1
|
Farag A, Koung Ngeun S, Kaneda M, Aboubakr M, Tanaka R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024; 12:1923. [PMID: 39200387 PMCID: PMC11352160 DOI: 10.3390/biomedicines12081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit multipotency, self-renewal, and immune-modulatory properties, making them promising in regenerative medicine, particularly in cardiovascular treatments. However, optimizing the MSC source and induction method of cardiac differentiation is challenging. This study compares the cardiomyogenic potential of bone marrow (BM)-MSCs and adipose-derived (AD)-MSCs using 5-Azacytidine (5-Aza) alone or combined with low doses of Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor (IGF). BM-MSCs and AD-MSCs were differentiated using two protocols: 10 μmol 5-Aza alone and 10 μmol 5-Aza with 1 ng/mL FGF and 10 ng/mL IGF. Morphological, transcriptional, and translational analyses, along with cell viability assessments, were performed. Both the MSC types exhibited similar morphological changes; however, AD-MSCs achieved 70-80% confluence faster than BM-MSCs. Surface marker profiling confirmed CD29 and CD90 positivity and CD45 negativity. The differentiation protocols led to cell flattening and myotube formation, with earlier differentiation in AD-MSCs. The combined protocol reduced cell mortality in BM-MSCs and enhanced the expression of cardiac markers (MEF2c, Troponin I, GSK-3β), particularly in BM-MSCs. Immunofluorescence confirmed cardiac-specific protein expression in all the treated groups. Both MSC types exhibited the expression of cardiac-specific markers indicative of cardiomyogenic differentiation, with the combined treatment showing superior efficiency for BM-MSCs.
Collapse
Affiliation(s)
- Ahmed Farag
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Ryou Tanaka
- Veterinary Teaching Hospital, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
ALZGHOUL YARA, ISSA HALAJBANI, SANAJLEH AHMADK, ALABDUH TAQWA, RABABAH FATIMAH, AL-SHDAIFAT MAHA, ABU-EL-RUB EJLAL, ALMAHASNEH FATIMAH, KHASAWNEH RAMADAR, ALZU’BI AYMAN, MAGABLEH HUTHAIFA. Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases. BIOCELL 2024; 48:559-569. [DOI: 10.32604/biocell.2024.048056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/16/2024] [Indexed: 09/03/2024]
|
3
|
Umbarkar P, Tousif S, Singh AP, Anderson JC, Zhang Q, Tallquist MD, Woodgett J, Lal H. Fibroblast GSK-3α Promotes Fibrosis via RAF-MEK-ERK Pathway in the Injured Heart. Circ Res 2022; 131:620-636. [PMID: 36052698 PMCID: PMC9481711 DOI: 10.1161/circresaha.122.321431] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Heart failure is the leading cause of mortality, morbidity, and health care expenditures worldwide. Numerous studies have implicated GSK-3 (glycogen synthase kinase-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms seem to play overlapping, unique and even opposing functions in the heart. Previously, we have shown that of the 2 isoforms of GSK-3, cardiac fibroblast GSK-3β acts as a negative regulator of myocardial fibrosis in the ischemic heart. However, the role of cardiac fibroblast-GSK-3α in the pathogenesis of cardiac diseases is completely unknown. METHODS To define the role of cardiac fibroblast-GSK-3α in myocardial fibrosis and heart failure, GSK-3α was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or Postn-promoter-driven Cre recombinase. Control and GSK-3α KO mice were subjected to cardiac injury and heart parameters were evaluated. The fibroblast kinome mapping was carried out to delineate molecular mechanism followed by in vivo and in vitro analysis. RESULTS Fibroblast-specific GSK-3α deletion restricted fibrotic remodeling and preserved function of the injured heart. We observed reductions in cell migration, collagen gel contraction, α-SMA protein levels, and expression of ECM genes in TGFβ1-treated KO fibroblasts, indicating that GSK-3α is required for myofibroblast transformation. Surprisingly, GSK-3α deletion did not affect SMAD3 activation, suggesting the profibrotic role of GSK-3α is SMAD3 independent. The molecular studies confirmed decreased ERK signaling in GSK-3α-KO CFs. Conversely, adenovirus-mediated expression of a constitutively active form of GSK-3α (Ad-GSK-3αS21A) in fibroblasts increased ERK activation and expression of fibrogenic proteins. Importantly, this effect was abolished by ERK inhibition. CONCLUSIONS GSK-3α-mediated MEK-ERK activation is a critical profibrotic signaling circuit in the injured heart, which operates independently of the canonical TGF-β1-SMAD3 pathway. Therefore, strategies to inhibit the GSK-3α-MEK-ERK signaling circuit could prevent adverse fibrosis in diseased hearts.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL 35294-1913, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL 35294-1913, USA
| | - Anand P. Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL 35294-1913, USA
| | - Joshua C. Anderson
- Department of Radiation Oncology, The University of Alabama at Birmingham, AL 35294-1913, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL 35294-1913, USA
| | | | - James Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, AL 35294-1913, USA
| |
Collapse
|
4
|
Mirza A, Khan I, Qazi REM, Salim A, Husain M, Herzig JW. Role of Wnt/β-catenin pathway in cardiac lineage commitment of human umbilical cord mesenchymal stem cells by zebularine and 2'-deoxycytidine. Tissue Cell 2022; 77:101850. [PMID: 35679684 DOI: 10.1016/j.tice.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
Wnt/β-catenin, a highly conserved signaling pathway, is involved in determining cell fate. During heart development, Wnt signaling controls specification, proliferation and differentiation of cardiac cells. This study is aimed to investigate the role of Wnt/β-catenin signaling in cardiac lineage commitment of human umbilical cord mesenchymal stem cells (hUCMSCs) after treatment with demethylating agents, zebularine and 2'-deoxycytidine (2-DC). hUCMSCs were treated with 20 µM zebularine or 2-DC for 24 h and cultured for 14 days. Control and treated MSCs were analyzed for cardiac lineage commitment at gene and protein levels. Significant upregulation of early and late cardiac markers, GATA4, Nkx2.5, cardiac myosin heavy chain (cMHC), α-actinin, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) was observed in treated MSCs as compared to the untreated control. We also analyzed gene expression of key Wnt/β-catenin signaling molecules in cultures of treated and untreated hUCMSCs at 24 h, and days 3, 7 and 14. The pattern of mRNA gene expression showed that Wnt/β-catenin signaling is regulated during cardiac lineage commitment of hUCMSCs in a time-dependent manner, with the pathway being activated early but inhibited later in cardiac development. Findings of this study can lead us to identify more specific and effective strategies for cardiac lineage commitment.
Collapse
Affiliation(s)
- Amber Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | | | | |
Collapse
|
5
|
Gupte M, Tousif S, Lemon JJ, Toro Cora A, Umbarkar P, Lal H. Isoform-Specific Role of GSK-3 in High Fat Diet Induced Obesity and Glucose Intolerance. Cells 2022; 11:cells11030559. [PMID: 35159367 PMCID: PMC8834358 DOI: 10.3390/cells11030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity-associated metabolic disorders are rising to pandemic proportions; hence, there is an urgent need to identify underlying molecular mechanisms. Glycogen synthase kinase-3 (GSK-3) signaling is highly implicated in metabolic diseases. Furthermore, GSK-3 expression and activity are increased in Type 2 diabetes patients. However, the isoform-specific role of GSK-3 in obesity and glucose intolerance is unclear. Pharmacological GSK-3 inhibitors are not isoform-specific, and tissue-specific genetic models are of limited value to predict the clinical outcome of systemic inhibiion. To overcome these limitations, we created novel mouse models of ROSA26CreERT2-driven, tamoxifen-inducible conditional deletion of GSK-3 that allowed us to delete the gene globally in an isoform-specific and temporal manner. Isoform-specific GSK-3 KOs and littermate controls were subjected to a 16-week high-fat diet (HFD) protocol. On an HFD, GSK-3α KO mice had a significantly lower body weight and modest improvement in glucose tolerance compared to their littermate controls. In contrast, GSK-3β-deletion-mediated improved glucose tolerance was evident much earlier in the timeline and extended up to 12 weeks post-HFD. However, this protective effect weakened after chronic HFD (16 weeks) when GSK-3β KO mice had a significantly higher body weight compared to controls. Importantly, GSK-3β KO mice on a control diet maintained significant improvement in glucose tolerance even after 16 weeks. In summary, our novel mouse models allowed us to delineate the isoform-specific role of GSK-3 in obesity and glucose tolerance. From a translational perspective, our findings underscore the importance of maintaining a healthy weight in patients receiving lithium therapy, which is thought to work by GSK-3 inhibition mechanisms.
Collapse
Affiliation(s)
- Manisha Gupte
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA;
- Correspondence: (M.G.); (H.L.)
| | - Sultan Tousif
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Jacob J. Lemon
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA;
| | - Angelica Toro Cora
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Prachi Umbarkar
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Hind Lal
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
- Correspondence: (M.G.); (H.L.)
| |
Collapse
|
6
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Yu CC, He C, Du YJ, Gao S, Lin YF, Wang SQ, Wang L, Wang J, Wang XS, Jiang T, Kong LH. Preventive electroacupuncture reduces cognitive deficits in a rat model of D-galactose-induced aging. Neural Regen Res 2021; 16:916-923. [PMID: 33229729 PMCID: PMC8178792 DOI: 10.4103/1673-5374.297090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acupuncture can reduce cognitive deficits in Alzheimer’s disease. However, whether electroacupuncture can prevent or alleviate the cognitive deficits in animal models of aging remains poorly understood. Studies have shown that disordered epigenetic modifications play a critical role in age-related cognitive decline. Therefore, we hypothesized that preventive electroacupuncture might improve cognitive functions during aging by regulating epigenetic modifications. A rat model of aging was produced by intraperitoneal injection of 120 mg/kg D-galactose for 8 weeks. Baihui and Shenshu acupoints were stimulated by electroacupuncture for 8 weeks from the first day of D-galactose administration. Preventive electroacupuncture alleviated memory impairment, decreased tau hyperphosphorylation, and reduced glycogen synthase kinase-3β protein and mRNA expression levels in the brainstem dorsal raphe nucleus, where intracellular neurofibrillary tangle lesions first occur. In addition, the DNA methylation level in the promoter region of the glycogen synthase kinase-3β gene was increased. The effects of preventive electroacupuncture were stronger than those of preventive acupuncture. Intraperitoneal injection of 0.4 mg/kg 5-aza-2′-deoxycytidine, an inhibitor of DNA methyltransferase that blocks epigenetic modifications, antagonized the effects of preventive electroacupuncture. Our results suggest that preventive electroacupuncture treatment alleviates cognitive impairment in aging rats probably by affecting the epigenetic modification of the glycogen synthase kinase-3β gene in the dorsal raphe nucleus. This study was approved by the Animal Ethics Committee of Hubei University of Chinese Medicine, China (approval No. HUCMS201712001) on November 28, 2017.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital; The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Chuan He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Shan Gao
- Department of Acupuncture & Moxibustion, Wuhan Hospital of Integrated Chinese & Western Medicine, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital; The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital; The 4th Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Jia Wang
- Department of Acupuncture & Moxibustion, Wuhan Hospital of Integrated Chinese & Western Medicine, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Xue-Song Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Tao Jiang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Santos J, Dolai S, O’Rourke MB, Liu F, Padula MP, Molloy MP, Milthorpe BK. Quantitative Proteomic Profiling of Small Molecule Treated Mesenchymal Stem Cells Using Chemical Probes. Int J Mol Sci 2020; 22:ijms22010160. [PMID: 33375241 PMCID: PMC7795898 DOI: 10.3390/ijms22010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/04/2022] Open
Abstract
The differentiation of human adipose derived stem cells toward a neural phenotype by small molecules has been a vogue topic in the last decade. The characterization of the produced cells has been explored on a broad scale, examining morphological and specific surface protein markers; however, the lack of insight into the expression of functional proteins and their interactive partners is required to further understand the extent of the process. The phenotypic characterization by proteomic profiling allows for a substantial in-depth analysis of the molecular machinery induced and directing the cellular changes through the process. Herein we describe the temporal analysis and quantitative profiling of neural differentiating human adipose-derived stem cells after sub-proteome enrichment using a bisindolylmaleimide chemical probe. The results show that proteins enriched by the Bis-probe were identified reproducibly with 133, 118, 126 and 89 proteins identified at timepoints 0, 1, 6 and 12, respectively. Each temporal timepoint presented several shared and unique proteins relative to neural differentiation and their interactivity. The major protein classes enriched and quantified were enzymes, structural and ribosomal proteins that are integral to differentiation pathways. There were 42 uniquely identified enzymes identified in the cells, many acting as hubs in the networks with several interactions across the network modulating key biological pathways. From the cohort, it was found by gene ontology analysis that 18 enzymes had direct involvement with neurogenic differentiation.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- Correspondence:
| | - Sibasish Dolai
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
| | - Matthew B. O’Rourke
- Northern Clinical School, Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, The University of Sydney, Lvl 8, Kolling Instiute, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - Fei Liu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- Proteomics Core Facility, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
- Northern Clinical School, Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, The University of Sydney, Lvl 8, Kolling Instiute, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| |
Collapse
|
9
|
Ishikane S, Ikushima E, Igawa K, Tomooka K, Takahashi-Yanaga F. Differentiation-inducing factor-1 potentiates adipogenic differentiation and attenuates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118909. [PMID: 33189784 DOI: 10.1016/j.bbamcr.2020.118909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are an attractive cell source for tissue regeneration and repair. However, their low differentiation efficacy currently impedes the development of MSC therapy. Therefore, in this study, we investigated the effects of differentiation-inducing factor-1 (DIF-1) on the differentiation efficacy of bone marrow-derived MSCs (BM-MSCs) into adipogenic or osteogenic lineages. BM-MSCs, which were obtained from Sprague-Dawley rats, were positive for the MSC markers (CD29, CD73, and CD90). DIF-1 alone neither affected cell surface antigen expression nor induced adipogenic or osteogenic differentiation. However, DIF-1 significantly enhanced the effects of adipogenic differentiation stimuli, which were evaluated as the number of oil red-O positive cells and the expression of adipocyte differentiation markers (peroxisome proliferator-activated receptor gamma, adipocyte fatty acid-binding protein, and adiponectin). In contrast, DIF-1 significantly attenuated the effects of osteogenic differentiation stimuli, which were evaluated as alizarin red-S positive calcium deposition, and the expression of osteoblast differentiation markers alkaline phosphatase, runt-related transcription factor 2, and osteopontin. We further investigated the mechanism by which DIF-1 affects MSC differentiation efficacy and found that glycogen synthase kinase-3 was the main factor mediating the action of DIF-1 on the adipogenic differentiation of BM-MSCs, whereas it was only partially involved in osteogenic differentiation. These results suggest that DIF-1 supports MSC differentiation toward the desired cell fate by enhancing the differentiation efficacy.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu, Fukuoka 807-8555, Japan.
| | - Eigo Ikushima
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu, Fukuoka 807-8555, Japan
| | - Kazunobu Igawa
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Chikushi Campus 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Chikushi Campus 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu, Fukuoka 807-8555, Japan
| |
Collapse
|
10
|
Augello G, Emma MR, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells 2020; 9:cells9061427. [PMID: 32526891 PMCID: PMC7348946 DOI: 10.3390/cells9061427] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified because of its key role in the regulation of glycogen synthesis. However, it is now well-established that GSK-3 performs critical functions in many cellular processes, such as apoptosis, tumor growth, cell invasion, and metastasis. Aberrant GSK-3 activity has been associated with many human diseases, including cancer, highlighting its potential therapeutic relevance as a target for anticancer therapy. Recently, newly emerging data have demonstrated the pivotal role of GSK-3 in the anticancer immune response. In the last few years, many GSK-3 inhibitors have been developed, and some are currently being tested in clinical trials. This review will discuss preclinical and initial clinical results with GSK-3β inhibitors, highlighting the potential importance of this target in cancer immunotherapy. As described in this review, GSK-3 inhibitors have been shown to have antitumor activity in a wide range of human cancer cells, and they may also contribute to promoting a more efficacious immune response against tumor target cells, thus showing a double therapeutic advantage.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Correspondence: ; Tel.: +39-091-6809-534
| |
Collapse
|
11
|
Gupte M, Umbarkar P, Singh AP, Zhang Q, Tousif S, Lal H. Deletion of Cardiomyocyte Glycogen Synthase Kinase-3 Beta (GSK-3β) Improves Systemic Glucose Tolerance with Maintained Heart Function in Established Obesity. Cells 2020; 9:cells9051120. [PMID: 32365965 PMCID: PMC7291092 DOI: 10.3390/cells9051120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/-) and controls (GSK-3βfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.
Collapse
Affiliation(s)
- Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
- Correspondence: ; Tel.: (205)-996-4219; Fax: (205)-975-5104
| |
Collapse
|
12
|
Ahmad F, Woodgett JR. Emerging roles of GSK-3α in pathophysiology: Emphasis on cardio-metabolic disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118616. [PMID: 31785335 DOI: 10.1016/j.bbamcr.2019.118616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a widely expressed serine/threonine kinase regulates a variety of cellular processes including proliferation, differentiation and death. Mammals harbor two structurally similar isoforms GSK-3α and β that have overlapping as well as unique functions. Of the two, GSK-3β has been studied (and reviewed) in far greater detail with analysis of GSK-3α often as an afterthought. It is now evident that systemic, chronic inhibition of either GSK-3β or both GSK-3α/β is not clinically feasible and if achieved would likely lead to adverse clinical conditions. Emerging evidence suggests important and specific roles for GSK-3α in fatty acid accumulation, insulin resistance, amyloid-β-protein precursor metabolism, atherosclerosis, cardiomyopathy, fibrosis, aging, fertility, and in a variety of cancers. Selective targeting of GSK-3α may present a novel therapeutic opportunity to alleviate a number of pathological conditions. In this review, we assess the evidence for roles of GSK-3α in a variety of pathophysiological settings.
Collapse
Affiliation(s)
- Firdos Ahmad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
13
|
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, Mollaei HR. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions. Cell Tissue Res 2019; 378:127-141. [PMID: 31049685 DOI: 10.1007/s00441-019-03027-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
Differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes is a complex phenomenon, and attempts to find an effective inducing agent are still ongoing. We studied the effect of fibrin scaffold and sodium valproate (VPA, as a histone deacetylase inhibitor) on the differentiation of human adipose-derived stem cells (hADSCs) into cardiomyocyte-like cells. The cells were cultured in culture flask (2D) and in fibrin scaffold (3D), fabricated of human plasma fibrinogen, with and without VPA (1 mM). QRT-PCR, Western blot, and immunochemistry assays were used to evaluate the expression of cardiac markers at gene and protein levels. High levels of CD44, CD90, CD73, and CD105 were expressed on the surface of hADSCs. Treated encapsulated hADSCs (3D) presented significantly higher mRNA expression of HAND1 (1.54-fold), HAND2 (1.59-fold), cTnI (1.76-fold), MLC2v (1.4-fold), Cx43 (1.38-fold), βMHC (1.34-fold), GATA4 (1.48-fold), and NKX2.5 (1.66-fold) in comparison to 2D conditions at four weeks after induction. The protein expressions of NKX2.5 (0.78 vs 0.65), cTnI (1.04 vs 0.81), and Cx43 (1.11 vs 1.08) were observed in the differentiated cells both in 3D and 2D groups, while control cells were absolutely negative for these proteins. The frequency of cTnI and Cx43-positive cells was significantly higher in 3D (24.2 ± 15 and 12 ± 3%) than 2D conditions (19.8 ± 3 and 10 ± 2%). Overall, the results showed that VPA can increase cardiomyogenesis in hADSCs and that fibrin scaffold enhances the inductive effect of VPA. Results of this study may improve cell-based protocols for implementation of more successful cardiac repair strategies.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Mollaei
- Department of Medical Microbiology, and Physiology Research Center, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Wnt-GSK3 β/ β-Catenin Regulates the Differentiation of Dental Pulp Stem Cells into Bladder Smooth Muscle Cells. Stem Cells Int 2019; 2019:8907570. [PMID: 30809265 PMCID: PMC6369468 DOI: 10.1155/2019/8907570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
Smooth muscle cell- (SMC-) based tissue engineering provides a promising therapeutic strategy for SMC-related disorders. It has been demonstrated that human dental pulp stem cells (DPSCs) possess the potential to differentiate into mature bladder SMCs by induction with condition medium (CM) from bladder SMC culture, in combination with the transforming growth factor-β1 (TGF-β1). However, the molecular mechanism of SMC differentiation from DPSCs has not been fully uncovered. The canonical Wnt signaling (also known as Wnt/β-catenin) pathway plays an essential role in stem cell fate decision. The aim of this study is to explore the regulation via GSK3β and associated downstream effectors for SMC differentiation from DPSCs. We characterized one of our DPSC clones with the best proliferation and differentiation abilities. This stem cell clone has shown the capacity to generate a smooth muscle layer-like phenotype after an extended differentiation duration using the SMC induction protocol we established before. We further found that Wnt-GSK3β/β-catenin signaling is involved in the process of SMC differentiation from DPSCs, as well as a serial of growth factors, including TGF-β1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), platelet-derived growth factor-homodimer polypeptide of B chain (BB) (PDGF-BB), and vascular endothelial growth factor (VEGF). Pharmacological inhibition on the canonical Wnt-GSK3β/β-catenin pathway significantly downregulated GSK3β phosphorylation and β-catenin activation, which in consequence reduced the augmented expression of the growth factors (including TGF-β1, HGF, PDGF-BB, and VEGF) as well as SMC markers (especially myosin) at a late stage of SMC differentiation. These results suggest that the canonical Wnt-GSK3β/β-catenin pathway contributes to DPSC differentiation into mature SMCs through the coordination of different growth factors.
Collapse
|
15
|
Jiang C, Gong F. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1). Cell Biol Int 2018; 42:913-922. [PMID: 28656724 DOI: 10.1002/cbin.10813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 06/24/2017] [Indexed: 11/08/2022]
Abstract
MicroRNAs have potential to modulate the differentiation of stem cells. In previous study, we found that miR-148a was up-regulated in myocardial differentiation of human bone mesenchymal stromal cells (hBMSCs) induced by 5'-azacytidine. However, the role of miR-148a in regulating this process still remains unclear. In this study, we investigated the function and molecular mechanism of miR-148a in myocardial differentiation of hBMSCs. We found that miR-148a was significantly increased while DNA methyltransferase 1 (DNMT1) was significantly decreased in myocardial differentiation of hBMSCs. Then, the dual luciferase reporter assays method indicated that DNMT1 was the direct target of miR-148a. In addition, we showed that up-regulation of miR-148a could enhance myocardial differentiation of hBMSCs, while down-regulation of miR-148a could inhibit myocardial differentiation process. Moreover, knockdown of DNMT1 could block the role of miR-148a in promoting myocardial differentiation of hBMSCs. Finally, MiR-148a acted on methylation level of GATA-4 and knockdown of DNMT1 could block this function. Therefore, our results indicate that miR-148a plays a vital role in regulating myocardial differentiation of hBMSCs by targeting DNMT1.
Collapse
Affiliation(s)
- Changke Jiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China
| |
Collapse
|
16
|
Joshi J, Mahajan G, Kothapalli CR. Three-dimensional collagenous niche and azacytidine selectively promote time-dependent cardiomyogenesis from human bone marrow-derived MSC spheroids. Biotechnol Bioeng 2018; 115:2013-2026. [PMID: 29665002 DOI: 10.1002/bit.26714] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 μM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 μM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/β-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 μM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue.
Collapse
Affiliation(s)
- Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | | |
Collapse
|
17
|
Li K, Song J, Zhao Q, Wang B, Zhang Y, Wang X, Tang T, Li S. Effective component of Salvia miltiorrhiza in promoting cardiomyogenic differentiation of human placenta‑derived mesenchymal stem cells. Int J Mol Med 2017; 41:962-968. [PMID: 29207039 DOI: 10.3892/ijmm.2017.3293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Our previous study indicated that Salvia miltiorrhiza (SM) induced human placenta‑derived mesenchymal stem cells (hPDMSCs) to differentiate into cardiomyocytes, however, the effective component of SM in promoting cardiomyogenic differentiation remained to be elucidated. In the present study, the most commonly examined components of SM, including danshensu, salvianolic acid B, protocatechuic aldehyde, tanshinone I (TS I), TS IIA and cryptotanshinone, were used to determine the effective components of SM in promoting cardiomyogenic differentiation. The above components of SM slowed cell growth rate and altered cell morphology with a spindle or irregular shape to different degrees. The cells treated with the above components of SM showed increasing of cardiac protein expression to differing degrees, including GATA‑binding protein 4, atrial natriuretic factor, α‑sarcomeric actin and cardiac troponin‑I. Among the components of SM, TS IIA induced the most marked effects. In addition, the above components of SM increased the expression of phosphorylated glycogen synthase kinase‑3β, but decreased the expression of β‑catenin to different degrees, with TS IIA also having the most marked effects. In conclusion, the results of the present study suggested that TS IIA was the most effective active component of SM in inducing hPDMSCs to differentiate into cardiomyocytes, and that Wnt/β‑catenin signaling was important in the process of TS IIA promoting cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Kun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jieqiong Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Qian Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yunli Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xuezhe Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tiantian Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Shizheng Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
18
|
Ren M, Wang T, Huang L, Ye X, Xv Z, Ouyang C, Han Z. Role of VR1 in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes associated with Wnt/β-catenin signaling. Cardiovasc Ther 2017; 34:482-488. [PMID: 27662603 DOI: 10.1111/1755-5922.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM Accumulating evidence showed that transient receptor potential channels play an important role in the regulation of cardiomyocyte differentiation. The vanilloid receptor 1 (VR1) is a member of the transient receptor channel super family and is expressed in cardiomyocytes. However, its function in cardiomyocytes remains unclear. METHODS Herein, the aim of this study was to investigate the functional role of VR1 in the cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and to elucidate the potential molecular mechanisms. RESULTS Immunofluorescence assay showed that cardiomyocyte marker cardiac troponin T (cTnT) was found significantly elevated in differentiated BMSCs induced by 5-azacytidine compared with control. Similarly, VR1 expression was also found significantly increased in induced BMSCs differentiation. Additionally, we examined the role of VR1 in BMSC differentiation processes through VR1 siRNAs. We found that the expression of cardiomyocyte marker genes, such as alpha-myosin heavy chain (α-MHC), α-cardiac actin, and Nkx2.5 (cardiac-specific transcription factor), was significantly decreased when VR1 was silenced. Furthermore, we found that inhibition of VR1 expression is associated with downregulation of Wnt/β-catenin signaling. CONCLUSIONS To summarize, our data demonstrate important role of VR1 in BMSCs differentiation into cardiomyocytes in conjunction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhifeng Xv
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow‑derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep 2016; 14:5065-5071. [PMID: 27779661 PMCID: PMC5355702 DOI: 10.3892/mmr.2016.5862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Notch signaling is involved in the early process of differentiation to determine the fate of stem cells. However, the precise role of Notch in human bone marrow-derived mesenchymal stem cells (hBMSCs) remains unclear. The present study aimed to investigate the involvement of Notch signalling during the course of hBMSC differentiation into cardiomyocytes using hBMSCs, with multilineage differentiation ability, isolated and purified from human bone marrow. Flow cytometric analysis revealed that CD29, CD44 and CD90 were highly expressed on the surface of cells in their fifth passage, whereas detection of CD34, CD45, CD54 and HLA-DR was negative. Visualization of morphological changes, western blotting, immunocytochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that hBMSCs differentiate into cardiomyocytes through treatment with 5-azacytidine (5-aza). Transmission electron microscopy revealed ultramicroscopic details of differentiated hBMSCs. Western blotting and immunocytochemistry demonstrated increased protein expression levels of α-actin and cardiac troponin T expression, and RT-qPCR revealed increased mRNA expression of Notch1 early in the process of differentiation (days 1, 4 and 7), and increased mRNA expression levels of the transcription factors GATA binding protein-4 and NK2 homeobox 5 at day 28 day. In conclusion, differentiation of hBMSCs into cardiomyocytes was induced in vitro by 5-aza, and was associated with upregulation of Notch1, GATA binding protein-4 and Nkx2.5 expression. Overexpression of the Notch1 signaling pathway may represent a potential mechanism underlying the differentiation of hBMSCs.
Collapse
Affiliation(s)
- Zipu Yu
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yu Zou
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jingya Fan
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchen Li
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liang Ma
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
20
|
Chen Y, Wang C, Huang Q, Wu D, Cao J, Xu X, Yang C, Li X. Caveolin-1 Plays an Important Role in the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Cardiomyocytes. Cardiology 2016; 136:40-48. [PMID: 27554796 DOI: 10.1159/000446869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/15/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Accumulating evidence has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) may transdifferentiate into cardiomyocytes, making BMSCs a promising source of cardiomyocytes for transplantation. However, little is known about the molecular mechanisms underlying myogenic conversion of BMSCs. METHODS This study was designed to investigate the functional role of caveolin-1 in the cardiomyocyte differentiation of BMSCs and to explore the potential underlying molecular mechanisms. RESULTS BMSC differentiation was induced by treatment with 10 μM 5-azacytidine, and immunofluorescence assay showed that the expression of cardiomyocyte marker cardiac troponin T (cTnT) was significantly increased compared with a control group. Meanwhile, an increased caveolin-1 expression was found during the 5-azacytidine-induced BMSC differentiation. Additionally, the role of caveolin-1 in the differentiation process was then studied by using caveolin-1 siRNAs. We found that silencing caveolin-1 during induction remarkably enhanced the expression of cardiomyocyte marker genes, including cTnT, Nkx2.5 (cardiac-specific transcription factor), α-cardiac actin and α-myosin heavy chain (α-MHC). Moreover, we observed that downregulation of caveolin-1 was accompanied by inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. CONCLUSIONS Taken together, these findings demonstrate that caveolin-1 plays an important role in the differentiation of BMSCs into cardiomyocytes in conjunction with the STAT3 pathway.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circ Res 2016; 118:1208-22. [PMID: 26976650 DOI: 10.1161/circresaha.116.308544] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. METHODS AND RESULTS We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jibin Zhou
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Shan Parikh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Nichole E Hoffman
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Sudarsan Rajan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Vipin K Verma
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Jianliang Song
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Ancai Yuan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Santhanam Shanmughapriya
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Yuanjun Guo
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Erhe Gao
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Walter Koch
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - James R Woodgett
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Muniswamy Madesh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Raj Kishore
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Hind Lal
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| | - Thomas Force
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| |
Collapse
|
22
|
Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H. High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3β. J Bone Miner Metab 2016; 34:140-50. [PMID: 25840567 DOI: 10.1007/s00774-015-0662-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 02/01/2015] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus involves metabolic changes that can impair bone repair. Bone mesenchymal stem cells (BMSCs) play an important role in bone regeneration. However, the bone regeneration ability of BMSCs is inhibited in high glucose microenvironments. It can be speculated that this effect is due to changes in BMSCs' proliferation and migration ability, because the recruitment of factors with an adequate number of MSCs and the microenvironment around the site of bone injury are required for effective bone repair. Recent genetic evidence has shown that the Cyclin D1 and the CXC receptor 4 (CXCR-4) play important roles in the proliferation and migration of BMSCs. In this study we determined the specific role of glycogen synthase kinase-3β (GSK3β) in the proliferation and migration of BMSCs in high glucose microenvironments. The proliferation and migration ability of BMSCs were suppressed under high glucose conditions. We showed that high glucose activates GSK3β but suppresses CXCR-4, β-catenin, LEF-1, and cyclin D1. Inhibition of GSK3β by LiCl led to increased levels of β-catenin, LEF-1, cyclin D1, and CXCR-4 expression. Our data indicate that GSK3β plays an important role in regulating the proliferation and migration of BMSCs by inhibiting cyclin D1 and CXCR-4 under high glucose conditions.
Collapse
Affiliation(s)
- Bo Zhang
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Na Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Haigang Shi
- Technical Institute of Physics and Chemistry of CAS, Beijing, China
| | - Hao Wu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Yuxuan Gao
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Huixia He
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Bin Gu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| | - Hongchen Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| |
Collapse
|
23
|
Zhou YX, Shi Z, Singh P, Yin H, Yu YN, Li L, Walsh MP, Gui Y, Zheng XL. Potential Role of Glycogen Synthase Kinase-3β in Regulation of Myocardin Activity in Human Vascular Smooth Muscle Cells. J Cell Physiol 2016; 231:393-402. [PMID: 26129946 DOI: 10.1002/jcp.25084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/26/2015] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK)-3β, a serine/threonine kinase with an inhibitory role in glycogen synthesis in hepatocytes and skeletal muscle, is also expressed in cardiac and smooth muscles. Inhibition of GSK-3β results in cardiac hypertrophy through reducing phosphorylation and increasing transcriptional activity of myocardin, a transcriptional co-activator for serum response factor. Myocardin plays critical roles in differentiation of smooth muscle cells (SMCs). This study, therefore, aimed to examine whether and how inhibition of GSK-3β regulates myocardin activity in human vascular SMCs. Treatment of SMCs with the GSK-3β inhibitors AR-A014418 and TWS 119 significantly reduced endogenous myocardin activity, as indicated by lower expression of myocardin target genes (and gene products), CNN1 (calponin), TAGLN1 (SM22), and ACTA2 (SM α-actin). In human SMCs overexpressing myocardin through the T-REx system, treatment with either GSK-3β inhibitor also inhibited the expression of CNN1, TAGLN1, and ACTA2. These effects of GSK-3β inhibitors were mimicked by transfection with GSK-3β siRNA. Notably, both AR-A014418 and TWS 119 decreased the serine/threonine phosphorylation of myocardin. The chromatin immunoprecipitation assay showed that AR-A014418 treatment reduced myocardin occupancy of the promoter of the myocardin target gene ACTA2. Overexpression of a dominant-negative GSK-3β mutant in myocardin-overexpressing SMCs reduced the expression of calponin, SM22, and SM α-actin. As expected, overexpression of constitutively active or wild-type GSK-3β in SMCs without myocardin overexpression increased expression of these proteins. In summary, our results indicate that inhibition of GSK-3β reduces myocardin transcriptional activity, suggesting a role for GSK-3β in myocardin transcriptional activity and smooth muscle differentiation.
Collapse
Affiliation(s)
- Yi-Xia Zhou
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zhan Shi
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pavneet Singh
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hao Yin
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yan-Ni Yu
- Guiyang Medical University, Guizhou, China
| | - Long Li
- Guiyang Medical University, Guizhou, China
| | - Michael P Walsh
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yu Gui
- Department of Physiology and Pharmacology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Expression and significance of DLL4--Notch signaling pathway in the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyocytes induced by 5-azacytidine. Cell Biochem Biophys 2015; 71:249-53. [PMID: 25343938 DOI: 10.1007/s12013-014-0191-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
hUCMSCs were isolated and purified from the umbilical cords of normal or cesarean term deliveries under sterile conditions. Flow cytometry analysis revealed that CD13, CD29, CD44, CD90, and CD105 were highly expressed on the surface of passage-3 hUCMSCs, but negative for CD31, CD34, CD45, and HLA-DR. Immunocytochemistry showed that 5-azacytidine (5-aza) could induce the cTnI expression of hUCMSCs. RT-PCR showed that a stable higher level expression of DLL4 and Notch1 gene in 5-aza-induced group was observed compared to that in the control group. There was a higher expression level in the induced group. Compared with control group, the expression levels of Notch1 were, respectively, increased 6.60, 7.36, 7.595, and 7.805 times at 1, 3, 5, and 7 days after intervention of 5-aza. Statistically higher Ct value of Notch1 mRNA in induced group was observed in comparison with that of the control group (0.51 ± 0.21 vs 7.85 ± 0.35, t = 35.98, P < 0.01). The expression level of DLL4 increased stably compared with the control group. Compared with control group, the expression levels of DLL4 were, respectively, increased 11.53, 10.1, 10.17, and 11.46 times at 1, 3, 5, and 7 days after intervention of 5-aza. There was a significant difference of DLL4 Ct value between the 5-aza-induced group and the control group (1.60 ± 0.49 vs 12.42 ± 0.73, t = 11.71, P < 0.01). In conclusion, hUCMSCs can be differentiated into myocardial cells in vitro. The DLL4-Notch signaling pathway may be involved in the differentiation of hUCMSCs into cardiomyocytes induced by 5-aza.
Collapse
|
25
|
Campa VM, Baltziskueta E, Bengoa-Vergniory N, Gorroño-Etxebarria I, Wesołowski R, Waxman J, Kypta RM. A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer. Oncotarget 2015; 5:8173-87. [PMID: 25327559 PMCID: PMC4226675 DOI: 10.18632/oncotarget.2303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.
Collapse
Affiliation(s)
- Victor M Campa
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Spain. Present address: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander 39011, Spain
| | | | | | | | | | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, UK
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Spain. Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
26
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review, we will focus on its expanding role in the heart, concentrating primarily on recent studies that have used cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis, and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction after myocardial infarction by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature.
Collapse
Affiliation(s)
- Hind Lal
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - James Woodgett
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - Thomas Force
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| |
Collapse
|
27
|
Hildreth BE, Hernon KM, Dirksen WP, Leong J, Supsavhad W, Boyaka PN, Rosol TJ, Toribio RE. Deletion of the nuclear localization sequence and C-terminus of parathyroid hormone-related protein decreases osteogenesis and chondrogenesis but increases adipogenesis and myogenesis in murine bone marrow stromal cells. J Tissue Eng 2015; 6:2041731415609298. [PMID: 35003616 PMCID: PMC8738845 DOI: 10.1177/2041731415609298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
The N-terminus of parathyroid hormone-related protein regulates bone marrow stromal cell differentiation. We hypothesized that the nuclear localization sequence and C-terminus are involved. MicroRNA and gene expression analyses were performed on bone marrow stromal cells from mice lacking the nuclear localization sequence and C-terminus (PthrpΔ/Δ ) and age-matched controls. Differentiation assays with microRNA, cytochemical/histologic/morphologic, protein, and gene expression analyses were performed. PthrpΔ/Δ bone marrow stromal cells are anti-osteochondrogenic, pro-adipogenic, and pro-myogenic, expressing more Klf4, Gsk-3β, Lif, Ct-1, and microRNA-434 but less β-catenin, Igf-1, Taz, Osm, and microRNA-22 (p ⩽ 0.024). PthrpΔ/Δ osteoblasts had less mineralization, osteocalcin, Runx2, Osx, Igf-1, and leptin (p ⩽ 0.029). PthrpΔ/Δ produced more adipocytes, Pparγ, and aP2, but less Lpl (p ⩽ 0.042). PthrpΔ/Δ cartilage pellets were smaller with less Sox9 and Pth1r, but greater Col2a1 (p ⩽ 0.024). PthrpΔ/Δ produced more myocytes, Des, and Myog (p ⩽ 0.021). MicroRNA changes supported these findings. In conclusion, the nuclear localization sequence and C-terminus are pro-osteochondrogenic, anti-adipogenic, and anti-myogenic.
Collapse
Affiliation(s)
- Blake E Hildreth
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Krista M Hernon
- Department of Veterinary Clinical
Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH,
USA
| | - Wessel P Dirksen
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - John Leong
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Wachiraphan Supsavhad
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences,
College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro E Toribio
- Department of Veterinary Clinical
Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH,
USA
| |
Collapse
|
28
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1239] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
29
|
Hou Y, Wang Y, Wang Y, Zhong T, Li L, Zhang H, Wang L. Multiple alternative splicing and differential expression pattern of the glycogen synthase kinase-3β (GSK3β) gene in goat (Capra hircus). PLoS One 2014; 9:e109555. [PMID: 25334049 PMCID: PMC4198110 DOI: 10.1371/journal.pone.0109555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/06/2014] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) has been identified as a key protein kinase involved in several signaling pathways, such as Wnt, IGF-Ι and Hedgehog. However, knowledge regarding GSK3β in the goat is limited. In this study, we cloned and characterized the goat GSK3β gene. Six novel GSK3β transcripts were identified in different tissues and designated as GSK3β1, 2, 3, 4, 5 and 6. RT-PCR was used to further determine whether the six GSK3β transcripts existed in different goat tissues. Bioinformatics analysis revealed that the catalytic domain (S_TKc domain) is missing from GSK3β2 and GSK3β4. GSK3β3 and GSK3β6 do not contain the negative regulatory sites that are controlled by p38 MAPK. Furthermore, qRT-PCR and western blot analysis revealed that all the GSK3β transcripts were expressed at the highest level in the heart, whereas their expression levels in the liver, spleen, kidney, brain, longissimus dorsi muscle and uterus were different. These studies provide useful information for further research on the functions of GSK3β isoforms.
Collapse
Affiliation(s)
- Yuguo Hou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Yilin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Tao Zhong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Li Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Hongping Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- * E-mail:
| |
Collapse
|
30
|
Dimova N, Wysoczynski M, Rokosh G. Stromal cell derived factor-1α promotes C-Kit+ cardiac stem/progenitor cell quiescence through casein kinase 1α and GSK3β. Stem Cells 2014; 32:487-99. [PMID: 24038789 DOI: 10.1002/stem.1534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 11/11/2022]
Abstract
A population of c-kit(+) cardiac stem/progenitor cells (CSPC) has been identified in the heart and shown to contribute to myocardial regeneration after infarction. Previously, we have shown the chemokine, stromal cell derived factor 1α (SDF1) is necessary for the myocardial response to infarction where chronic infusion of the CXCR4 antagonist, AMD3100, exacerbated MI. Notably, AMD3100 increased CSPC proliferation. The effect of SDF1 on CSPC proliferation was further investigated in primary cultures of magnetically sorted c-kit(+) CSPCs. SDF1 facilitated CSPC quiescence by blocking cell cycle progression at the G0 to G1 transition. SDF1 decreased casein kinase 1α (CK1α) consequently attenuating β-catenin phosphorylation, destabilization, and degradation. Increased levels of β-catenin with SDF1 were effective, increasing TCF/LEF reporter activity. SDF downregulation of CK1α was dependent on proteasomal degradation and decreased mRNA expression. CK1α siRNA knockdown verified SDF1-dependent CSPC quiescence requires CK1α downregulation and stablilization of β-catenin. Conversely, β-catenin knockdown increased CSPC proliferation. SDF1 also increased GSK3β Y216 phosphorylation responsible for increased activity. SDF1 mediated CK1α downregulation and increase in GSK3β activity affected cell cycle through Bmi-1 downregulation, increased cyclin D1 phosphorylation, and decreased cyclin D1 levels. In conclusion, SDF1 exerts a quiescent effect on resident c-kit(+) CSPCs by decreasing CK1α levels, increasing GSK3β activity, stabilizing β-catenin, and affecting regulation of the cell cycle through Bmi-1 and cyclin D1. SDF1-dependent quiescence is an important factor in stem and progenitor cell preservation under basal conditions, however, with stress or injury in which SDF1 is elevated, quiescence may limit expansion and contribution to myocardial regeneration.
Collapse
Affiliation(s)
- Neviana Dimova
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | | | | |
Collapse
|
31
|
Zhao J, Feng Y, Yan H, Chen Y, Wang J, Chua B, Stuart C, Yin D. β-arrestin2/miR-155/GSK3β regulates transition of 5'-azacytizine-induced Sca-1-positive cells to cardiomyocytes. J Cell Mol Med 2014; 18:1562-70. [PMID: 24974728 PMCID: PMC4190902 DOI: 10.1111/jcmm.12339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022] Open
Abstract
Stem-cell antigen 1–positive (Sca-1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′-azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β-arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β-arrestin2 in Sca-1+ CSC differentiation, we used β-arrestin2–knockout mice and overexpression strategies. Real-time PCR revealed that β-arrestin2 promoted 5′-azacytizine-induced Sca-1+ CSC differentiation in vitro. Because the microRNA 155 (miR-155) may regulate β-arrestin2 expression, we detected its role and relationship with β-arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR-155. Real-time PCR revealed that miR-155, inhibited by β-arrestin2, impaired 5′-azacytizine-induced Sca-1+ CSC differentiation. On luciferase report assay, miR-155 could inhibit the activity of β-arrestin2 and GSK3β, which suggests a loop pathway between miR-155 and β-arrestin2. Furthermore, β-arrestin2-knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β-arrestin2-Knockout mice, so the activity of GSK3β was regulated by β-arrestin2 not Akt. We transplanted Sca-1+ CSCs from β-arrestin2-knockout mice to mice with myocardial infarction and found similar protective functions as in wild-type mice but impaired arterial elastance. Furthermore, low level of β-arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β-arrestin2/miR-155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int 2014; 2014:162024. [PMID: 25101130 PMCID: PMC4094872 DOI: 10.1155/2014/162024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence supports the argument that bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into cardiomyocyte-like cells in an appropriate cellular environment, but the differentiation rate is low. A cocktail method was designed: we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (SalB), and cardiomyocyte lysis medium (CLM) in inducing MSCs to acquire the phenotypical characteristics of cardiomyocytes. The fourth-passage MSCs were treated with 5-aza, SalB, CLM, 5-aza+salB, 5-aza+CLM, SalB+CLM, and 5-aza+SalB+CLM for 2 weeks. Immunofluorescence results showed that cTnT expression in the 5-aza+salB+CLM group was stronger than other groups. Real-time qPCR and Western blotting analyses showed that cTnT, alpha-cardiac actin, mef-2c, Cx43, and GSK-3beta expression increased while beta-catenin expression decreased. The salB+5-aza+CLM group had the most evident effects. SalB combined with 5-aza and CLM improved cardiomyocyte differentiation from MSCs. In the MSCs differentiation process, the Wnt/beta-catenin signaling pathway had been inhibited.
Collapse
|
33
|
Gao Q, Hu X, Jiang X, Guo M, Ji H, Wang Y, Fan Y. Cardiomyocyte-like cells differentiation from non β-catenin expression mesenchymal stem cells. Cytotechnology 2014; 66:575-84. [PMID: 24723056 DOI: 10.1007/s10616-013-9605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/11/2013] [Indexed: 10/25/2022] Open
Abstract
Recent studies have shown that block wnt/β-catenin signaling pathway is integrant for cardiomyocytes differentiation from bone marrow mesenchymal stem cells (MSCs). By transducing the MSCs with lentivirus which contain β-catenin interference RNA, we screened out the non β-catenin expression clone. In the establishment of knockdown β-catenin in MSCs, we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (salB), and cardiomyocytes lysis medium (CLM) in inducing MSCs to differentiate into cardiomyocyte-like cells. A method for culturing MSCs and cardiomyocytes was established. Purified MSCs were investigated by flow cytometry. The MSCs were positive for CD90 and CD29, but negative for CD34 and CD45. Meanwhile, the cardiomyocytes contracted spontaneously after 24 h of seeding into the plates. The fourth-passage non-β-catenin expression MSCs were divided into eight groups: control group, 5-aza, salB, CLM, 5-aza + salB, 5-aza + CLM, salB + CLM, and 5-aza + salB + CLM. The gene and protein expression of cTnT, α-actin, β-myosin, β-catenin, and GSK-3β were detected by quantitative real-time PCR and Western blotting. Our results showed that cTnT expression in 5-aza + salB + CLM group was ninefold higher than in the control group in the non-β-catenin MSCs model, implying that cardiomyocytes differentiation from MSCs is an extremely complicated process and it is necessary to consider the internal and external environmental conditions, such as suitable pharmaceutical inducers, cardiomyocytes microenvironments, inhibition of the negative signaling pathway and so on.
Collapse
Affiliation(s)
- Qing Gao
- Key Laboratory of Pathology of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,
| | | | | | | | | | | | | |
Collapse
|
34
|
Koraishy FM, Silva C, Mason S, Wu D, Cantley LG. Hepatocyte growth factor (Hgf) stimulates low density lipoprotein receptor-related protein (Lrp) 5/6 phosphorylation and promotes canonical Wnt signaling. J Biol Chem 2014; 289:14341-50. [PMID: 24692544 DOI: 10.1074/jbc.m114.563213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates β-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and β-catenin stabilization in the first 6-24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.
Collapse
Affiliation(s)
| | - Cynthia Silva
- the Section of Pediatric Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut 06106
| | - Sherene Mason
- the Section of Pediatric Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut 06106
| | - Dianqing Wu
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510 and
| | - Lloyd G Cantley
- From the Section of Nephrology, Department of Internal Medicine and
| |
Collapse
|
35
|
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms. PLoS Comput Biol 2014; 10:e1003448. [PMID: 24550717 PMCID: PMC3923661 DOI: 10.1371/journal.pcbi.1003448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/30/2013] [Indexed: 12/16/2022] Open
Abstract
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability. Tumour cells acquire the ability to divide and multiply indefinitely whereas normal cells can undergo only a limited number of divisions. The switch to immortalisation of the tumour cell is dependent on maintaining the integrity of telomere DNA which forms chromosome ends and is achieved through activation of the telomerase enzyme by turning on synthesis of the TERT gene, which is usually silenced in normal cells. Suppressing telomerase is toxic to cancer cells and it is widely believed that understanding TERT regulation could lead to potential cancer therapies. Previous studies have identified many of the factors which individually contribute to activate or repress TERT levels in cancer cells. However, transcription factors do not behave in isolation in cells, but rather as a complex co-operative network displaying inter-regulation. Therefore, full understanding of TERT regulation will require a broader view of the transcriptional network. In this paper we take a computational modelling approach to study TERT regulation at the network level. We tested interactions between 14 TERT-regulatory factors in an ovarian cancer cell line using a screening approach and developed a model to analyse which network interventions were able to silence TERT.
Collapse
|
36
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
37
|
Liu BH, Yeh HY, Lin YC, Wang MH, Chen DC, Lee BH, Hsu SH. Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. Biores Open Access 2013; 2:28-39. [PMID: 23514754 PMCID: PMC3569958 DOI: 10.1089/biores.2012.0285] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells may differentiate into cardiomyocytes and participate in local tissue repair after heart injury. In the current study, rat adipose-derived adult stem cells (ASCs) grown on chitosan membranes were observed to form cell spheroids after 3 days. The cell seeding density and surface modification of chitosan with Arg-Gly-Asp-containing peptide had an influence on the sizes of ASC spheroids. In the absence of induction, these spheroids showed an increased level of cardiac marker gene expression (Gata4, Nkx2-5, Myh6, and Tnnt2) more than 20-fold versus cells on the tissue culture polystyrene (TCPS) dish. Induction by 5-azacytidine or p38 MAP kinase inhibitor (SB202190) did not further increase the cardiac marker gene expression of these spheroids. Moreover, the enhanced cardiomyogenic potential of the spheroids was highly associated with the chitosan substrates. When ASC spheroids were plated onto TCPS with either basal or cardiac induction medium for 9 days, the spheroids spread into a monolayer and the positive effect on cardiomyogenic marker gene expression disappeared. The possible role of calcium ion and the up-regulation of adhesion molecule P-selectin and chemokine receptor Cxcr4 were demonstrated in ASC spheroids. Applying these spheroids to the chronic myocardial infarction animal model showed better functional recovery versus single cells after 12 weeks. Taken together, this study suggested that the ASC spheroids on chitosan may form as a result of calcium ion signaling, and the transplantation of these spheroids may offer a simple method to enhance the efficiency of stem cell-based therapy in myocardial infarction.
Collapse
Affiliation(s)
- Bing-Hsien Liu
- Institute of Polymer Science and Engineering, National Taiwan University , Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Cai B, Li J, Wang J, Luo X, Ai J, Liu Y, Wang N, Liang H, Zhang M, Chen N, Wang G, Xing S, Zhou X, Yang B, Wang X, Lu Y. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells 2013; 30:1746-55. [PMID: 22696253 DOI: 10.1002/stem.1154] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Accumulating evidence demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) may transdifferentiate into cardiomyocytes and replace apoptotic myocardium so as to improve functions of damaged hearts. However, little information is known about molecular mechanisms underlying myogenic conversion of BMSCs. microRNAs as endogenous noncoding small molecules function to inhibit protein translation post-transcriptionally by binding to complementary sequences of targeted mRNAs. Here, we reported that miR-124 was remarkably downregulated during cardiomyocyte differentiation of BMSCs induced by coculture with cardiomyocytes. Forced expression of miR-124 led to a significant downregulation of cardiac-specific markers-ANP, TNT, and α-MHC proteins as well as reduction of cardiac potassium channel currents in cocultured BMSCs. On the contrary, the inhibition of endogenous miR-124 with its antisense oligonucleotide AMO-124 obviously reversed the changes of ANP, TNT, and α-MHC proteins and increased cardiac potassium channel currents. Further study revealed that miR-124 targeted the 3'UTR of STAT3 gene so as to suppress the expression of STAT3 protein but did not affect its mRNA level. STAT3 inhibitors AG490, WP1066, and S3I-201 were shown to attenuate the augmented expression of ANP, TNT, α-MHC, GATA-4 proteins, and mRNAs in cocultured BMSCs with AMO-124 transfection. Moreover, GATA-4 siRNA reduced the expression of ANP, TNT, α-MHC, and GATA-4 proteins but did not impact STAT3 protein in cocultured BMSCs, indicating GATA-4 serves as an effector of STAT3. In summary, we found that miR-124 regulated myogenic differentiation of BMSCs via targeting STAT3 mRNA, which provides new insights into molecular mechanisms of cardiomyogenesis of BMSCs.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PLoS One 2012; 7:e51694. [PMID: 23284745 PMCID: PMC3524246 DOI: 10.1371/journal.pone.0051694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 µM all-trans Retinoic Acid (ATRA), 5 µM Phenyl Butyrate (PB), and 200 µM diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.
Collapse
|
40
|
Abstract
Multiple phosphorylation sites of Drp1 have been characterized for their functional importance. However, the functional consequence of GSK3beta-mediated phosphorylation of Drp1 remains unclear. In this report, we pinpointed 11 Serine/Threonine sites spanning from residue 634∼736 of the GED domain and robustly confirmed Drp1 Ser693 as a novel GSK3beta phosphorylation site. Our results suggest that GSK3beta-mediated phosphorylation at Ser693 does cause a dramatic decrease of GTPase activity; in contrast, GSK3beta-mediated phosphorylation at Ser693 appears not to affect Drp1 inter-/intra-molecular interactions. After identifying Ser693 as a GSK3beta phosphorylation site, we also determined that K679 is crucial for GSK3beta-binding, which strongly suggests that Drp1 is a novel substrate for GSK3beta. Thereafter, we found that overexpressed S693D, but not S693A mutant, caused an elongated mitochondrial morphology which is similar to that of K38A, S637D and K679A mutants. Interestedly, using H89 and LiCl to inhibit PKA and GSK3beta signaling, respectively, it appears that a portion of the elongated mitochondria switched to a fragmented phenotype. In investigating the biofunctionality of phosphorylation sites within the GED domain, cells overexpressing Drp1 S693D and S637D, but not S693A, showed an acquired resistance to H2O2-induced mitochondrial fragmentation and ensuing apoptosis, which affected cytochrome c, capase-3, -7, and PARP, but not LC3B, Atg-5, Beclin-1 and Bcl2 expressions. These results also showed that the S693D group is more effective in protecting both non-neuronal and neuronal cells from apoptotic death than the S637D group. Altogether, our data suggest that GSK3beta-mediated phosphorylation at Ser693 of Drp1 may be associated with mitochondrial elongation via down-regulating apoptosis, but not autophagy upon H2O2 insult.
Collapse
|
41
|
Itoh S, Saito T, Hirata M, Ushita M, Ikeda T, Woodgett JR, Algül H, Schmid RM, Chung UI, Kawaguchi H. GSK-3α and GSK-3β proteins are involved in early stages of chondrocyte differentiation with functional redundancy through RelA protein phosphorylation. J Biol Chem 2012; 287:29227-36. [PMID: 22761446 DOI: 10.1074/jbc.m112.372086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we examine the roles of two isoforms of glycogen synthase kinase-3 (GSK-3), GSK-3α and GSK-3β, in skeletal development. Both isoforms were unphosphorylated and active in chondrocyte differentiation stages during SOX9 and type II collagen (COL2A1) expression. Although knock-out of both alleles of Gsk3a (Gsk3a(-/-)) or a single allele of Gsk3b (Gsk3b(+/-)) in mice did not significantly affect skeletal development, compound knock-out (Gsk3a(-/-);Gsk3b(+/-)) caused dwarfism with impairment of chondrocyte differentiation. GSK-3α and GSK-3β induced differentiation of cultured chondrocytes with functional redundancy in a cell-autonomous fashion, independently of the Wnt/β-catenin signal. Computational predictions followed by SOX9 and COL2A1 transcriptional assays identified RelA (NF-κB p65) as a key phosphorylation target of GSK-3. Among several phosphorylation residues in RelA, Thr-254 was identified as the critical phosphorylation site for GSK-3 that modulated chondrocyte differentiation. In conclusion, redundant functions of GSK-3α and GSK-3β through phosphorylation of RelA at Thr-254 play a crucial role in early stages of chondrocyte differentiation.
Collapse
Affiliation(s)
- Shozo Itoh
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Williams C, Xie AW, Emani S, Yamato M, Okano T, Emani SM, Wong JY. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng Part A 2012; 18:986-98. [DOI: 10.1089/ten.tea.2011.0172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Angela W. Xie
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Sitaram M. Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
43
|
Banerji V, Frumm SM, Ross KN, Li LS, Schinzel AC, Hahn CK, Kakoza RM, Chow KT, Ross L, Alexe G, Tolliday N, Inguilizian H, Galinsky I, Stone RM, DeAngelo DJ, Roti G, Aster JC, Hahn WC, Kung AL, Stegmaier K. The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia. J Clin Invest 2012; 122:935-47. [PMID: 22326953 DOI: 10.1172/jci46465] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/04/2012] [Indexed: 01/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults. Long-term survival of patients with AML has changed little over the past decade, necessitating the identification and validation of new AML targets. Integration of genomic approaches with small-molecule and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. Here, we identified a role for glycogen synthase kinase 3α (GSK-3α) in AML by performing 2 independent small-molecule library screens and an shRNA screen for perturbations that induced a differentiation expression signature in AML cells. GSK-3 is a serine-threonine kinase involved in diverse cellular processes, including differentiation, signal transduction, cell cycle regulation, and proliferation. We demonstrated that specific loss of GSK-3α induced differentiation in AML by multiple measurements, including induction of gene expression signatures, morphological changes, and cell surface markers consistent with myeloid maturation. GSK-3α-specific suppression also led to impaired growth and proliferation in vitro, induction of apoptosis, loss of colony formation in methylcellulose, and anti-AML activity in vivo. Although the role of GSK-3β has been well studied in cancer development, these studies support a role for GSK-3α in AML.
Collapse
Affiliation(s)
- Versha Banerji
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children’s Hospital Boston, Boston 02215, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sherman LS, Munoz J, Patel SA, Dave MA, Paige I, Rameshwar P. Moving from the laboratory bench to patients' bedside: considerations for effective therapy with stem cells. Clin Transl Sci 2011; 4:380-6. [PMID: 22029813 PMCID: PMC5439898 DOI: 10.1111/j.1752-8062.2011.00283.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although stem cell therapy is not a new field, the field was limited to transplantation of hematopoietic stem cells. Such transplantation has provided invaluable information for the emerging field with new stem cells. Mesenchymal stem cells (MSCs) are an attractive source for therapy; reduced ethical concern, ease in expansion, as off-the-shelf stem cells. MSCs exert immune suppressive properties, providing them with the potential for immune suppressive therapy such as autoimmunity, asthma, allergic rhinitis and graft versus host disease. In addition, MSCs, as well as other stem cells, can be applied for bone and cartilage repair, cardiovascular disease, and neural repair/protection. The data thus far with MSCs are mixed. This review discusses the immune-enhancing properties of MSCs to explain the possible confounds of inflammatory microenvironment in the MSCs therapy. Although this review focuses on MSCs, the information can be extrapolated to other stem cells. The review summarizes the biology of MSCs, including multilineage differentiation potential, transdifferentiation capability, and immunological effects. We emphasize the key concepts that may predict the use of these cells in medicine, namely, the application of these cells from the bench to the bedside. Prospects on immunotherapy, neuroregeneration, and cardiovascular repair are used as examples of tissue repair.
Collapse
Affiliation(s)
- Lauren S. Sherman
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Jessian Munoz
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
- University of Medicine and Dentistry of New Jersey‐Graduate School of Biomedical Science, Newark Campus, Newark, New Jersey, USA
| | - Shyam A. Patel
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
- University of Medicine and Dentistry of New Jersey‐Graduate School of Biomedical Science, Newark Campus, Newark, New Jersey, USA
| | - Meneka A. Dave
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Ilani Paige
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Pranela Rameshwar
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
45
|
Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S, Peng X, Li W, Xu Z, Sun L, Xu W. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev 2011; 21:67-75. [PMID: 21476855 DOI: 10.1089/scd.2010.0519] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after 5-Aza treatment. In addition, myogenic cells differentiated from hucMSCs were positive for mRNA and protein of desmin, β-myosin heavy chain, cardiac troponin T, A-type natriuretic peptide, and Nkx2.5. Human diploid lung fibroblasts treated with 5-Aza expressed no cardiac-specific genes. 5-Aza did not induce hucMSCs to differentiate into osteoblasts. Further study revealed that 5-Aza treatment activated extracellular signal related kinases (ERK) in hucMSCs, but protein kinase C showed no response to 5-Aza administration. U0126, a specific inhibitor of ERK, could inhibit 5-Aza-induced expression of cardiac-specific genes and proteins in hucMSCs. Increased phosphorylation of signal transducers and activators of transcription 3, and up-regulation of myocyte enhancer-binding factor-2c and myogenic differentiation antigen in 5-Aza-treated hucMSCs were also suppressed by U0126. Taken together, these results suggested that sustained activation of ERK by 5-Aza contributed to the induction of the differentiation of hucMSCs into cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Qian Qian
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. J Mol Cell Cardiol 2011; 51:619-25. [PMID: 21645519 DOI: 10.1016/j.yjmcc.2011.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 01/16/2023]
Abstract
Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
|
47
|
The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 2011; 32:5568-80. [PMID: 21570113 DOI: 10.1016/j.biomaterials.2011.04.038] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/18/2011] [Indexed: 01/01/2023]
Abstract
We investigated whether tissue constructs resembling structural and mechanical properties of the myocardium would induce mesenchymal stem cells (MSCs) to differentiate into a cardiac lineage, and whether further mimicking the 3-D cell alignment of myocardium would enhance cardiac differentiation. The tissue constructs were generated by integrating MSCs with elastic polyurethane nanofibers in an electrical field. Control of processing parameters resulted in tissue constructs recapitulating the fibrous and anisotropic structure, and typical stress-strain response of native porcine myocardium. MSCs proliferated in the tissue constructs when cultured dynamically, but retained a round morphology. mRNA expression demonstrated that cardiac differentiation was significantly stimulated. Enhanced cardiac differentiation was achieved by 3-D alignment of MSCs within the tissue constructs. Cell alignment was attained by statically stretching tissue constructs during culture. Increasing stretching strain from 25% to 75% increased the degree of 3-D cell alignment. Real time RT-PCR results showed that when cells assuming a high degree of alignment (with application of 75% strain), their expression of cardiac markers (GATA4, Nkx2.5 and MEF2C) remarkably increased. The differentiated cells also developed calcium channels, which are required to have electrophysiological properties. This report to some extent explains the outcome of many in vivo studies, where only a limited amount of the injected MSCs differentiated into cardiomyocytes. It is possible that the strain of the heartbeat (∼20%) cannot allow the MSCs to have an alignment high enough for a remarkable cardiac differentiation. This work suggests that pre-differentiation of MSCs into cardiomyocytes prior to injection may result in a greater degree of cardiac regeneration than simply injecting un-differentiated MSCs into heart.
Collapse
|
48
|
Gillespie JR, Ulici V, Dupuis H, Higgs A, Dimattia A, Patel S, Woodgett JR, Beier F. Deletion of glycogen synthase kinase-3β in cartilage results in up-regulation of glycogen synthase kinase-3α protein expression. Endocrinology 2011; 152:1755-66. [PMID: 21325041 DOI: 10.1210/en.2010-1412] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rate of endochondral bone growth determines final height in humans and is tightly controlled. Glycogen synthase kinase-3 (GSK-3) is a negative regulator of several signaling pathways that govern bone growth, such as insulin/IGF and Wnt/β-catenin. The two GSK-3 proteins, GSK-3α and GSK-3β, display both overlapping and distinct roles in different tissues. Here we show that pharmacological inhibition of GSK-3 signaling in a mouse tibia organ culture system results in enhanced bone growth, accompanied by increased proliferation of growth plate chondrocytes and faster turnover of hypertrophic cartilage to bone. GSK-3 inhibition rescues some, but not all, effects of phosphatidylinositide 3-kinase inhibition in this system, in agreement with the antagonistic role of these two kinases in response to signals such as IGF. However, cartilage-specific deletion of the Gsk3b gene in mice has minimal effects on skeletal growth or development. Molecular analyses demonstrated that compensatory up-regulation of GSK-3α protein levels in cartilage is the likely cause for this lack of effect. To our knowledge, this is the first tissue in which such a compensatory mechanism is described. Thus, our study provides important new insights into both skeletal development and the biology of GSK-3 proteins.
Collapse
Affiliation(s)
- J R Gillespie
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Azoulay-Alfaguter I, Yaffe Y, Licht-Murava A, Urbanska M, Jaworski J, Pietrokovski S, Hirschberg K, Eldar-Finkelman H. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region: functional role in calcium/calpain signaling. J Biol Chem 2011; 286:13470-80. [PMID: 21266584 DOI: 10.1074/jbc.m110.127969] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is expressed as two isozymes α and β. They share high similarity in their catalytic domains but differ in their N- and C-terminal regions, with GSK-3α having an extended glycine-rich N terminus. Here, we undertook live cell imaging combined with molecular and bioinformatic studies to understand the distinct functions of the GSK-3 isozymes focusing on GSK-3α N-terminal region. We found that unlike GSK-3β, which shuttles between the nucleus and cytoplasm, GSK-3α was excluded from the nucleus. Deletion of the N-terminal region of GSK-3α resulted in nuclear localization, and treatment with leptomycin B resulted in GSK-3α accumulation in the nucleus. GSK-3α rapidly accumulated in the nucleus in response to calcium or serum deprivation, and accumulation was strongly inhibited by the calpain inhibitor calpeptin. This nuclear accumulation was not mediated by cleavage of the N-terminal region or phosphorylation of GSK-3α. Rather, we show that calcium-induced GSK-3α nuclear accumulation was governed by GSK-3α binding with as yet unknown calpain-sensitive protein or proteins; this binding was mediated by the N-terminal region. Bioinformatic and experimental analyses indicated that nuclear exclusion of GSK-3α was likely an exclusive characteristic of mammalian GSK-3α. Finally, we show that nuclear localization of GSK-3α reduced the nuclear pool of β-catenin and its target cyclin D1. Taken together, these data suggest that the N-terminal region of GSK-3α is responsible for its nuclear exclusion and that binding with a calcium/calpain-sensitive product enables GSK-3α nuclear retention. We further uncovered a novel link between calcium and nuclear GSK-3α-mediated inhibition of the canonical Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Inbar Azoulay-Alfaguter
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cho J, Zhai P, Maejima Y, Sadoshima J. Myocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res 2011; 108:478-89. [PMID: 21233455 DOI: 10.1161/circresaha.110.229658] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Glycogen synthase kinase (GSK)-3β upregulates cardiac genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. Ex vivo modification of signaling mechanisms in MSCs may improve the efficiency of cardiac cell-based therapy (CBT). OBJECTIVE To test the effect of GSK-3β on the efficiency of CBT with MSCs after myocardial infarction (MI). METHODS AND RESULTS MSCs overexpressing either GSK-3β (GSK-3β-MSCs), LacZ (LacZ-MSCs), or saline was injected into the heart after coronary ligation. A significant improvement in the mortality and left ventricular (LV) function was observed at 12 weeks in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected mice. MI size and LV remodeling were reduced in GSK-3β-MSC-injected mice compared with in LacZ-MSC- or saline-injected ones. GSK-3β increased survival and increased cardiomyocyte differentiation of MSCs, as evidenced by activation of an Nkx2.5-LacZ reporter and upregulation of troponin T. Injection of GSK-3β-MSCs induced Ki67-positive myocytes and c-Kit-positive cells, suggesting that GSK-3β-MSCs upregulate cardiac progenitor cells. GSK-3β-MSCs also increased capillary density and upregulated paracrine factors, including vascular endothelial growth factor A (Vegfa). Injection of GSK-3β-MSCs in which Vegfa had been knocked down abolished the increase in survival and capillary density. However, the decrease in MI size and LV remodeling and the improvement of LV function were still observed in MI mice injected with GSK-3β-MSCs without Vegfa. CONCLUSIONS GSK-3β significantly improves the efficiency of CBT with MSCs in the post-MI heart. GSK-3β not only increases survival of MSCs but also induces cardiomyocyte differentiation and angiogenesis through Vegfa-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|