1
|
Moldovan R, Ichim VA, Beliș V. Immunohistochemical study of ATP1A3 and plakophilin 2 as new potential markers in the diagnosis of myocardial ischemia. Leg Med (Tokyo) 2025; 72:102565. [PMID: 39733715 DOI: 10.1016/j.legalmed.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Radu Moldovan
- Emergency County Hospital "Dr. Constantin Opriș", Baia Mare, Department of Forensic Medicine, Street George Coșbuc 31, Baia Mare, Maramureș, 430031, Romania.
| | - Vlad Andrei Ichim
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Internal Medicine, Street Victor Babeș 8, Cluj-Napoca, Cluj, 400347, Romania
| | - Vladimir Beliș
- University of Medicine and Pharmacy "Carol Davila" Bucharest Departament of Foresic Medicine, Street Bulevardul Eroii Sanitari 8, Bucharest, 050474, Romania
| |
Collapse
|
2
|
Dou W, Shan G, Zhao Q, Malhi M, Jiang A, Zhang Z, González-Guerra A, Fu S, Law J, Hamilton RM, Bernal JA, Liu X, Sun Y, Maynes JT. Robotic manipulation of cardiomyocytes to identify gap junction modifiers for arrhythmogenic cardiomyopathy. Sci Robot 2024; 9:eadm8233. [PMID: 39441897 DOI: 10.1126/scirobotics.adm8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 (PKP2). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging. To quantify gap junction function with high precision and high consistency, we developed a robotic cell manipulation system with visual feedback from digital holographic microscopy for three-dimensional and label-free imaging of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The robotic system can accurately determine the dynamic height changes in the cells' contraction and resting phases, microinject drug-treated healthy and diseased iPSC-CMs in their resting phase with constant injection depth across all cells, and deposit a membrane-impermeable dye that solely diffuses between cells through gap junctions for measuring the gap junction diffusion function. The robotic system was applied toward a targeted drug screen to identify gap junction modulators and potential therapeutics for ACM. Five compounds were found to dose-dependently enhance gap junction permeability in cardiomyocytes with PKP2 knockdown. In addition, PCO 400 (pinacidil) reduced beating irregularity in a mouse model of ACM expressing mutant PKP2 (R735X). These results highlight the utility of the robotic cell manipulation system to efficiently assess gap junction function in a relevant preclinical disease model, thus providing a technique to advance drug discovery for ACM and other gap junction-mediated diseases.
Collapse
Affiliation(s)
- Wenkun Dou
- Institute of Robotics and Intelligent Systems, Dalian University of Technology, Dalian, Liaoning, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Guanqiao Shan
- Institute of Robotics and Intelligent Systems, Dalian University of Technology, Dalian, Liaoning, China
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, College of Artificial Intelligence, Nankai University, Tianjin, China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, China
| | - Manpreet Malhi
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Aojun Jiang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Zhuoran Zhang
- School of Science and Engineering, Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | | | - Shaojie Fu
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Robert M Hamilton
- Department of Paediatrics, Division of Cardiology, Hospital for Sick Children, Toronto, ON, Canada
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Jason T Maynes
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Liu Y, Lu Y, Xing Y, Zhu W, Liu D, Ma X, Wang Y, Jia Y. PKP2 induced by YAP/TEAD4 promotes malignant progression of gastric cancer. Mol Carcinog 2024; 63:1654-1668. [PMID: 38804704 DOI: 10.1002/mc.23751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Gastric cancer (GC) exhibits significant heterogeneity and its prognosis remains dismal. Therefore, it is essential to investigate new approaches for diagnosing and treating GC. Desmosome proteins are crucial for the advancement and growth of cancer. Plakophilin-2 (PKP2), a member of the desmosome protein family, frequently exhibits aberrant expression and is strongly associated with many tumor types' progression. In this study, we found upregulation of PKP2 in GC. Further correlation analysis showed a notable association between increased PKP2 expression and both tumor stage and poor prognosis in individuals diagnosed with gastric adenocarcinoma. In addition, our research revealed that the Yes-associated protein1 (YAP1)/TEAD4 complex could stimulate the transcriptional expression of PKP2 in GC. Elevated PKP2 levels facilitate activation of the AKT/mammalian target of rapamycin signaling pathway, thereby promoting the malignant progression of GC. By constructing a mouse model, we ultimately validated the molecular mechanism and function of PKP2 in GC. Taken together, these discoveries suggest that PKP2, as a direct gene target of YAP/TEAD4 regulation, has the potential to be used as an indication of GC progression and prognosis. PKP2 is expected to be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Lu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Risato G, Brañas Casas R, Cason M, Bueno Marinas M, Pinci S, De Gaspari M, Visentin S, Rizzo S, Thiene G, Basso C, Pilichou K, Tiso N, Celeghin R. In Vivo Approaches to Understand Arrhythmogenic Cardiomyopathy: Perspectives on Animal Models. Cells 2024; 13:1264. [PMID: 39120296 PMCID: PMC11311808 DOI: 10.3390/cells13151264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac disorder characterized by the gradual replacement of cardiomyocytes with fibrous and adipose tissue, leading to ventricular wall thinning, chamber dilation, arrhythmias, and sudden cardiac death. Despite advances in treatment, disease management remains challenging. Animal models, particularly mice and zebrafish, have become invaluable tools for understanding AC's pathophysiology and testing potential therapies. Mice models, although useful for scientific research, cannot fully replicate the complexity of the human AC. However, they have provided valuable insights into gene involvement, signalling pathways, and disease progression. Zebrafish offer a promising alternative to mammalian models, despite the phylogenetic distance, due to their economic and genetic advantages. By combining animal models with in vitro studies, researchers can comprehensively understand AC, paving the way for more effective treatments and interventions for patients and improving their quality of life and prognosis.
Collapse
Affiliation(s)
- Giovanni Risato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
- Department of Biology, University of Padua, I-35131 Padua, Italy;
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | | | - Marco Cason
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Maria Bueno Marinas
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Serena Pinci
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Monica De Gaspari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Silvia Visentin
- Department of Women’s and Children’s Health, University of Padua, I-35128 Padua, Italy;
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| | - Natascia Tiso
- Department of Biology, University of Padua, I-35131 Padua, Italy;
| | - Rudy Celeghin
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, I-35128 Padua, Italy; (G.R.); (M.C.); (M.B.M.); (S.P.); (M.D.G.); (S.R.); (G.T.); (C.B.); (K.P.); (R.C.)
| |
Collapse
|
6
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Bradford WH, Zhang J, Gutierrez-Lara EJ, Liang Y, Do A, Wang TM, Nguyen L, Mataraarachchi N, Wang J, Gu Y, McCulloch A, Peterson KL, Sheikh F. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1246-1261. [PMID: 39196150 PMCID: PMC11357983 DOI: 10.1038/s44161-023-00370-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/16/2023] [Indexed: 08/29/2024]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a fatal genetic heart disease characterized by cardiac arrhythmias, in which fibrofatty deposition leads to heart failure, with no effective treatments. Plakophilin 2 (PKP2) is the most frequently mutated gene in ARVC, and although altered RNA splicing has been implicated, there are no models to study its effect and therapeutics. Here, we generate a mouse model harboring a PKP2 mutation (IVS10-1G>C) affecting RNA splicing, recapitulating ARVC features and sudden death starting at 4 weeks. Administering AAV-PKP2 gene therapy (adeno-associated viral therapy to drive cardiac expression of PKP2) to neonatal mice restored PKP2 protein levels, completely preventing cardiac desmosomal and pathological deficits associated with ARVC, ensuring 100% survival of mice up to 6 months. Late-stage AAV-PKP2 administration rescued desmosomal protein deficits and reduced pathological deficits including improved cardiac function in adult mice, resulting in 100% survival up to 4 months. We suggest that AAV-PKP2 gene therapy holds promise for circumventing ARVC associated with PKP2 mutations, including splice site mutations.
Collapse
Affiliation(s)
- William H Bradford
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Yan Liang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aryanne Do
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsui-Min Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena Nguyen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Jie Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
10
|
Lippi M, Maione AS, Chiesa M, Perrucci GL, Iengo L, Sattin T, Cencioni C, Savoia M, Zeiher AM, Tundo F, Tondo C, Pompilio G, Sommariva E. Omics Analyses of Stromal Cells from ACM Patients Reveal Alterations in Chromatin Organization and Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10017. [PMID: 37373166 DOI: 10.3390/ijms241210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by ventricular arrhythmias, contractile dysfunctions and fibro-adipose replacement of myocardium. Cardiac mesenchymal stromal cells (CMSCs) participate in disease pathogenesis by differentiating towards adipocytes and myofibroblasts. Some altered pathways in ACM are known, but many are yet to be discovered. We aimed to enrich the understanding of ACM pathogenesis by comparing epigenetic and gene expression profiles of ACM-CMSCs with healthy control (HC)-CMSCs. Methylome analysis identified 74 differentially methylated nucleotides, most of them located on the mitochondrial genome. Transcriptome analysis revealed 327 genes that were more expressed and 202 genes that were less expressed in ACM- vs. HC-CMSCs. Among these, genes implicated in mitochondrial respiration and in epithelial-to-mesenchymal transition were more expressed, and cell cycle genes were less expressed in ACM- vs. HC-CMSCs. Through enrichment and gene network analyses, we identified differentially regulated pathways, some of which never associated with ACM, including mitochondrial functioning and chromatin organization, both in line with methylome results. Functional validations confirmed that ACM-CMSCs exhibited higher amounts of active mitochondria and ROS production, a lower proliferation rate and a more pronounced epicardial-to-mesenchymal transition compared to the controls. In conclusion, ACM-CMSC-omics revealed some additional altered molecular pathways, relevant in disease pathogenesis, which may constitute novel targets for specific therapies.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, 20126 Milan, Italy
| | - Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy
| | - Gianluca Lorenzo Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Tommaso Sattin
- Department of Arrhythmology and Electrophysiology, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Chiara Cencioni
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Rome, Italy
| | - Matteo Savoia
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Department of Medicine III, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Fabrizio Tundo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudio Tondo
- Heart Rhythm Center, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| |
Collapse
|
11
|
Stevens TL, Manring HR, Wallace MJ, Argall A, Dew T, Papaioannou P, Antwi-Boasiako S, Xu X, Campbell SG, Akar FG, Borzok MA, Hund TJ, Mohler PJ, Koenig SN, El Refaey M. Humanized Dsp ACM Mouse Model Displays Stress-Induced Cardiac Electrical and Structural Phenotypes. Cells 2022; 11:3049. [PMID: 36231013 PMCID: PMC9562631 DOI: 10.3390/cells11193049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cellular Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Heather R. Manring
- Comprehensive Cancer Center, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cellular Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Aaron Argall
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cellular Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Trevor Dew
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cellular Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Steve Antwi-Boasiako
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xianyao Xu
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Stuart G. Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Fadi G. Akar
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maegen A. Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, Mansfield, PA 16933, USA
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cellular Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Sara N. Koenig
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Hylind RJ, Pereira AC, Quiat D, Chandler SF, Roston TM, Pu WT, Bezzerides VJ, Seidman JG, Seidman CE, Abrams DJ. Population Prevalence of Premature Truncating Variants in Plakophilin-2 and Association With Arrhythmogenic Right Ventricular Cardiomyopathy: A UK Biobank Analysis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003507. [PMID: 35536239 PMCID: PMC9400410 DOI: 10.1161/circgen.121.003507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Truncating variants in the desmosomal gene PKP2 (PKP2tv) cause arrhythmogenic right ventricular cardiomyopathy (ARVC) yet display varied penetrance and expressivity. METHODS We identified individuals with PKP2tv from the UK Biobank (UKB) and determined the prevalence of an ARVC phenotype and other cardiovascular traits based on clinical and procedural data. The PKP2tv minor allelic frequency in the UKB was compared with a second cohort of probands with a clinical diagnosis of ARVC (ARVC cohort), with a figure of 1:5000 assumed for disease prevalence. In silico predictors of variant pathogenicity (combined annotation-dependent depletion and Splice AI [Illumina, Inc.]) were assessed. RESULTS PKP2tv were identified in 193/200 643 (0.10%) UKB participants, with 47 unique PKP2tv. Features consistent with ARVC were present in 3 (1.6%), leaving 190 with PKP2tv without manifest disease (UKB cohort; minor allelic frequency 4.73×10-4). The ARVC cohort included 487 ARVC probands with 144 distinct PKP2tv, with 25 PKP2tv common to both cohorts. The odds ratio for ARVC for the 25 common PKP2tv was 0.047 (95% CI, 0.001-0.268; P=2.43×10-6), and only favored ARVC (odds ratio >1) for a single variant, p.Arg79*. In silico variant analysis did not differentiate PKP2tv between the 2 cohorts. Atrial fibrillation was over-represented in the UKB cohort in those with PKP2tv (7.9% versus 4.3%; odds ratio, 2.11; P=0.005). CONCLUSIONS PKP2tv are prevalent in the population and associated with ARVC in only a small minority, necessitating a more detailed understanding of how PKP2tv cause ARVC in combination with associated genetic and environmental risk factors.
Collapse
Affiliation(s)
- Robyn J Hylind
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Alexandre C Pereira
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Brazil (A.C.P.)
| | - Daniel Quiat
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
| | - Stephanie F Chandler
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Thomas M Roston
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - William T Pu
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Vassilios J Bezzerides
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Jonathan G Seidman
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
| | - Christine E Seidman
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
- Cardiovascular Division, Brigham and Women's Hospital (C.E.S.), Harvard Medical School, Boston MA
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Dominic J Abrams
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| |
Collapse
|
13
|
Fülle JB, Huppert H, Liebl D, Liu J, Alves de Almeida R, Yanes B, Wright GD, Lane EB, Garrod DR, Ballestrem C. Desmosome dualism - most of the junction is stable, but a plakophilin moiety is persistently dynamic. J Cell Sci 2021; 134:272445. [PMID: 34635908 DOI: 10.1242/jcs.258906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK.,Skin Research Institute of Singapore, Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore
| | - Henri Huppert
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK.,Institute of Medical Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673 Singapore, Singapore
| | - David Liebl
- A*STAR Microscopy Platform, Research Support Centre, Agency of Science Technology and Research (A*STAR), Biopolis 138673 Singapore, Singapore
| | - Jaron Liu
- Institute of Medical Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673 Singapore, Singapore
| | - Rogerio Alves de Almeida
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Graham D Wright
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore.,A*STAR Microscopy Platform, Research Support Centre, Agency of Science Technology and Research (A*STAR), Biopolis 138673 Singapore, Singapore
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Burkard N, Meir M, Kannapin F, Otto C, Petzke M, Germer CT, Waschke J, Schlegel N. Desmoglein2 Regulates Claudin2 Expression by Sequestering PI-3-Kinase in Intestinal Epithelial Cells. Front Immunol 2021; 12:756321. [PMID: 34659262 PMCID: PMC8514949 DOI: 10.3389/fimmu.2021.756321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammation-induced reduction of intestinal desmosomal cadherin Desmoglein 2 (Dsg2) is linked to changes of tight junctions (TJ) leading to impaired intestinal epithelial barrier (IEB) function by undefined mechanisms. We characterized the interplay between loss of Dsg2 and upregulation of pore-forming TJ protein Claudin2. Intraperitoneal application of Dsg2-stablising Tandem peptide (TP) attenuated impaired IEB function, reduction of Dsg2 and increased Claudin2 in DSS-induced colitis in C57Bl/6 mice. TP blocked loss of Dsg2-mediated adhesion and upregulation of Claudin2 in Caco2 cells challenged with TNFα. In Dsg2-deficient Caco2 cells basal expression of Claudin2 was increased which was paralleled by reduced transepithelial electrical resistance and by augmented phosphorylation of AKTSer473 under basal conditions. Inhibition of phosphoinositid-3-kinase proved that PI-3-kinase/AKT-signaling is critical to upregulate Claudin2. In immunostaining PI-3-kinase dissociated from Dsg2 under inflammatory conditions. Immunoprecipitations and proximity ligation assays confirmed a direct interaction of Dsg2 and PI-3-kinase which was abrogated following TNFα application. In summary, Dsg2 regulates Claudin2 expression by sequestering PI-3-kinase to the cell borders in intestinal epithelium.
Collapse
Affiliation(s)
- Natalie Burkard
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Michael Meir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Felix Kannapin
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Petzke
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Svensson A, Platonov PG, Haugaa KH, Zareba W, Jensen HK, Bundgaard H, Gilljam T, Madsen T, Hansen J, Dejgaard LA, Karlsson LO, Gréen A, Polonsky B, Edvardsen T, Svendsen JH, Gunnarsson C. Genetic Variant Score and Arrhythmogenic Right Ventricular Cardiomyopathy Phenotype in Plakophilin-2 Mutation Carriers. Cardiology 2021; 146:763-771. [PMID: 34469894 DOI: 10.1159/000519231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Whether detailed genetic information contributes to risk stratification of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) remains uncertain. Pathogenic genetic variants in some genes seem to carry a higher risk for arrhythmia and earlier disease onset than others, but comparisons between variants in the same gene have not been done. Combined Annotation Dependent Depletion (CADD) score is a bioinformatics tool that measures the pathogenicity of each genetic variant. We hypothesized that a higher CADD score is associated with arrhythmic events and earlier age at ARVC manifestations in individuals carrying pathogenic or likely pathogenic genetic variants in plakophilin-2 (PKP2). METHODS CADD scores were calculated using the data from pooled Scandinavian and North American ARVC cohorts, and their association with cardiac events defined as ventricular tachycardia/ventricular fibrillation (VT/VF) or syncope and age at definite ARVC diagnosis were assessed. RESULTS In total, 33 unique genetic variants were reported in 179 patients (90 males, 71 probands, 96 with definite ARVC diagnosis at a median age of 35 years). Cardiac events were reported in 76 individuals (43%), of whom 53 had sustained VT/VF (35%). The CADD score was neither associated with age at cardiac events (HR 1.002, 95% CI: 0.953-1.054, p = 0.933) nor with age at definite ARVC diagnosis (HR 0.992, 95% CI: 0.947-1.039, p = 0.731). CONCLUSION No correlation was found between CADD scores and clinical manifestations of ARVC, indicating that the score has no additional risk stratification value among carriers of pathogenic or likely pathogenic PKP2 genetic variants.
Collapse
Affiliation(s)
- Anneli Svensson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University and Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| | - Kristina H Haugaa
- Department of Cardiology, Centre for Cardiological Innovation, Oslo University Hospital, Oslo, Norway and University of Oslo, Oslo, Norway
| | - Wojciech Zareba
- University of Rochester Medical Center, Rochester, New York, USA
| | - Henrik Kjærulf Jensen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Bundgaard
- Unit for Inherited Cardiac Diseases, The Heart Center, The National University Hospital, Copenhagen, Denmark
| | - Thomas Gilljam
- Department of Cardiology, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine Madsen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jim Hansen
- Department of Cardiology, Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lars A Dejgaard
- Department of Cardiology, Centre for Cardiological Innovation, Oslo University Hospital, Oslo, Norway and University of Oslo, Oslo, Norway
| | - Lars O Karlsson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Gréen
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Thor Edvardsen
- Department of Cardiology, Centre for Cardiological Innovation, Oslo University Hospital, Oslo, Norway and University of Oslo, Oslo, Norway
| | - Jesper Hastrup Svendsen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, and Danish National Research Foundation Centre for Cardiac Arrhythmia (DARC), Copenhagen, Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Centre for Rare Diseases in Southeast Region of Sweden, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
17
|
Indra I, Troyanovsky RB, Green KJ, Troyanovsky SM. Plakophilin 3 and Par3 facilitate desmosomes' association with the apical junctional complex. Mol Biol Cell 2021; 32:1824-1837. [PMID: 34260281 PMCID: PMC8684708 DOI: 10.1091/mbc.e21-01-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM’s association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell–cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.
Collapse
Affiliation(s)
| | | | - Kathleen J Green
- Departments of Pathology and Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | | |
Collapse
|
18
|
Hemi- and Homozygous Loss-of-Function Mutations in DSG2 (Desmoglein-2) Cause Recessive Arrhythmogenic Cardiomyopathy with an Early Onset. Int J Mol Sci 2021; 22:ijms22073786. [PMID: 33917638 PMCID: PMC8038858 DOI: 10.3390/ijms22073786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2–c.378+1G>T) in the first patient and a nonsense mutation (DSG2–p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.
Collapse
|
19
|
Cheng C, Pei X, Li SW, Yang J, Li C, Tang J, Hu K, Huang G, Min WP, Sang Y. CRISPR/Cas9 library screening uncovered methylated PKP2 as a critical driver of lung cancer radioresistance by stabilizing β-catenin. Oncogene 2021; 40:2842-2857. [PMID: 33742119 DOI: 10.1038/s41388-021-01692-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Radiation resistance is a major cause of lung cancer treatment failure. Armadillo (ARM) superfamily proteins participate in various fundamental cellular processes; however, whether ARM proteins regulate radiation resistance is not fully understood. Here, we used an unbiased CRISPR/Cas9 library screen and identified plakophilin 2 (PKP2), a member of the ARM superfamily of proteins, as a critical driver of radiation resistance in lung cancer. The PKP2 level was significantly higher after radiotherapy than before radiotherapy, and high PKP2 expression after radiotherapy predicted poor overall survival (OS) and postprogression survival (PPS). Mechanistically, mass spectrometry analysis identified that PKP2 was methylated at the arginine site and interacted with protein arginine methyltransferase 1 (PRMT1). Methylation of PKP2 by PRMT1 stabilized β-catenin by recruiting USP7, further inducing LIG4, a key DNA ligase in nonhomologous end-joining (NHEJ) repair. Concomitantly, PKP2-induced radioresistance depended on facilitating LIG4-mediated NHEJ repair in lung cancer. More strikingly, after exposure to irradiation, treatment with the PRMT1 inhibitor C-7280948 abolished PKP2-induced radioresistance, and C-7280948 is a potential radiosensitizer in lung cancer. In summary, our results demonstrate that targeting the PRMT1/PKP2/β-catenin/LIG4 pathway is an effective approach to overcome radiation resistance in lung cancer.
Collapse
Affiliation(s)
- Chun Cheng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenxi Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianjun Tang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guofu Huang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Ping Min
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, ON, Canada
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Altered mechanisms of genital development identified through integration of DNA methylation and genomic measures in hypospadias. Sci Rep 2020; 10:12715. [PMID: 32728162 PMCID: PMC7391634 DOI: 10.1038/s41598-020-69725-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Hypospadias is a common birth defect where the urethral opening forms on the ventral side of the penis. We performed integrative methylomic, genomic, and transcriptomic analyses to characterize sites of DNA methylation that influence genital development. In case–control and case-only epigenome-wide association studies (EWAS) of preputial tissue we identified 25 CpGs associated with hypospadias characteristics and used one-sample two stage least squares Mendelian randomization (2SLS MR) to show a causal relationship for 21 of the CpGs. The largest difference was 15.7% lower beta-value at cg14436889 among hypospadias cases than controls (EWAS P = 5.4e−7) and is likely causal (2SLS MR P = 9.8e−15). Integrative annotation using two-sample Mendelian randomization of these methylation regions highlight potentially causal roles of genes involved in germ layer differentiation (WDHD1, DNM1L, TULP3), beta-catenin signaling (PKP2, UBE2R2, TNKS), androgens (CYP4A11, CYP4A22, CYP4B1, CYP4X1, CYP4Z2P, EPHX1, CD33/SIGLEC3, SIGLEC5, SIGLEC7, KLK5, KLK7, KLK10, KLK13, KLK14), and reproductive traits (ACAA1, PLCD1, EFCAB4B, GMCL1, MKRN2, DNM1L, TEAD4, TSPAN9, KLK family). This study identified CpGs that remained differentially methylated after urogenital development and used the most relevant tissue sample available to study hypospadias. We identified multiple methylation sites and candidate genes that can be further evaluated for their roles in regulating urogenital development.
Collapse
|
21
|
Gerull B, Brodehl A. Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Front Physiol 2020; 11:624. [PMID: 32670084 PMCID: PMC7327121 DOI: 10.3389/fphys.2020.00624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Brenda Gerull
- Comprehensive Heart Failure Center Wuerzburg, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospitals of the Ruhr-University of Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
22
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
23
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
24
|
Galindo I, Gómez-Morales M, Díaz-Cano I, Andrades Á, Caba-Molina M, Miranda-León MT, Medina PP, Martín-Padron J, Fárez-Vidal ME. The value of desmosomal plaque-related markers to distinguish squamous cell carcinoma and adenocarcinoma of the lung. Ups J Med Sci 2020; 125:19-29. [PMID: 31809668 PMCID: PMC7054907 DOI: 10.1080/03009734.2019.1692101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: An antibody panel is needed to definitively differentiate between adenocarcinoma (AC) and squamous cell carcinoma (SCC) in order to meet more stringent requirements for the histologic classification of lung cancers. Staining of desmosomal plaque-related proteins may be useful in the diagnosis of lung SCC.Materials and methods: We compared the usefulness of six conventional (CK5/6, p40, p63, CK7, TTF1, and Napsin A) and three novel (PKP1, KRT15, and DSG3) markers to distinguish between lung SCC and AC in 85 small biopsy specimens (41 ACs and 44 SCCs). Correlations were examined between expression of the markers and patients' histologic and clinical data.Results: The specificity for SCC of membrane staining for PKP1, KRT15, and DSG3 was 97.4%, 94.6%, and 100%, respectively, and it was 100% when the markers were used together and in combination with the conventional markers (AUCs of 0.7619 for Panel 1 SCC, 0.7375 for Panel 2 SCC, 0.8552 for Panel 1 AC, and 0.8088 for Panel 2 AC). In a stepwise multivariate logistic regression model, the combination of CK5/6, p63, and PKP1 in membrane was the optimal panel to differentiate between SCC and AC, with a percentage correct classification of 96.2% overall (94.6% of ACs and 97.6% of SCCs). PKP1 and DSG3 are related to the prognosis.Conclusions: PKP1, KRT15, and DSG3 are highly specific for SCC, but they were more useful to differentiate between SCC and AC when used together and in combination with conventional markers. PKP1 and DSG3 expressions may have prognostic value.
Collapse
Affiliation(s)
- Inmaculada Galindo
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | | | - Inés Díaz-Cano
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
| | - Álvaro Andrades
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Mercedes Caba-Molina
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - María Teresa Miranda-León
- Department of Statistics and Operative Research, School of Medicine, University of Granada, Granada, Spain
| | - Pedro Pablo Medina
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Joel Martín-Padron
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Centre for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
| | - María Esther Fárez-Vidal
- Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, Granada, Spain
- Institute for Biomedical Research (IBS Granada), University Hospital Complex of Granada/University of Granada, Granada, Spain
- CONTACT María Esther Fárez-Vidal Department of Biochemistry and Molecular Biology III, School of Medicine, University of Granada, 18012 Granada, Spain
| |
Collapse
|
25
|
Zhang Z, Fang Q, Du T, Chen G, Wang Y, Wang DW. Cardiac-Specific Caveolin-3 Overexpression Prevents Post-Myocardial Infarction Ventricular Arrhythmias by Inhibiting Ryanodine Receptor-2 Hyperphosphorylation. Cardiology 2020; 145:136-147. [PMID: 32007997 DOI: 10.1159/000505316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Ventricular arrhythmia is the most important risk factor for sudden cardiac death (SCD) after acute myocardial infarction (MI) worldwide. However, the molecular mechanisms underlying these arrhythmias are complex and not completely understood. OBJECTIVE Here, we evaluated whether caveolin-3 (Cav3), the structural protein of caveolae, plays an important role in the therapeutic strategy for ventricular arrhythmias. METHODS A model of cardiac-specific overexpression of Cav3 was established to evaluate the incidence of ventricular arrhythmias after MI in mice. Ca2+ imaging was employed to detect the propensity of adult murine cardiomyocytes to generate arrhythmias, and immunoprecipitation and immunofluorescence were used to determine the relationship of proteins. Additionally, qRT-PCR and western blotting were used to detect the mRNA and protein expression. RESULTS We found that cardiac-specific overexpression of Cav3 delivered by a recombinant adeno-associated viral vector reduced the incidence of ventricular arrhythmias and SCD after MI in mice. Ca2+ imaging and western blotting revealed that overexpression of Cav3 reduced diastolic spontaneous Ca2+ waves by inhibiting the hyperphosphorylation of ryanodine receptor-2 (RyR2) at Ser2814, rather than at Ser2808, compared to in rAAV-red fluorescent protein control mice. Furthermore, we demonstrated that Cav3-regulated RYR2 hyperphosphorylation relied on plakophilin-2 in hypoxia-stimulated cultured cardiomyocytes by western blotting, immunoprecipitation, and immunofluorescence in vitro. CONCLUSIONS Our results suggested a novel role for Cav3 in the prevention of ventricular arrhythmias, thereby identifying a new target for preventing SCD after MI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingyi Du
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Wang X, Zou Y, Li Y, Chen Z, Yin C, Wang Y, Zhang L, Wu J, Yang C, Zhang G, Zou Y, Gong H. Lipoprotein receptor-related protein 6 is required to maintain intercalated disk integrity. Genes Cells 2019; 24:789-800. [PMID: 31609038 DOI: 10.1111/gtc.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The intercalated disk (ID), a highly organized adhesion structure connecting neighboring cardiomyocytes, fulfills mechanical and electrical signaling communication to ensure normal heart function. Lipoprotein receptor-related protein 6 (LRP6) is a co-receptor inducing canonical Wnt/β-catenin signaling. It was recently reported that LRP6 deficiency in cardiomyocytes predisposes to arrhythmia independent of Wnt signaling. However, whether LRP6 directly regulates the structure of IDs requires further investigation. The aim of the present study was to explore the role of LRP6 in IDs and the potential underlying mechanisms by inducible cardiac-specific LRP6 knockout mice. The results revealed that LRP6 was predominately expressed in the cell membrane, including the IDs of cardiomyocytes. Tamoxifen-inducible cardiac-specific LRP6 knockout mice displayed overt cardiac dysfunction and disruption of ID structure. Further analysis revealed that cardiac LRP6 deficiency induced the imbalance of ID component proteins, characterized by the sharply decreased expression of connexin 43 (Cx43) and the significantly increased expression of N-cadherin, desmoplakin and γ-catenin in tissue lysates or membrane fraction from the left ventricle. STRING database analysis indicated that β-catenin, but no other ID-associated proteins, interacted with LRP6. Our immunoprecipitation analysis demonstrated that LRP6 strongly interacted with Cx43, N-cadherin and γ-catenin, and weakly interacted with β-catenin, whereas there was no association with desmoplakin. In response to LRP6 deficiency, the recruitment of β- or γ-catenin to N-cadherin was increased, but they displayed little interaction with Cx43. In conclusion, LRP6 is required to maintain the integrity of ID structure and the balance of ID proteins, and the interaction between LRP6 and Cx43, N-cadherin and γ-catenin may be involved in this process.
Collapse
Affiliation(s)
- Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhidan Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Yin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Gul IS, Hulpiau P, Sanders E, van Roy F, van Hengel J. Armc8 is an evolutionarily conserved armadillo protein involved in cell-cell adhesion complexes through multiple molecular interactions. Biosci Rep 2019; 39:BSR20180604. [PMID: 30482882 PMCID: PMC6680376 DOI: 10.1042/bsr20180604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023] Open
Abstract
Armadillo-repeat-containing protein 8 (Armc8) belongs to the family of armadillo-repeat containing proteins, which have been found to be involved in diverse cellular functions including cell-cell contacts and intracellular signaling. By comparative analyses of armadillo repeat protein structures and genomes from various premetazoan and metazoan species, we identified orthologs of human Armc8 and analyzed in detail the evolutionary relationship of Armc8 genes and their encoded proteins. Armc8 is a highly ancestral armadillo protein although not present in yeast. Consequently, Armc8 is not the human ortholog of yeast Gid5/Vid28.Further, we performed a candidate approach to characterize new protein interactors of Armc8. Interactions between Armc8 and specific δ-catenins (plakophilins-1, -2, -3 and p0071) were observed by the yeast two-hybrid approach and confirmed by co-immunoprecipitation and co-localization. We also showed that Armc8 interacts specifically with αE-catenin but neither with αN-catenin nor with αT-catenin. Degradation of αE-catenin has been reported to be important in cancer and to be regulated by Armc8. A similar process may occur with respect to plakophilins in desmosomes. Deregulation of desmosomal proteins has been considered to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Ismail Sahin Gul
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Howest, University College West Flanders, Bruges, Belgium
| | - Ellen Sanders
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
28
|
Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration? Int J Mol Sci 2019; 20:ijms20163986. [PMID: 31426283 PMCID: PMC6721231 DOI: 10.3390/ijms20163986] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by sudden death in young people and featured by fibro-adipose myocardium replacement, malignant arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways, and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative mechanism involves a defect in the expression and/or activity of the cardiac Ca2+ handling machinery, focusing on the available data supporting this hypothesis. The Ca2+ toolkit is heavily remodeled in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins involved in excitation‒contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As a consequence, the sarcoplasmic reticulum becomes more eager to release Ca2+, thereby inducing delayed afterdepolarizations and impairing cardiac contractility. These data are supported by preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes. Assessing the involvement of Ca2+ signaling in the pathogenesis of ACM could be beneficial in the treatment of this life-threatening disease.
Collapse
|
29
|
Elliott PM, Anastasakis A, Asimaki A, Basso C, Bauce B, Brooke MA, Calkins H, Corrado D, Duru F, Green KJ, Judge DP, Kelsell D, Lambiase PD, McKenna WJ, Pilichou K, Protonotarios A, Saffitz JE, Syrris P, Tandri H, Te Riele A, Thiene G, Tsatsopoulou A, van Tintelen JP. Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report. Eur J Heart Fail 2019; 21:955-964. [PMID: 31210398 DOI: 10.1002/ejhf.1534] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022] Open
Abstract
It is 35 years since the first description of arrhythmogenic right ventricular cardiomyopathy (ARVC) and more than 20 years since the first reports establishing desmosomal gene mutations as a major cause of the disease. Early advances in the understanding of the clinical, pathological and genetic architecture of ARVC resulted in consensus diagnostic criteria, which proved to be sensitive but not entirely specific for the disease. In more recent years, clinical and genetic data from families and the recognition of a much broader spectrum of structural disorders affecting both ventricles and associated with a propensity to ventricular arrhythmia have raised many questions about pathogenesis, disease terminology and clinical management. In this paper, we present the conclusions of an expert round table that aimed to summarise the current state of the art in arrhythmogenic cardiomyopathies and to define future research priorities.
Collapse
Affiliation(s)
- Perry M Elliott
- University College London & St. Bartholomew's Hospital, London, UK
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St Georges University, London, UK
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Matthew A Brooke
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - David Kelsell
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Pier D Lambiase
- University College London & St. Bartholomew's Hospital, London, UK
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | | | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Hari Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anneline Te Riele
- Division of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua-Azienda Ospedaliera, Padua, Italy
| | | | - J Peter van Tintelen
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 2019; 8:bio037937. [PMID: 30952696 PMCID: PMC6550082 DOI: 10.1242/bio.037937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Brazilian Agricultural Research Corporation - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais 36038-330, Brazil
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anthony W Herren
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Brett S Phinney
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Brodehl A, Stanasiuk C, Anselmetti D, Gummert J, Milting H. Incorporation of desmocollin-2 into the plasma membrane requires N-glycosylation at multiple sites. FEBS Open Bio 2019; 9:996-1007. [PMID: 30942563 PMCID: PMC6487837 DOI: 10.1002/2211-5463.12631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Desmocollin‐2 (DSC2) is a desmosomal protein of the cadherin family. Desmosomes are multiprotein complexes, which are involved in cell adhesion of cardiomyocytes and of keratinocytes. The molecular structure of the complete extracellular domain (ECD) of DSC2 was recently described, revealing three disulfide bridges, four N‐glycosylation sites, and four O‐mannosylation sites. However, the functional relevance of these post‐translational modifications for the protein trafficking of DSC2 to the plasma membrane is still unknown. Here, we generated a set of DSC2 mutants, in which we systematically exchanged all N‐glycosylation sites, O‐mannosylation sites, and disulfide bridges within the ECD and investigated the resulting subcellular localization by confocal laser scanning microscopy. Of note, all single and double N‐glycosylation‐ deficient mutants were efficiently incorporated into the plasma membrane, indicating that the absence of these glycosylation sites has a minor effect on the protein trafficking of DSC2. However, the exchange of multiple N‐glycosylation sites resulted in intracellular accumulation. Colocalization analysis using cell compartment trackers revealed that N‐glycosylation‐ deficient DSC2 mutants were retained within the Golgi apparatus. In contrast, elimination of the four O‐mannosylation sites or the disulfide bridges in the ECD has no obvious effect on the intracellular protein processing of DSC2. These experiments underscore the importance of N‐glycosylation at multiple sites of DSC2 for efficient intracellular transport to the plasma membrane.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Oeynhausen, Germany
| | - Caroline Stanasiuk
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Oeynhausen, Germany
| | - Dario Anselmetti
- Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Germany
| | - Jan Gummert
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Oeynhausen, Germany
| |
Collapse
|
32
|
Qian H, Yuan D, Bao J, Liu F, Zhang W, Yang X, Han G, Huang J, Sheng H, Yu H. Increased expression of plakophilin 3 is associated with poor prognosis in ovarian cancer. Medicine (Baltimore) 2019; 98:e14608. [PMID: 30855445 PMCID: PMC6417525 DOI: 10.1097/md.0000000000014608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Considering the essential role of plakophilin 3 (PKP3) in the maintenance cell-cell adhesion, dysregulation of PKP3 is involved in human diseases. This study aimed to explore the clinical significance of PKP3 in ovarian cancer. Immunohistochemistry was performed to examine the PKP3 expression in 157 cancer specimens from primary ovarian cancer patients. PKP3 was expressed in both the cytoplasm and nucleus. Eighty-one (51.6%) out of 157 ovarian cancer tissues showed PKP3 expression, while absent expression was observed in normal ovarian tissues. High PKP3 expression was associated with lymph node metastasis (LNM, P = .004) and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P = .013). Patients with high PKP3 expression had shorter overall survival (OS) than those with low PKP3 expression (60.2 months vs 74.2 months, P = .021). However, no association between PKP3 expression and progression-free survival (PFS) was observed (P = .790). Cox regression analysis indicated that PKP3 expression was an independently predictive factor for the OS of patient with ovarian cancer (adjusted HR = 1.601, 95%CI: 1.014-2.528, P = .043), especially those with FIGO stages III and IV disease (adjusted HR = 1.607, 95%CI: 1.006-2.567, P = .047). The gene expression profiling interactive analysis (GEPIA) databases also showed that PKP3 was upregulated in ovarian cancer (P < .001) and patients with high PKP3 expression had shorter OS (P = .004). In conclusion, our findings suggest that PKP3 is upregulated in ovarian cancer and is likely involved in the progression of ovarian cancer. PKP3 might therefore serve as a prognostic biomarker for patients with ovarian cancer.
Collapse
Affiliation(s)
- Hua Qian
- Department of Obstetrics and Gynecology
| | | | | | | | | | | | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Haihui Sheng
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | | |
Collapse
|
33
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
34
|
Mahdieh N, Najafi N, Soveizi M, Saeidi S, Noohi F, Maleki M, Rabbani B. WITHDRAWN: PKP2 as a main cause of Arrhythmogenic right ventricular dysplasia in Iran: An update of the mutations around the world. Cardiovasc Pathol 2018. [DOI: 10.1016/j.carpath.2018.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Niell N, Larriba MJ, Ferrer‐Mayorga G, Sánchez‐Pérez I, Cantero R, Real FX, del Peso L, Muñoz A, González‐Sancho JM. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer 2018; 142:792-804. [PMID: 29044515 PMCID: PMC5765413 DOI: 10.1002/ijc.31104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/β-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/β-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by β-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/β-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells.
Collapse
Affiliation(s)
- Núria Niell
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| | - Gemma Ferrer‐Mayorga
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
- Fundación de Investigación HM HospitalesMadridE‐28015Spain
| | - Isabel Sánchez‐Pérez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Unidad asociada de Biomedicina UCLM‐CSICMadridSpain
- Instituto de Salud Carlos IIICIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Ramón Cantero
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Department of Surgery, La Paz University HospitalColorectal UnitMadridE‐28046Spain
| | - Francisco X. Real
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
- Cancer Cell Biology Programme, Spanish National Cancer Research CentreEpithelial Carcinogenesis GroupMadridE‐28029Spain
- Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaE‐08003Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ)MadridE‐28046Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| | - José Manuel González‐Sancho
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) –Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Departamento de BioquímicaFacultad de Medicina, Universidad Autónoma de Madrid (UAM)MadridE‐28029Spain
- Instituto de Salud Carlos IIICIBER de Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
36
|
Hart ML, Rusch E, Kaupp M, Nieselt K, Aicher WK. Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Rev Rep 2017; 13:258-266. [PMID: 28154962 DOI: 10.1007/s12015-016-9710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many controversial results exist when comparing mesenchymal stromal cells (MSCs) derived from different sources. Reasons include not only variables in tissue origin, but also methods of cell preparation or choice of expansion media which can strongly influence the expression and hence, function of the cells. In this short report we aimed to investigate the expression of the cell anchoring proteins desmoglein 2, desmocollin 3 and plakophilin 2 in early passage placenta-derived MSCs of fetal (fetal pMSCs) and maternal (maternal pMSCs) origins versus adult bone marrow-derived MSCs (bmMSCs) that were expanded and cultured under the same good manufacturing practice (GMP) conditions. Comprehensive gene expression microarray analysis profiling indicated differential expression of these genes in the different MSC-derived types with fetal pMSCs expressing the highest levels of PKP2, DSC3 and DSG2, followed by maternal pMSCs, while bmMSCs expressed the lowest levels. A higher expression of PKP2 and DSC3 genes in fetal pMSCs was confirmed by qRT-PCR suggesting neonatal increases in the expression of these desmosomal genes vs. adult MSCs. Intracellular desmocollin 3 and desmoglein 2 expression was observed by flow cytometry and cytoplasmic plakophilin 2 by immunofluorescence in all three MSC sources. These data suggest that fetal pMSCs, maternal pMSCs and bmMSCs may anchor intermediate filaments to the plasma membrane via desmocollin 3, desmoglein 2 and plakophilin 2.
Collapse
Affiliation(s)
- Melanie L Hart
- Laboratory for Cell & Tissue Engineering, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.
| | - Elisa Rusch
- Clinical Research Group KFO 273, Department of Urology, University of Tubingen Hospital, Tubingen, Germany
| | - Marvin Kaupp
- Clinical Research Group KFO 273, Department of Urology, University of Tubingen Hospital, Tubingen, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Wilhelm K Aicher
- Clinical Research Group KFO 273, Department of Urology, University of Tubingen Hospital, Tubingen, Germany
| |
Collapse
|
37
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Ardesjö-Lundgren B, Tengvall K, Bergvall K, Farias FHG, Wang L, Hedhammar Å, Lindblad-Toh K, Andersson G. Comparison of cellular location and expression of Plakophilin-2 in epidermal cells from nonlesional atopic skin and healthy skin in German shepherd dogs. Vet Dermatol 2017; 28:377-e88. [PMID: 28386956 PMCID: PMC5516137 DOI: 10.1111/vde.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
Background Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease caused by interactions between genetic and environmental factors. Previously, a genome‐wide significant risk locus on canine chromosome 27 for CAD was identified in German shepherd dogs (GSDs) and Plakophilin‐2 (PKP2) was defined as the top candidate gene. PKP2 constitutes a crucial component of desmosomes and also is important in signalling, metabolic and transcriptional activities. Objectives The main objective was to evaluate the role of PKP2 in CAD by investigating PKP2 expression and desmosome structure in nonlesional skin from CAD‐affected (carrying the top GWAS SNP risk allele) and healthy GSDs. We also aimed at defining the cell types in the skin that express PKP2 and its intracellular location. Animals/Methods Skin biopsies were collected from nine CAD‐affected and five control GSDs. The biopsies were frozen for immunofluorescence and fixed for electron microscopy immunolabelling and morphology. Results We observed the novel finding of PKP2 expression in dendritic cells and T cells in dog skin. Moreover, we detected that PKP2 was more evenly expressed within keratinocytes compared to its desmosomal binding‐partner plakoglobin. PKP2 protein was located in the nucleus and on keratin filaments attached to desmosomes. No difference in PKP2 abundance between CAD cases and controls was observed. Conclusion Plakophilin‐2 protein in dog skin is expressed in both epithelial and immune cells; based on its subcellular location its functional role is implicated in both nuclear and structural processes.
Collapse
Affiliation(s)
- Brita Ardesjö-Lundgren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-75007, Uppsala, Sweden
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Neuroimmunology Unit, Centrum for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| | - Fabiana H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-75007, Uppsala, Sweden
| |
Collapse
|
39
|
Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction. Nat Commun 2017; 8:13876. [PMID: 28169297 PMCID: PMC5309701 DOI: 10.1038/ncomms13876] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular protein interaction networks are integral to host defence and immune signalling pathways, which are often hijacked by viruses via protein interactions. However, the comparative virus–host protein interaction networks and how these networks control host immunity and viral infection remain to be elucidated. Here, we mapped protein interactomes between human host and several influenza A viruses (IAV). Comparative analyses of the interactomes identified common and unique interaction patterns regulating innate immunity and viral infection. Functional screening of the ‘core‘ interactome consisting of common interactions identified five novel host factors regulating viral infection. Plakophilin 2 (PKP2), an influenza PB1-interacting protein, restricts IAV replication and competes with PB2 for PB1 binding. The binding competition leads to perturbation of the IAV polymerase complex, thereby limiting polymerase activity and subsequent viral replication. Taken together, comparative analyses of the influenza–host protein interactomes identified PKP2 as a natural inhibitor of IAV polymerase complex. Protein interaction networks can identify host proteins that affect virus replication. Here, the authors compare the protein interactomes of several influenza A virus strains and identify plakophilin 2 as a restriction factor that inhibits formation of the viral polymerase complex.
Collapse
|
40
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
41
|
Gurha P, Chen X, Lombardi R, Willerson JT, Marian AJ. Knockdown of Plakophilin 2 Downregulates miR-184 Through CpG Hypermethylation and Suppression of the E2F1 Pathway and Leads to Enhanced Adipogenesis In Vitro. Circ Res 2016; 119:731-50. [PMID: 27470638 DOI: 10.1161/circresaha.116.308422] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE PKP2, encoding plakophilin 2 (PKP2), is the most common causal gene for arrhythmogenic cardiomyopathy. OBJECTIVE To characterize miRNA expression profile in PKP2-deficient cells. METHODS AND RESULTS Control and PKP2-knockdown HL-1 (HL-1(Pkp2-shRNA)) cells were screened for 750 miRNAs using low-density microfluidic panels. Fifty-nine miRNAs were differentially expressed. MiR-184 was the most downregulated miRNA. Expression of miR-184 in the heart and cardiac myocyte was developmentally downregulated and was low in mature myocytes. MicroRNA-184 was predominantly expressed in cardiac mesenchymal progenitor cells. Knockdown of Pkp2 in cardiac mesenchymal progenitor cells also reduced miR-184 levels. Expression of miR-184 was transcriptionally regulated by the E2F1 pathway, which was suppressed in PKP2-deficient cells. Activation of E2F1, on overexpression of its activator CCND1 (cyclin D1) or knockdown of its inhibitor retinoblastoma 1, partially rescued miR-184 levels. In addition, DNA methyltransferase-1 was recruited to the promoter region of miR-184, and the CpG sites at the upstream region of miR-184 were hypermethylated. Treatment with 5-aza-2'-deoxycytidine, a demethylation agent, and knockdown of DNA methyltransferase-1 partially rescued miR-184 level. Pathway analysis of paired miR-184:mRNA targets identified cell proliferation, differentiation, and death as the main affected biological processes. Knockdown of miR-184 in HL-1 cells and mesenchymal progenitor cells induced and, conversely, its overexpression attenuated adipogenesis. CONCLUSIONS PKP2 deficiency leads to suppression of the E2F1 pathway and hypermethylation of the CpG sites at miR-184 promoter, resulting in downregulation of miR-184 levels. Suppression of miR-184 enhances and its activation attenuates adipogenesis in vitro. Thus, miR-184 contributes to the pathogenesis of adipogenesis in PKP2-deficient cells.
Collapse
Affiliation(s)
- Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Xiaofan Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Raffaella Lombardi
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - James T Willerson
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute
| | - Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute.
| |
Collapse
|
42
|
Rietscher K, Wolf A, Hause G, Rother A, Keil R, Magin TM, Glass M, Niessen CM, Hatzfeld M. Growth Retardation, Loss of Desmosomal Adhesion, and Impaired Tight Junction Function Identify a Unique Role of Plakophilin 1 In Vivo. J Invest Dermatol 2016; 136:1471-1478. [DOI: 10.1016/j.jid.2016.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
|
43
|
Tengvall K, Kozyrev S, Kierczak M, Bergvall K, Farias FHG, Ardesjö-Lundgren B, Olsson M, Murén E, Hagman R, Leeb T, Pielberg G, Hedhammar Å, Andersson G, Lindblad-Toh K. Multiple regulatory variants located in cell type-specific enhancers within the PKP2 locus form major risk and protective haplotypes for canine atopic dermatitis in German shepherd dogs. BMC Genet 2016; 17:97. [PMID: 27357287 PMCID: PMC4928279 DOI: 10.1186/s12863-016-0404-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
Background Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease triggered by allergic reactions involving IgE antibodies directed towards environmental allergens. We previously identified a ~1.5 Mb locus on canine chromosome 27 associated with CAD in German shepherd dogs (GSDs). Fine-mapping indicated association closest to the PKP2 gene encoding plakophilin 2. Results Additional genotyping and association analyses in GSDs combined with control dogs from five breeds with low-risk for CAD revealed the top SNP 27:19,086,778 (p = 1.4 × 10−7) and a rare ~48 kb risk haplotype overlapping the PKP2 gene and shared only with other high-risk CAD breeds. We selected altogether nine SNPs (four top-associated in GSDs and five within the ~48 kb risk haplotype) that spanned ~280 kb forming one risk haplotype carried by 35 % of the GSD cases and 10 % of the GSD controls (OR = 5.1, p = 5.9 × 10−5), and another haplotype present in 85 % of the GSD cases and 98 % of the GSD controls and conferring a protective effect against CAD in GSDs (OR = 0.14, p = 0.0032). Eight of these SNPs were analyzed for transcriptional regulation using reporter assays where all tested regions exerted regulatory effects on transcription in epithelial and/or immune cell lines, and seven SNPs showed allelic differences. The DNA fragment with the top-associated SNP 27:19,086,778 displayed the highest activity in keratinocytes with 11-fold induction of transcription by the risk allele versus 8-fold by the control allele (pdifference = 0.003), and also mapped close (~3 kb) to an ENCODE skin-specific enhancer region. Conclusions Our experiments indicate that multiple CAD-associated genetic variants located in cell type-specific enhancers are involved in gene regulation in different cells and tissues. No single causative variant alone, but rather multiple variants combined in a risk haplotype likely contribute to an altered expression of the PKP2 gene, and possibly nearby genes, in immune and epithelial cells, and predispose GSDs to CAD. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0404-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sergey Kozyrev
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fabiana H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Brita Ardesjö-Lundgren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mia Olsson
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden
| | - Eva Murén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Gerli Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
44
|
Keil R, Rietscher K, Hatzfeld M. Antagonistic Regulation of Intercellular Cohesion by Plakophilins 1 and 3. J Invest Dermatol 2016; 136:2022-2029. [PMID: 27375112 DOI: 10.1016/j.jid.2016.05.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 05/29/2016] [Indexed: 11/18/2022]
Abstract
Desmosomes are cell-cell adhesive structures essential for tissue integrity of the epidermis and the heart. Their constituents belong to multigene families giving rise to desmosomes of variable composition. So far, the functional significance of context-dependent composition in desmosome formation, dynamics, or stability during epidermal differentiation is incompletely understood. In this comparative study, we have uncovered unique and partially antagonistic functions of plakophilins 1 and 3 that are both expressed in the murine epidermis. These plakophilins differ in their localization patterns and kinetics during de novo desmosome formation and are regulated by distinct mechanisms. Moreover, plakophilin 3-containing desmosomes are more dynamic than desmosomes that contain predominantly plakophilin 1. Further, we show that Ca(2+)-independence of desmosomes strictly depends on plakophilin 1, whereas elevated levels of plakophilin 3 prevent the formation of hyperadhesive desmosomes in a protein kinase C alpha-dependent manner, even in the presence of plakophilin 1. Our study demonstrates that the balance between plakophilins 1 and 3 determines the context-dependent properties of epidermal desmosomes. In this setting, plakophilin 1 provides stable intercellular cohesion that resists mechanical stress, whereas plakophilin 3 confers dynamics as required during tissue homeostasis and repair. Our data have implications for the role of plakophilins in carcinogenesis.
Collapse
Affiliation(s)
- René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Katrin Rietscher
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
45
|
Refaat MM, Tang P, Harfouch N, Wojciak J, Kwok PY, Scheinman M. Arrhythmogenic Right Ventricular Cardiomyopathy Caused by a Novel Frameshift Mutation. Card Electrophysiol Clin 2016; 8:217-21. [PMID: 26920198 DOI: 10.1016/j.ccep.2015.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy is a rare cardiomyopathy that might be asymptomatic or symptomatic, causing palpations or syncope, and might lead to sudden cardiac death. It is recommended that physical exertion be reduced. It is also recommended that those with syncope and ventricular tachycardia/ventricular fibrillation have an implantable cardioverter-defibrillator placed. β-Blockers, antiarrhythmic drugs, and radiofrequency ablation should be used to control the ventricular arrhythmia burden in arrhythmogenic right ventricular cardiomyopathy.
Collapse
Affiliation(s)
- Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, PO Box 11-0236, Riad el Solh, Beirut 1107.2020, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Cardiac Electrophysiology, Cardiology, Department of Internal Medicine, American University of Beirut Faculty of Medicine and Medical Center, 3 Dag Hammarskjold Plaza, 8th Floor, New York, NY 10017, USA.
| | - Paul Tang
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | | | - Julianne Wojciak
- Division of Cardiology, Department of Medicine, University of California San Francisco Medical Center, San Francisco, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Melvin Scheinman
- Division of Cardiology, Department of Medicine, University of California San Francisco Medical Center, San Francisco, CA, USA
| |
Collapse
|
46
|
|
47
|
Sommariva E, Brambilla S, Carbucicchio C, Gambini E, Meraviglia V, Dello Russo A, Farina FM, Casella M, Catto V, Pontone G, Chiesa M, Stadiotti I, Cogliati E, Paolin A, Ouali Alami N, Preziuso C, d'Amati G, Colombo GI, Rossini A, Capogrossi MC, Tondo C, Pompilio G. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. Eur Heart J 2015; 37:1835-46. [PMID: 26590176 PMCID: PMC4912024 DOI: 10.1093/eurheartj/ehv579] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023] Open
Abstract
AIM Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder mainly due to mutations in desmosomal genes, characterized by progressive fibro-adipose replacement of the myocardium, arrhythmias, and sudden death. It is still unclear which cell type is responsible for fibro-adipose substitution and which molecular mechanisms lead to this structural change. Cardiac mesenchymal stromal cells (C-MSC) are the most abundant cells in the heart, with propensity to differentiate into several cell types, including adipocytes, and their role in ACM is unknown. The aim of the present study was to investigate whether C-MSC contributed to excess adipocytes in patients with ACM. METHODS AND RESULTS We found that, in ACM patients' explanted heart sections, cells actively differentiating into adipocytes are of mesenchymal origin. Therefore, we isolated C-MSC from endomyocardial biopsies of ACM and from not affected by arrhythmogenic cardiomyopathy (NON-ACM) (control) patients. We found that both ACM and control C-MSC express desmosomal genes, with ACM C-MSC showing lower expression of plakophilin (PKP2) protein vs. CONTROLS Arrhythmogenic cardiomyopathy C-MSC cultured in adipogenic medium accumulated more lipid droplets than controls. Accordingly, the expression of adipogenic genes was higher in ACM vs. NON-ACM C-MSC, while expression of cell cycle and anti-adipogenic genes was lower. Both lipid accumulation and transcription reprogramming were dependent on PKP2 deficiency. CONCLUSIONS Cardiac mesenchymal stromal cells contribute to the adipogenic substitution observed in ACM patients' hearts. Moreover, C-MSC from ACM patients recapitulate the features of ACM adipogenesis, representing a novel, scalable, patient-specific in vitro tool for future mechanistic studies.
Collapse
Affiliation(s)
- E Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - S Brambilla
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - C Carbucicchio
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - E Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - V Meraviglia
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - A Dello Russo
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - F M Farina
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - M Casella
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - V Catto
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - G Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - M Chiesa
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy Electrical Computer and Biomedical Engineering, Università degli Studi di Pavia, Pavia, Italy
| | - I Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - E Cogliati
- Tissue Bank of Veneto Region, Ca' Foncello Hospital, Treviso, Italy
| | - A Paolin
- Tissue Bank of Veneto Region, Ca' Foncello Hospital, Treviso, Italy
| | - N Ouali Alami
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy
| | - C Preziuso
- Department of Radiological, Oncological and Pathologic Sciences, La Sapienza University, Rome, Italy
| | - G d'Amati
- Department of Radiological, Oncological and Pathologic Sciences, La Sapienza University, Rome, Italy
| | - G I Colombo
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - A Rossini
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - M C Capogrossi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - C Tondo
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - G Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, Milan 20138, Italy Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
48
|
Abstract
β-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to β-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.
Collapse
|
49
|
Zhou L, Pradhan-Sundd T, Poddar M, Singh S, Kikuchi A, Stolz DB, Shou W, Li Z, Nejak-Bowen KN, Monga SP. Mice with Hepatic Loss of the Desmosomal Protein γ-Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3274-89. [PMID: 26485505 DOI: 10.1016/j.ajpath.2015.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
γ-Catenin, an important component of desmosomes, may also participate in Wnt signaling. Herein, we dissect the role of γ-catenin in liver by generating conditional γ-catenin knockout (KO) mice and assessing their phenotype after bile duct ligation (BDL) and diethylnitrosamine-induced chemical carcinogenesis. At baseline, KO and wild-type littermates showed comparable serum biochemistry, liver histology, and global gene expression. β-Catenin protein was modestly increased without any change in Wnt signaling. Desmosomes were maintained in KO, and despite no noticeable changes in gene expression, differential detergent fractionation revealed quantitative and qualitative changes in desmosomal cadherins, plaque proteins, and β-catenin. Enhanced association of β-catenin to desmoglein-2 and plakophilin-3 was observed in KO. When subjected to BDL, wild-type littermates showed specific changes in desmosomal protein expression. In KO, BDL deteriorated baseline compensatory changes, which manifested as enhanced injury and fibrosis. KO also showed enhanced tumorigenesis to diethylnitrosamine treatment because of Wnt activation, as also verified in vitro. γ-Catenin overexpression in hepatoma cells increased its binding to T-cell factor 4 at the expense of β-catenin-T-cell factor 4 association, induced unique target genes, affected Wnt targets, and reduced cell proliferation and viability. Thus, γ-catenin loss in liver is basally well tolerated. However, after insults like BDL, these compensations at desmosomes fail, and KO show enhanced injury. Also, γ-catenin negatively regulates tumor growth by affecting Wnt signaling.
Collapse
Affiliation(s)
- Lili Zhou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China; Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | | | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Kikuchi
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Weinian Shou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
50
|
Carmona-Mora P, Widagdo J, Tomasetig F, Canales CP, Cha Y, Lee W, Alshawaf A, Dottori M, Whan RM, Hardeman EC, Palmer SJ. The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation. Hum Genet 2015; 134:1099-115. [PMID: 26275350 DOI: 10.1007/s00439-015-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Jocelyn Widagdo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Florence Tomasetig
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Yeojoon Cha
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Wei Lee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Abdullah Alshawaf
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|