1
|
Ho KT, Chu FY, Lin YK, Chin HH, Yang SC, Yang CP, Chang YH. Interleukin-4 ameliorates macrophage lipid stress through promoting cholesterol efflux and lipid homeostasis. Cytokine 2025; 188:156869. [PMID: 39954486 DOI: 10.1016/j.cyto.2025.156869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
Over-nutrition and lipid metabolic abnormalities are correlated with obesity and type 2 diabetes mellitus (T2DM). Individuals with long-term hyperglycemia and dyslipidemia are susceptible to life-threatening complications such as atherosclerosis. Excess amounts of modified low density lipoprotein (mLDL) attract circulating monocytes to resident at arterial wall and differentiate into pro-inflammatory M1 macrophages. M1 cells uptake mLDL through scavenger receptors-mediated endocytosis, leading to increased lipids influx, cholesterol accumulation and foam cell formation. Besides, macrophages are attracted and infiltrated into the hypertrophic adipose tissue to mediate microenvironmental lipid metabolism. Our previous studies demonstrate that anti-inflammatory interleukin-4 (IL-4) regulates lipid metabolism by inhibiting lipid accumulation and promoting lipolysis of mature adipocytes. The effects of IL-4-polarized M2 macrophages on 3T3-L1 adipogenesis and macrophage-adipocyte interaction were explored in the present study. Our results showed lipid deposits and lipid droplets (LDs)-anchored perilipin of adipocytes cultured in IL-4-polarized M2-conditioned medium (M2-CM) were decreased, while adipogenesis-driving transcription factors and critical lipid metabolic enzymes remained unaffected. It indicates that M2-secreted mediators down-regulate lipid deposits and LDs formation in late adipogenic phase rather than interfering early programming phase and lipid synthesis machinery. In addition, IL-4 reduced intracellular lipid loads by up-regulating cholesterol efflux ATP-binding cassette transporter A1 (ABCA1) and ABCG1 despite cholesterol influx CD36 was also elevated. Accordingly, IL-4 shows beneficial effects to prevent atherosclerosis via promoting catabolism of the internalized lipids and cholesterol efflux, thus efficiently reduces lipid overload and foam cell formation. These findings illustrate novel roles and protective function of IL-4 to reduce the risk of atherosclerosis incidence by efficiently promoting macrophage cholesterol efflux and lipid homeostasis.
Collapse
Affiliation(s)
- Kuo-Ting Ho
- Center for Precision Medicine, Yi-He Hospital, Quanzhou, Fujian Province, PR China; HI. Q Biomedical Laboratory, Takyun Industrial Park, Quanzhou, Fujian Province, PR China
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320, Taiwan; Department of Medical Laboratory Science and Biotechnology, Yuanpei University 300, Taiwan; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Kai Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ho-Hsun Chin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Laboratory Accreditation Department II, Taiwan Accreditation Foundation, Hsinchu, Taiwan
| | - Shun-Chun Yang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Pathology, Min-Sheng General Hospital, Taoyuan 320, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
2
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Dousdampanis P, Aggeletopoulou I, Mouzaki A. The role of M1/M2 macrophage polarization in the pathogenesis of obesity-related kidney disease and related pathologies. Front Immunol 2025; 15:1534823. [PMID: 39867890 PMCID: PMC11758166 DOI: 10.3389/fimmu.2024.1534823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function. Among the immune cells of the innate and adaptive immune response involved in the pathogenesis of obesity-related diseases, macrophages play a crucial role in the inflammation associated with CKD. In obese individuals, macrophages enter a pro-inflammatory state known as M1 polarization, which contributes to chronic inflammation. This polarization promotes tissue damage, inflammation and fibrosis, leading to progressive loss of kidney function. In addition, macrophage-induced oxidative stress is a key feature of CKD as it also promotes cell damage and inflammation. Macrophages also contribute to insulin resistance in type 2 diabetes by releasing inflammatory molecules that impair glucose metabolism, complicating the management of diabetes in obese patients. Hypertension and atherosclerosis, which are often associated with obesity, also contribute to the progression of CKD via immune and inflammatory pathways. Macrophages influence blood pressure regulation and contribute to vascular inflammation, particularly via the renin-angiotensin system. In atherosclerosis, macrophages accumulate in arterial plaques, leading to chronic inflammation and plaque instability, which may increase the risk of CVD in CKD patients. This review focuses on the involvement of macrophages in CKD and highlights their role as a critical link between CKD and other pathologies. Targeting macrophage polarization and the ensuing macrophage-induced inflammation could be an effective therapeutic strategy for CKD and related diseases and improve outcomes for patients with obesity-related kidney disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
4
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Owaki R, Aoki H, Toriuchi K, Inoue Y, Hayashi H, Takeshita S, Kakita H, Yamada Y, Aoyama M. AMPK activators suppress cholesterol accumulation in macrophages via suppression of the mTOR pathway. Exp Cell Res 2023; 432:113784. [PMID: 37730144 DOI: 10.1016/j.yexcr.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Reina Owaki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan; Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan; Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
6
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
7
|
Abstract
Resolution is an active and highly coordinated process that occurs in response to inflammation to limit tissue damage and promote repair. When the resolution program fails, inflammation persists. It is now understood that failed resolution is a major underlying cause of many chronic inflammatory diseases. Here, we will review the major failures of resolution in atherosclerosis, including the imbalance of proinflammatory to pro-resolving mediator production, impaired clearance of dead cells, and functional changes in immune cells that favor ongoing inflammation. In addition, we will briefly discuss new concepts that are emerging as possible regulators of resolution and highlight the translational significance for the field.
Collapse
Affiliation(s)
- Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Molecular Physiology and Biophysics, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
8
|
Feng Y, He M, Ma B, Yang S, Li J, Wen Z, Ouyang H, Zhang W. Therapeutic targets and biological mechanisms of curcumol on atherosclerosis: A study based on network pharmacology approach and biological studies. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_336_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Nicotinamide Prevents Apolipoprotein B-Containing Lipoprotein Oxidation, Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Antioxidants (Basel) 2020; 9:antiox9111162. [PMID: 33233455 PMCID: PMC7700561 DOI: 10.3390/antiox9111162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: −44%; NAM HD: −57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
Collapse
|
10
|
Shen X, Zhang S, Guo Z, Xing D, Chen W. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26:84. [PMID: 32894039 PMCID: PMC7487582 DOI: 10.1186/s10020-020-00213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCA1 promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXA1, which plays a critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic cell clearance. ApoA-I increases ANXA1 expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-I regulates the signaling pathways by binding to ABCA1, suggesting that apoA-I increases ANXA1 expression by binding to ABCA1. Furthermore, ANXA1 may increase ABCA1 expression. ANXA1 increases PPARγ expression by modulating STAT6 phosphorylation. PPARγ also increases ANXA1 expression by binding to the promoter of ANXA1. Therefore, ABCA1, PPARγ, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXA1 needs to be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory properties. ABCA1 transports ANXA1 from the cytoplasm to the cell membrane by regulating lipidization and serine phosphorylation, thereby mediating ANXA1 efflux, likely by promoting microparticle and exosome release. The direct role of ABCA1 expression and ANXA1 release in atherosclerosis has been unclear. In this review, we focus on the role of ANXA1 in atheroprogression and its novel interaction with ABCA1, which may be useful for providing basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Shen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Zhu Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| |
Collapse
|
11
|
Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids. Atherosclerosis 2020; 305:10-18. [PMID: 32592946 DOI: 10.1016/j.atherosclerosis.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Lipid-rich foam cell macrophages drive atherosclerosis via several mechanisms, including inflammation, lipid uptake, lipid deposition and plaque vulnerability. The atheroma environment shapes macrophage function and phenotype; anti-inflammatory macrophages improve plaque stability while pro-inflammatory macrophages promote rupture. Current evidence suggests a variety of macrophage phenotypes occur in atherosclerotic plaques with local lipids, cytokines, oxidised phospholipids and pathogenic stimuli altering their phenotype. In this study, we addressed differential functioning of macrophage phenotypes via a systematic analysis of in vitro polarised, human monocyte-derived macrophage phenotypes, focussing on molecular events that regulate foam-cell formation. METHODS We examined transcriptomes, protein levels and functionally determined lipid handling and foam cell formation capacity in macrophages polarised with IFNγ+LPS, IL-4, IL-10, oxPAPC and CXCL4. RESULTS RNA sequencing of differentially polarised macrophages revealed distinct gene expression changes, with enrichment in atherosclerosis and lipid-associated pathways. Analysis of lipid processing activity showed IL-4 and IL-10 macrophages have higher lipid uptake and foam cell formation activities, while inflammatory and oxPAPC macrophages displayed lower foam cell formation. Inflammatory macrophages showed low lipid uptake, while higher lipid uptake in oxPAPC macrophages was matched by increased lipid efflux capacity. CONCLUSIONS Atherosclerosis-associated macrophage polarisation dramatically affects lipid handling capacity underpinned by major transcriptomic changes and altered protein levels in lipid-handling gene expression. This leads to phenotype-specific differences in LDL uptake, cellular cholesterol levels and cholesterol efflux, informing how the plaque environment influences atherosclerosis progression by influencing macrophage phenotypes.
Collapse
|
12
|
Fourman LT, Saylor CF, Cheru L, Fitch K, Looby S, Keller K, Robinson JA, Hoffmann U, Lu MT, Burdo T, Lo J. Anti-Inflammatory Interleukin 10 Inversely Relates to Coronary Atherosclerosis in Persons With Human Immunodeficiency Virus. J Infect Dis 2020; 221:510-515. [PMID: 31077265 PMCID: PMC7325621 DOI: 10.1093/infdis/jiz254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
Interleukin 10 (IL-10) is an anti-inflammatory cytokine that may be protective against coronary atherosclerosis. In an observational study of persons with human immunodeficiency virus (PWH) and uninfected controls, IL-10 was measured in serum samples by means of enzyme-linked immunosorbent assay, and coronary atherosclerosis was assessed using computed tomographic angiography. Among PWH, a 10-fold decrease in IL-10 was associated with a 2.6-fold increase in the odds of coronary plaque (P = .01), after controlling for traditional and nontraditional cardiovascular risk factors. IL-10 was also inversely associated with total coronary plaque (ρ = -0.19; P = .02) and noncalcified coronary plaque (ρ = -0.24; P = .004). Our findings suggest a role for IL-10 in mitigating atherosclerosis in PWH. Clinical Trials Registration. NCT00455793.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
| | - Charles F Saylor
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
| | - Lediya Cheru
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
| | - Kathleen Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
| | - Sara Looby
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
- The Yvonne L. Munn Center for Nursing Research, Massachusetts General Hospital, Boston
| | - Kiana Keller
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| | - Michael T Lu
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| | - Tricia Burdo
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Janet Lo
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
13
|
Interleukin 10 promotes macrophage uptake of HDL and LDL by stimulating fluid-phase endocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158537. [PMID: 31676439 DOI: 10.1016/j.bbalip.2019.158537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Highly elevated plasma levels of interleukin-10 (IL-10) are causally associated with "Disappearing HDL Syndrome" and low plasma LDL-cholesterol, but the underlying mechanism is poorly understood. Fluid-phase endocytosis, a process highly dependent on actin dynamics, enables cells to internalize relatively high amounts of extracellular fluids and solutes. We sought to investigate whether IL-10 induces lipoprotein uptake by fluid-phase endocytosis in macrophages. METHODS AND RESULTS Macrophages (RAW264.7, Kupffer and human) were incubated with vehicle (PBS) or IL-10 (20 ng/ml) for 7 days. Uptake of HDL, LDL, and/or fluid-phase endocytosis probes (albumin-Alexa680®, 70 kDa FITC-Dextran and Lucifer Yellow, LY) was evaluated by FACS. Intracellular cofilin and phosphorylated cofilin (p-cofilin) levels were determined by immunoblotting. Macrophage uptake of lipoproteins and probes was non-saturable and increased after IL-10 incubation (p < 0.0001). Furthermore, pre-incubation with fluid-phase endocytosis inhibitors (LY294002, Latrunculin A, and Amiloride) significantly reduced uptake (p < 0.05). IL-10 increased the cofilin/p-cofilin ratio (p = 0.021), signifying increased cofilin activation and hence filamentous actin. Consistently, phalloidin staining revealed increased filamentous actin in macrophages after IL-10 treatment (p = 0.0018). Finally, RNA-seq analysis demonstrated enrichment of gene sets related to actin filament dynamics, membrane ruffle formation and endocytosis in IL-10-treated macrophages (p < 0.05). IL-10 did not alter mRNA levels of Ldlr, Vldlr, Scarb1, Cd36 or Lrp1. In primary human monocyte-derived macrophages and murine Kupffer cells, IL-10 incubation also increased uptake of lipoproteins, albumin and LY (p < 0.01). CONCLUSIONS Interleukin-10 induces the uptake of HDL and LDL by fluid-phase endocytosis by increasing actin-filament rearrangement in macrophages, thus providing a plausible mechanism contributing to "Disappearing HDL Syndrome".
Collapse
|
14
|
Enhanced cellular cholesterol efflux by naringenin is mediated through inhibiting endoplasmic reticulum stress - ATF6 activity in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1472-1482. [DOI: 10.1016/j.bbalip.2019.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
|
15
|
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism 2019; 92:71-81. [PMID: 30447223 DOI: 10.1016/j.metabol.2018.11.005] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Obesity, a pandemic of the modern world, is intimately associated with dyslipidemia, which is mainly driven by the effects of insulin resistance and pro-inflammatory adipokines. However, recent evidence suggests that obesity-induced dyslipidemia is not a unique pathophysiological entity, but rather has distinct characteristics depending on many individual factors. In line with that, in a subgroup of metabolically healthy obese (MHO) individuals, dyslipidemia is less prominent or even absent. In this review, we will address the main characteristics of dyslipidemia and mechanisms that induce its development in obesity. The fields, which should be further investigated to expand our knowledge on obesity-related dyslipidemia and potentially yield new strategies for prevention and management of cardiometabolic risk, will be highlighted. Also, we will discuss recent findings on novel lipid biomarkers in obesity, in particular proprotein convertase subtilisin/kexin type 9 (PCSK9), as the key molecule that regulates metabolism of low-density lipoproteins (LDL), and sphingosine-1-phosphate (S1P), as one of the most important mediators of high-density lipoprotein (HDL) particles function. Special attention will be given to microRNAs and their potential use as biomarkers of obesity-associated dyslipidemia.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
He X, Chen X, Wang L, Wang W, Liang Q, Yi L, Wang Y, Gao Q. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux. Life Sci 2018; 216:67-74. [PMID: 30218721 DOI: 10.1016/j.lfs.2018.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023]
Abstract
AIMS The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Cholesterol efflux of lipid-loaded macrophages mediated by ATP binding cassette (ABC) cholesterol transporters, on the other hand, has been shown to attenuate atherosclerosis progression in patients with unknown mechanism. We therefore sought to test the effect of metformin that reduced cardiovascular risk in diabetic patients independent of its hypoglycemia effect on cholesterol transport in murine raw264.7 macrophages. MATERIALS AND METHODS Mouse raw264.7 macrophages were loaded with Ox-LDL (50 μg/ml) for 24 h before incubated with metformin (15 μM) for 24 h. Foam cell formation was assessed by Oil red staining and BIODIPY fluorescent staining as well as cholesterol-ester quantification by commercial kit. Cholesterol uptake and expression of scavenger receptors were detected by flow-cytometry. Cholesterol efflux capacity was measured by fluorescent plate-reader and ABC transporters were detected by Western Blots. Cytokines were detected by ELISA in supernatants and normalized by cellular lysates. KEY FINDINGS Our results showed that metformin decreased oxidized low-density lipoprotein (Ox-LDL)-induced cholesterol accumulation and foam cell formation by increasing cholesterol efflux to HDL, which was associated with an upregulation of ABC transporter ABCG-1. Moreover, metformin increased Ox-LDL-impaired IL-10 secretion, an important anti-foam cell cytokine in atherosclerosis. SIGNIFICANCE Our data highlighted the therapeutic potential of targeting macrophage cholesterol efflux with new or existing drugs for the possible reduction of foam cell formation in the prevention and treatment of diabetes-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Xuan He
- Medical School of Nanjing University, Nanjing 210093, China
| | - Xiufang Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lei Wang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Wenqing Wang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Qiao Liang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Long Yi
- Medical School of Nanjing University, Nanjing 210093, China
| | - Yong Wang
- Medical School of Nanjing University, Nanjing 210093, China
| | - Qian Gao
- Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
DiStasio N, Arts M, Lehoux S, Tabrizian M. IL-10 Gene Transfection in Primary Endothelial Cells via Linear and Branched Poly(β-amino ester) Nanoparticles Attenuates Inflammation in Stimulated Macrophages. ACS APPLIED BIO MATERIALS 2018; 1:917-927. [DOI: 10.1021/acsabm.8b00342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicholas DiStasio
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Marloes Arts
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | | |
Collapse
|
18
|
Abd El-Aziz R, Naguib M, Rashed LA. Spleen size in patients with metabolic syndrome and its relation to metabolic and inflammatory parameters. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_86_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Su CW, Chen CY, Li Y, Long SR, Massey W, Kumar DV, Walker WA, Shi HN. Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. Sci Rep 2018; 8:4607. [PMID: 29545532 PMCID: PMC5854586 DOI: 10.1038/s41598-018-22920-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate an inverse correlation between the prevalence of the so-called western diseases, such as obesity and metabolic syndrome, and the exposure to helminths. Obesity, a key risk factor for many chronic health problems, is rising globally and is accompanied by low-grade inflammation in adipose tissues. The precise mechanism by which helminths modulate metabolic syndrome and obesity is not fully understood. We infected high fat diet (HFD)-induced obese mice with the intestinal nematode parasite Heligmosomoides polygyrus and observed that helminth infection resulted in significantly attenuated obesity. Attenuated obesity corresponded with marked upregulation of uncoupling protein 1 (UCP1), a key protein involved in energy expenditure, in adipose tissue, suppression of glucose and triglyceride levels, and alteration in the expression of key genes involved in lipid metabolism. Moreover, the attenuated obesity in infected mice was associated with enhanced helminth-induced Th2/Treg responses and M2 macrophage polarization. Adoptive transfer of helminth-stimulated M2 cells to mice that were not infected with H. polygyrus resulted in a significant amelioration of HFD-induced obesity and increased adipose tissue browning. Thus, our results provide evidence that the helminth-dependent protection against obesity involves the induction of M2 macrophages.
Collapse
Affiliation(s)
- Chien Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Yali Li
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - William Massey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Deepak Vijaya Kumar
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA.
| |
Collapse
|
20
|
Genoula M, Marín Franco JL, Dupont M, Kviatcovsky D, Milillo A, Schierloh P, Moraña EJ, Poggi S, Palmero D, Mata-Espinosa D, González-Domínguez E, León Contreras JC, Barrionuevo P, Rearte B, Córdoba Moreno MO, Fontanals A, Crotta Asis A, Gago G, Cougoule C, Neyrolles O, Maridonneau-Parini I, Sánchez-Torres C, Hernández-Pando R, Vérollet C, Lugo-Villarino G, Sasiain MDC, Balboa L. Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation. Front Immunol 2018; 9:459. [PMID: 29593722 PMCID: PMC5854656 DOI: 10.3389/fimmu.2018.00459] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.
Collapse
Affiliation(s)
- Melanie Genoula
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - José Luis Marín Franco
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Maeva Dupont
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denise Kviatcovsky
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Ayelén Milillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pablo Schierloh
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Eduardo Jose Moraña
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Susana Poggi
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Instituto Prof. Dr. Raúl Vaccarezza, Hospital de Infecciosas Dr. F. J. Muñiz, Buenos Aires, Argentina
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Erika González-Domínguez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos León Contreras
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paula Barrionuevo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marlina Olyissa Córdoba Moreno
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | - Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Céline Cougoule
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carmen Sánchez-Torres
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christel Vérollet
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina.,Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - María Del Carmen Sasiain
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| | - Luciana Balboa
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Toulouse, France.,International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167), Buenos Aires, Argentina
| |
Collapse
|
21
|
Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP. New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Front Immunol 2018; 8:1921. [PMID: 29375564 PMCID: PMC5767236 DOI: 10.3389/fimmu.2017.01921] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are the primary immune cells that reside within the myocardium, suggesting that these mononuclear phagocytes are essential in the orchestration of cardiac immunity and homeostasis. Independent of the nature of the injury, the heart triggers leukocyte activation and recruitment. However, inflammation is harmful to this vital terminally differentiated organ with extremely poor regenerative capacity. As such, cardiac tissue has evolved particular strategies to increase the stress tolerance and minimize the impact of inflammation. In this sense, growing evidences show that mononuclear phagocytic cells are particularly dynamic during cardiac inflammation or infection and would actively participate in tissue repair and functional recovery. They respond to soluble mediators such as metabolites or cytokines, which play central roles in the timing of the intrinsic cardiac stress response. During myocardial infarction two distinct phases of monocyte influx have been identified. Upon infarction, the heart modulates its chemokine expression profile that sequentially and actively recruits inflammatory monocytes, first, and healing monocytes, later. In the same way, a sudden switch from inflammatory macrophages (with microbicidal effectors) toward anti-inflammatory macrophages occurs within the myocardium very shortly after infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy. While in sterile injury, healing response is necessary to stop tissue damage; during an intracellular infection, the anti-inflammatory milieu in infected hearts would promote microbial persistence. The balance of mononuclear phagocytic cells seems to be also dynamic in atherosclerosis influencing plaque initiation and fate. This review summarizes the participation of mononuclear phagocyte system in cardiovascular diseases, keeping in mind that the immune system evolved to promote the reestablishment of tissue homeostasis following infection/injury, and that the effects of different mediators could modulate the magnitude and quality of the immune response. The knowledge of the effects triggered by diverse mediators would serve to identify new therapeutic targets in different cardiovascular pathologies.
Collapse
Affiliation(s)
- Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Católica de Córdoba, Unidad Asociada Área Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la Salud, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Gustavo Bonacci
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
22
|
Zanchet B, Gomes DB, Corralo VS, Diel KA, Schönell AP, Faust C, Nicola P, Muller LG, Zanatta AP, Wildner SM, Bevilaqua F, Chitolina R, Sachett A, Zanatta L, Duarte MM, Conterato GM, Rocha CQ, Peretti C, Brumelhaus T, Alves NS, Menegatt JC, Conte F, Serena G, Ramos AT, Zimermann FC, Junior WAR. Effects of hydroalcoholic extract of Celtis iguanaea on markers of cardiovascular diseases and glucose metabolism in cholesterol-fed rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
IL-33 promotes IL-10 production in macrophages: a role for IL-33 in macrophage foam cell formation. Exp Mol Med 2017; 49:e388. [PMID: 29099095 PMCID: PMC5704190 DOI: 10.1038/emm.2017.183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
We evaluated the role of IL-10- in IL-33-mediated cholesterol reduction in macrophage-derived foam cells (MFCs) and the mechanism by which IL-33 upregulates IL-10. Serum IL-33 and IL-10 levels in coronary artery disease patients were measured. The effects of IL-33 on intra-MFC cholesterol level, IL-10, ABCA1 and CD36 expression, ERK 1/2, Sp1, STAT3 and STAT4 activation, and IL-10 promoter activity were determined. Core sequences were identified using bioinformatic analysis and site-specific mutagenesis. The serum IL-33 levels positively correlated with those of IL-10. IL-33 decreased cellular cholesterol level and upregulated IL-10 and ABCA1 but had no effect on CD36 expression. siRNA-IL-10 partially abolished cellular cholesterol reduction and ABCA1 elevation by IL-33 but did not reverse the decreased CD36 levels. IL-33 increased IL-10 mRNA production but had little effect on its stability. IL-33 induced ERK 1/2 phosphorylation and increased the luciferase expression driven by the IL-10 promoter, with the highest extent within the −2000 to −1752 bp segment of the 5′-flank of the transcription start site; these effects were counteracted by U0126. IL-33 activated Sp1, STAT3 and STAT4, but only the STAT3 binding site was predicted in the above segment. Site-directed mutagenesis of the predicted STAT3-binding sites (CTGCTTCCTGGCAGCAGAA→CTGCCTGGCAGCAGAA) reduced luciferase activity, and a STAT3 inhibitor blocked the regulatory effects of IL-33 on IL-10 expression. Chromatin immunoprecipitation (CHIP) confirmed the STAT3-binding sequences within the −1997 to −1700 and −1091 to −811 bp locus regions. IL-33 increased IL-10 expression in MFCs via activating ERK 1/2 and STAT3, which subsequently promoted IL-10 transcription and thus contributed to the beneficial effects of IL-33 on MFCs.
Collapse
|
24
|
Madeshiya AK, Singh S, Dwivedi S, Konwar R, Natu SM, Ghatak A. Association of IL-10 gene (-1082A>G, -819C>T and -592C>A) polymorphism and its serum level with metabolic syndrome of north Indian subjects. J Genet 2017; 96:53-64. [PMID: 28360390 DOI: 10.1007/s12041-016-0738-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome (MetS) is an inflammatory disorder, in which various cytokines play important role in tilting balance towards disease state. Interleukin-10 (IL-10) is an important antiinflammatory cytokine, but its genetic polymorphisms and serum levels in Indian MetS subjects are unknown. Three IL-10 gene polymorphisms (-1082A>G (rs1800896), -819C>T (rs1800872) and -592C>A (rs1800871)) were genotyped with PCR-RFLP in MetS subjects (n = 384) and age/sex matched control subjects (n = 386). Serum IL-10 was measured using enzyme-linked immunosorbent assay. Serum IL-10 level was significantly low in MetS subject and significantly correlated with clinicobiochemical parameters of MetS. Of three investigated promoter polymorphisms, IL-10 -819C> T and -592C>A were significantly associated with risk of MetS. The mutant alleles -819T and -592A of IL-10 gene polymorphism were significantly higher in MetS subjects compared to controls. Of the four different haplotypes obtained, common ACC haplotype and rare GTA haplotype of IL-10 polymorphisms were associated with MetS. The mean of fasting insulin and HOMA-IR were significantly different between the genotypes of both -819 C>T and -592C>A polymorphisms of IL-10 in MetS subjects. These results suggested that polymorphisms in IL-10 gene (-819C>T and -592C>A), haplotypes (ACC and GTA) and serum level are significantly associated with risk of MetS. IL- 10 -819C>T and -592C>A polymorphic variants are also significantly associated with insulin level and homeostasis model assessment-insulin resistance in north Indian MetS subjects.
Collapse
Affiliation(s)
- Amit Kumar Madeshiya
- Department of Physiology, King George's Medical University, Lucknow 226 003, India.
| | | | | | | | | | | |
Collapse
|
25
|
Dronadula N, Wacker BK, Van Der Kwast R, Zhang J, Dichek DA. Stable In Vivo Transgene Expression in Endothelial Cells with Helper-Dependent Adenovirus: Roles of Promoter and Interleukin-10. Hum Gene Ther 2016; 28:255-270. [PMID: 27842439 DOI: 10.1089/hum.2016.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our long-term goal is to prevent or reverse atherosclerosis by delivering gene therapy from stably transduced endothelial cells (EC). We previously reported that EC-directed gene therapy with a helper-dependent adenovirus (HDAd) expressing apolipoprotein A-I (apo A-I) retarded development of atherosclerosis in rabbit carotid arteries over a 1-month interval. However, a 70% decline in apo A-I expression during this time raised concerns about long-term efficacy of this approach. Here we report use of several approaches aimed either at preventing this decline or at increasing apo A-I expression from HDAd at all time points: codon optimization, deletion of 3' untranslated sequences, substitution of a synthetic mammalian-based promoter (4XETE) for the cytomegalovirus (CMV) promoter, and co-transduction with an HDAd expressing interleukin-10. We tested these approaches using plasmid transfection of cultured EC and in vivo transduction of rabbit carotid artery EC. Codon optimization did not increase apo A-I expression. Deletion of 3' untranslated sequences extinguished apo A-I expression. Both substitution of 4XETE for the CMV promoter and expression of interleukin-10 stabilized apo A-I expression in vivo, although at the cost of lower early (3-day) expression levels. Surprisingly, both interventions stabilized apo A-I expression without altering the rate at which HDAd genomes were lost. These data establish that transgene expression from HDAd in EC is inherently stable in vivo and suggest that the early decline of CMV promoter-driven expression from HDAd-transduced EC is due neither to active downregulation of transcription nor to loss of HDAd genomes. Instead, apparent loss of expression from the CMV promoter appears to be a consequence of early (3-day) upregulation of CMV promoter activity via inflammatory pathways. Our results yield new paradigms to explain the early loss of genomes and transgene expression after in vivo gene transfer. These new paradigms will redirect strategies for achieving high-level, stable expression of transgenes in EC.
Collapse
Affiliation(s)
- Nagadhara Dronadula
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Bradley K Wacker
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Reginald Van Der Kwast
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - Jingwan Zhang
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| | - David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
26
|
Gori E, Mduluza T, Nyagura M, Stray-Pedersen B, Gomo ZA. Inflammation-modulating cytokine profile and lipid interaction in HIV-related risk factors for cardiovascular diseases. Ther Clin Risk Manag 2016; 12:1659-1666. [PMID: 27956833 PMCID: PMC5113933 DOI: 10.2147/tcrm.s117980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV infection and antiretroviral therapy (ART) are associated with changes in plasma levels of lipoproteins, thus posing the risk of cardiovascular complications in infected individuals. The alteration in plasma lipoprotein levels results from dysregulation of inflammation-modulating cytokines that control lipid metabolism. Little is understood regarding the relationship between the cytokines and serum lipid levels, which have been reported to be altered in adults receiving ART. The objective of this study was to describe the profiles of inflammation-modulating cytokines and their relationship to lipids as cardiovascular disease (CVD) risk factors in HIV infection. This observational cross-sectional study measured plasma levels of interleukin (IL)-10, tumor necrosis factor-alpha (TNF)-α, IL-4, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-c) in HIV-infected and uninfected adults. A total of 219 HIV-infected participants were enrolled from an HIV treatment center; of them, 187 were receiving ART and 32 were ART naïve, while 65 were HIV-uninfected blood donors. HIV-infected individuals had higher levels of IL-10 (HIV-infected ART-naïve [P=0.0024] and ART-receiving [P=0.033]) than their uninfected counterparts. ART-naïve subjects had significantly higher plasma levels of IL-10 than ART-receiving subjects (P=0.0014). No significant difference was observed in plasma levels of IL-4 and TNF-α across the three groups. Regarding plasma lipoproteins, HDL-c levels were reduced in HIV ART-naïve (P=0.002) and ART-receiving (P=0.015) subjects compared to HIV-uninfected subjects. Similarly, TC levels were lower in the HIV-infected than in the HIV-uninfected group regardless of whether the patients were undergoing ART or not (P<0.001). IL-10 levels correlated with TC levels in the HIV-uninfected group but not in the HIV-infected groups. Levels of HDL-c were reduced, while IL-10 plasma concentrations were elevated in HIV-infected individuals. A correlation observed in HIV-uninfected individuals between anti-inflammatory cytokine IL-10 and TC was lost in HIV-infected individuals. Clinical significance of these differences needs to be ascertained with respect to HIV-related CVD risk.
Collapse
Affiliation(s)
- Elizabeth Gori
- Chemical Pathology Department, College of Health Sciences; Preclinical Veterinary Studies Department, Faculty of Veterinary Sciences
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Harare, Zimbabwe; School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mudavanhu Nyagura
- Preclinical Veterinary Studies Department, Faculty of Veterinary Sciences
| | - Babill Stray-Pedersen
- Institute of Clinical Medicine, University in Oslo, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
27
|
Stöger JL, Boshuizen MCS, Brufau G, Gijbels MJJ, Wolfs IMJ, van der Velden S, Pöttgens CCH, Vergouwe MN, Wijnands E, Beckers L, Goossens P, Kerksiek A, Havinga R, Müller W, Lütjohann D, Groen AK, de Winther MPJ. Deleting myeloid IL-10 receptor signalling attenuates atherosclerosis in LDLR-/- mice by altering intestinal cholesterol fluxes. Thromb Haemost 2016; 116:565-77. [PMID: 27358035 DOI: 10.1160/th16-01-0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022]
Abstract
Inflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Biological Transport, Active
- Cholesterol/metabolism
- Cholesterol, Dietary/administration & dosage
- Disease Models, Animal
- Female
- Hypercholesterolemia/prevention & control
- Inflammation/etiology
- Inflammation/metabolism
- Inflammation/pathology
- Intestinal Mucosa/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, Interleukin-10/deficiency
- Receptors, Interleukin-10/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Menno P J de Winther
- Prof. M. P. J. de Winther, PhD, Experimental Vascular Biology, Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands, Tel.: +31 20 5666762, E-mail:
| |
Collapse
|
28
|
Chan IH, Van Hoof D, Abramova M, Bilardello M, Mar E, Jorgensen B, McCauley S, Bal H, Oft M, Van Vlasselaer P, Mumm JB. PEGylated IL-10 Activates Kupffer Cells to Control Hypercholesterolemia. PLoS One 2016; 11:e0156229. [PMID: 27299860 PMCID: PMC4907428 DOI: 10.1371/journal.pone.0156229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/29/2023] Open
Abstract
Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels. We have discovered that PEG-rMuIL-10’s dramatic lowering of plasma cholesterol is dependent on phagocytotic cells. In particular, PEG-rHuIL-10 enhances cholesterol uptake by Kupffer cells. In addition, removal of phagocytotic cells dramatically increases plasma cholesterol levels, suggesting for the first time that immunological cells are implicitly involved in regulating total cholesterol levels. These data suggest that treatment with PEG-rIL-10 potentiates endogenous cholesterol regulating cell populations not currently targeted by standard of care therapeutics. Furthermore, we show that IL-10’s increase of Kupffer cell cholesterol phagocytosis is concomitant with decreases in liver cholesterol and triglycerides. This leads to the reversal of early periportal liver fibrosis and facilitates the restoration of liver health. These data recommend PEG-rIL-10 for evaluation in the treatment of fatty liver disease and preventing its progression to non-alcoholic steatohepatitis. In direct confirmation of our in vivo findings in the treatment of hypercholesterolemic mice with PEG-rMuIL-10, we report that treatment of hypercholesterolemic cancer patients with PEG-rHuIL-10 lowers total plasma cholesterol by up to 50%. Taken together these data suggest that PEG-rIL-10’s cholesterol regulating biology is consistent between mice and humans.
Collapse
Affiliation(s)
- Ivan H. Chan
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Dennis Van Hoof
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Marina Abramova
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Melissa Bilardello
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Elliot Mar
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Brett Jorgensen
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Scott McCauley
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Harminder Bal
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Martin Oft
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Peter Van Vlasselaer
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - John B. Mumm
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell WD, Rogers TJ, Datta PK, Ouimet M, Moore KJ, Autieri MV. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1361-74. [PMID: 26952642 DOI: 10.1016/j.ajpath.2015.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023]
Abstract
Atherosclerosis regression is an important clinical goal, and treatments that can reverse atherosclerotic plaque formation are actively being sought. Our aim was to determine whether administration of exogenous IL-19, a Th2 cytokine, could attenuate progression of preformed atherosclerotic plaque and to identify molecular mechanisms. LDLR(-/-) mice were fed a Western diet for 12 weeks, then administered rIL-19 or phosphate-buffered saline concomitant with Western diet for an additional 8 weeks. Analysis of atherosclerosis burden showed that IL-19-treated mice were similar to baseline, in contrast to control mice which showed a 54% increase in plaque, suggesting that IL-19 halted the progression of atherosclerosis. Plaque characterization showed that IL-19-treated mice had key features of atherosclerosis regression, including a reduction in macrophage content and an enrichment in markers of M2 macrophages. Mechanistic studies revealed that IL-19 promotes the activation of key pathways leading to M2 macrophage polarization, including STAT3, STAT6, Kruppel-like factor 4, and peroxisome proliferator-activated receptor γ, and can reduce cytokine-induced inflammation in vivo. We identified a novel role for IL-19 in regulating macrophage lipid metabolism through peroxisome proliferator-activated receptor γ-dependent regulation of scavenger receptor-mediated cholesterol uptake and ABCA1-mediated cholesterol efflux. These data show that IL-19 can halt progression of preformed atherosclerotic plaques by regulating both macrophage inflammation and cholesterol homeostasis and implicate IL-19 as a link between inflammation and macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Stephen Ellison
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sheri Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - William D Cornwell
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Thomas J Rogers
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Prasun K Datta
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
30
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|
31
|
Psarros C, Economou EK, Koutsilieris M, Antoniades C. Statins as Pleiotropic Modifiers of Vascular Oxidative Stress and Inflammation. J Crit Care Med (Targu Mures) 2015; 1:43-54. [PMID: 29967815 DOI: 10.1515/jccm-2015-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the industrialized world and in the future is expected to be the number one killer worldwide. The main cause underlying CVD is atherosclerosis. A key event in atherosclerosis initiation and progression is oxidative stress through the production of reactive oxygen species as well as endothelial dysfunction. Several pro- inflammatory and anti-inflammatory cytokines and proteins are involved in this process, complemented by activation of adhesion molecules that promote leukocyte rolling, tethering and infiltration into the sub-endothelial space. Statins represent the agent of choice since numerous clinical trials have verified that their pharmacological action extends beyond lipid lowering. Statins demonstrate direct anti-oxidant effects by scavenging free radicals and stimulating anti-oxidant enzymes while acting as regulators for cytokine, protein and adhesion molecule expression, all of which are involved in the atherosclerotic process. Statin use is considered one of the most efficient currently used interventions in managing CVD with the likely hood of remaining so in the near future.
Collapse
Affiliation(s)
- Costas Psarros
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Evangelos K Economou
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Cardiovascular Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
32
|
Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice. Gene Ther 2015; 22:645-52. [PMID: 25871825 DOI: 10.1038/gt.2015.33] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.
Collapse
|
33
|
Salvatore G, Bernoud-Hubac N, Bissay N, Debard C, Daira P, Meugnier E, Proamer F, Hanau D, Vidal H, Aricò M, Delprat C, Mahtouk K. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A. J Lipid Res 2015; 56:1110-22. [PMID: 25833686 DOI: 10.1194/jlr.m054874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A.
Collapse
Affiliation(s)
- Giulia Salvatore
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Université de Florence, 50134 Florence, Italy
| | - Nathalie Bernoud-Hubac
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Nathalie Bissay
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| | - Cyrille Debard
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Patricia Daira
- Functional Lipidomics Platform, Institut Multidisciplinaire de Biochimie des Lipides/Carnot Lisa, INSA-Lyon, 69622 Villeurbanne, France
| | - Emmanuelle Meugnier
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Fabienne Proamer
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Daniel Hanau
- Unité Mixte de Recherche Santé UMR S949, Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France Université de Strasbourg, 67400 Strasbourg, France Histocompatibility Laboratory, Etablissement Français du Sang-Alsace, 67000 Strasbourg, France
| | - Hubert Vidal
- INSERM, U 1060 (CarMeN), INRA U1235, Institut Multidisciplinaire de Biochimie des Lipides, Institut National des Sciences Appliqués, 69621 Villeurbanne, France
| | - Maurizio Aricò
- Istituto Toscano Tumori (I.T.T), 50139 Florence, Italy Azienda Sanitaria Provinciale 7, 97100 Ragusa, Italy
| | - Christine Delprat
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France Institut Universitaire de France, 75005 Paris, France
| | - Karène Mahtouk
- CNRS, UMR5239, Laboratoire de Biologie Moléculaire de la Cellule, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université de Lyon, 69003 Lyon, France Université de Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Fullerton MD, Ford RJ, McGregor CP, LeBlond ND, Snider SA, Stypa SA, Day EA, Lhoták Š, Schertzer JD, Austin RC, Kemp BE, Steinberg GR. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk. J Lipid Res 2015; 56:1025-33. [PMID: 25773887 PMCID: PMC4409279 DOI: 10.1194/jlr.m058875] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 02/02/2023] Open
Abstract
Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1−/−) mice. Macrophages from Ampk β1−/− mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1−/− macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1−/− macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Divisions of Endocrinology and Metabolism McMaster University, Hamilton, Canada Department of Medicine, and Departments of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Canada Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Rebecca J Ford
- Divisions of Endocrinology and Metabolism McMaster University, Hamilton, Canada
| | - Chelsea P McGregor
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Shayne A Snider
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Stephanie A Stypa
- Divisions of Endocrinology and Metabolism McMaster University, Hamilton, Canada
| | - Emily A Day
- Divisions of Endocrinology and Metabolism McMaster University, Hamilton, Canada
| | - Šárka Lhoták
- Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Hamilton, Canada Nephrology, McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Medicine, and Departments of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Canada Pediatrics, McMaster University, Hamilton, Canada
| | - Richard C Austin
- Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, Hamilton, Canada Nephrology, McMaster University, Hamilton, Canada
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Australia
| | - Gregory R Steinberg
- Divisions of Endocrinology and Metabolism McMaster University, Hamilton, Canada Department of Medicine, and Departments of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Canada
| |
Collapse
|
35
|
Watkins AA, Yasuda K, Wilson GE, Aprahamian T, Xie Y, Maganto-Garcia E, Shukla P, Oberlander L, Laskow B, Menn-Josephy H, Wu Y, Duffau P, Fried SK, Lichtman AH, Bonegio RG, Rifkin IR. IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:1467-79. [PMID: 25595782 DOI: 10.4049/jimmunol.1402807] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. In this study, we addressed this question using the gld.apoE(-/-) mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity, and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice, and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow-derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non-bone marrow-derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and nonimmune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.
Collapse
Affiliation(s)
- Amanda A Watkins
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Gabriella E Wilson
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Tamar Aprahamian
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Yao Xie
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Elena Maganto-Garcia
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Prachi Shukla
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Lillian Oberlander
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Bari Laskow
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Hanni Menn-Josephy
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Yuanyuan Wu
- Endocrinology Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Pierre Duffau
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Susan K Fried
- Endocrinology Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Andrew H Lichtman
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118;
| |
Collapse
|
36
|
Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost 2014; 113:505-12. [PMID: 25373619 DOI: 10.1160/th14-06-0509] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 01/15/2023]
Abstract
Atherosclerosis is primarily a disorder of lipid metabolism, but there is also a prominent chronic inflammatory component that drives the atherosclerotic lesion progression in the artery wall. During hyperlipidaemic conditions, there is a rapid influx of circulating monocytes into the atherosclerosis-prone areas of the arterial intima. These infiltrated monocytes differentiate into macrophages and take up the atherogenic lipoproteins in the intima of the vessel wall that have been modified within the lesion environment. Interleukin (IL)-10 is a prototypic anti-inflammatory cytokine made primarily by the macrophages and Th2 subtype T lymphocytes. In terms of atherosclerosis its major roles include inhibition of macrophage activation as well as inhibition of matrix metalloproteinase, pro-inflammatory cytokines and cyclooxygenase-2 expression in lipid-loaded and activated macrophage foam cells. Recent discoveries suggest another important role of IL-10 in atherosclerosis: its ability to alter lipid metabolism in macrophages. The current review will highlight the present knowledge on multiple ways in which IL-10 mediates atherosclerosis. As macrophages play a critical role in all stages of atherosclerosis, the review will concentrate on how IL-10 regulates the activities of macrophages that are especially important in the development of atherosclerosis.
Collapse
Affiliation(s)
| | - William A Boisvert
- William A. Boisvert, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA, Tel.: +1 808 692 1567, Fax: +1 808 692 1973, E-mail:
| |
Collapse
|
37
|
Bernard MA, Han X, Inderbitzin S, Agbim I, Zhao H, Koziel H, Tachado SD. HIV-derived ssRNA binds to TLR8 to induce inflammation-driven macrophage foam cell formation. PLoS One 2014; 9:e104039. [PMID: 25090652 PMCID: PMC4121254 DOI: 10.1371/journal.pone.0104039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/04/2014] [Indexed: 01/12/2023] Open
Abstract
Even though combined anti-retroviral therapy (cART) dramatically improves patient survival, they remain at a higher risk of being afflicted with non-infectious complications such as cardiovascular disease (CVD). This increased risk is linked to persistent inflammation and chronic immune activation. In this study, we assessed whether this complication is related to HIV-derived ssRNAs inducing in macrophages increases in TNFα release through TLR8 activation leading to foam cell formation. HIV ssRNAs induced foam cell formation in monocyte-derived macrophages (MDMs) in a dose-dependent manner. This response was reduced when either endocytosis or endosomal acidification was inhibited by dynasore or chloroquine, respectively. Using a flow cytometry FRET assay, we demonstrated that ssRNAs bind to TLR8 in HEK cells. In MDMs, ssRNAs triggered a TLR8-mediated inflammatory response that ultimately lead to foam cell formation. Targeted silencing of the TLR8 and MYD88 genes reduced foam cell formation. Furthermore, foam cell formation induced by these ssRNAs was blocked by an anti-TNFα neutralizing antibody. Taken together in MDMs, HIV ssRNAs are internalized; bind TLR8 in the endosome followed by endosomal acidification. TLR8 signaling then triggers TNFα release and ultimately leads to foam cell formation. As this response was inhibited by a blocking anti-TNFα antibody, drug targeting HIV ssRNA-driven TLR8 activation may serve as a potential therapeutic target to reduce chronic immune activation and inflammation leading to CVD in HIV+ patients.
Collapse
Affiliation(s)
- Mark A. Bernard
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xinbing Han
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sonya Inderbitzin
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ifunanya Agbim
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hui Zhao
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- From Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Henry Koziel
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Souvenir D. Tachado
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Halvorsen B, Holm S, Yndestad A, Scholz H, Sagen EL, Nebb H, Holven KB, Dahl TB, Aukrust P. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α. Biochem Biophys Res Commun 2014; 450:1525-30. [PMID: 25035925 DOI: 10.1016/j.bbrc.2014.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL)2 and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.
Collapse
Affiliation(s)
- Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway.
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Hanne Scholz
- Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Hilde Nebb
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Dolganova OM, Rudina MI, Chrapova MV, Dushkin MI. The effect of cholesterol on macrophage-foam-cell generation upon zymosan-induced inflammation in mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chang JS, Bai CH, Huang ZC, Owaga E, Chao KC, Chang CC, Chiou HY. Interleukin 10 and clustering of metabolic syndrome components in pediatrics. Eur J Clin Invest 2014; 44:384-94. [PMID: 24467774 DOI: 10.1111/eci.12247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/23/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Interleukin 10 (IL-10) has multifaceted anti-inflammatory properties that are known to regulate insulin sensitivity and atherosclerotic development. However, studies in children are limited and have yielded conflicting results. The aim of this study was to evaluate whether changes in this circulating anti-inflammatory cytokine is a marker for metabolic syndrome. MATERIALS AND METHODS This cross-sectional study involved children and young adolescents from eight elementary schools and two junior high schools located in Taipei and New Taipei City. A total of 553 children ages 8, 11 and 13 years old were included in the analysis. Parameters for obesity, anti- and pro-inflammatory cytokines, and metabolic risk profiles were evaluated. RESULTS Overweight/obese children had lower serum IL-10 concentrations compared with normal weight children in the same age group (all P < 0·001). IL-10 quartiles were negatively associated with body mass index (BMI) and percentage (%) body fat (all P < 0·05). Multivariate regression analysis showed significant inverse relationship between IL-10 concentrations and % body fat (β = -0·009, P < 0·0001), and total cholesterol (β = -0·726, P = 0·003), and a small positive correlation between IL-10 and systolic blood pressure (β = 0·980, P = 0·027). In normal weight children, IL-10 concentrations were independently associated with fasting plasma insulin (β = 0·2912, P = 0·001) and waist circumference (β = 0·0069, P = 0·022). By contrast, % body fat (β = -0·016, P = 0·0009) was independently associated with IL-10 concentrations in overweight and obese children. Association between IL-10 and fasting plasma insulin concentrations was weaker in overweight/obese children compared with normal weight (β = 0·283, P = 0·011 vs. β = 0·2912, P = 0·001). CONCLUSION Our data indicate that changes in circulating IL-10 concentrations are marker of metabolic risk in children.
Collapse
Affiliation(s)
- Jung-Su Chang
- School of Nutrition and Health Sciences, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Chiurchiù V, Lanuti M, Catanzaro G, Fezza F, Rapino C, Maccarrone M. Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor. Atherosclerosis 2014; 233:55-63. [PMID: 24529123 DOI: 10.1016/j.atherosclerosis.2013.12.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cannabinoid receptors are activated in murine macrophages upon exposure to oxidized low-density lipoproteins (oxLDL), and type-1 cannabinoid receptor (CB1R) is considered as a risk factor in atherosclerosis, because it promotes cholesterol accumulation and release of inflammatory mediators. Conversely, accumulated evidence suggests a protective role for type-2 cannabinoid receptor (CB2R). Here, we sought to ascertain whether different elements of the endocannabinoid system (ECS) were activated in human lipid-laden macrophages, and whether CB2R played any role in atherogenesis and inflammation of these cells. METHODS AND RESULTS Human macrophages were exposed to oxLDL in order to obtain lipid-laden foam cells. Liquid chromatography/mass spectrometry (LC/MS) was used to measure the production of the endocannabinoids in both macrophages and foam cells, and radiometric assays were performed to measure cannabinoid receptor binding and activity of endocannabinoid metabolizing enzymes. OxLDL accumulation was investigated by confocal imaging, and cytokine production and release were measured by means of flow cytometry and ELISA. The results showed that human macrophages possess a fully functional ECS, which was modulated by oxLDL. Selective CB2R activation reduced cellular oxLDL accumulation, which was associated with decreased expression of CD36 scavenger receptor, and decreased production of TNFα, IL-12 and IL-10. These anti-atherogenic and anti-inflammatory effects were reverted by the selective CB2R antagonist SR144528. CONCLUSIONS A fully active ECS is present in human macrophages and macrophage-derived foam cells. Selective activation of CB2R reduces CD36-dependent oxLDL accumulation and modulates production of inflammatory cytokines, thus representing a potential therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research (CERC)/I.R.C.C.S. Santa Lucia Foundation, Rome, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | - Mirko Lanuti
- European Center for Brain Research (CERC)/I.R.C.C.S. Santa Lucia Foundation, Rome, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Giuseppina Catanzaro
- European Center for Brain Research (CERC)/I.R.C.C.S. Santa Lucia Foundation, Rome, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- European Center for Brain Research (CERC)/I.R.C.C.S. Santa Lucia Foundation, Rome, Italy; Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Cinzia Rapino
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/I.R.C.C.S. Santa Lucia Foundation, Rome, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
42
|
Li DZ, Wang BY, Yang BJ, He SL, Lin J, Dong JC, Wu C, Hu J. Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation. ACTA ACUST UNITED AC 2014; 34:23-28. [PMID: 24496674 DOI: 10.1007/s11596-014-1226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Indexed: 11/25/2022]
Abstract
The effect of thymic stromal lymphopoietin (TSLP) on macrophage-derived foam cell formation and the underlying mechanism were studied. Macrophages isolated from C57BL/6 mice were co-cultured in vitro with different concentrations of TSLP or TSLPR-antibody in the presence of oxidized low density lipoprotein (ox-LDL). The effects of TSLP on macrophage-derived foam cell formation were observed by using oil red O staining and intracellular lipid determination. The expression levels of foam cell scavenger receptors (CD36 and SRA) as well as ABCA1 and TSLPR were detected by using RT-PCR and Western blotting. As compared with the control group, TSLP treatment significantly promoted lipid accumulation in macrophages, significantly increased protein expression of CD36 and TSLPR in a dose-dependent manner, and significantly reduced the expression of ABCA1 protein in a dose-dependent manner. No significant differences were noted between the TSLPR-antibody group and the control group. TSLP may down-regulate the expression of cholesterol efflux receptor ABCA1 and up-regulate scavenger receptor expression via the TSLPR signaling pathway, thereby promoting macrophage-derived foam cell formation.
Collapse
Affiliation(s)
- Da-Zhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo-Yuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao-Jie Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shao-Lin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang-Chuan Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
43
|
WANG HUAN, LIU YAN, ZHU LING, WANG WENJING, WAN ZHAOFEI, CHEN FANGYUAN, WU YAN, ZHOU JUAN, YUAN ZUYI. 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int J Mol Med 2014; 33:550-8. [DOI: 10.3892/ijmm.2014.1619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/23/2013] [Indexed: 11/05/2022] Open
|
44
|
Garrido-Urbani S, Meguenani M, Montecucco F, Imhof BA. Immunological aspects of atherosclerosis. Semin Immunopathol 2014; 36:73-91. [PMID: 24212253 DOI: 10.1007/s00281-013-0402-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a complex chronic inflammatory and metabolic disease that involves the collaboration of several cellular components of the immune system and results in thickening of the arterial wall. Atherosclerosis is also the primary cause of coronary artery and cerebrovascular diseases. A multitude of immune cell subsets, soluble molecules such as chemokines and cytokines, and circulating lipids play pivotal roles in atherosclerosis development. In this review, we highlight the role of the immune system in the course of atherosclerotic disease development and discuss the mechanisms involved.
Collapse
Affiliation(s)
- S Garrido-Urbani
- Department of Pathology and Immunology, CMU, University of Geneva, Geneva, Switzerland,
| | | | | | | |
Collapse
|
45
|
Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, Weber C, Boisvert WA, Preissner KT, Zernecke A. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation 2013; 129:598-606. [PMID: 24201302 DOI: 10.1161/circulationaha.113.002562] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet-induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. METHODS AND RESULTS The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P=0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P<0.0001). Exposure of bone marrow-derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1β, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E-deficient (ApoE(-/-)) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE(-/-) controls (25.0±6.2 versus 46.9±6.9×10(3) μm(2), P=0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. CONCLUSIONS Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.
Collapse
Affiliation(s)
- Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany (S.S., E.A.L.); Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F., K.T.P.); Department of Microbiology, Kazan Federal University, Kazan, Russian Federation (H.A.C.-F.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI (S.M., Y.B., W.A.B.); Core Lab for Molecular and Structural Biology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.K.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (C.W., A.Z.); Rudolf Virchow Center and Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, University of Würzburg, Würzburg, Germany (A.Z.); and Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Meiler S, Baumer Y, Huang Z, Hoffmann FW, Fredericks GJ, Rose AH, Norton RL, Hoffmann PR, Boisvert WA. Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis. J Leukoc Biol 2013; 93:771-80. [PMID: 23444136 DOI: 10.1189/jlb.1212647] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Selk is an ER transmembrane protein important for calcium flux and macrophage activation, but its role in foam cell formation and atherosclerosis has not been evaluated. BMDMs from Selk(-/-) mice exhibited decreased uptake of modLDL and foam cell formation compared with WT controls, and the differences were eliminated with anti-CD36 blocking antibody. CD36 expression was decreased in TNF-α-stimulated Selk(-/-) BMDMs compared with WT controls. Fluorescence microscopy revealed TNF-α-induced clustering of CD36 in WT BMDMs indicative of lipid raft localization, which was absent in Selk(-/-) BMDMs. Fractionation revealed lower levels of CD36 reaching lipid rafts in TNF-α-stimulated Selk(-/-) BMDMs. Immunoprecipitation showed that Selk(-/-) BMDMs have decreased CD36 palmitoylation, which occurs at the ER membrane and is crucial for stabilizing CD36 expression and directing its localization to lipid rafts. To assess if this phenomenon had a role in atherogenesis, a HFD was fed to irradiated Ldlr(-/-) mice reconstituted with BM from Selk(-/-) or WT mice. Selk was detected in aortic plaques of controls, particularly in macrophages. Selk(-/-) in immune cells led to reduction in atherosclerotic lesion formation without affecting leukocyte migration into the arterial wall. These findings suggest that Selk is important for stable, localized expression of CD36 in macrophages during inflammation, thereby contributing to foam cell formation and atherogenesis.
Collapse
Affiliation(s)
- Svenja Meiler
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin S, Nadeau PE, Wang X, Mergia A. Caveolin-1 reduces HIV-1 infectivity by restoration of HIV Nef mediated impairment of cholesterol efflux by apoA-I. Retrovirology 2012; 9:85. [PMID: 23067370 PMCID: PMC3487900 DOI: 10.1186/1742-4690-9-85] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/26/2012] [Indexed: 11/12/2022] Open
Abstract
Background HIV infection results in inhibited cholesterol efflux by apolipoprotein A-I (apoA-I) in macrophages, and this impairment involves Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA-1). We investigated the effect of caveolin-1 (Cav-1) on the cholesterol efflux by apoA-I in HIV infected primary and THP-1 cell-differentiated macrophages as well as astrocyte derived glioblastoma U87 cells. Results Our results reveal that Cav-1 restores the Nef -mediated impairment of cholesterol efflux by apoA-I in both cell types. Co-immunoprecipitation studies indicate a physical association of Cav-1 and Nef. The level of ABCA-1 expression remains the same whether Cav-1 is over-expressed or not. In addition, we examined the cholesterol composition of HIV particles released from Cav-1 treated cells and identified that the cholesterol content is dramatically reduced. The infectivity level of these virus particles is also significantly decreased. Conclusions These observations suggest that the interplay of Cav-1 with Nef and cholesterol subsequently counters Nef induced impairment of cholesterol efflux by apoA-l. The findings provide a cellular mechanism by which Cav-1 has an ability to restore HIV mediated impairment of cholesterol efflux in macrophages. This subsequently influences the cholesterol content incorporated into virus particles thereby inhibiting HIV infectivity and contributing to HIV’s persistent infection of macrophages.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, Florida, 32611, USA
| | | | | | | |
Collapse
|
48
|
Zamora C, Cantó E, Nieto JC, Angels Ortiz M, Juarez C, Vidal S. Functional consequences of CD36 downregulation by TLR signals. Cytokine 2012; 60:257-265. [PMID: 22795952 DOI: 10.1016/j.cyto.2012.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022]
Abstract
TLR recognition activates the secretion of pro- and anti-inflammatory cytokines and it also modulates the expression of crucial molecules involved in phagocytosis and antimicrobial activity. Scavenger receptors can act as TLR co-receptors or facilitate antigen loading. However, it remains unknown whether TLR can modulate the expression of these scavenger receptors. We stimulated human peripheral blood mononuclear cells (PBMC) with TLR2 (Pam3CSK4 and FSL1) and TLR4 ligand lipopolysaccharide (LPS) and then analyzed CD36 expression on different monocyte subpopulations by flow cytometry. TLR2 and TLR4 ligands can downregulate CD36 on the surface of monocytes, guiding the protein to intracellular compartments. Even though TLR-activation induced TNFα, IL-10 and IL-6 production, only recombinant TNFα was able to downregulate CD36. Neutralizing anti-TNFα antibodies showed that the Pam3CSK4 and FSL1-induced downregulation was partially mediated by TNFα but not by IL-6 or IL-10. However, LPS-induced downregulation could have also been caused by direct TLR4 targeting and signaling, and/or mediated by other unknown factors. CD36 downregulation reduced the capability of monocytes to phagocyte apoptotic neutrophils. In conclusion, modulation of scavenger receptor expression by TLR targeting on monocytes has functional consequences. Characterization this complex regulation may help us to understand this innate response and develop specific therapeutic drugs for each mechanism.
Collapse
Affiliation(s)
- Carlos Zamora
- Department of Immunology, Institut Recerca Hospital S. Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Zhou Q, Mei Y, Shoji T, Han X, Kaminski K, Oh GT, Ongusaha PP, Zhang K, Schmitt H, Moser M, Bode C, Liao JK. Rho-associated coiled-coil-containing kinase 2 deficiency in bone marrow-derived cells leads to increased cholesterol efflux and decreased atherosclerosis. Circulation 2012; 126:2236-47. [PMID: 23011471 DOI: 10.1161/circulationaha.111.086041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Macrophages play a central role in the development of atherosclerosis. However, the signaling pathways that regulate their function are not well understood. The Rho-associated coiled-coil-containing kinases (ROCK1 and ROCK2) are serine-threonine protein kinases that are involved in the regulation of the actin cytoskeleton. Recent studies suggest that ROCK1 in macrophages and bone marrow-derived cells mediates atherogenesis. However, a similar role for ROCK2 in the pathogenesis of atherosclerosis has not been determined. METHODS AND RESULTS The bone marrows from wild-type, ROCK2(+/-), and ROCK2(-/-) mice were transplanted into irradiated recipient low-density lipoprotein receptor(-/-) mice, and atherosclerosis was induced with a 16-week high-cholesterol diet. Compared with wild-type bone marrow-transplanted mice, ROCK2(+/-) bone marrow-transplanted and ROCK2(-/-) bone marrow-transplanted mice showed substantially less lipid accumulation in the aorta (8.46±1.42% and 9.80±2.34% versus 15.64±1.89%; P<0.01 for both) and decreased atherosclerotic lesions in the subaortic sinus (158.1±44.4 and 330.1±109.5×10(3)μm(2) versus 520.2±125.7×10(3)μm(2); P<0.01 for both). These findings correlated with decreased foam cell formation (2.27±0.57 versus 4.10±0.3; P<0.01) and increased cholesterol efflux (17.65±0.6 versus 9.75±0.8; P<0.05) in ROCK2-deficient mice that are mediated, in part, through the peroxisome proliferator-activated receptor-γ/liver X receptor/ATP-binding cassette transporter A1 pathway in macrophages. CONCLUSIONS ROCK2 contributes to atherosclerosis, in part, by inhibiting peroxisome proliferator-activated receptor-γ-mediated reverse cholesterol transport in macrophages, which contributes to foam cell formation. These findings suggest that inhibition of ROCK2 in macrophages may have therapeutic benefits in preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Qian Zhou
- Vascular Medicine Research Unit, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Han X, Tachado SD, Koziel H, Boisvert WA. Leu128(3.43) (l128) and Val247(6.40) (V247) of CXCR1 are critical amino acid residues for g protein coupling and receptor activation. PLoS One 2012; 7:e42765. [PMID: 22936990 PMCID: PMC3427349 DOI: 10.1371/journal.pone.0042765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/10/2012] [Indexed: 12/25/2022] Open
Abstract
CXCR1, a classic GPCR that binds IL-8, plays a key role in neutrophil activation and migration by activating phospholipase C (PLC)β through Gα15 and Gαi which generates diacylglycerol and inositol phosphates (IPs). In this study, two conserved amino acid residues of CXCR1 on the transmembrane domain (TM) 3 and TM6, Leu1283.43 (L128) and Val2476.40 (V247), respectively, were selectively substituted with other amino acids to investigate the role of these conserved residues in CXCR1 activation. Although two selective mutants on Leu128, Leu128Ala (L128A) and Leu128Arg (L128R), demonstrated high binding affinity to IL-8, they were not capable of coupling to G proteins and consequently lost the functional response of the receptors. By contrast, among the four mutants at residue Val247 (TM6.40), replacing Val247 with Ala (V247A) and Asn (V247N) led to constitutive activation of mutant receptors when cotransfected with Gα15. The V247N mutant also constitutively activated the Gαi protein. These results indicate that L128 on TM3.43 is involved in G protein coupling and receptor activation but is unimportant for ligand binding. On the other hand, V247 on TM6.40 plays a critical role in maintaining the receptor in the inactive state, and the substitution of V247 impaired the receptor constraint and stabilized an active conformation. Functionally, there was an increase in chemotaxis in response to IL-8 in cells expressing V247A and V247N. Our findings indicate that Leu1283.43 and Val2476.40 are critical for G protein coupling and activation of signaling effectors, providing a valuable insight into the mechanism of CXCR1 activation.
Collapse
Affiliation(s)
- Xinbing Han
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Vascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail: (XH); (WAB)
| | - Souvenir D. Tachado
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Henry Koziel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Boisvert
- Department of Vascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (XH); (WAB)
| |
Collapse
|