 38750247 PMCID: PMC11096383 DOI: 10.1038/s41598-024-61506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) transduce diverse signals into the cell by coupling to one or several Gα subtypes. Of the 16 Gα subtypes in human cells, Gα12 and Gα13 belong to the G12 subfamily and are reported to be functionally different. Notably, certain GPCRs display selective coupling to either Gα12 or Gα13, highlighting their significance in various cellular contexts. However, the structural basis underlying this selectivity remains unclear. Here, using a Gα12-coupled designer receptor exclusively activated by designer drugs (DREADD; G12D) as a model system, we identified residues in the α5 helix and the receptor that collaboratively determine Gα12-vs-Gα13 selectivity. Residue-swapping experiments showed that G12D distinguishes differences between Gα12 and Gα13 in the positions G.H5.09 and G.H5.23 in the α5 helix. Molecular dynamics simulations observed that I378G.H5.23 in Gα12 interacts with N1032.39, S1693.53 and Y17634.53 in G12D, while H364G.H5.09 in Gα12 interact with Q2645.71 in G12D. Screening of mutations at these positions in G12D identified G12D mutants that enhanced coupling with Gα12 and to an even greater extent with Gα13. Combined mutations, most notably the dual Y17634.53H and Q2645.71R mutant, further enhanced Gα12/13 coupling, thereby serving as a potential Gα12/13-DREADD. Such novel Gα12/13-DREADD may be useful in future efforts to develop drugs that target Gα12/13 signaling as well as to identify their therapeutic indications.
Collapse
Affiliation(s)
- Manae Tatsumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Christian Cruz
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, 91330, USA
| | - Nozomi Kamakura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Riku Kuwabara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Gaku Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, 91330, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Hasan S, White NF, Tagliatela AC, Durall RT, Brown KM, McDiarmid GR, Meigs TE. Overexpressed Gα13 activates serum response factor through stoichiometric imbalance with Gβγ and mislocalization to the cytoplasm. Cell Signal 2023; 102:110534. [PMID: 36442589 DOI: 10.1016/j.cellsig.2022.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein β and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αβγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Nicholas F White
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Alicia C Tagliatela
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - R Taylor Durall
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Katherine M Brown
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Gray R McDiarmid
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA.
| |
Collapse
|
3
|
Stecky RC, Quick CR, Fleming TL, Mull ML, Vinson VK, Whitley MS, Dover EN, Meigs TE. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cell Signal 2020; 72:109653. [PMID: 32330601 DOI: 10.1016/j.cellsig.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022]
Abstract
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
Collapse
Affiliation(s)
- Rebecca C Stecky
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Courtney R Quick
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Todd L Fleming
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Makenzy L Mull
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Vanessa K Vinson
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Megan S Whitley
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - E Nicole Dover
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
4
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Streicher JM. The role of heat shock protein 90 in regulating pain, opioid signaling, and opioid antinociception. VITAMINS AND HORMONES 2019; 111:91-103. [PMID: 31421708 DOI: 10.1016/bs.vh.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Heat shock protein 90 (Hsp90) is one of the central signal transduction regulators of the cell. Via client interactions with hundreds of proteins, including receptors, receptor regulatory kinases, and downstream signaling regulators, Hsp90 has a crucial and wide-ranging impact on signaling in response to numerous drugs with impacts on resultant physiology and behavior. Despite this importance, however, Hsp90 has barely been studied in the context of pain and the opioid receptor system, leaving open the possibility that Hsp90 could be manipulated to improve pain therapeutic outcomes, a current area of massive medical need. In this review, we will highlight the known roles of Hsp90 in directly regulating the initiation and maintenance of the pain state. We will also explore how Hsp90 regulates signaling and antinociceptive responses to opioid analgesic drugs, with a special emphasis on ERK MAPK signaling. Understanding this new and growing area will improve our understanding of how Hsp90 regulates signaling and physiology, and also may provide new ways to treat pain, and perhaps reduce the severe impact of the ongoing opioid addiction and overdose crisis.
Collapse
Affiliation(s)
- John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
6
|
Streicher JM. The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction. Mol Pharmacol 2019; 95:468-474. [PMID: 30670482 DOI: 10.1124/mol.118.114652] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock proteins (Hsp) are a class of stress-inducible proteins that mainly act as molecular protein chaperones. This chaperone activity is diverse, including assisting in nascent protein folding and regulating client protein location and translocation within the cell. The main proteins within the Hsp family, particularly Hsp70 and Hsp90, also have a highly diverse and numerous set of protein clients, which when combined with the high expression levels of Hsp proteins (2%-6% of total protein content) establishes these molecules as "central regulators" of cell protein physiology. Among the client proteins, Hsps regulate numerous signal-transduction and receptor-regulatory kinases, and indeed directly regulate some receptors themselves. This also makes the Hsps, particularly Hsp90, central regulators of signal-transduction machinery, with important impacts on endogenous and drug ligand responses. Among these roles, Hsp90 in particular acts to maintain mature signaling kinases in a metastable conformation permissive for signaling activation. In this review, we will focus on the roles of the Hsps, with a special focus on Hsp90, in regulating receptor signaling and subsequent physiologic responses. We will also explore potential means to manipulate Hsp function to improve receptor-targeted therapies. Overall, Hsps are important regulators of receptor signaling that are receiving increasing interest and exploration, particularly as Hsp90 inhibitors progress toward clinical approval for the treatment of cancer. Understanding the complex interplay of Hsp regulation of receptor signaling may provide important avenues to improve patient treatment.
Collapse
Affiliation(s)
- John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Petyuk VA, Chang R, Ramirez-Restrepo M, Beckmann ND, Henrion MYR, Piehowski PD, Zhu K, Wang S, Clarke J, Huentelman MJ, Xie F, Andreev V, Engel A, Guettoche T, Navarro L, De Jager P, Schneider JA, Morris CM, McKeith IG, Perry RH, Lovestone S, Woltjer RL, Beach TG, Sue LI, Serrano GE, Lieberman AP, Albin RL, Ferrer I, Mash DC, Hulette CM, Ervin JF, Reiman EM, Hardy JA, Bennett DA, Schadt E, Smith RD, Myers AJ. The human brainome: network analysis identifies HSPA2 as a novel Alzheimer’s disease target. Brain 2018; 141:2721-2739. [PMID: 30137212 PMCID: PMC6136080 DOI: 10.1093/brain/awy215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Our hypothesis is that changes in gene and protein expression are crucial to the development of late-onset Alzheimer’s disease. Previously we examined how DNA alleles control downstream expression of RNA transcripts and how those relationships are changed in late-onset Alzheimer’s disease. We have now examined how proteins are incorporated into networks in two separate series and evaluated our outputs in two different cell lines. Our pipeline included the following steps: (i) predicting expression quantitative trait loci; (ii) determining differential expression; (iii) analysing networks of transcript and peptide relationships; and (iv) validating effects in two separate cell lines. We performed all our analysis in two separate brain series to validate effects. Our two series included 345 samples in the first set (177 controls, 168 cases; age range 65–105; 58% female; KRONOSII cohort) and 409 samples in the replicate set (153 controls, 141 cases, 115 mild cognitive impairment; age range 66–107; 63% female; RUSH cohort). Our top target is heat shock protein family A member 2 (HSPA2), which was identified as a key driver in our two datasets. HSPA2 was validated in two cell lines, with overexpression driving further elevation of amyloid-β40 and amyloid-β42 levels in APP mutant cells, as well as significant elevation of microtubule associated protein tau and phosphorylated-tau in a modified neuroglioma line. This work further demonstrates that studying changes in gene and protein expression is crucial to understanding late onset disease and further nominates HSPA2 as a specific key regulator of late-onset Alzheimer’s disease processes.10.1093/brain/awy215_video1awy215media15824729224001.
Collapse
Affiliation(s)
- Vladislav A Petyuk
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rui Chang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Ramirez-Restrepo
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Noam D Beckmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Y R Henrion
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kuixi Zhu
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sven Wang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Clarke
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Fang Xie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Victor Andreev
- Arbor Research Collaborative for Health, 340 E Huron St # 300, Ann Arbor, MI, USA
| | - Anzhelika Engel
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Loida Navarro
- Roche Sequencing, 4300 Hacienda Drive, Pleasanton, CA, USA
| | - Philip De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- New York Genome Center, New York NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Ian G McKeith
- NIHR Biomedical Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Robert H Perry
- Neuropathology and Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, UK
| | - Simon Lovestone
- University of Oxford, Medical Sciences Division, Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Randall L Woltjer
- Neuropathology Core of the Layton Aging and Alzheimer’s Disease Center, Oregon Health and Science University, Portland, OR, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Geriatrics Research, Education, and Clinical Center, VAAAHS, Ann Arbor, MI, USA
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; CIBERNED; Hospitalet de Llobregat, Spain
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine M Hulette
- Department of Pathology, Division of Neuropathology, Duke University Medical Center, Durham, NC, USA
| | - John F Ervin
- Kathleen Price Bryan Brain Bank, Department of Medicine, Division of Neurology, Duke University, Durham, NC, USA
| | - Eric M Reiman
- The Arizona Alzheimer’s Consortium, Phoenix, Arizona, USA
- Banner Alzheimer’s Institute, Phoenix, Arizona, USA
| | - John A Hardy
- Department of Molecular Neuroscience and Reta Lila Research Laboratories, University College London Institute of Neurology, London, UK
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Amanda J Myers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdepartmental Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdepartmental Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Kim JS, Park J, Kim MS, Ha JY, Jang YW, Shin DH, Son JH. The Tnfaip8-PE complex is a novel upstream effector in the anti-autophagic action of insulin. Sci Rep 2017; 7:6248. [PMID: 28740220 PMCID: PMC5524748 DOI: 10.1038/s41598-017-06576-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Defective hepatic autophagy is observed in obesity and diabetes, whereas autophagy is inhibited by insulin in hepatocytes. Insulin-induced anti-autophagy is mediated by non-canonical Gαi3 signaling via an unknown mechanism. Previously, we identified the anti-autophagic activity of Tnfaip8 via activation of mammalian target of rapamycin (mTOR) in the nervous system. Here, we demonstrate that insulin temporally induces Tnfaip8, which mediates the anti-autophagic action of insulin through formation of a novel ternary complex including Tnfaip8, phosphatidylethanolamine (PE) and Gαi3. Specifically, an X-ray crystallographic study of Tnfaip8 from Mus musculus (mTnfaip8) at 2.03 Å together with LC-MS analyses reveals PE in the hydrophobic cavity. However, an mTnfaip8 mutant lacking PE does not interact with Gαi3, indicating that the PE component is critical for the anti-autophagic action of mTnfaip8 via interaction with Gαi3. Therefore, the mTnfaip8-PE complex may act as an essential upstream effector via ternary complex formation most likely with active Gαi3 during insulin-induced anti-autophagy.
Collapse
Affiliation(s)
- Ji-Soo Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Jimin Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Ji-Young Ha
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Ye-Won Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea.
| | - Jin H Son
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Global Top5 Research Program, Ewha W. University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
9
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
10
|
Papasergi MM, Patel BR, Tall GG. The G protein α chaperone Ric-8 as a potential therapeutic target. Mol Pharmacol 2015; 87:52-63. [PMID: 25319541 PMCID: PMC4279082 DOI: 10.1124/mol.114.094664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein-coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein-protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies.
Collapse
Affiliation(s)
- Makaía M Papasergi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Bharti R Patel
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Gregory G Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
11
|
Montgomery ER, Temple BRS, Peters KA, Tolbert CE, Booker BK, Martin JW, Hamilton TP, Tagliatela AC, Smolski WC, Rogers SL, Jones AM, Meigs TE. Gα12 structural determinants of Hsp90 interaction are necessary for serum response element-mediated transcriptional activation. Mol Pharmacol 2014; 85:586-97. [PMID: 24435554 PMCID: PMC3965892 DOI: 10.1124/mol.113.088443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022] Open
Abstract
The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.
Collapse
Affiliation(s)
- Ellyn R Montgomery
- Department of Biology, University of North Carolina at Asheville, Asheville, North Carolina (E.R.M., B.K.B., J.W.M., T.P.H., A.C.T., W.C.S., T.E.M.); Departments of Biology (K.A.P., S.L.R., A.M.J.), Biochemistry and Biophysics (B.R.S.T.), Cell Biology and Physiology (C.E.T.), and Pharmacology (A.M.J.), R. L. Juliano Structural Bioinformatics Core Facility (B.R.S.T.), and Carolina Center for Genome Sciences (S.L.R.), University of North Carolina, and the Lineberger Comprehensive Cancer Center, (S.L.R., T.E.M.), Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Resistance to inhibitors of cholinesterase 8 proteins (Ric-8A and Ric-8B) collectively bind the four classes of heterotrimeric G protein α subunits. Ric-8A and Ric-8B act as non-receptor guanine nucleotide exchange factors (GEFs) toward the Gα subunits that each binds in vitro and seemingly regulate diverse G protein signaling systems in cells. Combined evidence from worm, fly and mammalian systems has shown that Ric-8 proteins are required to maintain proper cellular abundances of G proteins. Ric-8 proteins support G protein levels by serving as molecular chaperones that promote Gα subunit biosynthesis. In this review, the evidence that Ric-8 proteins act as non-receptor GEF activators of G proteins in signal transduction contexts will be weighed against the evidence supporting the molecular chaperoning function of Ric-8 in promoting G protein abundance. I will conclude by suggesting that Ric-8 proteins may act in either capacity in specific contexts. The field awaits additional experimentation to delineate the putative multi-functionality of Ric-8 towards G proteins in cells.
Collapse
Affiliation(s)
- Gregory G Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center , Rochester, NY, USA.
| |
Collapse
|
13
|
Ritchie BJ, Smolski WC, Montgomery ER, Fisher ES, Choi TY, Olson CM, Foster LA, Meigs TE. Determinants at the N- and C-termini of Gα12 required for activation of Rho-mediated signaling. J Mol Signal 2013; 8:3. [PMID: 23531275 PMCID: PMC3636079 DOI: 10.1186/1750-2187-8-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterotrimeric guanine nucleotide binding proteins of the G12/13 subfamily, which includes the α-subunits Gα12 and Gα13, stimulate the monomeric G protein RhoA through interaction with a distinct subset of Rho-specific guanine nucleotide exchange factors (RhoGEFs). The structural features that mediate interaction between Gα13 and RhoGEFs have been examined in crystallographic studies of the purified complex, whereas a Gα12:RhoGEF complex has not been reported. Several signaling responses and effector interactions appear unique to Gα12 or Gα13, despite their similarity in amino acid sequence. METHODS To comprehensively examine Gα12 for regions involved in RhoGEF interaction, we screened a panel of Gα12 cassette substitution mutants for binding to leukemia-associated RhoGEF (LARG) and for activation of serum response element mediated transcription. RESULTS We identified several cassette substitutions that disrupt Gα12 binding to LARG and the related p115RhoGEF. These Gα12 mutants also were impaired in activating serum response element mediated signaling, a Rho-dependent response. Most of these mutants matched corresponding regions of Gα13 reported to contact p115RhoGEF, but unexpectedly, several RhoGEF-uncoupling mutations were found within the N- and C-terminal regions of Gα12. Trypsin protection assays revealed several mutants in these regions as retaining conformational activation. In addition, charge substitutions near the Gα12 N-terminus selectively disrupted binding to LARG but not p115RhoGEF. CONCLUSIONS Several structural aspects of the Gα12:RhoGEF interface differ from the reported Gα13:RhoGEF complex, particularly determinants within the C-terminal α5 helix and structurally uncharacterized N-terminus of Gα12. Furthermore, key residues at the Gα12 N-terminus may confer selectivity for LARG as a downstream effector.
Collapse
Affiliation(s)
- Benjamin J Ritchie
- Department of Biology, University of North Carolina at Asheville, One University Heights, Asheville, NC 28804, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chan P, Thomas CJ, Sprang SR, Tall GG. Molecular chaperoning function of Ric-8 is to fold nascent heterotrimeric G protein α subunits. Proc Natl Acad Sci U S A 2013; 110:3794-9. [PMID: 23431197 PMCID: PMC3593926 DOI: 10.1073/pnas.1220943110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have shown that resistance to inhibitors of cholinesterase 8 (Ric-8) proteins regulate an early step of heterotrimeric G protein α (Gα) subunit biosynthesis. Here, mammalian and plant cell-free translation systems were used to study Ric-8A action during Gα subunit translation and protein folding. Gα translation rates and overall produced protein amounts were equivalent in mock and Ric-8A-immunodepleted rabbit reticulocyte lysate (RRL). GDP-AlF4(-)-bound Gαi, Gαq, Gα13, and Gαs produced in mock-depleted RRL had characteristic resistance to limited trypsinolysis, showing that these G proteins were folded properly. Gαi, Gαq, and Gα13, but not Gαs produced from Ric-8A-depleted RRL were not protected from trypsinization and therefore not folded correctly. Addition of recombinant Ric-8A to the Ric-8A-depleted RRL enhanced GDP-AlF4(-)-bound Gα subunit trypsin protection. Dramatic results were obtained in wheat germ extract (WGE) that has no endogenous Ric-8 component. WGE-translated Gαq was gel filtered and found to be an aggregate. Ric-8A supplementation of WGE allowed production of Gαq that gel filtered as a ∼100 kDa Ric-8A:Gαq heterodimer. Addition of GTPγS to Ric-8A-supplemented WGE Gαq translation resulted in dissociation of the Ric-8A:Gαq heterodimer and production of functional Gαq-GTPγS monomer. Excess Gβγ supplementation of WGE did not support functional Gαq production. The molecular chaperoning function of Ric-8 is to participate in the folding of nascent G protein α subunits.
Collapse
Affiliation(s)
- PuiYee Chan
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Celestine J. Thomas
- Center for Biomolecular Structure and Dynamics and the Division of Biological Science, University of Montana, Missoula, MT 59812
| | - Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics and the Division of Biological Science, University of Montana, Missoula, MT 59812
| | - Gregory G. Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642; and
| |
Collapse
|
15
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Sato M, Ishikawa Y. Accessory proteins for heterotrimeric G-protein: Implication in the cardiovascular system. PATHOPHYSIOLOGY 2010; 17:89-99. [DOI: 10.1016/j.pathophys.2009.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/19/2023] Open
|
17
|
Kim ES, Jeong JB, Kim S, Lee KM, Ko E, Noh DY, Hwang KT, Ha JH, Lee CH, Kim SG, Moon A. The G12 family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion. Breast Cancer Res Treat 2010; 124:49-61. [PMID: 20044778 DOI: 10.1007/s10549-009-0697-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/16/2009] [Indexed: 12/27/2022]
Abstract
Although mounting evidence suggests a role for G(12) proteins, G(α12) and G(α13), in tumor progression, a direct role of G(12) proteins has not been determined. This study aims to elucidate the molecular mechanism for a tumorigenic and invasive potential of G(α12) and G(α13) in MCF10A human breast epithelial cells. Here, we report, for the first time, that G(α12) and G(α13) induce upregulation of matrix metalloproteinase (MMP)-2 leading to the invasive and migratory phenotypes in MCF10A cells. We further show that p53 is an important transcription factor for induction of MMP-2 transcriptional activation by G(α12/13). G(α12/13)-induced MMP-2 upregulation, invasion, and migration are dependent on the activation of Ras, Rac1, MKK3/6, p38, and Akt. Using human breast tissue samples, we demonstrate that the expression levels of G(α12) and MMP-2 are strongly correlated with the pathogenically diagnosed cancer (P < 0.0001). Moreover, the expression of G(α12) shows a strong correlation with that of MMP-2 in human breast cancer tissues, implicating the in vivo tumorigenic potential of G(α12). Taken together, this study elucidated the role of G(12) proteins in regulating processes for MMP-2 expression and malignant phenotypic conversion of MCF10A human breast epithelial cells, providing a molecular basis for the promoting role of G(α12) and G(α13) in breast cell invasion.
Collapse
Affiliation(s)
- Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Han J, Liu G, Profirovic J, Niu J, Voyno-Yasenetskaya T. Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor. FASEB J 2009; 23:4193-206. [PMID: 19690217 DOI: 10.1096/fj.09-131862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protease-activated receptor 1 (PAR-1) mediates thrombin signaling in human endothelial cells. As a G-protein-coupled receptor, PAR-1 transmits thrombin signal through activation of the heterotrimeric G proteins, Gi, Gq, and G12/13. In this study, we demonstrated that zyxin, a LIM-domain-containing protein, is involved in thrombin-mediated actin cytoskeleton remodeling and serum response element (SRE)-dependent gene transcription. We determined that zyxin binds to the C-terminal domain of PAR-1, providing a possible mechanism of involvement of zyxin as a signal transducer in PAR-1 signaling. Data showing that disruption of PAR-1-zyxin interaction inhibited thrombin-induced stress fiber formation and SRE activation supports this hypothesis. Similarly, depletion of zyxin using siRNA inhibited thrombin-induced actin stress fiber formation and SRE-dependent gene transcription. In addition, depletion of zyxin resulted in delay of endothelial barrier restoration after thrombin treatment. Notably, down-regulation of zyxin did not affect thrombin-induced activation of RhoA or Gi, Gq, and G12/13 heterotrimeric G proteins, implicating a novel signaling pathway regulated by PAR-1 that is not mediated by G-proteins. The observation that zyxin targets VASP, a partner of zyxin in regulation of actin assembly and dynamics, to focal adhesions and along stress fibers on thrombin stimulation suggests that zyxin may participate in thrombin-induced cytoskeletal remodeling through recruitment of VASP. In summary, this study establishes a crucial role of zyxin in thrombin signaling in endothelial cells and provides evidence for a novel PAR-1 signaling pathway mediated by zyxin.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology (MC 868), University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The G12 subfamily of heterotrimeric guanine nucleotide-binding proteins consists of two alpha subunits, G alpha12 and G alpha13. These proteins mediate signalling via G protein-coupled receptors and have been implicated in various physiological and pathophysiological processes. A number of direct and indirect effectors of G alpha12 and G alpha13 have been identified that mediate, or have been proposed to mediate, the diverse cellular responses accompanying activation of G12 proteins. This review describes the signalling pathways and cellular events stimulated by G12 proteins, with a particular emphasis on processes that are important in regulating cell migration and invasion, and could potentially be involved in the pathophysiology of cancer metastasis. Experimental findings directly implicating G12 proteins in the spread of metastatic disease are also summarized, indicating the importance of targeted inhibition of G12 signalling as a potential therapeutic option for locally advanced and metastatic disease.
Collapse
Affiliation(s)
- Juhi Juneja
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710-3813, USA
| | | |
Collapse
|
20
|
Liu G, Han J, Profirovic J, Strekalova E, Voyno-Yasenetskaya TA. Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis. Angiogenesis 2008; 12:1-15. [PMID: 19093215 PMCID: PMC2855211 DOI: 10.1007/s10456-008-9123-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/13/2008] [Indexed: 11/28/2022]
Abstract
The alpha subunit of heterotrimeric G13 protein is required for the embryonic angiogenesis (Offermanns et al., Science 275:533-536, 1997). However, the molecular mechanism of Galpha13-dependent angiogenesis is not understood. Here, we show that myocyte-specific enhancer factor-2 (MEF2) mediates Galpha13-dependent angiogenesis. Our data showed that constitutively activated Galpha13Q226L stimulated MEF2-dependent gene transcription. In addition, downregulation of endogenous Galpha13 inhibited thrombin-stimulated MEF2-dependent gene transcription in endothelial cells. Both Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) and histone deacetylase 5 (HDAC5) were involved in Galpha13-mediated MEF2-dependent gene transcription. Galpha13Q226L also increased Ca(2+)/calmodulin-independent CaMKIV activity, while dominant negative mutant of CaMKIV inhibited MEF2-dependent gene transcription induced by Galpha13Q226L. Furthermore, Galpha13Q226L was able to derepress HDAC5-mediated repression of gene transcription and induce the translocation of HDAC5 from nucleus to cytoplasm. Finally, downregulation of endogenous Galpha13 and MEF2 proteins in endothelial cells reduced cell proliferation and capillary tube formation. Decrease of endothelial cell proliferation that was caused by the Galpha13 downregulation was partially restored by the constitutively active MEF2-VP16. Our studies suggest that MEF2 proteins are an important component in Galpha13-mediated angiogenesis.
Collapse
Affiliation(s)
- Guoquan Liu
- Department of Pharmacology (MC 868), University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - Jingyan Han
- Department of Pharmacology (MC 868), University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - Jasmina Profirovic
- Department of Pharmacology (MC 868), University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | - Elena Strekalova
- Department of Pharmacology (MC 868), University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | | |
Collapse
|
21
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J 2008; 22:2821-31. [PMID: 18367648 DOI: 10.1096/fj.07-104224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G alpha12 constitutes, along with G alpha13, one of the four families of alpha subunits of heterotrimeric G proteins. We found that the N terminus of G alpha12, but not those of other G alpha subunits, contains a predicted mitochondrial targeting sequence. Using confocal microscopy and cell fractionation, we demonstrated that up to 40% of endogenous G alpha12 in human umbilical vein endothelial cells colocalize with mitochondrial markers. N-terminal sequence of G alpha12 fused to GFP efficiently targeted the fusion protein to mitochondria. G alpha12 with mutated mitochondrial targeting sequence was still located in mitochondria, suggesting the existence of additional mechanisms for mitochondrial localization. Lysophosphatidic acid, one of the known stimuli transduced by G alpha12/13, inhibited mitochondrial motility, while depletion of endogenous G alpha12 increased mitochondrial motility. G alpha12Q229L variants uncoupled from RhoGEFs (but not fully functional activated G alpha12Q229L) induced transformation of the mitochondrial network into punctate mitochondria and resulted in a loss of mitochondrial membrane potential. All examined G alpha12Q229L variants reduced phosphorylation of Bcl-2 at Ser-70, while only mutants unable to bind RhoGEFs also decreased cellular levels of Bcl-2. These G alpha12 mutants were also more efficient Hsp90 interactors. These findings are the first demonstration of a heterotrimeric G protein alpha subunit specifically targeted to mitochondria and involved in the control of mitochondrial morphology and dynamics.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | |
Collapse
|
22
|
Sabath E, Negoro H, Beaudry S, Paniagua M, Angelow S, Shah J, Grammatikakis N, Yu ASL, Denker BM. Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 2008; 121:814-24. [PMID: 18285450 DOI: 10.1242/jcs.014878] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarized functions of epithelia require an intact tight junction (TJ) to restrict paracellular movement and to separate membrane proteins into specific domains. TJs contain scaffolding, integral membrane and signaling proteins, but the mechanisms that regulate TJs and their assembly are not well defined. Galpha12 (GNA12) binds the TJ protein ZO-1 (TJP1), and Galpha12 activates Src to increase paracellular permeability via unknown mechanisms. Herein, we identify Src as a component of the TJ and find that recruitment of Hsp90 to activated Galpha12 is necessary for signaling. TJ integrity is disrupted by Galpha12-stimulated Src phosphorylation of ZO-1 and ZO-2 (TJP2); this phosphorylation leads to dissociation of occludin and claudin 1 from the ZO-1 protein complex. Inhibiting Hsp90 with geldanamycin blocks Galpha12-stimulated Src activation and phosphorylation, but does not affect protein levels or the Galpha12-ZO-1 interaction. Using the calcium-switch model of TJ assembly and GST-TPR (GST-fused TPR domain of PP5) pull-downs of activated Galpha12, we demonstrate that switching to normal calcium medium activates endogenous Galpha12 during TJ assembly. Thrombin increases permeability and delays TJ assembly by activating Galpha12, but not Galpha13, signaling pathways. These findings reveal an important role for Galpha12, Src and Hsp90 in regulating the TJ in established epithelia and during TJ assembly.
Collapse
Affiliation(s)
- Ernesto Sabath
- Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kutuzov MA, Andreeva AV, Voyno-Yasenetskaya TA. Regulation of apoptosis signal‐regulating kinase 1 degradation by Gα13. FASEB J 2007; 21:3727-36. [PMID: 17595347 DOI: 10.1096/fj.06-8029com] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptosis signal-regulating kinase (ASK1) is a mitogen-activated protein kinase (MAPK) that transduces apoptotic signals from a variety of stresses. We have shown previously that alpha subunits of heterotrimeric G12 and G13 proteins stimulate ASK1 kinase activity and ASK1-dependent apoptosis. Here, we report a novel mechanism of G-protein-dependent regulation of ASK1. We demonstrated that G alpha13 forms a complex with ASK1 in an activation-independent manner. Both N- and C-terminal regulatory domains of ASK1 were essential for the efficient interaction, while its kinase domain was not required. Formation of the G alpha13-ASK1 complex was enhanced by JNK-interacting leucine zipper protein, JLP. Constitutively activated G alpha13Q226L increased ASK1 expression. Short-term activation of a serotonin 5-HT4 receptor that is coupled to G alpha13 also increased ASK1 expression. Importantly, prolonged activation of 5-HT4 receptor in COS-7 cells or prolonged treatment of human umbilical vein endothelial cells with thrombin concomitantly down-regulated both G alpha13 and ASK1. Data showed that G alpha13Q226L reduced the rate of ASK1 degradation, decreased ASK1 ubiquitination, and reduced association of ASK1 with an E3 ubiquitin ligase CHIP, previously shown to mediate ASK1 degradation. Our findings indicate that ASK1 expression levels can be regulated by G alpha13, at least in part via control of ASK1 ubiquitination and degradation.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology, University of Illinois, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | |
Collapse
|
24
|
Kelly P, Casey PJ, Meigs TE. Biologic functions of the G12 subfamily of heterotrimeric g proteins: growth, migration, and metastasis. Biochemistry 2007; 46:6677-87. [PMID: 17503779 DOI: 10.1021/bi700235f] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The G12 subfamily of heterotrimeric G proteins has been the subject of intense scientific interest for more than 15 years. During this period, studies have revealed more than 20 potential G12-interacting proteins and numerous signaling axes emanating from the G12 proteins, Galpha12 and Galpha13. In addition, more recent studies have begun to illuminate the various and sundry functions that the G12 subfamily plays in biology. In this review, we summarize the diverse range of proteins that have been identified as Galpha12 and/or Galpha13 interactors and describe ongoing studies designed to dissect the biological roles of specific Galpha-effector protein interactions. Further, we describe and discuss the expanding role of G12 proteins in the biology of cells, focusing on the distinct properties of this subfamily in regulating cell proliferation, cell migration, and metastatic invasion.
Collapse
Affiliation(s)
- Patrick Kelly
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
25
|
Zhu D, Tate RI, Ruediger R, Meigs TE, Denker BM. Domains necessary for Galpha12 binding and stimulation of protein phosphatase-2A (PP2A): Is Galpha12 a novel regulatory subunit of PP2A? Mol Pharmacol 2007; 71:1268-76. [PMID: 17303700 DOI: 10.1124/mol.106.033555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many cellular signaling pathways share regulation by protein phosphatase-2A (PP2A), a widely expressed serine/threonine phosphatase, and the heterotrimeric G protein Galpha(12). PP2A activity is altered in carcinogenesis and in some neurodegenerative diseases. We have identified binding of Galpha(12) with the Aalpha subunit of PP2A, a trimeric enzyme composed of A (scaffolding), B (regulatory), and C (catalytic) subunits and demonstrated that Galpha(12) stimulated phosphatase activity (J Biol Chem 279: 54983-54986, 2004). We now show in substrate-velocity analysis using purified PP2A that V(max) was stimulated 3- to 4-fold by glutathione transferase (GST)-Galpha(12) with little effect on K(m) values. To identify the binding domains mediating the Aalpha-Galpha(12) interaction, an extensive mutational analysis was performed. Well-characterized mutations of Aalpha were expressed in vitro and tested for binding to GST-Galpha(12) in pull-down assays. Galpha(12) binds to Aalpha along repeats 7 to 10, and PP2A B subunits are not necessary for binding. To identify where Aalpha binds to Galpha(12), a series of 61 Galpha(12) mutants were engineered to contain the sequence Asn-Ala-Ala-Ile-Arg-Ser (NAAIRS) in place of 6 consecutive amino acids. Mutant Galpha(12) proteins were individually expressed in human embryonic kidney cells and analyzed for interaction with GST or GST-Aalpha in pull-down assays. The Aalpha binding sites were localized to regions near the N and C termini of Galpha(12). The expression of constitutively activated Galpha(12) (QLalpha(12)) in Madin Darby canine kidney cells stimulated PP2A activity as determined by decreased phosphorylation of tyrosine 307 on the catalytic subunit. Based on crystal structures of Galpha(12) and PP2A Aalpha, a model describing the binding surfaces and potential mechanisms of Galpha(12)-mediated PP2A activation is presented.
Collapse
Affiliation(s)
- Deguang Zhu
- Renal Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
27
|
Abstract
Accessory proteins involved in signal processing through heterotrimeric G proteins are generally defined as proteins distinct from G protein-coupled receptor (GPCR), G protein, or classical effectors that regulate the strength/efficiency/specificity of signal transfer upon receptor activation or position these entities in the right microenvironment, contributing to the formation of a functional signal transduction complex. A flurry of recent studies have implicated an additional class of accessory proteins for this system that provide signal input to heterotrimeric G proteins in the absence of a cell surface receptor, serve as alternative binding partners for G protein subunits, provide unexpected modes of G protein regulation, and have introduced additional functional roles for G proteins. This group of accessory proteins includes the recently discovered Activators of G protein Signaling (AGS) proteins identified in a functional screen for receptor-independent activators of G protein signaling as well as several proteins identified in protein interaction screens and genetic screens in model organisms. These accessory proteins may influence GDP dissociation and nucleotide exchange at the G(alpha) subunit, alter subunit interactions within heterotrimeric G(alphabetagamma) independent of nucleotide exchange, or form complexes with G(alpha) or G(betagamma) independent of the typical G(alphabetagamma) heterotrimer. AGS and related accessory proteins reveal unexpected diversity in G protein subunits as signal transducers within the cell.
Collapse
Affiliation(s)
- Motohiko Sato
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
28
|
Andreeva AV, Vaiskunaite R, Kutuzov MA, Profirovic J, Skidgel RA, Voyno-Yasenetskaya T. Novel mechanisms of G protein-dependent regulation of endothelial nitric-oxide synthase. Mol Pharmacol 2006; 69:975-82. [PMID: 16326932 DOI: 10.1124/mol.105.018846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) plays a crucial role in the regulation of a variety of cardiovascular and pulmonary functions in both normal and pathological conditions. Multiple signaling inputs, including calcium, caveolin-1, phosphorylation by several kinases, and binding to the 90-kDa heat shock protein (Hsp90), regulate eNOS activity. Here, we report a novel mechanism of G protein-dependent regulation of eNOS. We demonstrate that in mammalian cells, the alpha subunit of heterotrimeric G12 protein (G alpha12) can form a complex with eNOS in an activation- and Hsp90-independent manner. Our data show that G alpha12 does not affect eNOS-specific activity, but it strongly enhances total eNOS activity by increasing cellular levels of eNOS. Experiments using inhibition of protein or mRNA synthesis show that G alpha12 increases the expression of eNOS by increasing half-life of both eNOS protein and eNOS mRNA. Small interfering RNA-mediated depletion of endogenous G alpha12 decreases eNOS levels. A quantitative correlation can be detected between the extent of down-regulation of G alpha12 and eNOS in endothelial cells after prolonged treatment with thrombin. G protein-dependent increase of eNOS expression represents a novel mechanism by which heterotrimeric G proteins can regulate the activity of downstream signaling molecules.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Enzyme Activation
- Enzyme Stability
- GTP-Binding Protein alpha Subunits, G12-G13/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- HSP90 Heat-Shock Proteins/metabolism
- Humans
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA Stability
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Thrombin/pharmacology
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bilodeau ML, Hamm HE. Endothelial nitric-oxide synthase reveals a new face in G protein signaling. Mol Pharmacol 2006; 69:677-9. [PMID: 16377762 DOI: 10.1124/mol.105.022038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this issue of Molecular Pharmacology, Andreeva et al. (p. 975) report a novel functional link between the heterotrimeric G protein G alpha12 and endothelial nitric-oxide synthase (eNOS). Based on studies characterizing the interaction of G alpha12 and the molecular chaperone Hsp90 and the interaction of eNOS and Hsp90, the group proposed an interaction between G alpha12 and eNOS and sought to determine the regulatory mechanisms, including the inferred dependence on Hsp90. Their experiments using an overexpression model lead to the observation that the cotransfection of G alpha12 and eNOS expression vectors increased overall eNOS expression. Additional studies in the overexpression model and in human umbilical vein endothelial cells (HUVEC) provide evidence for a mechanism that involves G alpha12-dependent stabilization of eNOS protein and possibly mRNA. These data present yet another paradigm by which heterotrimeric G proteins, through stabilization of target proteins, can regulate the activity of downstream signaling pathways.
Collapse
Affiliation(s)
- Matthew L Bilodeau
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
30
|
Johansson BB, Minsaas L, Aragay AM. Proteasome involvement in the degradation of the G(q) family of Galpha subunits. FEBS J 2005; 272:5365-77. [PMID: 16218966 DOI: 10.1111/j.1742-4658.2005.04934.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.
Collapse
Affiliation(s)
- Bente B Johansson
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway
| | | | | |
Collapse
|
31
|
Falsone SF, Gesslbauer B, Tirk F, Piccinini AM, Kungl AJ. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett 2005; 579:6350-4. [PMID: 16263121 DOI: 10.1016/j.febslet.2005.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/10/2005] [Accepted: 10/12/2005] [Indexed: 01/12/2023]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone which modulates several signalling pathways within a cell. By applying co-immunoprecipitation with endogeneous Hsp90, we were able to identify 39 novel protein interaction partners of this chaperone in human embryonic kidney cells (HEK293). Interestingly, levels of DNA-activated protein kinase catalytic subunit, an Hsp90 interaction partner found in this study, were found to be sensitive to Hsp90 inhibitor treatment only in HeLa cells but not in HEK293 cells referring to the tumorgenicity of this chaperone.
Collapse
Affiliation(s)
- S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
32
|
Yamazaki J, Katoh H, Yamaguchi Y, Negishi M. Two G12 family G proteins, G alpha12 and G alpha13, show different subcellular localization. Biochem Biophys Res Commun 2005; 332:782-6. [PMID: 15907792 DOI: 10.1016/j.bbrc.2005.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
The G alpha subunits of the G12 family of heterotrimeric G proteins, G alpha12 and G alpha13, are closely related in sequences and some effectors, but they often act through different pathways or bind to different proteins. We have examined subcellular distribution of these two G proteins and found that endogenous G alpha12 and G alpha13 localize in membrane and cytoplasmic fractions, respectively. Exogenously expressed G alpha12 and G alpha13 also localize in membrane and cytoplasmic fractions, respectively, in COS-7 cells. Stimulation of lysophosphatidic acid receptor coupled to G alpha13 markedly promotes the translocation of G alpha13 from cytoplasm to membrane. This different localization of G alpha12 and G alpha13 may explain some of the nonoverlapping actions of G alpha12 and G alpha13.
Collapse
Affiliation(s)
- Junya Yamazaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
33
|
Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 2005; 16:857-72. [PMID: 15157665 DOI: 10.1016/j.cellsig.2004.02.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
The ubiquitous protein chaperone hsp90 has been shown to regulate more than 100 proteins involved in cellular signalling. These proteins are called 'client proteins' for hsp90, and a multiprotein hsp90/hsp70-based chaperone machinery forms client protein.hsp90 heterocomplexes in the cytoplasm and the nucleus. In the case of signalling proteins that act as transcription factors, the client protein.hsp90 complexes also contain one of several TPR domain immunophilins or immunophilin homologs that bind to a TPR domain binding site on hsp90. Using several intracellular receptors and the tumor suppressor p53 as examples, we review evidence that dynamic assembly of heterocomplexes with hsp90 is required for rapid movement through the cytoplasm to the nucleus along microtubular tracks. The role of the immunophilin in this system is to connect the client protein.hsp90 complex to cytoplasmic dynein, the motor protein for retrograde movement toward the nucleus. Upon arrival at the nuclear pores, the receptor.hsp90.immunophilin complexes are transferred to the nuclear interior by importin-dependent facilitated diffusion. The unliganded receptors then distribute within the nucleus to diffuse patches from which they proceed in a ligand-dependent manner to discrete nuclear foci where chromatin binding occurs. We review evidence that dynamic assembly of heterocomplexes with hsp90 is required for movement to these foci and for the dynamic exchange of transcription factors between chromatin and the nucleoplasm.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, 1301 Med. Sci. Res. Building III, Ann Arbor, MI 48109-0632, USA.
| | | | | | | |
Collapse
|
34
|
Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall R, Neamu R, Voyno-Yasenetskaya T. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 2005; 280:26533-42. [PMID: 15897190 PMCID: PMC1403832 DOI: 10.1074/jbc.m502921200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubule (MT) destabilization promotes the formation of actin stress fibers and enhances the contractility of cells; however, the mechanism involved in the coordinated regulation of MTs and the actin cytoskeleton is poorly understood. LIM kinase 1 (LIMK1) regulates actin polymerization by phosphorylating the actin depolymerization factor, cofilin. Here we report that LIMK1 is also involved in the MT destabilization. In endothelial cells endogenous LIMK1 co-localizes with MTs and forms a complex with tubulin via the PDZ domain. MT destabilization induced by thrombin or nocodazole resulted in a decrease of LIMK1 colocalization with MTs. Overexpression of wild type LIMK1 resulted in MT destabilization, whereas the kinase-dead mutant of LIMK1 (KD) did not affect MT stability. Importantly, down-regulation of endogenous LIMK1 by small interference RNA resulted in abrogation of the thrombin-induced MTs destabilization and the inhibition of thrombin-induced actin polymerization. Expression of Rho kinase 2, which phosphorylates and activates LIMK1, dramatically decreases the interaction of LIMK1 with tubulin but increases its interaction with actin. Interestingly, expression of KD-LIMK1 or small interference RNA-LIMK1 prevents thrombin-induced microtubule destabilization and F-actin formation, suggesting that LIMK1 activity is required for thrombin-induced modulation of microtubule destabilization and actin polymerization. Our findings indicate that LIMK1 may coordinate microtubules and actin cytoskeleton.
Collapse
Affiliation(s)
- Matvey Gorovoy
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jiaxin Niu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ora Bernard
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute; Victoria, Australia
| | - Jasmina Profirovic
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Richard Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Radu Neamu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Tatyana Voyno-Yasenetskaya
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Correspondence should be addressed to: Tatyana Voyno-Yasenetskay, University of Illinois, Department of Pharmacology (MC 868), 835 S. Wolcott Ave, Chicago, IL 60612, Phone: (312) 996-9823, Fax: (312) 996-1225, E-mail:
| |
Collapse
|
35
|
Kutuzov MA, Andreeva AV, Voyno-Yasenetskaya TA. Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5. J Biol Chem 2005; 280:25388-95. [PMID: 15890660 PMCID: PMC1314983 DOI: 10.1074/jbc.m413202200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence has implicated the protein phosphatase PP5 in a variety of signaling pathways. Whereas several proteins have been identified that interact with PP5 and regulate its activity, a possibility of its regulation by second messengers remains speculative. Activation of PP5 in vitro by polyunsaturated fatty acids (e.g. arachidonic acid) and fatty acyl-CoA esters (e.g. arachidonoyl-CoA) has been reported. We report here that PP5 is strongly inhibited by micromolar concentrations of a natural polyamine spermine. This inhibition was observed both in assays with a low molecular weight substrate p-nitrophenyl phosphate as well as phosphocasein and apoptosis signal-regulating kinase 1 (ASK1), thought to be a physiological substrate of PP5. Furthermore, a decrease in polyamine levels in COS-7 cells induced by alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, led to accelerated dephosphorylation of oxidative stress-activated ASK1. This effect was suppressed by okadaic acid and by siRNA-mediated PP5 depletion, indicating that the effect of polyamine levels on ASK1 dephosphorylation was mediated by PP5. In line with the decreased ASK1 activation, polyamine depletion in COS-7 cells abrogated oxidative stress-induced activation of caspase-3, which executes ASK1-induced apoptosis, as well as caspase-3 activation induced by ASK1 overexpression, but had no effect on basal caspase-3 activity. These results implicate polyamines, emerging intracellular signaling molecules, as potential physiological regulators of PP5. Our findings also suggest a novel mechanism of the anti-apoptotic action of a decrease in polyamine levels via de-inhibition of PP5 and accelerated dephosphorylation and deactivation of ASK1.
Collapse
Affiliation(s)
| | | | - Tatyana A. Voyno-Yasenetskaya
- Address correspondence to: Tatyana Voyno-Yasenetskaya, University of Illinois, Department of Pharmacology (MC 868), 835 S. Wolcott Ave, Chicago, IL 60612, Phone: (312) 996-9823; Fax: (312) 996-1225; E-mail:
| |
Collapse
|
36
|
Riobo NA, Manning DR. Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol Sci 2005; 26:146-54. [PMID: 15749160 DOI: 10.1016/j.tips.2005.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Much regarding the engagement of the G(12) family of heterotrimeric G proteins (G(12) and G(13)) by agonist-activated receptors remains unclear. For example, the identity of receptors that couple unequivocally to G(12) and G(13) and how signals are allocated among these and other G proteins remain open questions. Part of the problem in understanding signaling through G(12) and G(13) is that the activation of these G proteins is rarely demonstrated directly and is instead presumed usually from far removed downstream events. Furthermore, receptors that couple to G(12) and G(13) invariably couple to additional G proteins, and thus few events can be linked unambiguously to one G protein or another. In this article, we document receptors that reportedly couple to G(12), G(13) or both G(12) and G(13), evaluate the methodology used to understand the coupling of these receptors, and discuss the ability of these receptors to couple also to G(q).
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
37
|
Wang Y, Thuillier R, Culty M. Prenatal estrogen exposure differentially affects estrogen receptor-associated proteins in rat testis gonocytes. Biol Reprod 2004; 71:1652-64. [PMID: 15229138 DOI: 10.1095/biolreprod.104.030205] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We previously reported that gonocytes from 3-day-old rat testes proliferate in response to estradiol. In the present study, we found that purified gonocytes contained the mRNAs of estrogen receptor beta (ERbeta) and the chaperones Hsp90, p23, and Cyp40, but no inducible Hsp70. Immunoblot analysis showed high levels of ERbeta, Hsp90, p23, Cyp40, and the constitutive Hsc70 in gonocytes. Prenatal exposure to the estrogenic compounds diethylstilbestrol, bisphenol A, genistein, and coumestrol led to significantly increased Hsp90 mRNA levels in testis, but not p23 and Cyp40. In situ hybridization analysis indicated that Hsp90 mRNA was prominent in gonocytes, where it was increased following phytoestrogen exposure, whereas bisphenol A induced a more generalized increase throughout the testis. Immunoblot analysis of testicular extracts demonstrated that Hsp90 protein levels were significantly increased following estrogen exposure, and immunohistochemical analysis indicated that this increase occurred predominantly in gonocytes. By contrast, no change was observed in the expression of Cyp40, p23, and ERbeta, whereas Hsc70 was increased by bisphenol A only. Using an antibody and reverse transcriptase-polymerase chain reaction probes specific for Hsp90alpha, we subsequently confirmed that Hsp90alpha was primarily expressed in gonocytes, and that it was increased following estrogen exposure. Hsp90 immunolocalization in fetal and prepubertal testes showed an increased expression in fetal gonocytes upon estrogen exposure, but no difference in the subsets of Hsp90-positive germ cells in prepubertal testes. These results demonstrate that prenatal estrogen exposure specifically affects Hsp90 expression in gonocytes. Considering the interaction of Hsp90 with several signaling molecules, changes in its expression levels may lead to subsequent changes in gonocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biochemistry and Molecular Biology, 3900 Reservoir Road NW, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | |
Collapse
|
38
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
39
|
Abstract
It is generally thought that Galpha(12) and Galpha(13)-induced responses are exclusively mediated by small G protein Rho. However, Galpha(12) and Galpha(13) elicit divergent cellular responses: phospholipase C-epsilon activation, phospholipase D activation, cytoskeletal change, oncogenic response, apoptosis, MAP kinase activation and Na/H-exchange activation. In addition to Rho activation through RhoGEF, it has been recently demonstrated that Galpha(12) and Galpha(13) interact with several proteins and regulate their activities. However, physiological importance of the interaction of Galpha(12) and Galpha(13) with these proteins has not fully established. I summarize the recent progress of Galpha(12) and Galpha(13)-mediated signaling cascade.
Collapse
Affiliation(s)
- Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan.
| |
Collapse
|
40
|
Le Page SL, Bi Y, Williams JA. CCK-A receptor activates RhoA through G alpha 12/13 in NIH3T3 cells. Am J Physiol Cell Physiol 2003; 285:C1197-206. [PMID: 12853286 DOI: 10.1152/ajpcell.00083.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) is a major regulator of pancreatic acinar cells and was shown previously to be capable of inducing cytoskeletal changes in these cells. In the present study, using NIH3T3 cells stably transfected with CCK-A receptors as a model cell, we demonstrate that CCK can induce actin stress fibers through a G13- and RhoA-dependent mechanism. CCK induced stress fibers within minutes similar to those induced by lysophosphatidic acid (LPA), the active component of serum. The effects of CCK were mimicked by active RhoV14 and blocked by dominant-negative RhoN19, Clostridium botulinum C3 transferase, and the Rho-kinase inhibitor Y-27632. CCK rapidly induced active Rho in cells as shown with a pull-down assay using the Rho binding domain of rhotekin and by a serum response element (SRE)-luciferase reporter assay. To evaluate the G protein mediating the action of CCK, cells were transfected with active alpha-subunits; Galpha13 and Galpha12 but not Galphaq induced stress fibers and in some cases cell rounding. A p115 Rho guanine nucleotide exchange factor (GEF) regulator of G protein signaling (RGS) domain known to interact with G12/13 inhibited active alpha12/13-and CCK-induced stress fibers, whereas RGS2 and RGS4, which are known to inhibit Gq, had no effect. Cotransfection with plasmids coding for the G protein alpha-subunit carboxy-terminal peptide from alpha13 and, to a lesser extent alpha12, also inhibited the effect of CCK, whereas the peptide from alphaq did not. These results show that in NIH3T3 cells bearing CCK-A receptors, CCK activates Rho primarily through G13, leading to rearrangement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Sophie L Le Page
- Department. of Molecular & Integrative Physiology, University of Michigan, 7744 Medical Science II, Ann Arbor, MI 48109-0622, USA
| | | | | |
Collapse
|
41
|
Adarichev VA, Vaiskunaite R, Niu J, Balyasnikova IV, Voyno-Yasenetskaya TA. G alpha 13-mediated transformation and apoptosis are permissively dependent on basal ERK activity. Am J Physiol Cell Physiol 2003; 285:C922-34. [PMID: 12736137 DOI: 10.1152/ajpcell.00115.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that the alpha-subunit of heterotrimeric G13 protein induces either mitogenesis and neoplastic transformation or apoptosis in a cell-dependent manner. Here, we analyzed which signaling pathways are required for G alpha 13-induced mitogenesis or apoptosis using a novel mutant of G alpha 13. We have identified that in human cell line LoVo, the mutation encoding substitution of Arg260 to stop codon in mRNA of G alpha 13 subunit produced a mutant protein (G alpha 13-T) that lacks a COOH terminus and is endogenously expressed in LoVo cells as a polypeptide of 30 kDa. We found that G alpha 13-T lost its ability to promote proliferation and transformation but retained its ability to induce apoptosis. We found that full-length G alpha 13 could stimulate Elk1 transcription factor, whereas truncated G alpha 13 lost this ability. G alpha 13-dependent stimulation of Elk1 was inhibited by dominant-negative extracellular signal-regulated kinase (MEK) but not by dominant-negative MEKK1. Similarly, MEK inhibitor PD-98059 blocked G alpha 13-induced Elk1 stimulation, whereas JNK inhibitor SB-203580 was ineffective. In Rat-1 fibroblasts, G alpha 13-induced cell proliferation and foci formation were also inhibited by dominant-negative MEK and PD-98059 but not by dominant-negative MEKK1 and SB-203580. Whereas G alpha 13-T alone did not induce transformation, coexpression with constitutively active MEK partially restored its ability to transform Rat-1 cells. Importantly, full-length but not G alpha 13-T could stimulate Src kinase activity. Moreover, G alpha 13-dependent stimulation of Elk1, cell proliferation, and foci formation were inhibited by tyrosine kinase inhibitor, genistein, or by dominant-negative Src kinase, suggesting the involvement of a Src-dependent pathway in the G alpha 13-mediated cell proliferation and transformation. Importantly, truncated G alpha 13 retained its ability to stimulate apoptosis signal-regulated kinase ASK1 and c-Jun terminal kinase, JNK. Interestingly, the apoptosis induced by G alpha 13-T was inhibited by dominant-negative ASK1 or by SB-203580.
Collapse
|
42
|
Yamaguchi Y, Katoh H, Negishi M. N-terminal short sequences of alpha subunits of the G12 family determine selective coupling to receptors. J Biol Chem 2003; 278:14936-9. [PMID: 12594220 DOI: 10.1074/jbc.m301409200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), have many cellular functions in common, such as stress fiber formation and neurite retraction. However, a variety of G protein-coupled receptors appear to couple selectively to Galpha(12) and Galpha(13). For example, thrombin and lysophosphatidic acid (LPA) have been shown to induce stress fiber formation via Galpha(12) and Galpha(13), respectively. We recently showed that active forms of Galpha(12) and Galpha(13) interact with Ser/Thr phosphatase type 5 through its tetratricopeptide repeat domain. Here we developed a novel assay to measure the activities of Galpha(12) and Galpha(13) by using glutathione S-transferase-fused tetratricopeptide repeat domain of Ser/Thr phosphatase type 5, taking advantage of the property that tetratricopeptide repeat domain strongly interacts with active forms of Galpha(12) and Galpha(13). By using this assay, we identified that thrombin and LPA selectively activate Galpha(12) and Galpha(13), respectively. Galpha(12) and Galpha(13) show a high amino acid sequence homology except for their N-terminal short sequences. Then we generated chimeric G proteins Galpha(12N/13C) and Galpha(13N/12C), in which the N-terminal short sequences are replaced by each other, and showed that thrombin and LPA selectively activate Galpha(12N/13C) and Galpha(13N/12C), respectively. Moreover, thrombin and LPA stimulate RhoA activity through Galpha(12) and Galpha(13), respectively, in a Galpha(12) family N-terminal sequence-dependent manner. Thus, N-terminal short sequences of the G(12) family determine the selective couplings of thrombin and LPA receptors to the Galpha(12) family.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
43
|
Zheng S, Yu P, Zeng C, Wang Z, Yang Z, Andrews PM, Felder RA, Jose PA. Galpha12- and Galpha13-protein subunit linkage of D5 dopamine receptors in the nephron. Hypertension 2003; 41:604-10. [PMID: 12623966 DOI: 10.1161/01.hyp.0000057422.75590.d7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The roles of the G-protein alpha-subunits, Gs, Gi, and Gq/11, in the signal transduction of the D1-like dopamine receptors, D1 and D5, have been deciphered. Galpha12 and Galpha13, members of the 4th family of G protein subunits, are not linked with D1 receptors, and their linkage to D5 receptors is not known. Therefore, we studied the expression of Galpha12 and Galpha13 and interaction with D5 dopamine receptors in the kidney from normotensive Wistar-Kyoto (WKY) rats and D5 receptor-transfected HEK293 cells. Galpha12 and Galpha13 were found in the proximal tubule, distal convoluted tubule, and artery and vein in the WKY rat kidney. Whereas Galpha12 was expressed in the ascending limb of Henle, Galpha13 was expressed in the collecting duct and juxtaglomerular cells. In renal proximal tubules, Galpha12 and Galpha13, as with D5 receptors, were expressed in brush border membranes. Laser confocal microscopy revealed the colocalization of D5 receptors with Galpha12 and Galpha13 in rat renal brush border membranes, immortalized rat renal proximal tubule cells, and D5 receptor-transfected HEK293 cells. In these cells, a D1-like agonist, fenoldopam, increased the association of Galpha12 and Galpha13 with D5 receptors, results that were corroborated by immunoprecipitation experiments. We conclude that although both D1 and D5 receptors are linked to Galphas, they are differentially linked to Galpha12 and Galpha13. The consequences of the differential G-protein subunit linkage on D1- and D5-mediated sodium transport remains to be determined.
Collapse
Affiliation(s)
- Shaopeng Zheng
- Department of Pediatrics, Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228:111-33. [PMID: 12563018 DOI: 10.1177/153537020322800201] [Citation(s) in RCA: 1080] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly 100 proteins are known to be regulated by hsp90. Most of these substrates or "client proteins" are involved in signal transduction, and they are brought into complex with hsp90 by a multiprotein hsp90/hsp70-based chaperone machinery. In addition to binding substrate proteins at the chaperone site(s), hsp90 binds cofactors at other sites that are part of the heterocomplex assembly machinery as well as immunophilins that connect assembled substrate*hsp90 complexes to protein-trafficking systems. In the 5 years since we last reviewed this subject, much has been learned about hsp90 structure, nucleotide-binding, and cochaperone interactions; the most important concept is that ATP hydrolysis by an intrinsic ATPase activity results in a conformational change in hsp90 that is required to induce conformational change in a substrate protein. The conformational change induced in steroid receptors is an opening of the steroid-binding cleft so that it can be accessed by steroid. We have now developed a minimal system of five purified proteins-hsp90, hsp70, Hop, hsp40, and p23- that assembles stable receptor*hsp90 heterocomplexes. An hsp90*Hop*hsp70*hsp40 complex opens the cleft in an ATP-dependent process to produce a receptor*hsp90 heterocomplex with hsp90 in its ATP-bound conformation, and p23 then interacts with the hsp90 to stabilize the complex. Stepwise assembly experiments have shown that hsp70 and hsp40 first interact with the receptor in an ATP-dependent reaction to produce a receptor*hsp70*hsp40 complex that is "primed" to be activated to the steroid-binding state in a second ATP-dependent step with hsp90, Hop, and p23. Successful use of the five-protein system with other substrates indicates that it can assemble signal protein*hsp90 heterocomplexes whether the substrate is a receptor, a protein kinase, or a transcription factor. This purified system should facilitate understanding of how eukaryotic hsp70 and hsp90 work together as essential components of a process that alters the conformations of substrate proteins to states that respond in signal transduction.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | |
Collapse
|
45
|
Waheed AA, Jones TLZ. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 2002; 277:32409-12. [PMID: 12117999 DOI: 10.1074/jbc.c200383200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric G proteins, G(12) and G(13), are closely related in their sequences, signaling partners, and cellular effects such as oncogenic transformation and cytoskeletal reorganization. Yet G(12) and G(13) can act through different pathways, bind different proteins, and show opposing actions on some effectors. We investigated the compartmentalization of G(12) and G(13) at the membrane because other G proteins reside in lipid rafts, membrane microdomains enriched in cholesterol and sphingolipids. Lipid rafts were isolated after cold, nonionic detergent extraction of cells and gradient centrifugation. Galpha(12) was in the lipid raft fractions, whereas Galpha(13) was not associated with lipid rafts. Mutation of Cys-11 on Galpha(12), which prevents its palmitoylation, partially shifted Galpha(12) from the lipid rafts. Geldanamycin treatment, which specifically inhibits Hsp90, caused a partial loss of wild-type Galpha(12) and a complete loss of the Cys-11 mutant from the lipid rafts and the appearance of a higher molecular weight form of Galpha(12) in the soluble fractions. These results indicate that acylation and Hsp90 interactions localized Galpha(12) to lipid rafts. Hsp90 may act as both a scaffold and chaperone to maintain a functional Galpha(12) only in discrete membrane domains and thereby explain some of the nonoverlapping functions of G(12) and G(13) and control of these potent cell regulators.
Collapse
Affiliation(s)
- Abdul A Waheed
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
46
|
Yamaguchi Y, Katoh H, Mori K, Negishi M. Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Curr Biol 2002; 12:1353-8. [PMID: 12176367 DOI: 10.1016/s0960-9822(02)01034-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), are involved in many signaling pathways and diverse cellular functions. In an attempt to elucidate downstream effectors of Galpha(12) for cellular functions, we have performed a yeast two-hybrid screening of a rat brain cDNA library and revealed that Ser/Thr protein phosphatase type 5 (PP5) is a novel effector of Galpha(12) and Galpha(13). PP5 is a newly identified phosphatase and consists of a C-terminal catalytic domain and an N-terminal regulatory tetratricopeptide repeat (TPR) domain [2]. Arachidonic acid was recently shown to activate PP5 phosphatase activity by binding to its TPR domain, however the precise regulatory mechanism of PP5 phosphatase activity is not fully determined. In this study, we show that active forms of Galpha(12) and Galpha(13) specifically interact with PP5 through its TPR domain and activate its phosphatase activity about 2.5-fold. Active forms of Galpha(12) and Galpha(13) also enhance the arachidonic acid-stimulated PP5 phosphatase activity about 2.5-fold. Moreover, we demonstrate that the active form of Galpha(12) translocates PP5 to the cell periphery and colocalizes with PP5. These results propose a new signaling pathway of G(12) family G proteins.
Collapse
Affiliation(s)
- Yoshiaki Yamaguchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, 606-8502, Kyoto, Japan
| | | | | | | |
Collapse
|
47
|
Meyer TN, Schwesinger C, Denker BM. Zonula occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. J Biol Chem 2002; 277:24855-8. [PMID: 12023272 DOI: 10.1074/jbc.c200240200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zonula occludens proteins are multidomain proteins usually localized at sites of intercellular junctions, yet little is known about their role in regulating junctional properties. Multiple signaling proteins regulate the junctional complex, and several (including G proteins) have been co-localized with zonula occludens-1 (ZO-1) in the tight junction of epithelial cells. However, evidence for direct interactions between signaling proteins and tight junction proteins has been lacking. In these studies, we constructed Galpha-glutathione S-transferase (GST) fusion proteins and tested for interactions with [(35)S]methionine-labeled in vitro translated ZO-1 and ZO-2. Only Galpha(12) directly interacted with in vitro translated ZO-1 and ZO-2. Using a series of ZO-1 domains expressed as GST fusion proteins and in vitro translated [(35)S]methionine-labeled Galpha(12), we found that Galpha(12) and constitutively active (Q229L) alpha(12) (QLalpha(12)) bind to the Src homology 3 (SH3) domain of ZO-1. This binding was not detected with SH3 domains from other proteins. Inducible expression of wild-type alpha(12) and QLalpha(12) in Madin-Darby canine kidney (MDCK) cells was established using the Tet-Off system. In Galpha(12)-expressing cells, we found that ZO-1 and Galpha(12) co-localize by confocal microscopy and co-immunoprecipitate. Galpha(12) from MDCK cell lysates bound to the GST-ZO-1-SH3 domain, and expression of QLalpha(12) in MDCK cells reversibly increased paracellular permeability. These studies indicated that ZO-1 directly interacts with Galpha(12) and that Galpha(12) regulates barrier function of MDCK cells.
Collapse
Affiliation(s)
- Tobias N Meyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Skidgel RA. Proliferation of regulatory mechanisms for eNOS: an emerging role for the cytoskeleton. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1179-82. [PMID: 12003771 DOI: 10.1152/ajplung.00045.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|