1
|
Dhang S, Mondal A, Das C, Roy S. Metformin inhibits the histone methyltransferase CARM1 and attenuates H3 histone methylation during gluconeogenesis. J Biol Chem 2025; 301:108271. [PMID: 39922487 PMCID: PMC11910104 DOI: 10.1016/j.jbc.2025.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Hyperglycemia is a hallmark of metabolic disorders, yet the precise mechanisms linking epigenetic regulation to glucose metabolism remain underexplored. Coactivator-associated arginine methyltransferase 1 (CARM1), a type I histone methyltransferase, promotes transcriptional activation through the methylation of histone H3 at arginine residues H3R17 and H3R26. Here, we identify a novel mechanism by which metformin, a widely prescribed antidiabetic drug, inhibits CARM1 activity. Using biochemical and biophysical assays, we show that metformin binds to the substrate-binding site of CARM1, reducing histone H3 methylation levels in CARM1-overexpressing hepatic cells and liver tissues from metformin-fed mice. This epigenetic modulation suppresses the expression of gluconeogenic enzymes (G6Pase, FBPase, and PCK1), thereby reversing CARM1-induced glycolytic suppression and regulating gluconeogenesis. Importantly, metformin does not alter CARM1 protein levels and its recruitment to gluconeogenic gene promoters but diminishes H3R17me2a marks at these loci. Our findings reveal a previously unrecognized epigenetic mechanism of metformin action, offering new therapeutic insights for hyperglycemia management.
Collapse
Affiliation(s)
- Sinjini Dhang
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Feng D, Gao J, Liu R, Liu W, Gao T, Yang Y, Zhang D, Yang T, Yin X, Yu H, Huang W, Wang Y. CARM1 drives triple-negative breast cancer progression by coordinating with HIF1A. Protein Cell 2024; 15:744-765. [PMID: 38476024 PMCID: PMC11443453 DOI: 10.1093/procel/pwae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition, and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor-1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, β-Catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and invasion of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ruiqiong Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
- Department of Cancer Center, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Die Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Bourassa J, Paris G, Trinkle-Mulcahy L, Côté J. Biochemical Properties of CARM1: Impact on Western Blotting and Proteomic Studies. ACS OMEGA 2024; 9:40204-40213. [PMID: 39346878 PMCID: PMC11425859 DOI: 10.1021/acsomega.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
CARM1 is an arginine methyltransferase that has crucial roles in a number of cellular pathways and is being explored as a therapeutic target in diseases such as cancer and neurodegenerative disorders. Its deregulation at the protein level was found to have potential prognostic value, and as such, its protein levels are regularly assessed through the common practice of western blotting (WB). Our group uncovered that CARM1 has biochemical properties that complicate its analysis by standard WB sample preparation techniques. Here, we show that CARM1 has the ability to form SDS-resistant aggregates that effectively hinder gel migration in SDS-PAGE. CARM1 levels and the temperature at the denaturation step can both influence CARM1 aggregation, which prompts the use of additional measures to ensure representative detection at the protein level. We have demonstrated the formation of CARM1 aggregates in both cell and tissue extracts, making these findings an important consideration for any CARM1-related study. We also show how aggregate formation in models of CARM1 overexpression can hinder proteomic studies. Having identified factors that can induce CARM1 aggregation, we suggest alternative sample preparation techniques that allow for clear resolution of the protein in stringent denaturing conditions while avoiding aggregation.
Collapse
Affiliation(s)
- Julie Bourassa
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Genevieve Paris
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Laura Trinkle-Mulcahy
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jocelyn Côté
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Center
for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
4
|
Bacabac M, Liu P, Xu W. Protein Arginine Methyltransferase CARM1 in Human Breast Cancer. Endocrinology 2024; 165:bqae068. [PMID: 38878278 PMCID: PMC11220664 DOI: 10.1210/endocr/bqae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 07/04/2024]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that deposits asymmetrical dimethylation marks on both histone and nonhistone substrates. The regulatory role of CARM1 in transcription was first identified in estrogen receptor positive (ER+) breast cancer. Since then, the mechanism of CARM1 in activating ER-target genes has been further interrogated. CARM1 is expressed at the highest level in ER negative (ER-) breast cancer and higher expression correlates with poor prognosis, suggesting an oncogenic role of CARM1. Indeed, in ER- breast cancer, CARM1 can promote proliferation and metastasis at least partly through methylation of proteins and activation of oncogenes. In this review, we summarize the mechanisms of transcriptional activation by CARM1 in breast cancer. The methyltransferase activity of CARM1 is important for many of its functions; here, we also highlight the nonenzymatic roles of CARM1. We also cover the biological processes regulated by CARM1 that are often deregulated in cancer and the ways to harness CARM1 in cancer treatment.
Collapse
Affiliation(s)
- Megan Bacabac
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peng Liu
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
5
|
Ma Z, Lyu X, Qin N, Liu H, Zhang M, Lai Y, Dong B, Lu P. Coactivator-associated arginine methyltransferase 1: A versatile player in cell differentiation and development. Genes Dis 2023; 10:2383-2392. [PMID: 37554200 PMCID: PMC10404874 DOI: 10.1016/j.gendis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in the regulation of various cellular functions. Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that asymmetrically dimethylates histone H3 and non-histone proteins to regulate gene transcription. CARM1 has been found to play important roles in cell differentiation and development, cell cycle progression, autophagy, metabolism, pre-mRNA splicing and transportation, and DNA replication. In this review, we describe the molecular characteristics of CARM1 and summarize its roles in the regulation of cell differentiation and development in mammals.
Collapse
Affiliation(s)
- Zhongrui Ma
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xinxing Lyu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ning Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haoyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Mengrui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongchao Lai
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Peiyuan Lu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Immunology, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
6
|
Li JY, Wang TT, Ma L, Zheng LL. CARM1 deficiency inhibits osteoblastic differentiation of bone marrow mesenchymal stem cells and delays osteogenesis in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119544. [PMID: 37468072 DOI: 10.1016/j.bbamcr.2023.119544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Bone repair remains a clinical challenge due to low osteogenic capacity. Coactivator associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that mediates arginine methylation and endochondral ossification. However, the roles of CARM1 in osteoblastic differentiation and bone remodeling have not been explored. In our study, heterozygous CARM1-knockout (KO) mice were generated using the CRISPR-Cas9 system and a model of femoral defect was created. At day 7 postsurgery, CARM1-KO mice exhibited obvious bone loss compared with wild type (WT) mice, as evidenced by reduced bone mineral density (BMD), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Deletion of CARM1 in mice lowered synthesis and accumulation of collagen at the injury sites. The alkaline phosphatase (ALP) activity and osteogenic-related gene expression were declined in CARM1-KO mice. To further understand the role of CARM1 in osteoblastic differentiation, bone marrow mesenchymal stem cells (BMSCs) were isolated from the tibia and femur of WT or CARM1-KO mice. CARM1 deletion decreased histone arginine methylation and inhibited osteoblastic differentiation and mineralization. The mRNA sequencing of CARM1-KO BMSCs revealed the possible regulatory molecules by CARM1, which could deepen our understanding of CARM1 regulatory mechanisms. These data could be of interest to basic researchers and provide the direction for future research into bone-related disorders.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Medical Cosmetology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Ting-Ting Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Li Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
7
|
Santos M, Hwang JW, Bedford MT. CARM1 arginine methyltransferase as a therapeutic target for cancer. J Biol Chem 2023; 299:105124. [PMID: 37536629 PMCID: PMC10474102 DOI: 10.1016/j.jbc.2023.105124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that posttranslationally modifies proteins that regulate multiple levels of RNA production and processing. Its substrates include histones, transcription factors, coregulators of transcription, and splicing factors. CARM1 is overexpressed in many different cancer types, and often promotes transcription factor programs that are co-opted as drivers of the transformed cell state, a process known as transcription factor addiction. Targeting these oncogenic transcription factor pathways is difficult but could be addressed by removing the activity of the key coactivators on which they rely. CARM1 is ubiquitously expressed, and its KO is less detrimental in embryonic development than deletion of the arginine methyltransferases protein arginine methyltransferase 1 and protein arginine methyltransferase 5, suggesting that therapeutic targeting of CARM1 may be well tolerated. Here, we will summarize the normal in vivo functions of CARM1 that have been gleaned from mouse studies, expand on the transcriptional pathways that are regulated by CARM1, and finally highlight recent studies that have identified oncogenic properties of CARM1 in different biological settings. This review is meant to kindle an interest in the development of human drug therapies targeting CARM1, as there are currently no CARM1 inhibitors available for use in clinical trials.
Collapse
Affiliation(s)
- Margarida Santos
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Jee Won Hwang
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
8
|
Webb EK, Ng SY, Mikhail AI, Stouth DW, vanLieshout TL, Syroid AL, Ljubicic V. Impact of short-term, pharmacological CARM1 inhibition on skeletal muscle mass, function, and atrophy in mice. Am J Physiol Endocrinol Metab 2023; 325:E252-E266. [PMID: 37493245 PMCID: PMC10625826 DOI: 10.1152/ajpendo.00047.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice (n = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed. In addition, we investigated the effect of CARM1 suppression on unilateral hindlimb denervation (DEN)-induced muscle atrophy (n = 8/sex). We report that CARM1 inhibition caused significant reductions in the asymmetric dimethylation of known CARM1 substrates but no change in CARM1 protein or mRNA content in skeletal muscle. Reduced CARM1 activity did not affect body or muscle mass, however, we observed a decrease in exercise capacity and muscular endurance in male mice. CARM1 methyltransferase activity increased in the muscle of Veh-treated mice following 7 days of DEN, and this response was blunted in EZM-dosed mice. Skeletal muscle mass and myofiber cross-sectional area were significantly reduced in DEN compared with contralateral, non-DEN limbs to a similar degree in both treatment groups. Furthermore, skeletal muscle atrophy and autophagy gene expression programs were elevated in response to DEN independent of CARM1 suppression. Collectively, these results suggest that short-term, pharmacological CARM1 inhibition in adult animals affects muscle performance in a sex-specific manner but does not impact the maintenance and remodeling of skeletal muscle mass during conditions of neurogenic muscle atrophy.NEW & NOTEWORTHY Short-term pharmacological inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) was effective at significantly reducing CARM1 methyltransferase function in skeletal muscle. CARM1 inhibition did not impact muscle mass, but exercise capacity was impaired, particularly in male mice, whereas morphological and molecular signatures of denervation-induced muscle atrophy were largely maintained in animals administered the inhibitor. Altogether, the role of CARM1 in neuromuscular biology remains complex and requires further investigation of its therapeutic potential in muscle-wasting conditions.
Collapse
Affiliation(s)
- Erin K Webb
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Derek W Stouth
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Tiffany L vanLieshout
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Anika L Syroid
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
10
|
Torcal Garcia G, Kowenz-Leutz E, Tian TV, Klonizakis A, Lerner J, De Andres-Aguayo L, Sapozhnikova V, Berenguer C, Carmona MP, Casadesus MV, Bulteau R, Francesconi M, Peiro S, Mertins P, Zaret K, Leutz A, Graf T. Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity. eLife 2023; 12:e83951. [PMID: 37365888 PMCID: PMC10299824 DOI: 10.7554/elife.83951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Here, we describe how the speed of C/EBPα-induced B cell to macrophage transdifferentiation (BMT) can be regulated, using both mouse and human models. The identification of a mutant of C/EBPα (C/EBPαR35A) that greatly accelerates BMT helped to illuminate the mechanism. Thus, incoming C/EBPα binds to PU.1, an obligate partner expressed in B cells, leading to the release of PU.1 from B cell enhancers, chromatin closing and silencing of the B cell program. Released PU.1 redistributes to macrophage enhancers newly occupied by C/EBPα, causing chromatin opening and activation of macrophage genes. All these steps are accelerated by C/EBPαR35A, initiated by its increased affinity for PU.1. Wild-type C/EBPα is methylated by Carm1 at arginine 35 and the enzyme's perturbations modulate BMT velocity as predicted from the observations with the mutant. Increasing the proportion of unmethylated C/EBPα in granulocyte/macrophage progenitors by inhibiting Carm1 biases the cell's differentiation toward macrophages, suggesting that cell fate decision velocity and lineage directionality are closely linked processes.
Collapse
Affiliation(s)
- Guillem Torcal Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | | | - Tian V Tian
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Antonis Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jonathan Lerner
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Valeriia Sapozhnikova
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Clara Berenguer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marcos Plana Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Maria Vila Casadesus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Romain Bulteau
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Mirko Francesconi
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Sandra Peiro
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kenneth Zaret
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| |
Collapse
|
11
|
Lai Y, Li X, Li T, Li X, Nyunoya T, Chen K, Kitsios G, Nouraie M, Zhang Y, McVerry BJ, Lee JS, Mallmapalli RK, Zou C. Protein arginine N-methyltransferase 4 (PRMT4) contributes to lymphopenia in experimental sepsis. Thorax 2023; 78:383-393. [PMID: 35354645 PMCID: PMC9522923 DOI: 10.1136/thoraxjnl-2021-217526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND One hallmark of sepsis is the reduced number of lymphocytes, termed lymphopenia, that occurs from decreased lymphocyte proliferation or increased cell death contributing to immune suppression. Histone modification enzymes regulate immunity by their epigenetic and non-epigenetic functions; however, the role of these enzymes in lymphopenia remains elusive. METHODS We used molecular biological approaches to investigate the high expression and function of a chromatin modulator protein arginine N-methyltransferase 4 (PRMT4)/coactivator-associated arginine methyltransferase 1 in human samples from septic patients and cellular and animal septic models. RESULTS We identified that PRMT4 is elevated systemically in septic patients and experimental sepsis. Gram-negative bacteria and their derived endotoxin lipopolysaccharide (LPS) increased PRMT4 in B and T lymphocytes and THP-1 monocytes. Single-cell RNA sequencing results indicate an increase of PRMT4 gene expression in activated T lymphocytes. Augmented PRMT4 is crucial for inducing lymphocyte apoptosis but not monocyte THP-1 cells. Ectopic expression of PRMT4 protein caused substantial lymphocyte death via caspase 3-mediated cell death signalling, and knockout of PRMT4 abolished LPS-mediated lymphocyte death. PRMT4 inhibition with a small molecule compound attenuated lymphocyte death in complementary models of sepsis. CONCLUSIONS These findings demonstrate a previously uncharacterised role of a key chromatin modulator in lymphocyte survival that may shed light on devising therapeutic modalities to lessen the severity of septic immunosuppression.
Collapse
Affiliation(s)
- Yandong Lai
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiuying Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
| | - Tiao Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyun Li
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Toru Nyunoya
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Georgios Kitsios
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Janet S Lee
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Chunbin Zou
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Healthcare system, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Jamet S, Ha S, Ho TH, Houghtaling S, Timms A, Yu K, Paquette A, Maga AM, Greene NDE, Beier DR. The arginine methyltransferase Carm1 is necessary for heart development. G3 GENES|GENOMES|GENETICS 2022; 12:6613934. [PMID: 35736367 PMCID: PMC9339313 DOI: 10.1093/g3journal/jkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
To discover genes implicated in human congenital disorders, we performed ENU mutagenesis in the mouse and screened for mutations affecting embryonic development. In this work, we report defects of heart development in mice homozygous for a mutation of coactivator-associated arginine methyltransferase 1 (Carm1). While Carm1 has been extensively studied, it has never been previously associated with a role in heart development. Phenotype analysis combining histology and microcomputed tomography imaging shows a range of cardiac defects. Most notably, many affected midgestation embryos appear to have cardiac rupture and hemorrhaging in the thorax. Mice that survive to late gestation show a variety of cardiac defects, including ventricular septal defects, double outlet right ventricle, and persistent truncus arteriosus. Transcriptome analyses of the mutant embryos by mRNA-seq reveal the perturbation of several genes involved in cardiac morphogenesis and muscle development and function. In addition, we observe the mislocalization of cardiac neural crest cells at E12.5 in the outflow tract. The cardiac phenotype of Carm1 mutant embryos is similar to that of Pax3 null mutants, and PAX3 is a putative target of CARM1. However, our analysis does not support the hypothesis that developmental defects in Carm1 mutant embryos are primarily due to a functional defect of PAX3.
Collapse
Affiliation(s)
- Sophie Jamet
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Seungshin Ha
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Kai Yu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Alison Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Ali Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH, UK
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| |
Collapse
|
13
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
14
|
Iannelli G, Milite C, Marechal N, Cura V, Bonnefond L, Troffer-Charlier N, Feoli A, Rescigno D, Wang Y, Cipriano A, Viviano M, Bedford MT, Cavarelli J, Castellano S, Sbardella G. Turning Nonselective Inhibitors of Type I Protein Arginine Methyltransferases into Potent and Selective Inhibitors of Protein Arginine Methyltransferase 4 through a Deconstruction-Reconstruction and Fragment-Growing Approach. J Med Chem 2022; 65:11574-11606. [PMID: 35482954 PMCID: PMC9469100 DOI: 10.1021/acs.jmedchem.2c00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Protein arginine
methyltransferases (PRMTs) are important therapeutic
targets, playing a crucial role in the regulation of many cellular
processes and being linked to many diseases. Yet, there is still much
to be understood regarding their functions and the biological pathways
in which they are involved, as well as on the structural requirements
that could drive the development of selective modulators of PRMT activity.
Here we report a deconstruction–reconstruction approach that,
starting from a series of type I PRMT inhibitors previously identified
by us, allowed for the identification of potent and selective inhibitors
of PRMT4, which regardless of the low cell permeability show an evident
reduction of arginine methylation levels in MCF7 cells and a marked
reduction of proliferation. We also report crystal structures with
various PRMTs supporting the observed specificity and selectivity.
Collapse
Affiliation(s)
| | | | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | | | | |
Collapse
|
15
|
Kim EJ, Liu P, Zhang S, Donahue K, Wang Y, Schehr J, Wolfe S, Dickerson A, Lu L, Rui L, Zhong X, Wisinski K, Yu M, Suzuki A, Lang J, Ong I, Xu W. BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity. Nucleic Acids Res 2021; 49:12211-12233. [PMID: 34865122 PMCID: PMC8643633 DOI: 10.1093/nar/gkab1122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer L Schehr
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Serena K Wolfe
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Lu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Lixin Rui
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison WI, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Irene M Ong
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics. School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
16
|
Hao F, Tang LC, Sun JX, Li WX, Zhao Y, Xu XH, Jin LP. Decreased nitric oxide content mediated by asymmetrical dimethylarginine and protein l-arginine methyltransferase 3 in macrophages induces trophoblast apoptosis: a potential cause of recurrent miscarriage. Hum Reprod 2021; 36:3049-3061. [PMID: 34647126 DOI: 10.1093/humrep/deab225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is the protein l-arginine methyltransferase 3 (PRMT3)/asymmetrical dimethylarginine (ADMA)/nitric oxide (NO) pathway involved in the development of recurrent miscarriage (RM), and what is the potential mechanism? SUMMARY ANSWER Elevated levels of PRMT3 and ADMA inhibit NO formation in the decidua, thereby impairing the functions of trophoblast cells at the maternal-foetal interface. WHAT IS KNOWN ALREADY Decreased NO bioavailability is associated with RM. ADMA, an endogenous inhibitor of nitric oxide synthase (NOS), is derived from the methylation of protein arginine residues by PRMTs and serves as a predictor of mortality in critical illness. STUDY DESIGN, SIZE, DURATION A total of 145 women with RM and 149 healthy women undergoing elective termination of an early normal pregnancy were enrolled. Ninety-six female CBA/J, 24 male DBA/2 and 24 male BALB/c mice were included. CBA/J × DBA/2 matings represent the abortion group, while CBA/J × BALB/c matings represent the normal control group. The CBA/J pregnant mice were then categorised into four groups: (i) normal + vehicle group (n = 28), (ii) abortion + vehicle group (n = 28), (iii) normal + SGC707 (a PRMT3 inhibitor) group (n = 20) and (iv) abortion + SGC707 group (n = 20). All injections were made intraperitoneally on Days 0.5, 3.5 and 6.5 of pregnancy. Decidual tissues were collected on Days 8.5, 9.5 and 10.5 of gestation. The embryo resorption rates were calculated on Day 9.5 and Day 10.5 of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS NO concentration, ADMA content, NOS activity, expression levels of NOS and PRMTs in decidual tissues were determined using conventional assay kits or western blotting. PRMT3 expression was further analysed in decidual stromal cells, macrophages and natural killer cells. A co-culture system between decidual macrophages (DMs) and HTR-8/SVneo trophoblasts was constructed to study the roles of the PRMT3/ADMA/NO signalling pathway. Trophoblast apoptosis was analysed via Annexin V-fluorescein isothiocyanate/propidium iodide staining. CBA/J × DBA/2 mouse models were used to investigate the effects of SGC707 on embryo resorption rates. MAIN RESULTS AND THE ROLE OF CHANCE Our results show that NO concentration and NOS activity were decreased, but ADMA content and PRMT3 expression were increased in the decidua of RM patients. Moreover, compared with the normal control subjects, PRMT3 expression was significantly up-regulated in the macrophages but not in the natural killer cells or stromal cells of the decidua from RM patients. The inhibition of PRMT3 results in a significant decrease in ADMA accumulation and an increase in NO concentration in macrophages. When co-cultured with DMs, which were treated with SGC707 and ADMA, trophoblast apoptosis was suppressed and induced, respectively. In vivo experiments revealed that the administration of SGC707 reduced the embryo resorption rate of CBA/J × DBA/2 mice. LIMITATIONS, REASONS FOR CAUTION All sets of experiments were not performed with the same samples. The main reason is that each tissue needs to be reserved for clinical diagnosis and only a small piece of each tissue can be cut and collected for this study. WIDER IMPLICATIONS OF THE FINDINGS Our results indicate that the PRMT3/ADMA/NO pathway is a potential marker and target for the clinical diagnosis and therapy of RM. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2017YFC1001401), National Natural Science Foundation of China (81730039, 82071653, 81671460, 81971384 and 82171657) and Shanghai Municipal Medical and Health Discipline Construction Projects (2017ZZ02015). The authors have declared no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Fan Hao
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin-Chen Tang
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Xue Sun
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongbo Zhao
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Genois MM, Gagné JP, Yasuhara T, Jackson J, Saxena S, Langelier MF, Ahel I, Bedford MT, Pascal JM, Vindigni A, Poirier GG, Zou L. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol Cell 2021; 81:784-800.e8. [PMID: 33412112 PMCID: PMC7897296 DOI: 10.1016/j.molcel.2020.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.
Collapse
Affiliation(s)
- Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, QC G1V 0A6, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec G1V 4G2, Canada
| | - Takaaki Yasuhara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, QC G1V 0A6, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec G1V 4G2, Canada
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Suresh S, Huard S, Dubois T. CARM1/PRMT4: Making Its Mark beyond Its Function as a Transcriptional Coactivator. Trends Cell Biol 2021; 31:402-417. [PMID: 33485722 DOI: 10.1016/j.tcb.2020.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), identified 20 years ago as a coregulator of transcription, is an enzyme that catalyzes arginine methylation of proteins. Beyond its well-established involvement in the regulation of transcription, the physiological functions of CARM1 are still poorly understood. However, recent studies have revealed novel roles of CARM1 in autophagy, metabolism, paraspeckles, and early development. In addition, CARM1 is emerging as an attractive therapeutic target and a drug response biomarker for certain types of cancer. Here, we provide a comprehensive overview of the structure of CARM1 and its post-translational modifications, its various functions, apart from transcriptional coactivation, and its involvement in cancer.
Collapse
Affiliation(s)
- Samyuktha Suresh
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Solène Huard
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Thierry Dubois
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France.
| |
Collapse
|
19
|
Cheng D, Gao G, Di Lorenzo A, Jayne S, Hottiger MO, Richard S, Bedford MT. Genetic evidence for partial redundancy between the arginine methyltransferases CARM1 and PRMT6. J Biol Chem 2020; 295:17060-17070. [PMID: 33008887 PMCID: PMC7863876 DOI: 10.1074/jbc.ra120.014704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Indexed: 02/03/2023] Open
Abstract
CARM1 is a protein arginine methyltransferase (PRMT) that acts as a coactivator in a number of transcriptional programs. CARM1 orchestrates this coactivator activity in part by depositing the H3R17me2a histone mark in the vicinity of gene promoters that it regulates. However, the gross levels of H3R17me2a in CARM1 KO mice did not significantly decrease, indicating that other PRMT(s) may compensate for this loss. We thus performed a screen of type I PRMTs, which revealed that PRMT6 can also deposit the H3R17me2a mark in vitro CARM1 knockout mice are perinatally lethal and display a reduced fetal size, whereas PRMT6 null mice are viable, which permits the generation of double knockouts. Embryos that are null for both CARM1 and PRMT6 are noticeably smaller than CARM1 null embryos, providing in vivo evidence of redundancy. Mouse embryonic fibroblasts (MEFs) from the double knockout embryos display an absence of the H3R17me2a mark during mitosis and increased signs of DNA damage. Moreover, using the combination of CARM1 and PRMT6 inhibitors suppresses the cell proliferation of WT MEFs, suggesting a synergistic effect between CARM1 and PRMT6 inhibitions. These studies provide direct evidence that PRMT6 also deposits the H3R17me2a mark and acts redundantly with CARM1.
Collapse
Affiliation(s)
- Donghang Cheng
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Center, University of Leicester, Leicester, United Kingdom; Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Stephane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Medicine and Oncology, McGill University, Montréal, Québec, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA.
| |
Collapse
|
20
|
CARM1 inhibition reduces histone acetyltransferase activity causing synthetic lethality in CREBBP/EP300-mutated lymphomas. Leukemia 2020; 34:3269-3285. [PMID: 32576962 PMCID: PMC7688486 DOI: 10.1038/s41375-020-0908-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Somatic mutations affecting CREBBP and
EP300 are a hallmark of Diffuse Large B Cell Lymphoma
(DLBCL). These mutations are frequently monoallelic, within the histone
acetyltransferase (HAT) domain and usually mutually exclusive, suggesting that
they might affect a common pathway and their residual WT expression is required
for cell survival. Using in vitro and in vivo
models, we found that inhibition of CARM1 activity (CARM1i) slows DLBCL growth
and that the levels of sensitivity are positively correlated with the
CREBBP/EP300 mutation load. Conversely, treatment of DLBCLs
that do not have CREBBP/EP300 mutations with CARM1i and a
CBP/p300 inhibitor revealed a strong synergistic effect. Our mechanistic data
show that CARM1i further reduces the HAT activity of CBP genome wide and
downregulates CBP target genes in DLBCL cells, resulting in a synthetic
lethality that leverages the mutational status of CREBBP/EP300
as a biomarker for the use of small molecule inhibitors of CARM1 in DLBCL and
other cancers.
Collapse
|
21
|
Guo J, Zhang Q, Su Y, Lu X, Wang Y, Yin M, Hu W, Wen W, Lei QY. Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1394-1405. [PMID: 32157557 DOI: 10.1007/s11427-019-1562-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/15/2019] [Indexed: 10/24/2022]
Abstract
Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway (PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A (RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1 (CARM1) and is methylated at arginine 42 (R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis.
Collapse
Affiliation(s)
- Jizheng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qixiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Su
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaochen Lu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yiping Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenyu Wen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qun-Ying Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Yang G, Zhou C, Wang R, Huang S, Wei Y, Yang X, Liu Y, Li J, Lu Z, Ying W, Li X, Jing N, Huang X, Yang H, Qiao Y. Base-Editing-Mediated R17H Substitution in Histone H3 Reveals Methylation-Dependent Regulation of Yap Signaling and Early Mouse Embryo Development. Cell Rep 2020; 26:302-312.e4. [PMID: 30625312 DOI: 10.1016/j.celrep.2018.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022] Open
Abstract
The coactivator-associated arginine methyltransferase CARM1 catalyzes the methylation of histone H3 arginine 17/26 (H3R17/26me) and non-histone proteins at arginine residues to regulate gene transactivation through profiling or Carm1 overexpression assays. However, the direct relationship between H3R17/26me and its causal role in mouse embryo development remains largely unclear. Here, we use rAPOBEC1-XTEN-Cas9n-UGI (BE3) to efficiently introduce a point mutation (R17H) at multiple Hist1/2H3 loci and a premature-stop codon into the catalytic domain of CARM1 in mouse embryos, resulting in remarkable downregulation of H3R17me levels and developmental defects in pre-implantation and fetal embryos. Transcriptomic analysis reveals that Yap1 and cell cycle signaling pathways are dysregulated in Carm1 truncation and H3R17H substitution embryos, and Yap1 overexpression could rescue the base-editing-elicited defects. Our data establish the direct regulatory relationship between CARM1-mediated H3R17me and early mouse embryo development and demonstrate that Yap1 acts downstream of CARM1-mediated H3R17me to regulate the mouse embryo development.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ran Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianfa Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Naihe Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
24
|
vanLieshout TL, Ljubicic V. The emergence of protein arginine methyltransferases in skeletal muscle and metabolic disease. Am J Physiol Endocrinol Metab 2019; 317:E1070-E1080. [PMID: 31593503 DOI: 10.1152/ajpendo.00251.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins and thus alter the stability, localization, or activity of the substrate. In doing so, PRMTs mediate a variety of intracellular functions that are essential for survival. Additionally, PRMT dysregulation is involved in a number of the most prevalent health disorders, including cancer and neurodegenerative and cardiovascular diseases, as well as in the aging process. Investigations of PRMT biology in skeletal muscle cells began in 2002, and since then these enzymes have emerged as regulators of skeletal muscle phenotype determination, maintenance, and remodeling. Specifically, more recent in vivo studies have revealed that PRMTs impact multiple aspects of skeletal muscle biology, including satellite cell function and phenotypic plasticity in response to exercise and disuse. Skeletal muscle plays critically important roles in regulating whole body metabolism, and recent investigations have also begun elucidating PRMT expression and function under conditions of metabolic dysfunction. The goals of this review are to 1) summarize the literature on PRMT biology in skeletal muscle with a particular emphasis on the in vivo evidence and 2) survey PRMTs in metabolic disorders, namely, obesity and type 2 diabetes mellitus. We also identify notable knowledge gaps therein and present opportunities to further expand our understanding of these enzymes so critical to health and disease.
Collapse
Affiliation(s)
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
vanLieshout TL, Bonafiglia JT, Gurd BJ, Ljubicic V. Protein arginine methyltransferase biology in humans during acute and chronic skeletal muscle plasticity. J Appl Physiol (1985) 2019; 127:867-880. [PMID: 31369333 DOI: 10.1152/japplphysiol.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins. While dysregulation of PRMTs has been documented in a number of the most prevalent diseases, our understanding of PRMT biology in human skeletal muscle is limited. This study served to address this knowledge gap by exploring PRMT expression and function in human skeletal muscle in vivo and characterizing PRMT biology in response to acute and chronic stimuli for muscle plasticity. Fourteen untrained, healthy men performed one session of sprint interval exercise (SIE) before completing four bouts of SIE per week for 6 wk as part of a sprint interval training (SIT) program. Throughout this time course, multiple muscle biopsies were collected. We found that at basal, resting conditions PRMT1, PRMT4, PRMT5, and PRMT7 were the most abundantly expressed PRMT mRNAs in human quadriceps muscle. Additionally, the broad subcellular distribution pattern of PRMTs suggests methyltransferase activity throughout human myofibers. A spectrum of PRMT-specific inductions, and decrements, in expression and activity were observed in response to acute and chronic cues for muscle plasticity. In conclusion, our findings demonstrate that PRMTs are present and active in human skeletal muscle in vivo and that there are distinct, enzyme-specific responses and adaptations in PRMT biology to acute and chronic stimuli for muscle plasticity. This work advances our understanding of this critical family of enzymes in humans.NEW & NOTEWORTHY This is the first report of protein arginine methyltransferase (PRMT) biology in human skeletal muscle in vivo. We observed that PRMT1, -4, -5, and -7 were the most abundant PRMT mRNAs in human muscle and that PRMT proteins exhibited a broad subcellular localization that included myonuclear, cytosolic, and sarcolemmal compartments. Acute exercise and chronic training evoked PRMT-specific alterations in expression and activity. This study reveals a hitherto unknown complexity to PRMT biology in human muscle.
Collapse
Affiliation(s)
| | - Jacob T Bonafiglia
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Birchmount Park Collegiate Institute, Scarborough, Ontario, Canada
| |
Collapse
|
26
|
Bao J, Rousseaux S, Shen J, Lin K, Lu Y, Bedford MT. The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis. Nucleic Acids Res 2019; 46:4327-4343. [PMID: 29659998 PMCID: PMC5961101 DOI: 10.1093/nar/gky240] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 01/04/2023] Open
Abstract
CARM1 is a protein arginine methyltransferase (PRMT) that has been firmly implicated in transcriptional regulation. However, the molecular mechanisms by which CARM1 orchestrates transcriptional regulation are not fully understood, especially in a tissue-specific context. We found that Carm1 is highly expressed in the mouse testis and localizes to the nucleus in spermatids, suggesting an important role for Carm1 in spermiogenesis. Using a germline-specific conditional Carm1 knockout mouse model, we found that it is essential for the late stages of haploid germ cell development. Loss of Carm1 led to a low sperm count and deformed sperm heads that can be attributed to defective elongation of round spermatids. RNA-seq analysis of Carm1-null spermatids revealed that the deregulated genes fell into similar categories as those impacted by p300-loss, thus providing a link between Carm1 and p300. Importantly, p300 has long been known to be a major Carm1 substrate. We found that CREMτ, a key testis-specific transcription factor, associates with p300 through its activator, ACT, and that this interaction is negatively regulated by the methylation of p300 by Carm1. Thus, high nuclear Carm1 levels negatively impact the p300•ACT•CREMτ axis during late stages of spermiogenesis.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, La Tronche, France
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
27
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
28
|
Cheng D, Vemulapalli V, Lu Y, Shen J, Aoyagi S, Fry CJ, Yang Y, Foulds CE, Stossi F, Treviño LS, Mancini MA, O'Malley BW, Walker CL, Boyer TG, Bedford MT. CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci Alliance 2018; 1:e201800117. [PMID: 30456381 PMCID: PMC6238599 DOI: 10.26508/lsa.201800117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
CARM1 methylates MED12 at arginine 1899 to generate a TDRD3 binding site, which in turn regulates the ability of mediator to interact with activating ncRNAs and modulate gene expression. The coactivator-associated arginine methyltransferase (CARM1) functions as a regulator of transcription by methylating a diverse array of substrates. To broaden our understanding of CARM1's mechanistic actions, we sought to identify additional substrates for this enzyme. To do this, we generated CARM1 substrate motif antibodies, and used immunoprecipitation coupled with mass spectrometry to identify cellular targets of CARM1, including mediator complex subunit 12 (MED12) and the lysine methyltransferase KMT2D. Both of these proteins are implicated in enhancer function. We identified the major CARM1-mediated MED12 methylation site as arginine 1899 (R1899), which interacts with the Tudor domain–containing effector molecule, TDRD3. Chromatin immunoprecipitation–seq studies revealed that CARM1 and the methyl mark it deposits are tightly associated with ERα-specific enhancers and positively modulate transcription of estrogen-regulated genes. In addition, we showed that the methylation of MED12, at the R1899 site, and the recruitment of TDRD3 by this methylated motif are critical for the ability of MED12 to interact with activating noncoding RNAs.
Collapse
Affiliation(s)
- Donghang Cheng
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Vidyasiri Vemulapalli
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| | | | | | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lindsey S Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, Smithville, TX, USA
| |
Collapse
|
29
|
CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. J Mol Biol 2018; 430:4168-4182. [PMID: 30153436 PMCID: PMC6186513 DOI: 10.1016/j.jmb.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at RA-responsive elements and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1's importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42) and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation.
Collapse
|
30
|
Greenblatt SM, Man N, Hamard PJ, Asai T, Karl D, Martinez C, Bilbao D, Stathias V, Jermakowicz AM, Duffort S, Tadi M, Blumenthal E, Newman S, Vu L, Xu Y, Liu F, Schurer SC, McCabe MT, Kruger RG, Xu M, Yang FC, Tenen DG, Watts J, Vega F, Nimer SD. CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell 2018; 33:1111-1127.e5. [PMID: 29894694 PMCID: PMC6191185 DOI: 10.1016/j.ccell.2018.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/02/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Sarah M Greenblatt
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pierre-Jacques Hamard
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Karl
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Anna M Jermakowicz
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Stephanie Duffort
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Madhavi Tadi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ezra Blumenthal
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Newman
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ly Vu
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fan Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephan C Schurer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33136, USA; Center for Computational Science, University of Miami, Miami, FL 33136, USA
| | - Michael T McCabe
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Ryan G Kruger
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Karakashev S, Zhu H, Wu S, Yokoyama Y, Bitler BG, Park PH, Lee JH, Kossenkov AV, Gaonkar KS, Yan H, Drapkin R, Conejo-Garcia JR, Speicher DW, Ordog T, Zhang R. CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 2018; 9:631. [PMID: 29434212 PMCID: PMC5809368 DOI: 10.1038/s41467-018-03031-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
Abstract
CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in human cancers. However, clinically applicable cancer therapeutic strategies based on CARM1 expression remain to be explored. Here, we report that EZH2 inhibition is effective in CARM1-expressing epithelial ovarian cancer. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppresses the growth of CARM1-expressing, but not CARM1-deficient, ovarian tumors in two xenograft models and improves the survival of mice bearing CARM1-expressing ovarian tumors. The observed selectivity correlates with reactivation of EZH2 target tumor suppressor genes in a CARM1-dependent manner. Mechanistically, CARM1 promotes EZH2-mediated silencing of EZH2/BAF155 target tumor suppressor genes by methylating BAF155, which leads to the displacement of BAF155 by EZH2. Together, these results indicate that pharmacological inhibition of EZH2 represents a novel therapeutic strategy for CARM1-expressing cancers.
Collapse
Affiliation(s)
- Sergey Karakashev
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hengrui Zhu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuhki Yokoyama
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Pyoung-Hwa Park
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jeong-Heon Lee
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Krutika Satish Gaonkar
- Division of Biostatistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huihuang Yan
- Division of Biostatistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - David W Speicher
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Berberich H, Terwesten F, Rakow S, Sahu P, Bouchard C, Meixner M, Philipsen S, Kolb P, Bauer UM. Identification and in silico structural analysis of Gallus gallus protein arginine methyltransferase 4 (PRMT4). FEBS Open Bio 2017; 7:1909-1923. [PMID: 29226078 PMCID: PMC5715347 DOI: 10.1002/2211-5463.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Protein arginine methyltransferase 4 (PRMT4) is an essential epigenetic regulator of fundamental and conserved processes during vertebrate development, such as pluripotency and differentiation. Surprisingly, PRMT4 homologs have been identified in nearly all vertebrate classes except the avian genome. This raises the possibility that in birds PRMT4 functions are taken over by other PRMT family members. Here, we reveal the existence of a bona fidePRMT4 homolog in the chicken, Gallus gallus. Using a biochemical approach, we initially purified a putative chicken PRMT4 protein and thus provided the first evidence for the presence of an endogenous PRMT4‐specific enzymatic activity toward histone H3 arginine 17 (H3R17) in avian cells. We then isolated a G. gallus PRMT4 (ggPRMT4) transcript encompassing the complete open reading frame. Recombinant ggPRMT4 possesses intrinsic methyltransferase activity toward H3R17. CRISPR/Cas9‐mediated deletion of ggPRMT4 demonstrated that the transcript identified here encodes avian PRMT4. Combining protein–protein docking and homology modeling based on published crystal structures of murine PRMT4, we found a strong structural similarity of the catalytic core domain between chicken and mammalian PRMT4. Strikingly, in silico structural comparison of the N‐terminal Pleckstrin homology (PH) domain of avian and murine PRMT4 identified strictly conserved amino acids that are involved in an interaction interface toward the catalytic core domain, facilitating for the first time a prediction of the relative spatial arrangement of these two domains. Our novel findings are particularly exciting in light of the essential function of the PH domain in substrate recognition and methylation by PRMT4.
Collapse
Affiliation(s)
- Hannah Berberich
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| | - Felix Terwesten
- Institute of Pharmaceutical Chemistry Philipps-University Marburg Germany
| | - Sinja Rakow
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| | - Caroline Bouchard
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| | - Marion Meixner
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| | - Sjaak Philipsen
- Department of Cell Biology Erasmus MC Rotterdam The Netherlands
| | - Peter Kolb
- Institute of Pharmaceutical Chemistry Philipps-University Marburg Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT) Philipps-University Marburg Germany
| |
Collapse
|
34
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
35
|
Yi P, Wang Z, Feng Q, Chou CK, Pintilie GD, Shen H, Foulds CE, Fan G, Serysheva I, Ludtke SJ, Schmid MF, Hung MC, Chiu W, O'Malley BW. Structural and Functional Impacts of ER Coactivator Sequential Recruitment. Mol Cell 2017; 67:733-743.e4. [PMID: 28844863 DOI: 10.1016/j.molcel.2017.07.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chao-Kai Chou
- Departments of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Grigore D Pintilie
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Irina Serysheva
- Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Departments of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wah Chiu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Shishkova E, Zeng H, Liu F, Kwiecien NW, Hebert AS, Coon JJ, Xu W. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun 2017; 8:15571. [PMID: 28537268 PMCID: PMC5458078 DOI: 10.1038/ncomms15571] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) introduce arginine methylation, a post-translational modification with the increasingly eminent role in normal physiology and disease. PRMT4 or coactivator-associated arginine methyltransferase 1 (CARM1) is a propitious target for cancer therapy; however, few CARM1 substrates are known, and its mechanism of substrate recognition is poorly understood. Here we employed a quantitative mass spectrometry approach to globally profile CARM1 substrates in breast cancer cell lines. We identified >130 CARM1 protein substrates and validated in vitro >90% of sites they encompass. Bioinformatics analyses reveal enrichment of proline-containing motifs, in which both methylation sites and their proximal sequences are frequently targeted by somatic mutations in cancer. Finally, we demonstrate that the N-terminus of CARM1 is involved in substrate recognition and nearly indispensable for substrate methylation. We propose that development of CARM1-specific inhibitors should focus on its N-terminus and predict that other PRMTs may employ similar mechanism for substrate recognition.
Collapse
Affiliation(s)
- Evgenia Shishkova
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Nicholas W. Kwiecien
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Alexander S. Hebert
- The Genome Center of Wisconsin, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Joshua J. Coon
- The Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
- The Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
37
|
Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, Gao X, Xu YY, Zou SW, Liu YB, Cheng JK, Lei QY. Arginine Methylation of MDH1 by CARM1 Inhibits Glutamine Metabolism and Suppresses Pancreatic Cancer. Mol Cell 2016; 64:673-687. [PMID: 27840030 DOI: 10.1016/j.molcel.2016.09.028] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022]
Abstract
Distinctive from their normal counterparts, cancer cells exhibit unique metabolic dependencies on glutamine to fuel anabolic processes. Specifically, pancreatic ductal adenocarcinoma (PDAC) cells rely on an unconventional metabolic pathway catalyzed by aspartate aminotransferase, malate dehydrogenase 1 (MDH1), and malic enzyme 1 to rewire glutamine metabolism and support nicotinamide adenine dinucleotide phosphate (NADPH) production. Here, we report that methylation on arginine 248 (R248) negatively regulates MDH1. Protein arginine methyltransferase 4 (PRMT4/CARM1) methylates and inhibits MDH1 by disrupting its dimerization. Knockdown of MDH1 represses mitochondria respiration and inhibits glutamine metabolism, which sensitizes PDAC cells to oxidative stress and suppresses cell proliferation. Meanwhile, re-expression of wild-type MDH1, but not its methylation-mimetic mutant, protects cells from oxidative injury and restores cell growth and clonogenic activity. Importantly, MDH1 is hypomethylated at R248 in clinical PDAC samples. Our study reveals that arginine methylation of MDH1 by CARM1 regulates cellular redox homeostasis and suppresses glutamine metabolism of pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wei Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Shi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shao-Wu Zou
- Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People's Hospital, Tong Ji University, Shanghai 200072, China
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jin-Ke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qun-Ying Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
38
|
Ambati S, Yu P, McKinney EC, Kandasamy MK, Hartzell D, Baile CA, Meagher RB. Adipocyte nuclei captured from VAT and SAT. BMC OBESITY 2016; 3:35. [PMID: 27462403 PMCID: PMC4949929 DOI: 10.1186/s40608-016-0112-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Background Obesity-related comorbidities are thought to result from the reprogramming of the epigenome in numerous tissues and cell types, and in particular, mature adipocytes within visceral and subcutaneous adipose tissue, VAT and SAT. The cell-type specific chromatin remodeling of mature adipocytes within VAT and SAT is poorly understood, in part, because of the difficulties of isolating and manipulating large fragile mature adipocyte cells from adipose tissues. Methods We constructed MA-INTACT (Mature Adipocyte-Isolation of Nuclei TAgged in specific Cell Types) mice using the adiponectin (ADIPOQ) promoter (ADNp) to tag the surface of mature adipocyte nuclei with a reporter protein. The SUN1mRFP1Flag reporter is comprised of a fragment of the nuclear transmembrane protein SUN1, the fluorescent protein mRFP1, and three copies of the Flag epitope tag. Results Mature adipocyte nuclei were rapidly and efficiently immuno-captured from VAT and SAT (MVA and MSA nuclei, respectively), of MA-INTACT mice. MVA and MSA nuclei contained 1,000 to 10,000-fold higher levels of adipocyte-specific transcripts, ADIPOQ, PPARg2, EDNRB, and LEP, relative to uncaptured nuclei, while the latter expressed higher levels of leukocyte and endothelial cell markers IKZF1, RETN, SERPINF1, SERPINE1, ILF3, and TNFA. MVA and MSA nuclei differentially expressed several factors linked to adipogenesis or obesity-related health risks including CEBPA, KLF2, RETN, SERPINE1, and TNFA. The various nuclear populations dramatically differentially expressed transcripts encoding chromatin remodeler proteins regulating DNA cytosine methylation and hydroxymethylation (TETs, DNMTs, TDG, GADD45s) and nucleosomal histone modification (ARID1A, KAT2B, KDM4A, PRMT1, PRMT5, PAXIP1). Remarkably, MSA and MVA nuclei expressed 200 to 1000-fold higher levels of thermogenic marker transcripts PRDM16 and UCP1. Conclusions The MA-INTACT mouse enables a simple way to perform cell-type specific analysis of highly purified mature adipocyte nuclei from VAT and SAT and increases the statistical significance of data collected on adipocytes. Isolated VAT and SAT adipocyte nuclei expressed distinct patterns of transcripts encoding chromatin remodeling factors and proteins relevant to diabetes, cardiovascular disease, and thermogenesis. The MA-INTACT mouse is an useful model to test the impact of caloric intake, dietary nutrients, exercise, and pharmaceuticals on the epigenome-induced health risks of obesity. Electronic supplementary material The online version of this article (doi:10.1186/s40608-016-0112-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA USA
| | - Ping Yu
- Department of Genetics, University of Georgia, Athens, GA USA
| | | | | | - Diane Hartzell
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | - Clifton A Baile
- Department of Foods and Nutrition, University of Georgia, Athens, GA USA ; Department of Animal and Dairy Science, University of Georgia, Athens, GA USA
| | | |
Collapse
|
39
|
Kaniskan HÜ, Eram MS, Liu J, Smil D, Martini ML, Shen Y, Santhakumar V, Brown PJ, Arrowsmith C, Vedadi M, Jin J. Design and synthesis of selective, small molecule inhibitors of coactivator-associated arginine methyltransferase 1 (CARM1). MEDCHEMCOMM 2016; 7:1793-1796. [PMID: 28042453 DOI: 10.1039/c6md00342g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a type I protein arginine methyltransferase (PRMT) that catalyzes the conversion of arginine into monomethylarginine (MMA) and further into asymmetric dimethylarginine (ADMA). CARM1 methylates histone 3 arginines 17 and 26, as well as numerous non-histone proteins including CBP/p300, SRC-3, NCOA2, PABP1, and SAP49, while also functioning as a coactivator for various proteins that have been linked to cancer such as p53, NF-κβ, β-catenin, E2F1 and steroid hormone receptor ERα. As a result, CARM1 is involved in transcriptional activation, cellular differentiation, cell cycle progression, RNA splicing and DNA damage response. It has been associated with several human cancers including breast, colon, prostate and lung cancers and thus, is a potential oncological target. Herein, we present the design and synthesis of a series of CARM1 inhibitors. Based on a fragment hit, we discovered compound 9 as a potent inhibitor that displayed selectivity for CARM1 over other PRMTs.
Collapse
Affiliation(s)
- H Ü Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - M S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - J Liu
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - D Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - M L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Y Shen
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - V Santhakumar
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - P J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - C Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - M Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
40
|
Sarker RSJ, John-Schuster G, Bohla A, Mutze K, Burgstaller G, Bedford MT, Königshoff M, Eickelberg O, Yildirim AÖ. Coactivator-Associated Arginine Methyltransferase-1 Function in Alveolar Epithelial Senescence and Elastase-Induced Emphysema Susceptibility. Am J Respir Cell Mol Biol 2016; 53:769-81. [PMID: 25906418 DOI: 10.1165/rcmb.2014-0216oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible loss of lung function and is one of the most prevalent and severe diseases worldwide. A major feature of COPD is emphysema, which is the progressive loss of alveolar tissue. Coactivator-associated arginine methyltransferase-1 (CARM1) regulates histone methylation and the transcription of genes involved in senescence, proliferation, and differentiation. Complete loss of CARM1 leads to disrupted differentiation and maturation of alveolar epithelial type II (ATII) cells. We thus hypothesized that CARM1 regulates the development and progression of emphysema. To address this, we investigated the contribution of CARM1 to alveolar rarefication using the mouse model of elastase-induced emphysema in vivo and small interfering (si)RNA-mediated knockdown in ATII-like LA4 cells in vitro. We demonstrate that emphysema progression in vivo is associated with a time-dependent down-regulation of CARM1. Importantly, elastase-treated CARM1 haploinsufficient mice show significantly increased airspace enlargement (52.5 ± 9.6 μm versus 38.8 ± 5.5 μm; P < 0.01) and lung compliance (2.8 ± 0.32 μl/cm H2O versus 2.4 ± 0.4 μl/cm H2O; P < 0.04) compared with controls. The knockdown of CARM1 in LA4 cells led to decreased sirtuin 1 expression (0.034 ± 0.003 versus 0.022 ± 0.001; P < 0.05) but increased expression of p16 (0.27 ± 0.013 versus 0.31 ± 0.010; P < 0.5) and p21 (0.81 ± 0.088 versus 1.28 ± 0.063; P < 0.01) and higher β-galactosidase-positive senescent cells (50.57 ± 7.36% versus 2.21 ± 0.34%; P < 0.001) compared with scrambled siRNA. We further demonstrated that CARM1 haploinsufficiency impairs transdifferentiation and wound healing (32.18 ± 0.9512% versus 8.769 ± 1.967%; P < 0.001) of alveolar epithelial cells. Overall, these results reveal a novel function of CARM1 in regulating emphysema development and premature lung aging via alveolar senescence as well as impaired regeneration, repair, and differentiation of ATII cells.
Collapse
Affiliation(s)
- Rim S J Sarker
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Gerrit John-Schuster
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Alexander Bohla
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Kathrin Mutze
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Gerald Burgstaller
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Mark T Bedford
- 2 Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas; and
| | - Melanie Königshoff
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany.,3 University Hospital of the Ludwig-Maximilians-University, München, Germany
| | - Ali Ö Yildirim
- 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research, Neuherberg, Germany
| |
Collapse
|
41
|
Panamarova M, Cox A, Wicher KB, Butler R, Bulgakova N, Jeon S, Rosen B, Seong RH, Skarnes W, Crabtree G, Zernicka-Goetz M. The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo. Development 2016; 143:1271-83. [PMID: 26952987 PMCID: PMC4852518 DOI: 10.1242/dev.131961] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
Dynamic control of gene expression is essential for the development of a totipotent zygote into an embryo with defined cell lineages. The accessibility of genes responsible for cell specification to transcriptional machinery is dependent on chromatin remodelling complexes such as the SWI\SNF (BAF) complex. However, the role of the BAF complex in early mouse development has remained unclear. Here, we demonstrate that BAF155, a major BAF complex subunit, regulates the assembly of the BAF complex in vivo and regulates lineage specification of the mouse blastocyst. We find that associations of BAF155 with other BAF complex subunits become enriched in extra-embryonic lineages just prior to implantation. This enrichment is attributed to decreased mobility of BAF155 in extra-embryonic compared with embryonic lineages. Downregulation of BAF155 leads to increased expression of the pluripotency marker Nanog and its ectopic expression in extra-embryonic lineages, whereas upregulation of BAF155 leads to the upregulation of differentiation markers. Finally, we show that the arginine methyltransferase CARM1 methylates BAF155, which differentially influences assembly of the BAF complex between the lineages and the expression of pluripotency markers. Together, our results indicate a novel role of BAF-dependent chromatin remodelling in mouse development via regulation of lineage specification. Summary: Associations of BAF155 with other BAF complex subunits are enriched in extra-embryonic lineages prior to implantation, while changes in BAF155 levels modulate the expression of early developmental markers.
Collapse
Affiliation(s)
- Maryna Panamarova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Andy Cox
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Krzysztof B Wicher
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Richard Butler
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Natalia Bulgakova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Shin Jeon
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-747, South Korea
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Rho H Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-747, South Korea
| | | | - Gerald Crabtree
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Magdalena Zernicka-Goetz
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
42
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
43
|
Hein K, Mittler G, Cizelsky W, Kühl M, Ferrante F, Liefke R, Berger IM, Just S, Sträng JE, Kestler HA, Oswald F, Borggrefe T. Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci Signal 2015; 8:ra30. [PMID: 25805888 DOI: 10.1126/scisignal.2005892] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Physiologically, Notch signal transduction plays a pivotal role in differentiation; pathologically, Notch signaling contributes to the development of cancer. Transcriptional activation of Notch target genes involves cleavage of the Notch receptor in response to ligand binding, production of the Notch intracellular domain (NICD), and NICD migration into the nucleus and assembly of a coactivator complex. Posttranslational modifications of the NICD are important for its transcriptional activity and protein turnover. Deregulation of Notch signaling and stabilizing mutations of Notch1 have been linked to leukemia development. We found that the methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1; also known as PRMT4) methylated NICD at five conserved arginine residues within the C-terminal transactivation domain. CARM1 physically and functionally interacted with the NICD-coactivator complex and was found at gene enhancers in a Notch-dependent manner. Although a methylation-defective NICD mutant was biochemically more stable, this mutant was biologically less active as measured with Notch assays in embryos of Xenopus laevis and Danio rerio. Mathematical modeling indicated that full but short and transient Notch signaling required methylation of NICD.
Collapse
Affiliation(s)
- Kerstin Hein
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany. Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany
| | - Gerhard Mittler
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany. BIOSS, Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Wiebke Cizelsky
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany
| | - Robert Liefke
- Department of Cell Biology, Harvard Medical School and Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02215, USA
| | - Ina M Berger
- Department of Internal Medicine II, Center for Internal Medicine, University Medical Center Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, Center for Internal Medicine, University Medical Center Ulm, 89081 Ulm, Germany
| | - J Eric Sträng
- Core Unit Medical Systems Biology, Institute of Neural Information Processing, Ulm University, 89069 Ulm, Germany
| | - Hans A Kestler
- Core Unit Medical Systems Biology, Institute of Neural Information Processing, Ulm University, 89069 Ulm, Germany. Friedrich-Schiller University and Fritz Lipmann Institute, Leibniz Institute for Aging Research, D-07745 Jena, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081 Ulm, Germany.
| | - Tilman Borggrefe
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany. Institute of Biochemistry, University of Giessen, 35392 Giessen, Germany.
| |
Collapse
|
44
|
Morettin A, Baldwin RM, Cote J. Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 2015; 30:177-89. [DOI: 10.1093/mutage/geu039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Magnani L, Lupien M. Chromatin and epigenetic determinants of estrogen receptor alpha (ESR1) signaling. Mol Cell Endocrinol 2014; 382:633-641. [PMID: 23684889 DOI: 10.1016/j.mce.2013.04.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
The oestrogen receptor alpha (ESR1) is a transcription factor that potentiates the response to diverse stimuli, including oestrogen and growth factors, in various tissue types. Its recruitment to the DNA is directly regulated by the chromatin landscape, inclusive of chromatin compaction and epigenetic modifications. In this review we discuss our current understanding of the interplay between ESR1 signaling and the chromatin landscape. We present how the chromatin landscape primes the lineage-specific response and contributes to stimuli-specific signaling. Finally, we discuss recent efforts to decipher the relationship between genetic and epigenetic as it relates to ESR1 signaling in breast cancer.
Collapse
Affiliation(s)
- Luca Magnani
- Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Mathieu Lupien
- Ontario Cancer Institute, Princess Margaret Cancer Centre-University Health Network, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A, Wisinski KB, Huang W, Cai W, Pike JW, Yuan M, Ahlquist P, Xu W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 2014; 25:21-36. [PMID: 24434208 PMCID: PMC4004525 DOI: 10.1016/j.ccr.2013.12.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/29/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a coactivator for various cancer-relevant transcription factors, is overexpressed in breast cancer. To elucidate the functions of CARM1 in tumorigenesis, we knocked out CARM1 from several breast cancer cell lines using Zinc-Finger Nuclease technology, which resulted in drastic phenotypic and biochemical changes. The CARM1 KO cell lines enabled identification of CARM1 substrates, notably the SWI/SNF core subunit BAF155. Methylation of BAF155 at R1064 was found to be an independent prognostic biomarker for cancer recurrence and to regulate breast cancer cell migration and metastasis. Furthermore, CARM1-mediated BAF155 methylation affects gene expression by directing methylated BAF155 to unique chromatin regions (e.g., c-Myc pathway genes). Collectively, our studies uncover a mechanism by which BAF155 acquires tumorigenic functions via arginine methylation.
Collapse
Affiliation(s)
- Lu Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zibo Zhao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sandeep Saha
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Huang
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Cheng H, Qin Y, Fan H, Su P, Zhang X, Zhang H, Zhou G. Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes. Diagn Pathol 2013; 8:129. [PMID: 23915145 PMCID: PMC3766166 DOI: 10.1186/1746-1596-8-129] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coactivator-associated arginine methyltransferase 1 (CARM1) belongs to the protein arginine methyltransferase family. CARM1 has been reported to be associated with high grade tumors in breast cancer. It still remains unknown the expression pattern of CARM1 in breast cancer and its relationships with clinicopathological characteristics and molecular subtypes. METHODS Two hundred forty-seven invasive breast cancer cases were collected and prepared for tissue array. There were thirty-seven tumors with benign glandular epithelium adjacent to the tumors among these cases. Molecular subtype and CARM1 expression were investigated using immunohistochemistry. RESULTS Cell staining was observed in the cytoplasm and/or nucleus. Staining for CARM1 was significantly stronger in adenocarcinoma compared with adjacent benign epithelium. There is a significant correlation between CARM1 overexpression with young age, high grade, estrogen receptor (ER) and progesterone receptor (PR) negative, increased p53 expression, and high Ki-67 index. Our study demonstrated CARM1 overexpression was associated with an increase in the protein expression of HER2. Furthermore, our data indicated CARM1-overexpression rate were remarkably higher in HER2 subtype (69.6%), luminal B subtype (59.6%) and TN subtype (57.1%) compared with luminal A subtype (41.3%). CONCLUSIONS CARM1 expression was increased in invasive breast cancer. CARM1 overexpression was associated with poorly characterized clinicopathologic parameters and HER2 overexpression. There were significant differences between different molecular subtypes in their relationship to CARM1 overexpression. Our results support the value of using CARM1 in prognostic stratification of breast cancer patients and its potential therapeutic implications in targeting treatment. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4116338491022965.
Collapse
Affiliation(s)
- Hongxia Cheng
- Department of Pathology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, People’s Republic of China
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, 324#, Jing 5 Rd, Jinan, Shandong 250021, People’s Republic of China
| | - Yejun Qin
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, 324#, Jing 5 Rd, Jinan, Shandong 250021, People’s Republic of China
| | - Hui Fan
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, 324#, Jing 5 Rd, Jinan, Shandong 250021, People’s Republic of China
| | - Peng Su
- Department of Pathology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, People’s Republic of China
| | - Xiaofang Zhang
- Department of Pathology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, People’s Republic of China
| | - Hui Zhang
- Department of Pathology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, People’s Republic of China
| | - Gengyin Zhou
- Department of Pathology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, People’s Republic of China
| |
Collapse
|
48
|
Wang L, Charoensuksai P, Watson NJ, Wang X, Zhao Z, Coriano CG, Kerr LR, Xu W. CARM1 automethylation is controlled at the level of alternative splicing. Nucleic Acids Res 2013; 41:6870-80. [PMID: 23723242 PMCID: PMC3737532 DOI: 10.1093/nar/gkt415] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Co-activator-associated arginine methyltransferase 1 (CARM1) is subjected to multiple post-translational modifications. Our previous finding that automethylation of CARM1 is essential for regulation of transcription and pre-mRNA splicing prompted us to investigate how automethylation is regulated. Here, we report that automethylation is regulated by alternative splicing of CARM1 mRNA to remove exon 15, containing the automethylation site. Specifically, we find that two major alternative transcripts encoding full-length CARM1 (CARM1FL) and CARM1 with exon 15 deleted (CARM1ΔE15) exist in cells, and each transcript produces the expected protein. Further biochemical characterizations of the automethylation-defective mutant and CARM1ΔE15 reveal overlapping yet different properties. Interestingly, other arginine methylation substrates also have missing exons encompassing the site(s) of methylation, suggesting that protein arginine methylation level may, in general, be controlled by the alternative splicing mechanism. Finally, we observed differential distribution of CARM1FL and CARM1ΔE15 in epithelial and stromal cells in normal mouse mammary gland. Thus, alternative splicing not only serves as the determinant for CARM1 automethylation but also generates cell type-specific isoforms that might regulate normal ERα biology in the mammary gland.
Collapse
Affiliation(s)
- Lu Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zeng H, Wu J, Bedford MT, Sbardella G, Hoffmann FM, Bi K, Xu W. A TR-FRET-based functional assay for screening activators of CARM1. Chembiochem 2013; 14:827-35. [PMID: 23585185 PMCID: PMC3828750 DOI: 10.1002/cbic.201300029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/07/2022]
Abstract
Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions.
Collapse
Affiliation(s)
- Hao Zeng
- Graduate Program in Cellular and Molecular Biology, McArdle Laboratory for Cancer Research and Carbone Comprehensive Cancer Center, University of Wisconsin, 1400 University Ave, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Streubel G, Bouchard C, Berberich H, Zeller MS, Teichmann S, Adamkiewicz J, Müller R, Klempnauer KH, Bauer UM. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet 2013; 9:e1003343. [PMID: 23505388 PMCID: PMC3591284 DOI: 10.1371/journal.pgen.1003343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/10/2013] [Indexed: 01/10/2023] Open
Abstract
Protein arginine methyltransferase 4 (PRMT4)–dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling. Our manuscript deals with the Protein arginine methyltransferase 4 (PRMT4), which modifies arginine residues in histones and other chromatin-associated proteins and plays an important role in the regulation of gene expression. We addressed the question of how the transcriptional function of PRMT4 might contribute to cell lineage specification despite its ubiquitious expression pattern and how this could explain its involvement in tumorigenesis. As protein associations are likely to provide an answer to this question, we attempted to identify novel interaction partners of PRMT4 using a biochemical approach. By this means, we found that PRMT4 binds Mi2α and its close relative Mi2β. In the search for the biological role of this interaction, we found that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. Depletion of PRMT4 or Mi2α/β in human erythroleukemia cells resulted in deregulated cell proliferation and differentiation resembling the effects caused by c-Myb depletion. Our findings unravel an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling and gene activation and identify both coregulators as attractive targets for leukaemia research and therapy in the future.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Hannah Berberich
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Marc S. Zeller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | | | - Jürgen Adamkiewicz
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|