1
|
Huoh YS, Wu B, Park S, Yang D, Bansal K, Greenwald E, Wong WP, Mathis D, Hur S. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nat Commun 2020; 11:1625. [PMID: 32242017 PMCID: PMC7118133 DOI: 10.1038/s41467-020-15448-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
Aggregate-like biomolecular assemblies are emerging as new conformational states with functionality. Aire, a transcription factor essential for central T cell tolerance, forms large aggregate-like assemblies visualized as nuclear foci. Here we demonstrate that Aire utilizes its caspase activation recruitment domain (CARD) to form filamentous homo-multimers in vitro, and this assembly mediates foci formation and transcriptional activity. However, CARD-mediated multimerization also makes Aire susceptible to interaction with promyelocytic leukemia protein (PML) bodies, sites of many nuclear processes including protein quality control of nuclear aggregates. Several loss-of-function Aire mutants, including those causing autoimmune polyendocrine syndrome type-1, form foci with increased PML body association. Directing Aire to PML bodies impairs the transcriptional activity of Aire, while dispersing PML bodies with a viral antagonist restores this activity. Our study thus reveals a new regulatory role of PML bodies in Aire function, and highlights the interplay between nuclear aggregate-like assemblies and PML-mediated protein quality control.
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- NTU Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sehoon Park
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Darren Yang
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Kushagra Bansal
- Department of Immunology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, India
| | - Emily Greenwald
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wesley P Wong
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diane Mathis
- Department of Immunology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
- Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
3
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
4
|
Gu B, Lambert JP, Cockburn K, Gingras AC, Rossant J. AIRE is a critical spindle-associated protein in embryonic stem cells. eLife 2017; 6:e28131. [PMID: 28742026 PMCID: PMC5560860 DOI: 10.7554/elife.28131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE's mitotic function. Combined maternal and zygotic knockout further revealed Aire's critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations.
Collapse
Affiliation(s)
- Bin Gu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | | | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Shao W, Zumer K, Fujinaga K, Peterlin BM. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator). J Biol Chem 2016; 291:17953-63. [PMID: 27365398 PMCID: PMC5016183 DOI: 10.1074/jbc.m116.724401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus.
Collapse
Affiliation(s)
- Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - Kristina Zumer
- Max-Planck-Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| |
Collapse
|
6
|
Abramson J, Goldfarb Y. AIRE: From promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol 2016; 46:22-33. [PMID: 26450177 DOI: 10.1002/eji.201545792] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Autoimmune regulator (AIRE) is a unique transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. The past 15 years have seen dramatic progress in our understanding of how AIRE induces immunological self-tolerance on a molecular level. This major advancement can be greatly attributed to the identification of a large variety of proteins that physically associate with AIRE, supporting and regulating its transcription-transactivation capacity. These diverse molecular partnerships have been shown to play roles in shuttling AIRE to the nucleus, securing AIRE's interaction with nuclear matrix and chromatin, releasing RNA polymerase-II from its stalled state and potentiating AIRE-mediated gene expression, among others. In this review we discuss the relationship of AIRE with its vast and rather diverse repertoire of partners and highlight how such "promiscuous partnerships" contribute to the phenomenon of "promiscuous gene expression" in the thymus.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Matsuda T, Muromoto R, Sekine Y, Togi S, Kitai Y, Kon S, Oritani K. Signal transducer and activator of transcription 3 regulation by novel binding partners. World J Biol Chem 2015; 6:324-332. [PMID: 26629315 PMCID: PMC4657126 DOI: 10.4331/wjbc.v6.i4.324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/02/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signals for various biological processes, including immune responses, hematopoiesis, and neurogenesis. STAT3, for example, is involved in the pathogenesis of various human diseases, including cancers, autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2, in the regulation of STAT3-mediated signaling.
Collapse
|
8
|
Abstract
The autoimmune regulator (Aire) was initially identified as the gene causing multiorgan system autoimmunity in humans, and deletion of this gene in mice also resulted in organ-specific autoimmunity. Aire regulates the expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs), which play a critical role in the negative selection of autoreactive T cells and the generation of regulatory T cells. More recently, the role of Aire in the development of mTECs has helped elucidate its ability to present the spectrum of TSAs needed to prevent autoimmunity. Molecular characterization of the functional domains of Aire has revealed multiple binding partners that assist Aire's function in altering gene transcription and chromatin remodeling. These recent advances have further highlighted the importance of Aire in central tolerance.
Collapse
Affiliation(s)
- Alice Chan
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
9
|
Rattay K, Claude J, Rezavandy E, Matt S, Hofmann TG, Kyewski B, Derbinski J. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:921-8. [PMID: 25552543 DOI: 10.4049/jimmunol.1402694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Promiscuous expression of a plethora of tissue-restricted Ags (TRAs) by medullary thymic epithelial cells (mTECs) plays an essential role in T cell tolerance. Although the cellular mechanisms by which promiscuous gene expression (pGE) imposes T cell tolerance have been well characterized, the underlying molecular mechanisms remain poorly understood. The autoimmune regulator (AIRE) is to date the only validated molecule known to regulate pGE. AIRE is part of higher-order multiprotein complexes, which promote transcription, elongation, and splicing of a wide range of target genes. How AIRE and its partners mediate these various effects at the molecular level is still largely unclear. Using a yeast two-hybrid screen, we searched for novel AIRE-interacting proteins and identified the homeodomain-interacting protein kinase 2 (HIPK2) as a novel partner. HIPK2 partially colocalized with AIRE in nuclear bodies upon cotransfection and in human mTECs in situ. Moreover, HIPK2 phosphorylated AIRE in vitro and suppressed the coactivator activity of AIRE in a kinase-dependent manner. To evaluate the role of Hipk2 in modulating the function of AIRE in vivo, we compared whole-genome gene signatures of purified mTEC subsets from TEC-specific Hipk2 knockout mice with control mice and identified a small set of differentially expressed genes. Unexpectedly, most differentially expressed genes were confined to the CD80(lo) mTEC subset and preferentially included AIRE-independent TRAs. Thus, although it modulates gene expression in mTECs and in addition affects the size of the medullary compartment, TEC-specific HIPK2 deletion only mildly affects AIRE-directed pGE in vivo.
Collapse
Affiliation(s)
- Kristin Rattay
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Janine Claude
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Esmail Rezavandy
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Sonja Matt
- Zelluläre Seneszenz-Gruppe, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie Allianz, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Thomas G Hofmann
- Zelluläre Seneszenz-Gruppe, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie Allianz, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Bruno Kyewski
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Jens Derbinski
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
10
|
Warren BD, Kinsey WK, McGinnis LK, Christenson LK, Jasti S, Stevens AM, Petroff BK, Petroff MG. Ovarian autoimmune disease: clinical concepts and animal models. Cell Mol Immunol 2014; 11:510-21. [PMID: 25327908 PMCID: PMC4220844 DOI: 10.1038/cmi.2014.97] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in association with other autoimmune diseases, particularly autoimmune adrenal disease, and takes a toll on both society and individual health. Studies in mice have revealed at least two mechanisms that protect the ovary from autoimmune attack. These mechanisms include control of autoreactive T cells by thymus-derived regulatory T cells, as well as a role for the autoimmune regulator (AIRE), a transcriptional regulator that induces expression of tissue-restricted antigens in medullary thymic epithelial cells during development of T cells. Although the latter mechanism is incompletely defined, it is well established that failure of either results in autoimmune-mediated targeting and depletion of ovarian follicles. In this review, we will address the clinical features and consequences of autoimmune-mediated ovarian infertility in women, as well as the possible mechanisms of disease as revealed by animal models.
Collapse
Affiliation(s)
- Bryce D Warren
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - William K Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Susmita Jasti
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anne M Stevens
- Research Center for Immunity and Immunotherapies, Children's Hospital and Regional Medical Center, and Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brian K Petroff
- 1] Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA [2] Present address: Department of Pathobiology and Diagnostic Investigation, Michigan State University College of Veterinary Medicine, East Lansing, MI, USA
| | - Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Incani F, Serra ML, Meloni A, Cossu C, Saba L, Cabras T, Messana I, Rosatelli MC. AIRE acetylation and deacetylation: effect on protein stability and transactivation activity. J Biomed Sci 2014; 21:85. [PMID: 25158603 PMCID: PMC4256887 DOI: 10.1186/s12929-014-0085-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/16/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The AIRE protein plays a remarkable role as a regulator of central tolerance by controlling the promiscuous expression of tissue-specific antigens in thymic medullary epithelial cells. Defects in AIRE gene cause the autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy, a rare disease frequent in Iranian Jews, Finns, and Sardinian population. RESULTS In this study, we have precisely mapped, by mass spectrometry experiments, the sites of protein acetylation and, by mutagenesis assays, we have described a set of acetylated lysines as being crucial in influencing the subcellular localization of AIRE. Furthermore, we have also determined that the de-acetyltransferase enzymes HDAC1-2 are involved in the lysine de-acetylation of AIRE. CONCLUSIONS On the basis of our results and those reported in literature, we propose a model in which lysines acetylation increases the stability of AIRE in the nucleus. In addition, we observed that the interaction of AIRE with deacetylases complexes inhibits its transcriptional activity and is probably responsible for the instability of AIRE, which becomes more susceptible to degradation in the proteasome.
Collapse
Affiliation(s)
- Federica Incani
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Maria Luisa Serra
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Alessandra Meloni
- />Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Carla Cossu
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Luisella Saba
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| | - Tiziana Cabras
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Irene Messana
- />Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Biochimica, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Rosatelli
- />Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Unità di Ricerca di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, via Jenner s/n, Cagliari, Italy
| |
Collapse
|
12
|
Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:326-37. [PMID: 24275490 DOI: 10.1016/j.bbadis.2013.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
Abstract
AIRE (for autoimmune regulator) is a multidomain protein that performs a fundamental function in the thymus and possibly in the secondary lymphoid organs: the regulation, especially in the sense of activation, of the process of gene transcription in cell lines deputed to the presentation of self-antigens to the maturing T lymphocytes. The apoptosis of the elements bearing T-cell receptors with critical affinity for the exhibited self-antigens prevents the escape of autoreactive clones and represents a simple and efficient mechanism of deletional self-tolerance. However, AIRE action relies on an articulated complex of biophysical and biochemical properties, in most cases attributable to single subspecialized domains. Here a thorough review of the matter is presented, with a privileged look at the pathogenic changes of AIRE that interfere with such properties and lead to the impairment in its chief function.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics - Neonatal Intensive Care, V. Fazzi Regional Hospital, Piazza F. Muratore, I-73100, Lecce, Italy.
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute at San Raffaele Scientific Institute, Via Olgettina 58, I-20132, Milan, Italy.
| |
Collapse
|
13
|
Liiv I, Haljasorg U, Kisand K, Maslovskaja J, Laan M, Peterson P. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH. Biochem Biophys Res Commun 2012; 423:32-7. [PMID: 22613203 DOI: 10.1016/j.bbrc.2012.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/19/2023]
Abstract
AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.
Collapse
Affiliation(s)
- Ingrid Liiv
- Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
14
|
Lan HC, Wu CF, Shih HM, Chung BC. Death-associated protein 6 (Daxx) mediates cAMP-dependent stimulation of Cyp11a1 (P450scc) transcription. J Biol Chem 2011; 287:5910-6. [PMID: 22199361 DOI: 10.1074/jbc.m111.307603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SF-1 is a key transcription factor for all steroidogenic genes. It up-regulates the expression of the steroidogenic Cyp11a1 gene in the adrenal in a pathway stimulated by cAMP through HIPK3-mediated JNK/c-Jun phosphorylation. In the present study, we have investigated the factors mediating cAMP-dependent HIPK3 action to potentiate the activity of SF-1 for Cyp11a1 transcription in mouse adrenocortical Y1 cells. We found Daxx, a HIPK kinase substrate in the apoptosis pathway, was phosphorylated by HIPK3 at Ser-669 in response to cAMP stimulation. Daxx participated in SF-1-dependent Cyp11a1 expression as shown by experiments involving both overexpression and down-regulation via a dominant negative Daxx mutant. The S669A mutant of Daxx, which could not be phosphorylated by HIPK3, lost the ability to potentiate SF-1 activity for Cyp11a1 expression. The enhancement of SF-1 activity by Daxx required JNK and c-Jun phosphorylation. Thus, Daxx functioned as a signal transducer linking cAMP-stimulated HIPK3 activity with JNK/c-Jun phosphorylation and SF-1-dependent Cyp11a1 transcription for steroid synthesis.
Collapse
Affiliation(s)
- Hsin-Chieh Lan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
15
|
Lovewell T, Tazi-Ahnini R. Models to explore the molecular function and regulation of AIRE. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2011. [DOI: 10.1016/j.ejmhg.2011.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Eldershaw SA, Sansom DM, Narendran P. Expression and function of the autoimmune regulator (Aire) gene in non-thymic tissue. Clin Exp Immunol 2011; 163:296-308. [PMID: 21303359 PMCID: PMC3048612 DOI: 10.1111/j.1365-2249.2010.04316.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2010] [Indexed: 01/07/2023] Open
Abstract
Educational immune tolerance to self-antigens is induced primarily in the thymus where tissue-restricted antigens (TRAs) are presented to T lymphocytes by cells of the thymic stroma - a process known as central tolerance. The expression of these TRAs is controlled in part by a transcription factor encoded by the autoimmune regulatory (Aire) gene. Patients with a mutation of this gene develop a condition known as autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED), characterized by autoimmune destruction of endocrine organs, fungal infection and dental abnormalities. There is now evidence for TRA expression and for mechanisms of functional tolerance outside the thymus. This has led to a number of studies examining Aire expression and function at these extra-thymic sites. These investigations have been conducted across different animal models using different techniques and have often shown discrepant results. Here we review the studies of extra thymic Aire and discuss the evidence for its expression and function in both human and murine systems.
Collapse
Affiliation(s)
- S A Eldershaw
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham, UK. ,uk
| | | | | |
Collapse
|
17
|
Fierabracci A. Recent insights into the role and molecular mechanisms of the autoimmune regulator (AIRE) gene in autoimmunity. Autoimmun Rev 2011; 10:137-143. [PMID: 20850570 DOI: 10.1016/j.autrev.2010.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 08/09/2010] [Indexed: 12/14/2022]
Abstract
Since many years immunologists have being tried to answer the tantalizing enigma of immunological tolerance. Complex mechanisms in both thymus (central tolerance) and peripheral lymphoid organs (peripheral tolerance) underly lymphocyte tolerance and its maintenance. The genesis of autoimmunity involves environmental and genetic mechanisms, both contributing to the disruption and deregulation of central and peripheral tolerance, allowing autoreactive pathogenetic T and B-cell clones arising. Among genetic factors the autoimmune regulator (AIRE) gene is one of the best candidates to understand the complex scenario of autoimmunity. Autoimmune polyendocrinopathy syndrome type 1 is a rare autosomal recessive disease caused by mutations in the AIRE gene. Therefore, the disorder has certainly been a powerful model to address the question concerning how a tolerant state is achieved or maintained and to explore how it has gone lost in the context of autoimmunity. AIRE has been proposed to function as a 'non classical' transcription factor, strongly implicated in the regulation of organ-specific antigen expression in thymic epithelial cells and in the imposition of T cell tolerance, thus regulating the negative selection of autoreactive T cell clones. A plethora of proposal have been suggested for AIRE's potential mechanism of action, thus regulating the negative selection of autoreactive T cells. In this review recent discoveries are presented into the role and molecular mechanisms of the AIRE protein in APECED and other autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Research Laboratories, Children's Hospital Bambino Gesù, Piazza S. Onofrio, 4, 00165 Rome, Italy.
| |
Collapse
|
18
|
Cai CQ, Zhang T, Breslin MB, Giraud M, Lan MS. Both polymorphic variable number of tandem repeats and autoimmune regulator modulate differential expression of insulin in human thymic epithelial cells. Diabetes 2011; 60:336-44. [PMID: 20876716 PMCID: PMC3012191 DOI: 10.2337/db10-0255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Polymorphic INS-VNTR plays an important role in regulating insulin transcript expression in the human thymus that leads to either insulin autoimmunity or tolerance. The molecular mechanisms underlying the INS-VNTR haplotype-dependent insulin expression are still unclear. In this study, we determined the mechanistic components underlying the differential insulin gene expression in human thymic epithelial cells, which should have profound effects on the insulin autoimmune tolerance induction. RESEARCH DESIGN AND METHODS A repetitive DNA region designated as a variable number of tandem repeats (VNTR) is located upstream of the human insulin gene and correlates with the incidence of type 1 diabetes. We generated six class I and two class III VNTR constructs linked to the human insulin basal promoter or SV40 heterologous promoter/enhancer and demonstrated that AIRE protein modulates the insulin promoter activities differentially through binding to the VNTR region. RESULTS Here we show that in the presence of the autoimmune regulator (AIRE), the class III VNTR haplotype is responsible for an average of three-fold higher insulin expression than class I VNTR in thymic epithelial cells. In a protein-DNA pull-down experiment, AIRE protein is capable of binding to VNTR class I and III probes. Further, the transcriptional activation of the INS-VNTR by AIRE requires the insulin basal promoter. The VNTR sequence loses its activation activity when linked to a heterologous promoter and/or enhancer. CONCLUSIONS These findings demonstrate a type 1 diabetes predisposition encoded by the INS-VNTR locus and a critical function played by AIRE, which constitute a dual control mechanisms regulating quantitative expression of insulin in human thymic epithelial cells.
Collapse
Affiliation(s)
- Chuan Qi Cai
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tao Zhang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mary B. Breslin
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthieu Giraud
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Lan
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, and the Departments of Pediatrics and Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Corresponding author: Michael S. Lan,
| |
Collapse
|
19
|
Muromoto R, Kuroda M, Togi S, Sekine Y, Nanbo A, Shimoda K, Oritani K, Matsuda T. Functional involvement of Daxx in gp130-mediated cell growth and survival in BaF3 cells. Eur J Immunol 2010; 40:3570-80. [PMID: 21108476 DOI: 10.1002/eji.201040688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/02/2010] [Accepted: 09/02/2010] [Indexed: 01/05/2023]
Abstract
Death domain-associated protein (Daxx) is a multifunctional protein that modulates both cell death and transcription. Several recent studies have indicated that Daxx is a mediator of lymphocyte death and/or growth suppression, although the detailed mechanism is unclear. Previously, we reported that Daxx suppresses IL-6 family cytokine-induced gene expression by interacting with STAT3. STAT3 is important for the growth and survival of lymphocytes; therefore, we here examined the role of Daxx in the gp130/STAT3-dependent cell growth/survival signals. We found that Daxx suppresses the gp130/STAT3-dependent cell growth and that Daxx endogenously interacts with STAT3 and inhibits the DNA-binding activity of STAT3. Moreover, small-interfering RNA-mediated knockdown of Daxx enhanced the expression of STAT3-target genes and accelerated the STAT3-mediated cell cycle progression. In addition, knockdown of Daxx-attenuated lactate dehydrogenase leakage from cells, indicating that Daxx positively regulates cell death during gp130/STAT3-mediated cell proliferation. Notably, Daxx specifically suppressed the levels of Bcl2 mRNA and protein, even in cytokine-unstimulated cells, indicating that Daxx regulates Bcl2 expression independently of activated STAT3. These results suggest that Daxx suppresses gp130-mediated cell growth and survival by two independent mechanisms: inhibition of STAT3-induced transcription and down-regulation of Bcl2 expression.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|