1
|
Verkerk T, de Waard AA, Koomen SJI, Sanders J, Jorritsma T, Pappot AT, Zandhuis ND, Zhang T, Wuhrer M, Hoogendijk AJ, van Alphen FPJ, van den Biggelaar M, Stockinger HSJ, van Gisbergen KPJM, Spaapen RM, van Ham SM. Tumor-Expressed SPPL3 Supports Innate Antitumor Immune Responses. Eur J Immunol 2025; 55:e202451129. [PMID: 39655358 PMCID: PMC11830388 DOI: 10.1002/eji.202451129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 02/17/2025]
Abstract
The development of an effective antitumor response relies on the synergistic actions of various immune cells that recognize tumor cells via distinct receptors. Tumors, however, often manipulate receptor-ligand interactions to evade recognition by the immune system. Recently, we highlighted the role of neolacto-series glycosphingolipids (nsGSLs), produced by the enzyme β1,3-N-acetylglucosaminyltransferase 5 (B3GNT5), in tumor immune escape. We previously demonstrated that loss of signal peptide peptidase like 3 (SPPL3), an inhibitor of B3GNT5, results in elevated levels of nsGSLs and impairs CD8 T cell activation. The impact of loss of SPPL3 and an elevated nsGSL profile in tumor cells on innate immune recognition remains to be elucidated. This study investigates the antitumor efficacy of neutrophils, NK cells, and γδ T cells on tumor cells lacking SPPL3. Our findings demonstrate that SPPL3-deficient target cells are less susceptible to trogocytosis by neutrophils and killing by NK cells and γδ T cells. Mechanistically, SPPL3 influences trogocytosis and γδ T cell-instigated killing through modulation of nsGSL expression, whereas SPPL3-mediated reduced killing by NK cells is nsGSL-independent. The nsGSL-dependent SPPL3 sensitivity depends on the proximity of surface receptor domains to the cell membrane and the affinity of receptor-ligand interactions as shown with various sets of defined antibodies. Thus, SPPL3 expression by tumor cells alters crosstalk with immune cells through the receptor-ligand interactome thereby driving escape not only from adaptive but also from innate immunity. These data underline the importance of investigating a potential synergism of GSL synthesis inhibitors with current immune cell-activating immunotherapies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Antonius A. de Waard
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Sofie J. I. Koomen
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Jasper Sanders
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Anouk T. Pappot
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Nordin D. Zandhuis
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Tao Zhang
- Center for Proteomics and MetabolomicsLUMCLeidenThe Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and MetabolomicsLUMCLeidenThe Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
| | | | | | - Hannes S. J. Stockinger
- Institute for Hygiene and Applied ImmunologyCenter of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaWienAustria
| | - Klaas P. J. M. van Gisbergen
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Robbert M. Spaapen
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
2
|
Abdelhamid AM, Zeinelabdeen Y, Manie T, Khallaf E, Assal RA, Youness RA. miR-17-5p/STAT3/H19: A novel regulatory axis tuning ULBP2 expression in young breast cancer patients. Pathol Res Pract 2024; 263:155638. [PMID: 39388743 DOI: 10.1016/j.prp.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM UL-16 binding protein 2 (ULBP2) is a highly altered ligand for the activating receptor, NKG2D in breast cancer (BC). However, the mechanism behind its de-regulation in BC patients remains to be explored. The sophisticated crosstalk between miR-17-5p, the lncRNA H19, and STAT3 as a possible upstream regulatory loop for ULBP2 in young BC patients and cell lines remains as an unexplored area. Therefore, this study aimed at unravelling the ncRNA circuit regulating ULBP2 in young BC patients and cell lines. PATIENTS AND METHODS A total of 30 BC patients were recruited for this study. The expression levels of miR-17-5p, lncRNA H19, and STAT3 were examined in 30 BC tissues compared to their normal counterparts. In addition, the expression signatures of those transcripts were compared in young (<40 years) and old BC (≥40 years) patients. miR-17-5p oligonucleotides, STAT3 and H19 siRNAs were transfected in MDA-MB-231 cells using HiPerfect® Transfection Reagent. miR-17-5p and the transcripts of the target genes quantified using RT-qPCR. Their relative expression was calculated using the 2-ΔΔCT method. RESULTS Through acting as a ceRNA circuit that antagonizes the function of miR-17-5p, H19 prevented the miR-17-5p-induced downregulation of STAT3; this mechanism further contributes to the pathogenesis of BC. Ectopic expression of miR-17-5p in MDA-MB-231 cells displayed its prominent role as an indirect potential activator of NK cells by significantly repressing the expression levels of the oncogenic mediator STAT3 and the oncogenic lncRNA H19 and inducing ULBP2 expression level by 3 folds in TNBC cell lines compared to mock cells. Furthermore, knocking down of STAT3 repressed the lncRNA H19 and increased ULBP2 expression levels, whereas siRNAs against H19 increased the expression levels of ULBP2. CONCLUSION This study highlighted the crosstalk between the novel regulatory network composed of miR-17-5p, H19 and STAT3, and their impact on ULBP2 in BC. Moreover, this study underscored the potential role of miR-17-5p in counteracting the immune evasion tactics, particularly the shedding of ULBP2 in young BC patients, through the modulation of the STAT3/H19/ULBP2 regulatory axis. Thus, targeting this novel regulatory network could potentially enhance our understanding and advance the future application of the innate system-mediated immunotherapy in BC.
Collapse
Affiliation(s)
- A M Abdelhamid
- Biotechnology School, Nile University, Giza 12588, Egypt
| | - Y Zeinelabdeen
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - T Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - E Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, New Administrative Capital 11835, Egypt.
| |
Collapse
|
3
|
Huang S, Qin Z, Wang F, Kang Y, Ren B. A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 2024; 52:137. [PMID: 39155864 PMCID: PMC11358674 DOI: 10.3892/or.2024.8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
Collapse
Affiliation(s)
- Shuhao Huang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zihao Qin
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feiyang Wang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiping Kang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Biqiong Ren
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
4
|
Leifheit ME, Johnson G, Kuzel TM, Schneider JR, Barker E, Yun HD, Ustun C, Goldufsky JW, Gupta K, Marzo AL. Enhancing Therapeutic Efficacy of FLT3 Inhibitors with Combination Therapy for Treatment of Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:9448. [PMID: 39273395 PMCID: PMC11394928 DOI: 10.3390/ijms25179448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.
Collapse
Affiliation(s)
- Malia E Leifheit
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gunnar Johnson
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M Kuzel
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hyun D Yun
- Hematology, Oncology, Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Celalettin Ustun
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Liu Z, Wang H, Liu H, Ding K, Shen H, Zhao X, Fu R. Targeting NKG2D/NKG2DL axis in multiple myeloma therapy. Cytokine Growth Factor Rev 2024; 76:1-11. [PMID: 38378397 DOI: 10.1016/j.cytogfr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Immune effector cells in patients with multiple myeloma (MM) are at the forefront of many immunotherapy treatments, and several methods have been developed to fully utilise the antitumour potential of immune cells. T and NK cell-derived immune lymphocytes both expressed activating NK receptor group 2 member D(NKG2D). This receptor can identify eight distinct NKG2D ligands (NKG2DL), including major histocompatibility complex class I (MHC) chain-related protein A and B (MICA and MICB). Their binding to NKG2D triggers effector roles in T and NK cells. NKG2DL is polymorphic in MM cells. The decreased expression of NKG2DL on the cell surface is explained by multiple mechanisms of tumour immune escape. In this review, we discuss the mechanisms by which the NKG2D/NKG2DL axis regulates immune effector cells and strategies for promoting NKG2DL expression and inhibiting its release in multiple myeloma and propose therapeutic strategies that increase the expression of NKG2DL in MM cells while enhancing the activation and killing function of NK cells.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
6
|
Olivas-Bejarano AC, Montiel-Cervantes LA, Del Carmen Perez-Retiguin F, Garcia-Gutierrez S, Cruz-Hernandez TR, Lezama-Palacios RA, Reyes-Maldonado E, Vela-Ojeda J. Lymphocyte subsets and soluble forms of MIC-A and MIC-B are prognostic factors in non-Hodgkin lymphoma patients. Ann Hematol 2024; 103:1317-1325. [PMID: 38091053 DOI: 10.1007/s00277-023-05583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 03/16/2024]
Abstract
MIC-A and MIC-B are the natural ligands for NKG2D, an activator receptor expressed in NK cells. Soluble isoforms of MIC-A and MIC-B (sMICA, sMICB) have been identified in different malignancies, affecting NK cells' cytotoxicity. The study was performed to determine the levels of sMICA, sMICB, the expression of MIC-A, and MIC-B on tumor tissues, and lymphocyte subpopulations (CD4 + , CD8 + , NK, NKT, Tγδ cells, B cells, monocytes) in 94 patients with non-Hodgkin's lymphoma (NHL) and 72 healthy donors.The most frequent lymphoma was diffuse large B cell lymphoma (48%). Patients with NHL had decreased numbers of CD4 T cells, CD8 T cells, B cells, monocytes, NK cells, type 1 dendritic cells, γδ T cells, and increased iNKT cells. Patients showed higher levels of sMIC-A and similar serum levels of sMIC-B.Survival was poorer in patients having higher LDH values and lower numbers of CD4 T cells, type 1 dendritic cells, gamma-delta T cells, and high levels of sMIC-A.In conclusion, high levels of sMIC and decreased numbers in circulating lymphocyte subsets are related to poor outcomes in NHL.
Collapse
Affiliation(s)
- Ana Cristina Olivas-Bejarano
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Laura Arcelia Montiel-Cervantes
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Flor Del Carmen Perez-Retiguin
- Departamento de Hematología, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza Seris y Zaachila S/N Colonia La Raza, Azcapotzalco, 02990, Mexico City, Mexico
| | - Socrates Garcia-Gutierrez
- Departamento de Patología, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza Seris y Zaachila S/N Colonia La Raza, Azcapotzalco, 02990, Mexico City, Mexico
| | - Teresita Rocio Cruz-Hernandez
- Laboratorio de Diagnóstico Clínico, Seccion de Estudios de Posgrado E Investigacion, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Ruth Angelica Lezama-Palacios
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Jorge Vela-Ojeda
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio y Plan de Ayala S/N, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
7
|
Angelova-Toshkina D, Weide B, Tietze LF, Hebst M, Tietze JK. Correlation of Baseline Tumor Burden with Clinical Outcome in Melanoma Patients Treated with Ipilimumab. Oncology 2023; 102:76-84. [PMID: 37579734 DOI: 10.1159/000533504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Tumor burden is a frequently mentioned parameter; however, a commonly accepted definition is still lacking. METHODS In this double-center prospective and retrospective study, 76 patients with unresectable stage III or stage IV melanoma treated with ipilimumab were included. We defined the baseline tumor burden (BTB) as the global sum of all metastases' longest diameters before treatment started and correlated the calculated BTB with disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and with the baseline levels of LDH, S100B, and sULPB2. RESULTS BTB correlated significantly with DCR (p = 0.009), PFS (p = 0.002), OS (p = 0.032), and the occurrence of NRAS mutation (p = 0.006). BTB was also correlated to baseline serum levels of LDH (p = 0.011), S100B (p = 0.027), and SULBP (p < 0.0001). Multivariate analysis revealed that BPB and LDH were independently correlated with PFS and OS. With increasing BTB, disease control was less likely; no patient with a BTB >200 mm achieved disease control. For patients with brain metastasis, no correlation of BTB with DCR (p = 0.251), PFS (p = 0.059), or OS (p = 0.981) was observed. CONCLUSION Calculated BTB is an independent prognostic factor for patients with metastatic melanoma treated with ipilimumab. Using calculated BTB as a definition of tumor burden may help increase comparability of outcome of therapies in future studies.
Collapse
Affiliation(s)
| | - Benjamin Weide
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Lutz F Tietze
- Institute of Organic and Biomolecular Chemistry, Georg-August University, Göttingen, Germany
| | - Michelle Hebst
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Julia K Tietze
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
8
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
9
|
Tsunedomi R, Shindo Y, Nakajima M, Yoshimura K, Nagano H. The tumor immune microenvironment in pancreatic cancer and its potential in the identification of immunotherapy biomarkers. Expert Rev Mol Diagn 2023; 23:1121-1134. [PMID: 37947389 DOI: 10.1080/14737159.2023.2281482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Pancreatic cancer (PC) has an extremely poor prognosis, even with surgical resection and triplet chemotherapy treatment. Cancer immunotherapy has been recently approved for tumor-agnostic treatment with genome analysis, including in PC. However, it has limited efficacy. AREAS COVERED In addition to the low tumor mutation burden, one of the difficulties of immunotherapy in PC is the presence of abundant stromal cells in its microenvironment. Among stromal cells, cancer-associated fibroblasts (CAFs) play a major role in immunotherapy resistance, and CAF-targeted therapies are currently under development, including those in combination with immunotherapies. Meanwhile, microbiomes and tumor-derived exosomes (TDEs) have been shown to alter the behavior of distant receptor cells in PC. This review discusses the role of CAFs, microbiomes, and TDEs in PC tumor immunity. EXPERT OPINION Elucidating the mechanisms by which CAFs, microbiomes, and TDEs are involved in the tumorigenesis of PC will be helpful for developing novel immunotherapeutic strategies and identifying companion biomarkers for immunotherapy. Spatial single-cell analysis of the tumor microenvironment will be useful for identifying biomarkers of PC immunity. Furthermore, given the complexity of immune mechanisms, artificial intelligence models will be beneficial for predicting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Setagaya, Tokyo, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
10
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
11
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
12
|
Moran J, Mylod E, Kane LE, Marion C, Keenan E, Mekhaeil M, Lysaght J, Dev KK, O’Sullivan J, Conroy MJ. Investigating the Effects of Olaparib on the Susceptibility of Glioblastoma Multiforme Tumour Cells to Natural Killer Cell-Mediated Responses. Pharmaceutics 2023; 15:360. [PMID: 36839682 PMCID: PMC9959685 DOI: 10.3390/pharmaceutics15020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain malignancy, with dismal survival rates of ~14.6 months. The current standard-of-care consists of surgical resection and chemoradiotherapy, however the treatment response is limited by factors such as tumour heterogeneity, treatment resistance, the blood-brain barrier, and immunosuppression. Several immunotherapies have undergone clinical development for GBM but demonstrated inadequate efficacy, yet future combinatorial approaches are likely to hold more promise. Olaparib is FDA-approved for BRCA-mutated advanced ovarian and breast cancer, and clinical studies have revealed its utility as a safe and efficacious radio- and chemo-sensitiser in GBM. The ability of Olaparib to enhance natural killer (NK) cell-mediated responses has been reported in prostate, breast, and lung cancer. This study examined its potential combination with NK cell therapies in GBM by firstly investigating the susceptibility of the GBM cell line T98G to NK cells and, secondly, examining whether Olaparib can sensitise T98G cells to NK cell-mediated responses. Here, we characterise the NK receptor ligand profile of T98G cells and demonstrate that Olaparib does not dampen T98G susceptibility to NK cells or elicit immunomodulatory effects on the function of NK cells. This study provides novel insights into the potential combination of Olaparib with NK cell therapies for GBM.
Collapse
Affiliation(s)
- Jennifer Moran
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Laura E. Kane
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Caroline Marion
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Emily Keenan
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Marianna Mekhaeil
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kumlesh K. Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Melissa J. Conroy
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
13
|
López-Borrego S, Campos-Silva C, Sandúa A, Camino T, Téllez-Pérez L, Alegre E, Beneitez A, Jara-Acevedo R, Paschen A, Pardo M, González Á, Valés-Gómez M. MAPK inhibitors dynamically affect melanoma release of immune NKG2D-ligands, as soluble protein and extracellular vesicle-associated. Front Cell Dev Biol 2023; 10:1055288. [PMID: 36726591 PMCID: PMC9884675 DOI: 10.3389/fcell.2022.1055288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic melanoma presents, in many cases, oncogenic mutations in BRAF, a MAPK involved in proliferation of tumour cells. BRAF inhibitors, used as therapy in patients with these mutations, often lead to tumour resistance and, thus, the use of MEK inhibitors was introduced in clinics. BRAFi/MEKi, a combination that has modestly increased overall survival in patients, has been proven to differentially affect immune ligands, such as NKG2D-ligands, in drug-sensitive vs. drug-resistant cells. However, the fact that NKG2D-ligands can be released as soluble molecules or in extracellular vesicles represents an additional level of complexity that has not been explored. Here we demonstrate that inhibition of MAPK using MEKi, and the combination of BRAFi with MEKi in vitro, modulates NKG2D-ligands in BRAF-mutant and WT melanoma cells, together with other NK activating ligands. These observations reinforce a role of the immune system in the generation of resistance to directed therapies and support the potential benefit of MAPK inhibition in combination with immunotherapies. Both soluble and EV-associated NKG2D-ligands, generally decreased in BRAF-mutant melanoma cell supernatants after MAPKi in vitro, replicating cell surface expression. Because potential NKG2D-ligand fluctuation during MAPKi treatment could have different consequences for the immune response, a pilot study to measure NKG2D-ligand variation in plasma or serum from metastatic melanoma patients, at different time points during MAPKi treatment, was performed. Not all NKG2D-ligands were equally detected. Further, EV detection did not parallel soluble protein. Altogether, our data confirm the heterogeneity between melanoma lesions, and suggest testing several NKG2D-ligands and other melanoma antigens in serum, both as soluble or vesicle-released proteins, to help classifying immune competence of patients.
Collapse
Affiliation(s)
- Silvia López-Borrego
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | - Carmen Campos-Silva
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | - Tamara Camino
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Lucía Téllez-Pérez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | | | | | - Annette Paschen
- Clinic for Dermatology University Hospital of Essen, Essen, North RhineWestphalia, Germany
| | - María Pardo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain,*Correspondence: Mar Valés-Gómez,
| |
Collapse
|
14
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
15
|
Dosil SG, Rodriguez-Galán A, Sánchez-Madrid F, Fernández-Messina L. Immunological synapse-driven transfer of extracellular vesicle microRNAs in primary lymphocytes. Methods Cell Biol 2023. [PMID: 37516525 DOI: 10.1016/bs.mcb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell-to-cell communication is necessary to orchestrate effective immune responses against disease-causing agents and in homeostasis. During immune synapsis, transfer of small extracellular vesicles that contain bioactive molecules, including microRNAs, occurs from the T lymphocyte to the antigen-presenting cell. In this chapter, we describe the methodology to identify and validate specific microRNAs shuttled from T lymphocytes to B cells upon immune synapse formation, and to analyze their functional impact on post-synaptic antigen-presenting cells.
Collapse
|
16
|
Secchiari F, Nuñez SY, Sierra JM, Ziblat A, Regge MV, Raffo Iraolagoitia XL, Rovegno A, Ameri C, Secin FP, Richards N, Ríos Pita H, Vitagliano G, Rico L, Mieggi M, Frascheri F, Bonanno N, Blas L, Trotta A, Friedrich AD, Fuertes MB, Domaica CI, Zwirner NW. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology. Oncoimmunology 2022; 11:2104991. [PMID: 35936986 PMCID: PMC9354769 DOI: 10.1080/2162402x.2022.2104991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NKG2D is a major natural killer (NK) cell-activating receptor that recognizes eight ligands (NKG2DLs), including MICA, and whose engagement triggers NK cell effector functions. As NKG2DLs are upregulated on tumor cells but tumors can subvert the NKG2D-NKG2DL axis, NKG2DLs constitute attractive targets for antibody (Ab)-based immuno-oncology therapies. However, such approaches require a deep characterization of NKG2DLs and NKG2D cell surface expression on primary tumor and immune cells. Here, using a bioinformatic analysis, we observed that MICA is overexpressed in renal cell carcinoma (RCC), and we also detected an association between the NKG2D-MICA axis and a diminished overall survival of RCC patients. Also, by flow cytometry (FC), we observed that MICA was the only NKG2DL over-expressed on clear cell renal cell carcinoma (ccRCC) tumor cells, including cancer stem cells (CSC) that also coexpressed NKG2D. Moreover, tumor-infiltrating leukocytes (TIL), but not peripheral blood lymphoid cells (PBL) from ccRCC patients, over-expressed MICA, ULBP3 and ULBP4. In addition, NKG2D was downregulated on peripheral blood NK cells (PBNK) from ccRCC patients but upregulated on tumor-infiltrating NK cells (TINK). These TINK exhibited impaired degranulation that negatively correlated with NKG2D expression, diminished IFN-γ production, upregulation of TIM-3, and an impaired glucose intake upon stimulation with cytokines, indicating that they are dysfunctional, display features of exhaustion and an altered metabolic fitness. We conclude that ccRCC patients exhibit a distorted MICA-NKG2D axis, and MICA emerges as the forefront NKG2DL for the development of targeted therapies in ccRCC.
Collapse
Affiliation(s)
- Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Sol Yanel Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Jessica Mariel Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - María Victoria Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Agustín Rovegno
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Carlos Ameri
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Fernando Pablo Secin
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | - Nicolás Richards
- Servicio de Urología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC)
| | | | | | - Luis Rico
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Mauro Mieggi
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | | | - Nicolás Bonanno
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Leandro Blas
- Servicio de Urología, Hospital Alemán, Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Adrián David Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| |
Collapse
|
17
|
Dosil SG, Lopez-Cobo S, Rodriguez-Galan A, Fernandez-Delgado I, Ramirez-Huesca M, Milan-Rois P, Castellanos M, Somoza A, Gómez MJ, Reyburn HT, Vales-Gomez M, Sánchez Madrid F, Fernandez-Messina L. Natural killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses. eLife 2022; 11:76319. [PMID: 35904241 PMCID: PMC9366747 DOI: 10.7554/elife.76319] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells recognise and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated human NK cells and their secreted EVs led to the identification of a specific repertoire of NK-EV-associated microRNAs and their post-transcriptional modifications signature. Several microRNAs of NK-EVs, namely miR-10b-5p, miR-92a-3p and miR-155-5p, specifically target molecules involved in Th1 responses. NK-EVs promote the downregulation of GATA3 mRNA in CD4+ T cells and subsequent TBX21 de-repression that leads to Th1 polarization and IFN-γ and IL-2 production. NK-EVs also have an effect on monocyte and moDCs function, driving their activation and increased presentation and co-stimulatory functions. Nanoparticle-delivered NK-EV microRNAs partially recapitulate NK-EV effects in mice. Our results provide new insights on the immunomodulatory roles of NK-EVs that may help to improve their use as immunotherapeutic tools.
Collapse
Affiliation(s)
- Sara G Dosil
- Servicio de Inmunología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Marta Ramirez-Huesca
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Paula Milan-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Alvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Manuel J Gómez
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | | | | |
Collapse
|
18
|
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME, Eskandari N. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer 2022; 21:15. [PMID: 35031075 PMCID: PMC8759167 DOI: 10.1186/s12943-021-01492-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamzeh Sarvnaz
- Department of Immunology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Student Research Committee, Department of Medical Genetics, School of Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Mohammad Esmaeil Akbari
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G, Vales-Gomez M. NKG2D Ligands in Liquid Biopsy: The Importance of Soluble and Vesicle-Bound Proteins for Immune Modulation. Crit Rev Immunol 2022; 42:21-40. [PMID: 36374819 DOI: 10.1615/critrevimmunol.2022045263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identification of biomarkers allowing diagnostics, prognostics and patient classification is still a challenge in oncological research for patient management. Improvements in patient survival achieved with immunotherapies substantiate that biomarker studies rely not only on cellular pathways contributing to the pathology, but also on the immune competence of the patient. If these immune molecules can be studied in a non-invasive manner, the benefit for patients and clinicians is obvious. The immune receptor Natural Killer Group 2 Member D (NKG2D) represents one of the main systems involved in direct recognition of tumor cells by effector lymphocytes (T and Natural Killer cells), and in immune evasion. The biology of NKG2D and its ligands comprises a complex network of cellular pathways leading to the expression of these tumor-associated ligands on the cell surface or to their release either as soluble proteins, or in extracellular vesicles that potently inhibit NKG2D-mediated responses. Increased levels of NKG2D-ligands in patient serum correlate with tumor progression and poor prognosis; however, most studies did not test the biochemical form of these molecules. Here we review the biology of the NKG2D receptor and ligands, their role in cancer and in patient response to immunotherapies, as well as the changes provoked in this system by non-immune cancer therapies. Further, we discuss the use of NKG2D-L in liquid biopsy, including methods to analyse vesicle-associated proteins. We propose that the evaluation in cancer patients of the whole NKG2D system can provide crucial information about patient immune competence and risk of tumor progression.
Collapse
Affiliation(s)
- Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Vulpis E, Loconte L, Peri A, Molfetta R, Caracciolo G, Masuelli L, Tomaipitinca L, Peruzzi G, Petillo S, Petrucci MT, Fazio F, Simonelli L, Fionda C, Soriani A, Cerboni C, Cippitelli M, Paolini R, Bernardini G, Palmieri G, Santoni A, Zingoni A. Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance. J Extracell Vesicles 2022; 11:e12176. [PMID: 34973063 PMCID: PMC8720178 DOI: 10.1002/jev2.12176] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that play a key role in cancer immunosurveillance thanks to their ability to recognize and kill cancer cells. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed or infected cells. The release of NKG2D ligands (NKG2DLs) in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle (EV) secretion allows cancer cells to evade NKG2D-mediated immunosurveillance. In this work, we investigated the immunomodulatory properties of the NKG2D ligand MICA*008 associated to distinct populations of EVs (i.e., small extracellular vesicles [sEVs] and medium size extracellular vesicles [mEVs]). By using as model a human MICA*008-transfected multiple myeloma (MM) cell line, we found that this ligand is present on both vesicle populations. Interestingly, our findings reveal that NKG2D is specifically involved in the uptake of vesicles expressing its cognate ligand. We provide evidence that MICA*008-expressing sEVs and mEVs are able on one hand to activate NK cells but, following prolonged stimulation induce a sustained NKG2D downmodulation leading to impaired NKG2D-mediated functions. Moreover, our findings show that MICA*008 can be transferred by vesicles to NK cells causing fratricide. Focusing on MM as a clinically and biologically relevant model of tumour-NK cell interactions, we found enrichment of EVs expressing MICA in the bone marrow of a cohort of patients. All together our results suggest that the accumulation of NKG2D ligands associated to vesicles in the tumour microenvironment could favour the suppression of NK cell activity either by NKG2D down-modulation or by fratricide of NK cell dressed with EV-derived NKG2D ligands.
Collapse
Affiliation(s)
- Elisabetta Vulpis
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Luisa Loconte
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Agnese Peri
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Rosa Molfetta
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giulio Caracciolo
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Laura Masuelli
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Luana Tomaipitinca
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro ScienceIstituto Italiano di TecnologiaRomeItaly
| | - Sara Petillo
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnologies and HematologySapienza University of RomeItaly
| | - Francesca Fazio
- Department of Cellular Biotechnologies and HematologySapienza University of RomeItaly
| | - Lucilla Simonelli
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Cinzia Fionda
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Alessandra Soriani
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Cristina Cerboni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Marco Cippitelli
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Rossella Paolini
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | - Giovanni Bernardini
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| | | | - Angela Santoni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
- Neuromed I.R.C.C.S.‐Istituto Neurologico MediterraneoPozzilliItaly
| | - Alessandra Zingoni
- Laboratory affiliated to Istituto Pasteur Italia‐Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza’ University of RomeRomeItaly
| |
Collapse
|
21
|
Wang YL, Lee CC, Shen YC, Lin PL, Wu WR, Lin YZ, Cheng WC, Chang H, Hung Y, Cho YC, Liu LC, Xia WY, Ji JH, Liang JA, Chiang SF, Liu CG, Yao J, Hung MC, Wang SC. Evading immune surveillance via tyrosine phosphorylation of nuclear PCNA. Cell Rep 2021; 36:109537. [PMID: 34433039 DOI: 10.1016/j.celrep.2021.109537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Increased DNA replication and metastasis are hallmarks of cancer progression, while deregulated proliferation often triggers sustained replication stresses in cancer cells. How cancer cells overcome the growth stress and proceed to metastasis remains largely elusive. Proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA replication machinery. Here, we show that phosphorylation of PCNA on tyrosine 211 (pY211-PCNA) regulates DNA metabolism and tumor microenvironment. Abrogation of pY211-PCNA blocks fork processivity, resulting in biogenesis of single-stranded DNA (ssDNA) through a MRE11-dependent mechanism. The cytosolic ssDNA subsequently induces inflammatory cytokines through a cyclic GMP-AMP synthetase (cGAS)-dependent cascade, triggering an anti-tumor immunity by natural killer (NK) cells to suppress distant metastasis. Expression of pY211-PCNA is inversely correlated with cytosolic ssDNA and associated with poor survival in patients with cancer. Our results pave the way to biomarkers and therapies exploiting immune responsiveness to target metastatic cancer.
Collapse
Affiliation(s)
- Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Pei-Le Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan
| | - Han Chang
- Division of Molecular Pathology, Department of Pathology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chun Cho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Ya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin-Huei Ji
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ji-An Liang
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Drug Development Center, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan; Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan; Drug Development Center, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
22
|
Heparan Sulfated Glypican-4 Is Released from Astrocytes by Proteolytic Shedding and GPI-Anchor Cleavage Mechanisms. eNeuro 2021; 8:ENEURO.0069-21.2021. [PMID: 34301723 PMCID: PMC8387153 DOI: 10.1523/eneuro.0069-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide neurons with diffusible factors that promote synapse formation and maturation. In particular, glypican-4/GPC4 released from astrocytes promotes the maturation of excitatory synapses. Unlike other secreted factors, GPC4 contains the C-terminal GPI-anchorage signal. However, the mechanism by which membrane-tethered GPC4 is released from astrocytes is unknown. Using mouse primary astrocyte cultures and a quantitative luciferase-based release assay, we show that GPC4 is expressed on the astrocyte surface via a GPI-anchorage. Soluble GPC4 is robustly released from the astrocytes largely by proteolytic shedding and, to a lesser extent, by GPI-anchor cleavage, but not by vesicular release. Pharmacological, overexpression, and loss of function screens showed that ADAM9 in part mediates the release of GPC4 from astrocytes. The released GPC4 contains the heparan sulfate side chain, suggesting that these release mechanisms provide the active form that promotes synapse maturation and function. Overall, our studies identified the release mechanisms and the major releasing enzyme of GPC4 in astrocytes and will provide insights into understanding how astrocytes regulate synapse formation and maturation.
Collapse
|
23
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Mincheva-Nilsson L. Immunosuppressive Protein Signatures Carried by Syncytiotrophoblast-Derived Exosomes and Their Role in Human Pregnancy. Front Immunol 2021; 12:717884. [PMID: 34381459 PMCID: PMC8350734 DOI: 10.3389/fimmu.2021.717884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
The syncytiotrophoblast (STB) of human placenta constitutively and throughout pregnancy produces and secretes exosomes - nanometer-sized membrane-bound extracellular vesicles from the endosomal compartment that convey cell-cell contact 'by proxy' transporting information between donor and recipient cells locally and at a distance. Released in the maternal blood, STB-derived exosomes build an exosomal gradient around the feto-placental unit acting as a shield that protects the fetus from maternal immune attack. They carry signal molecules and ligands that comprise distinct immunosuppressive protein signatures which interfere with maternal immune mechanisms, potentially dangerous for the ongoing pregnancy. We discuss three immunosuppressive signatures carried by STB exosomes and their role in three important immune mechanisms 1) NKG2D receptor-mediated cytotoxicity, 2) apoptosis of activated immune cells and 3) PD-1-mediated immunosuppression and priming of T regulatory cells. A schematic presentation is given on how these immunosuppressive protein signatures, delivered by STB exosomes, modulate the maternal immune system and contribute to the development of maternal-fetal tolerance.
Collapse
Affiliation(s)
- Lucia Mincheva-Nilsson
- Section of Infection and Immunology, Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Kita S, Shimomura I. Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. J Biochem 2021; 169:173-179. [PMID: 32979268 DOI: 10.1093/jb/mvaa105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Adiponectin is an adipocyte-derived circulating factor that protects various organs and tissues. Such a pleiotropic action mechanism has not yet been fully explained. Clinically important multimer adiponectin existing in serum bound to cells expressing T-cadherin, a glycosylphosphatidylinositol-anchored cadherin, but not to the cells expressing other known receptors, AdipoRs or calreticulin. Adiponectin bound to the cell-surface, accumulated inside of multivesicular bodies through T-cadherin, and increased exosome biogenesis and secretion from the cells. Such increased exosome production accompanied the reduction of cellular ceramides in endothelial cells and mouse aorta, and enhanced skeletal muscle regeneration. Significantly lower plasma exosome levels were found in mice genetically deficient in either adiponectin or T-cadherin. Therapeutic effects of mesenchymal stem cells (MSCs) for a pressure overload-induced heart failure in mice required the presence of adiponectin in plasma, T-cadherin expression and exosome biogenesis in MSCs themselves, accompanying an increase of plasma exosomes. Essentially all organs seem to have MSCs and/or their related somatic stem cells expressing T-cadherin. Our recent studies suggested the importance of exosome-stimulation by multimer adiponectin in its well-known pleiotropic organ protections.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Suita, Osaka 565-0871, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2 Suita, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2 Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Hess JB, Sutherland KD, Best SA. Exploring natural killer cell immunology as a therapeutic strategy in lung cancer. Transl Lung Cancer Res 2021; 10:2788-2805. [PMID: 34295678 PMCID: PMC8264324 DOI: 10.21037/tlcr-20-765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
Cytotoxic immune cells are key in the control of tumor development and progression. Natural killer (NK) cells are the cytotoxic arm of the innate immune system with the capability to kill tumor cells and surveil tumor cell dissemination. As such, the interest in harnessing NK cells in tumor control is increasing in many solid tumor types, including lung cancer. Here, we review the pre-clinical models used to unveil the role of NK cells in immunosurveillance of solid tumors and highlight measures to enhance NK cell activity. Importantly, the development of NK immunotherapy is rapidly evolving. Enhancing the NK cell response can be achieved using two broad modalities: enhancing endogenous NK cell activity, or performing adoptive transfer of pre-activated NK cells to patients. Numerous clinical trials are evaluating the efficacy of NK cell immunotherapy in isolation or in combination with standard treatments, with encouraging initial results. Pre-clinical studies and early phase clinical trials suggest that patients with solid tumors, including lung cancer, have the potential to benefit from recent developments in NK cell immunotherapy.
Collapse
Affiliation(s)
- Jonas B Hess
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A Best
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
28
|
Machuldova A, Holubova M, Caputo VS, Cedikova M, Jindra P, Houdova L, Pitule P. Role of Polymorphisms of NKG2D Receptor and Its Ligands in Acute Myeloid Leukemia and Human Stem Cell Transplantation. Front Immunol 2021; 12:651751. [PMID: 33868289 PMCID: PMC8044845 DOI: 10.3389/fimmu.2021.651751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Natural killer cells possess key regulatory function in various malignant diseases, including acute myeloid leukemia. NK cell activity is driven by signals received through ligands binding activating or inhibitory receptors. Their activity towards elimination of transformed or virally infected cells can be mediated through MICA, MICB and ULBP ligands binding the activating receptor NKG2D. Given the efficiency of NK cells, potential target cells developed multiple protecting mechanisms to overcome NK cells killing on various levels of biogenesis of NKG2D ligands. Targeted cells can degrade ligand transcripts via microRNAs or modify them at protein level to prevent their presence at cell surface via shedding, with added benefit of shed ligands to desensitize NKG2D receptor and avert the threat of destruction via NK cells. NK cells and their activity are also indispensable during hematopoietic stem cell transplantation, crucial treatment option for patients with malignant disease, including acute myeloid leukemia. Function of both NKG2D and its ligands is strongly affected by polymorphisms and particular allelic variants, as different alleles can play variable roles in ligand-receptor interaction, influencing NK cell function and HSCT outcome differently. For example, role of amino acid exchange at position 129 in MICA or at position 98 in MICB, as well as the role of other polymorphisms leading to different shedding of ligands, was described. Finally, match or mismatch between patient and donor in NKG2D ligands affect HSCT outcome. Having the information beyond standard HLA typing prior HSCT could be instrumental to find the best donor for the patient and to optimize effects of treatment by more precise patient-donor match. Here, we review recent research on the NKG2D/NKG2D ligand biology, their regulation, description of their polymorphisms across the populations of patients with AML and the influence of particular polymorphisms on HSCT outcome.
Collapse
Affiliation(s)
- Alena Machuldova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Valentina S Caputo
- Hugh & Josseline Langmuir Center for Myeloma Research, Center for Hematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.,Cancer Biology and Therapy Laboratory, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Miroslava Cedikova
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Lucie Houdova
- NTIS, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
29
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
30
|
Thomas R, Al-Khadairi G, Decock J. Immune Checkpoint Inhibitors in Triple Negative Breast Cancer Treatment: Promising Future Prospects. Front Oncol 2021; 10:600573. [PMID: 33718107 PMCID: PMC7947906 DOI: 10.3389/fonc.2020.600573] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has emerged as the fifth pillar of cancer treatment alongside surgery, radiotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors are the current superheroes of immunotherapy, unleashing a patient's own immune cells to kill tumors and revolutionizing cancer treatment in a variety of cancers. Although breast cancer was historically believed to be immunologically silent, treatment with immune checkpoint inhibitors has been shown to induce modest responses in metastatic breast cancer. Given the inherent heterogeneity of breast tumors, this raised the question whether certain breast tumors might benefit more from immune-based interventions and which cancer cell-intrinsic and/or microenvironmental factors define the likelihood of inducing a potent and durable anti-tumor immune response. In this review, we will focus on triple negative breast cancer as immunogenic breast cancer subtype, and specifically discuss the relevance of tumor mutational burden, the plethora and diversity of tumor infiltrating immune cells in addition to the immunoscore, the presence of immune checkpoint expression, and the microbiome in defining immune checkpoint blockade response. We will highlight the current immune checkpoint inhibitor treatment options, either as monotherapy or in combination with standard-of-care treatment modalities such as chemotherapy and targeted therapy. In addition, we will look into the potential of immunotherapy-based combination strategies using immune checkpoint inhibitors to enhance both innate and adaptive immune responses, or to establish a more immune favorable environment for cancer vaccines. Finally, the review will address the need for unambiguous predictive biomarkers as one of the main challenges of immune checkpoint blockade. To conclude, the potential of immune checkpoint blockade for triple negative breast cancer treatment could be enhanced by exploration of aforementioned factors and treatment strategies thereby providing promising future prospects.
Collapse
Affiliation(s)
- Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghaneya Al-Khadairi
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
31
|
The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021; 13:v13020300. [PMID: 33671917 PMCID: PMC7918975 DOI: 10.3390/v13020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the population worldwide are asymptomatic carriers of Epstein-Barr Virus (EBV). However, some infected individuals eventually develop EBV-related cancers, including Nasopharyngeal Carcinoma (NPC). NPC is one of the most common EBV-associated epithelial cancers, and is highly prevalent in Southern China and Southeast Asia. While NPC is highly sensitive to radiotherapy and chemotherapy, there is a lack of effective and durable treatment among the 15%–30% of patients who subsequently develop recurrent disease. Natural Killer (NK) cells are natural immune lymphocytes that are innately primed against virus-infected cells and nascent aberrant transformed cells. As EBV is found in both virally infected and cancer cells, it is of interest to examine the NK cells’ role in both EBV infection and EBV-associated NPC. Herein, we review the current understanding of how EBV-infected cells are cleared by NK cells, and how EBV can evade NK cell-mediated elimination in the context of type II latency in NPC. Next, we summarize the current literature about NPC and NK cell biology. Finally, we discuss the translational potential of NK cells in NPC. This information will deepen our understanding of host immune interactions with EBV-associated NPC and facilitate development of more effective NK-mediated therapies for NPC treatment.
Collapse
|
32
|
The NKG2D ligand ULBP4 is not expressed by human monocytes. PLoS One 2021; 16:e0246726. [PMID: 33556116 PMCID: PMC7870063 DOI: 10.1371/journal.pone.0246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The C-type lectin-like receptor NKG2D contributes to the immunosurveillance of virally infected and malignant cells by cytotoxic lymphocytes. A peculiar and puzzling feature of the NKG2D-based immunorecognition system is the high number of ligands for this single immunoreceptor. In humans, there are a total of eight NKG2D ligands (NKG2DL) comprising two members of the MIC (MICA, MICB) and six members of the ULBP family of glycoproteins (ULBP1 to ULBP6). While MICA has been extensively studied with regard to its biochemistry, cellular expression and function, very little is known about the NKG2DL ULBP4. This is, at least in part, due to its rather restricted expression by very few cell lines and tissues. Recently, constitutive ULBP4 expression by human monocytes was reported, questioning the view of tissue-restricted ULBP4 expression. Here, we scrutinized ULBP4 expression by human peripheral blood mononuclear cells and monocytes by analyzing ULBP4 transcripts and ULBP4 surface expression. In contrast to MICA, there was no ULBP4 expression detectable, neither by freshly isolated monocytes nor by PAMP-activated monocytes. However, a commercial antibody erroneously indicated surface ULBP4 on monocytes due to a non-ULBP4-specific binding activity, emphasizing the critical importance of validated reagents for life sciences. Collectively, our data show that ULBP4 is not expressed by monocytes, and likely also not by other peripheral blood immune cells, and therefore exhibits an expression pattern rather distinct from other human NKG2DL.
Collapse
|
33
|
Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M, Wall NR. Natural Killer Cell Phenotype and Functionality Affected by Exposure to Extracellular Survivin and Lymphoma-Derived Exosomes. Int J Mol Sci 2021; 22:1255. [PMID: 33513976 PMCID: PMC7865330 DOI: 10.3390/ijms22031255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The inherent abilities of natural killer (NK) cells to recognize and kill target cells place them among the first cells with the ability to recognize and destroy infected or transformed cells. Cancer cells, however, have mechanisms by which they can inhibit the surveillance and cytotoxic abilities of NK cells with one believed mechanism for this: their ability to release exosomes. Exosomes are vesicles that are found in abundance in the tumor microenvironment that can modulate intercellular communication and thus enhance tumor malignancy. Recently, our lab has found cancer cell exosomes to contain the inhibitor of apoptosis (IAP) protein survivin to be associated with decreased immune response in lymphocytes and cellular death. The purpose of this study was to explore the effect of survivin and lymphoma-derived survivin-containing exosomes on the immune functions of NK cells. NK cells were obtained from the peripheral blood of healthy donors and treated with pure survivin protein or exosomes from two lymphoma cell lines, DLCL2 and FSCCL. RNA was isolated from NK cell samples for measurement by PCR, and intracellular flow cytometry was used to determine protein expression. Degranulation capacity, cytotoxicity, and natural killer group 2D receptor (NKG2D) levels were also assessed. Lymphoma exosomes were examined for size and protein content. This study established that these lymphoma exosomes contained survivin and FasL but were negative for MHC class I-related chains (MIC)/B (MICA/B) and TGF-β. Treatment with exosomes did not significantly alter NK cell functionality, but extracellular survivin was seen to decrease natural killer group 2D receptor (NKG2D) levels and the intracellular protein levels of perforin, granzyme B, TNF-α, and IFN-γ.
Collapse
Affiliation(s)
- Heather R. Ferguson Bennit
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Amber Gonda
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Laura Oppegard
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - David Chi
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - Jenniffer Licero Campbell
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De Leon
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R. Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| |
Collapse
|
34
|
Vela-Ojeda J, Perez-Retiguin FDC, Olivas-Bejarano AC, Garcia-Ruiz Esparza MA, Garcia-Chavez J, Majluf-Cruz A, Reyes-Maldonado E, Montiel-Cervantes LA. Clinical relevance of NKT cells and soluble MIC-A in Hodgkin lymphoma. Leuk Lymphoma 2020; 62:801-809. [PMID: 33284055 DOI: 10.1080/10428194.2020.1852473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies demonstrated that the majority of Hodgkin lymphoma (HL) patients achieve response after treatment, while 5% become refractory. Studies analyzing the role of lymphocyte subsets in peripheral blood are limited. This investigation sought to evaluate peripheral blood lymphocyte subsets and soluble MHC class I chain-related proteins A and B (sMIC-A/B) and their correlation with survival in patients with newly diagnosed HL. The study recruited 36 patients and 72 healthy donors. HL patients showed a decrease in CD4, B, monocytes, NK, and NKT cells; and an increase in γ-δ T cells and soluble MIC-A serum levels. Higher values of s-MIC-A >100 ng/mL and NKT cells >40 µL correlated with poor overall survival (OS). In conclusion, in HL peripheral blood CD4 T and B cells, monocytes, NK, and NKT cells were decreased, while s-MIC-A and γ-δ T cells increased. Higher values of s-MIC-A and NKT cells correlated with poor survival.
Collapse
Affiliation(s)
- Jorge Vela-Ojeda
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Flor Del Carmen Perez-Retiguin
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - Jaime Garcia-Chavez
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Abraham Majluf-Cruz
- Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos Mc Gregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Laura Arcelia Montiel-Cervantes
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| |
Collapse
|
35
|
Immune Regulation by Dendritic Cell Extracellular Vesicles in Cancer Immunotherapy and Vaccines. Cancers (Basel) 2020; 12:cancers12123558. [PMID: 33260499 PMCID: PMC7761478 DOI: 10.3390/cancers12123558] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication as vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids including different RNAs. Dendritic cells (DCs)-derived EVs (DEVs), albeit variably, express major histocompatibility complex (MHC)-peptide complexes and co-stimulatory molecules on their surface that enable the interaction with other immune cells such as CD8+ T cells, and other ligands that stimulate natural killer (NK) cells, thereby instructing tumor rejection, and counteracting immune-suppressive tumor microenvironment. Malignant cells oppose this effect by secreting EVs bearing a variety of molecules that block DCs function. For instance, tumor-derived EVs (TDEVs) can impair myeloid cell differentiation resulting in myeloid-derived suppressor cells (MDSCs) generation. Hence, the unique composition of EVs makes them suitable candidates for the development of new cancer treatment approaches including prophylactic vaccine targeting oncogenic pathogens, cancer vaccines, and cancer immunotherapeutics. We offer a perspective from both cell sides, DCs, and tumor cells, on how EVs regulate the antitumor immune response, and how this translates into promising therapeutic options by reviewing the latest advancement in DEV-based cancer therapeutics.
Collapse
|
36
|
Krijgsman D, Roelands J, Andersen MN, Wieringa CHLA, Tollenaar RAEM, Hendrickx W, Bedognetti D, Hokland M, Kuppen PJK. Expression of NK cell receptor ligands in primary colorectal cancer tissue in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. Mol Immunol 2020; 128:205-218. [PMID: 33142138 DOI: 10.1016/j.molimm.2020.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Natural killer (NK) cells and natural killer T (NKT) cells are implicated in the development and progression of colorectal cancer (CRC). Tumor cells express NK cell receptor ligands that modulate their function. This study aimed to investigate the expression of such ligands in CRC in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. METHODS Primary tumor tissues were analyzed for protein expression of NK cell ligands using immunohistochemistry with automated image analysis in a cohort of 78 CRC patients. For 24 of the 78 patients, RNA expression of NK cell ligands was analyzed in primary tumor tissue using RNA sequencing. Receptor expression on circulating NK- and NKT cells was previously measured by us in 71 of the 78 patients using flow cytometry. RESULTS High Proliferating Cell Nuclear Antigen (PCNA) protein expression in the primary tumor associated with shorter disease-free survival (DFS) of CRC patients (P = 0.026). A trend was observed towards shorter DFS in CRC patients with above-median galectin-3 protein expression in the primary tumor (P = 0.055). High protein expression of galectin-3, CD1d, and human leukocyte antigen (HLA) class I, and high RNA expression of UL16-binding protein (ULBP)-1, -2, and -5, and HLA-E in the tumor tissue correlated with low expression of the corresponding receptors on circulating NK- or NKT cells (P < 0.05). CONCLUSIONS Galectin-3 and PCNA expression in the primary tumor may be prognostic biomarkers in CRC patients. Furthermore, our results suggest that NK cell receptor ligands expressed by tumor cells may modulate the phenotype of circulating NK- and NKT cells, and facilitate immune escape of metastasizing cells.
Collapse
Affiliation(s)
- Daniëlle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica Roelands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter Hendrickx
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
37
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
38
|
Lazarova M, Wels WS, Steinle A. Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opin Biol Ther 2020; 20:1491-1501. [PMID: 32726145 DOI: 10.1080/14712598.2020.1803273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The activating NKG2D receptor plays a central role in the immune recognition and elimination of abnormal self-cells by cytotoxic lymphocytes. NKG2D binding to cell stress-inducible ligands (NKG2DL) up-regulated on cancer cells facilitates their immunorecognition. Yet tumor cells utilize various escape mechanisms to avert NKG2D-based immunosurveillance. Hence, therapeutic strategies targeting the potent NKG2D/NKG2DL axis and such immune escape mechanisms become increasingly attractive in cancer therapy. AREAS COVERED This perspective provides a brief introduction into the NKG2D/NKG2DL axis and its relevance for cancer immune surveillance. Subsequently, the most advanced therapeutic approaches targeting the NKG2D system are presented focusing on NKG2D-CAR engineered immune cells and antibody-mediated strategies to inhibit NKG2DL shedding by tumors. EXPERT OPINION Thus far, NKG2D-CAR engineered lymphocytes represent the most advanced therapeutic approach utilizing the NKG2D system. Similarly to other tumor-targeting CAR approaches, NKG2D-CAR cells demonstrate powerful on-target activity, but may also cause off-tumor toxicities or lose efficacy, if NKG2DL expression by tumors is reduced. However, NKG2D-CAR cells also act on the tumor microenvironment curtailing its immunosuppressive properties, thus providing an independent therapeutic benefit. The potency of tumoricidal NKG2D-expressing lymphocytes can be further boosted by enhancing NKG2DL expression through small molecules and therapeutic antibodies inhibiting tumor-associated shedding of NKG2DL.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
39
|
Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020; 161-162:110-123. [PMID: 32828789 DOI: 10.1016/j.addr.2020.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are 50-100 nm membranous vesicles actively released by cells which can be indicative of a diseased cell status. They contain various kinds of molecule - proteins, mRNA, miRNA, lipids - that are actively being studied as potential biomarkers. Hereafter I put forward several arguments in favor of the potential use of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as biomarkers especially of cancerous diseases. I will briefly update readers on the exosome field and review various features of GPI-APs, before further discussing the advantages of this class of proteins as potential exosomal biomarkers. I will finish with a few examples of exosomal GPI-APs that have already been demonstrated to be good prognostic markers, as well as innovative approaches developed to quantify these exosomal biomarkers.
Collapse
|
40
|
Easom NJW, Marks M, Jobe D, Gillmore R, Meyer T, Maini MK, Njie R. ULBP1 Is Elevated in Human Hepatocellular Carcinoma and Predicts Outcome. Front Oncol 2020; 10:971. [PMID: 32656081 PMCID: PMC7324784 DOI: 10.3389/fonc.2020.00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer death worldwide, and despite recent immunotherapeutic advances there remains a need for improved diagnostic, prognostic, and therapeutic tools. UL-16 binding protein 1 (ULBP1) is a ligand of the activatory receptor Natural Killer cell Group 2 receptor D (NKG2D) and is found as a cell-surface protein on some malignant cells including on human hepatocellular carcinomas. We aimed to explore the biological and clinical significance of NKG2D ligands in the circulation of patients with HCC. We measured ULBP1 in the serum of two retrospective cohorts of patients with HCC from the PROLIFICA cohort in The Gambia (n = 43) and from a tertiary care setting in the UK (n = 72) by sandwich ELISA. Exosome isolation by size exclusion was used to compare ULBP1 concentration in exosomes and as free protein. Survival analysis was performed and multiple linear regression and Poisson regression were used to assess the independent effect of ULBP1 concentration. ULBP1 was raised in both cohorts with HCC regardless of the underlying liver disease, and was not associated with markers of cirrhosis such as platelet count or serum albumin. ULBP1 was present predominantly as free protein rather than bound to exosomes. Serum ULBP1 > 2000 pg/ml was associated with a significantly reduced survival in both cohorts (hazard ratios in Gambian and UK cohorts 2.37 and 2.1, respectively). The effect remained significant after adjustment for BCLC staging (p = 0.03). These data suggest that ULBP1 merits further investigation as a prognostic marker in HCC in diverse settings and should also be explored as a therapeutic target.
Collapse
Affiliation(s)
- Nicholas J. W. Easom
- Division of Infection and Immunity, University College London, London, United Kingdom
- Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Cottingham, United Kingdom
| | - Michael Marks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dawda Jobe
- MRC Unit the Gambia at LSHTM, Fajara, Gambia
| | | | - Tim Meyer
- Royal Free Hospital, London, United Kingdom
- Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ramou Njie
- Gambia Hepatitis Intervention Study (GHIS), IARC, Lyon, France
| |
Collapse
|
41
|
Biswas BK, Guru SA, Sumi MP, Jamatia E, Gupta RK, Lali P, Konar BC, Saxena A, Mir R. Natural Killer Cells Expanded and Preactivated Exhibit Enhanced Antitumor Activity against Different Tumor Cells in Vitro. Asian Pac J Cancer Prev 2020; 21:1595-1605. [PMID: 32592353 PMCID: PMC7568895 DOI: 10.31557/apjcp.2020.21.6.1595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/25/2022] Open
Abstract
One of the emerging treatment strategies for cancer particularly for haematological malignancies is natural killer (NK) cell therapy. However, the availability of a best approach to maximize NK cell anticancer potential is still awaited. It is well established that cytokine-induced memory-like NK cells have the potential to differentiate after a short period of preactivation with interleukins-IL-12, IL-15, and IL-18 and exhibit increased responses to cytokine or activating receptor restimulation for weeks to months after preactivation. We demonstrated that NK cells differentiated from CD34+ cells isolated from cord blood show increased antitumor potential in vitro against different cancer cells. Using flow cytometry, we found that NK cells were able to induce apoptosis in cancer cells in vitro. We further analysed surviving gene expression by quantitative real time PCR and reported that NK cells cause down regulation of survivin gene expression in tumor cells. Therefore, NK cell therapy represents a promising immunotherapy for cancers like AML and other haematological malignancies. It concluded that NK cells can be differentiated from CD34+ cells isolated from cord blood ,are able to induce apoptosis and induce increased antitumor potential in vitro against different cancer cells besides cause downregulation of survivin gene expression in tumor cells. Therefore, NK cell therapy represents a promising immunotherapy for different cancer types and haematological malignancies. Furthers studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Biplob Kumar Biswas
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Sameer Ahmad Guru
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Mamta Pervin Sumi
- Department of Gastroinstestinal Surgery G B Pant Postgraduate Institute of Medical Education and Research (GIPMER), New Delhi, India
| | - Elvia Jamatia
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Rohit Kumar Gupta
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Pramod Lali
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Bidhan Chandra Konar
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College (MAMC) and Associated Hospitals, New Delhi, India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research chair, University of Tabuk, Saudi Arabia
| |
Collapse
|
42
|
Fernández-Messina L, Rodríguez-Galán A, de Yébenes VG, Gutiérrez-Vázquez C, Tenreiro S, Seabra MC, Ramiro AR, Sánchez-Madrid F. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep 2020; 21:e48925. [PMID: 32073750 PMCID: PMC7132182 DOI: 10.15252/embr.201948925] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intercellular communication orchestrates effective immune responses against disease‐causing agents. Extracellular vesicles (EVs) are potent mediators of cell–cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T‐B lymphocyte immune contacts promotes transfer of a very restricted set of T‐cell EV‐microRNAs (mmu‐miR20‐a‐5p, mmu‐miR‐25‐3p, and mmu‐miR‐155‐3p) to the B cell. Transferred EV‐microRNAs target key genes that control B‐cell function, including pro‐apoptotic BIM and the cell cycle regulator PTEN. EV‐microRNAs transferred during T‐B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV‐deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B‐cell responses via the transfer of EV‐microRNAs of T‐cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune‐related and inflammatory disorders.
Collapse
Affiliation(s)
- Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Rodríguez-Galán
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G de Yébenes
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sandra Tenreiro
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Almudena R Ramiro
- B lymphocyte Biology Lab, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Intercellular Communication in the Inflammatory Response. Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
43
|
Sayitoglu EC, Georgoudaki AM, Chrobok M, Ozkazanc D, Josey BJ, Arif M, Kusser K, Hartman M, Chinn TM, Potens R, Pamukcu C, Krueger R, Zhang C, Mardinoglu A, Alici E, Temple HT, Sutlu T, Duru AD. Boosting Natural Killer Cell-Mediated Targeting of Sarcoma Through DNAM-1 and NKG2D. Front Immunol 2020; 11:40. [PMID: 32082316 PMCID: PMC7001093 DOI: 10.3389/fimmu.2020.00040] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are malignancies of mesenchymal origin that occur in bone and soft tissues. Many are chemo- and radiotherapy resistant, thus conventional treatments fail to increase overall survival. Natural Killer (NK) cells exert anti-tumor activity upon detection of a complex array of tumor ligands, but this has not been thoroughly explored in the context of sarcoma immunotherapy. In this study, we investigated the NK cell receptor/ligand immune profile of primary human sarcoma explants. Analysis of tumors from 32 sarcoma patients identified the proliferative marker PCNA and DNAM-1 ligands CD112 and/or CD155 as commonly expressed antigens that could be efficiently targeted by genetically modified (GM) NK cells. Despite the strong expression of CD112 and CD155 on sarcoma cells, characterization of freshly dissociated sarcomas revealed a general decrease in tumor-infiltrating NK cells compared to the periphery, suggesting a defect in the endogenous NK cell response. We also applied a functional screening approach to identify relevant NK cell receptor/ligand interactions that induce efficient anti-tumor responses using a panel NK-92 cell lines GM to over-express 12 different activating receptors. Using GM NK-92 cells against primary sarcoma explants (n = 12) revealed that DNAM-1 over-expression on NK-92 cells led to efficient degranulation against all tested explants (n = 12). Additionally, NKG2D over-expression showed enhanced responses against 10 out of 12 explants. These results show that DNAM-1+ or NKG2D+ GM NK-92 cells may be an efficient approach in targeting sarcomas. The degranulation capacity of GM NK-92 cell lines was also tested against various established tumor cell lines, including neuroblastoma, Schwannoma, melanoma, myeloma, leukemia, prostate, pancreatic, colon, and lung cancer. Enhanced degranulation of DNAM-1+ or NKG2D+ GM NK-92 cells was observed against the majority of tumor cell lines tested. In conclusion, DNAM-1 or NKG2D over-expression elicited a dynamic increase in NK cell degranulation against all sarcoma explants and cancer cell lines tested, including those that failed to induce a notable response in WT NK-92 cells. These results support the broad therapeutic potential of DNAM-1+ or NKG2D+ GM NK-92 cells and GM human NK cells for the treatment of sarcomas and other malignancies.
Collapse
Affiliation(s)
- Ece Canan Sayitoglu
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Anna-Maria Georgoudaki
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States.,Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Didem Ozkazanc
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin J Josey
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Muhammad Arif
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Kusser
- Translational Research and Economic Development, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Michelle Hartman
- Translational Research and Economic Development, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Tamara M Chinn
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Renee Potens
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Cevriye Pamukcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Robin Krueger
- Translational Research and Economic Development, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Cheng Zhang
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Harry Thomas Temple
- Department of Surgery, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Tolga Sutlu
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Adil Doganay Duru
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United States.,Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Suzuki K, Nishiwaki K, Gunji T, Katori M, Masuoka H, Yano S. Elevated eosinophil level predicted long time to next treatment in relapsed or refractory myeloma patients treated with lenalidomide. Cancer Med 2020; 9:1694-1702. [PMID: 31950647 PMCID: PMC7050101 DOI: 10.1002/cam4.2828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Lenalidomide is an immunomodulatory drug that is administered commonly in patients with relapsed or refractory multiple myeloma (RRMM). Eosinophils have immunological functions, for instance, in allergic diseases and asthma. The purpose of this study was to investigate the clinical significance of elevated eosinophil levels in patients with RRMM treated with lenalidomide. A total of 59 patients were included. Elevated eosinophil level was defined as an increase in the eosinophil count of ≥250/µL from the eosinophil count on day 1 during the first cycle. The percentage of patients with elevated eosinophil levels was 22.0%. The overall response ratio in the elevated eosinophil group and nonelevated eosinophil group was 84.6% and 63.0% (P = .189), respectively. The median time to next treatment (TTNT) in the elevated eosinophil group was significantly longer than that in the nonelevated group (40.3 months vs 8.4 months; P = .017). Additionally, TTNT in the elevated eosinophil group with partial response (PR) or better was significantly longer than that in the nonelevated eosinophil group with PR or better (40.3 months vs 11.9 months; P = .021). We concluded that elevated eosinophil levels were frequently observed and might predict a longer TTNT in patients with RRMM treated with lenalidomide.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Tadahiro Gunji
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuji Katori
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Hidekazu Masuoka
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Kashiwa, Chiba, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19:200-218. [PMID: 31907401 DOI: 10.1038/s41573-019-0052-1] [Citation(s) in RCA: 789] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Jain
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
46
|
Hu Y, Zhang R, Chen G. Exosome and Secretion: Action On? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:455-483. [PMID: 32185722 DOI: 10.1007/978-981-15-3266-5_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally treated as part of a cellular waste, extracellular vesicles (EVs) are being shown to possess a vast variety of functions, of which exosome is the most studied one. Most cells, such as tumor cells, immunocytes, and fibroblasts can secrete exosomes, especially under certain stresses the amount is much higher, and the contents of exosome represent the status of the donor cells and the tumor microenvironment. As crucial transporters for cells' content exchange, much attention has been raised in the utilities of exosomes to suppress immune response, and to modify a microenvironment favorable for cancer progression. Exosomal immune checkpoints, such as programmed cell death ligand 1 (PD-L1), contribute to immunosuppression and are associated with anti-PD-1 response. Many forms of soluble immune checkpoint receptors have also been shown to influence efficacy mediated by their therapeutic antibodies. Therefore, targeting pro-tumorous exosomes may achieve antitumor effect supplementary to existing therapies. Exosome, itself natural liposome-like structure, allows it to be a potential drug delivery tool.
Collapse
Affiliation(s)
- Ye Hu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Rui Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| |
Collapse
|
47
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 2019; 292:1-9. [PMID: 31731079 DOI: 10.1016/j.atherosclerosis.2019.10.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Visceral fat accumulation has a marked impact on atherosclerotic cardiovascular diseases and metabolic syndrome clustering diabetes, dyslipidemia, and hypertension. Adiponectin, an adipocyte-derived circulating protein, is a representative adipocytokine and uniquely possesses two major properties: 1) its circulating concentration is approximately 3-6 orders of magnitude greater than ordinary hormones and cytokines; 2) its concentration inversely correlates with body fat mass despite its adipocyte-specific production. Low serum levels of adiponectin correlate with cardiometabolic diseases. Extensive experimental evidence has demonstrated that adiponectin possesses multiple properties, such as anti-atherosclerotic, anti-diabetic, and anti-inflammatory activities. It has been shown to play a central role against the development of metabolic syndrome and its complications. However, even approximately 25 years after its discovery, the properties of adiponectin, including how and why it exerts multiple beneficial effects on various tissues and/or organs, remain unclear. Furthermore, the mechanisms responsible for the very high circulating concentrations of adiponectin in the bloodstream have not been elucidated. Several adiponectin-binding partners, such as AdipoR1/2, have been identified, but do not fully explain the multi-functional and beneficial properties of adiponectin. Recent advances in adiponectin research may resolve these issues. Adiponectin binds to and covers cell surfaces with T-cadherin, a unique glycosylphosphatidylinositol (GPI)-anchored cadherin. The adiponectin/T-cadherin complex enhances exosomal production and release, excreting cell-toxic products from cells, particularly in the vasculature. In this review, we discuss adiponectin and the role of the adiponectin/T-cadherin system in the maintenance of whole body homeostasis and cardiovascular protection.
Collapse
Affiliation(s)
- Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan; Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tohru Funahashi
- Division of Osaka Health Support Center, Sumitomo Mitsui Banking Corporation, 6-5, Kitahama 4-chome, Chuo-ku, Osaka, Osaka, 541-0041, Japan
| | - Yuji Matsuzawa
- Department of Endocrinology and Metabolism, Sumitomo Hospital, 5-3-20, Nakanoshima, Kita-ku, Osaka, Osaka, 530-0005, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
49
|
BCL11B regulates MICA/B-mediated immune response by acting as a competitive endogenous RNA. Oncogene 2019; 39:1514-1526. [PMID: 31673069 DOI: 10.1038/s41388-019-1083-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer immune surveillance is an important host protection process that inhibits carcinogenesis and maintains cellular homeostasis. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, by a combined bioinformatics prediction and experimental approach, we identify BCL11B 3'-UTR as a putative MICA and MICB ceRNA. We demonstrate in several human cell lines of different origins that the knockdown of BCL11B downregulates surface expression of MICA and MICB. Furthermore, we demonstrate miRNA dependency of BCL11B-mediated MICA and MICB regulation in Dicer knockdown HCT116 cells. In addition, MICA/B-targeting miRNAs (miR-17, miR-93, miR-20a, miR-20b, miR-106a, and miR-106b) repressed the expression of BCL11B by targeting its 3'-UTR. Moreover, we showed that the BCL11B knockdown-mediated downregulation of MICA/B resulted in reduced NK cell elimination in vitro and in vivo through reduced recognition of NKG2D. Of particular significance, BCL11B displays tumor-suppressive properties. The expression of BCL11B is downregulated in colon cancer tissues and associated with a reduced median survival of colon cancer patients. Taken together, our study revealed a new mechanism of BCL11B that prevents immune evasion of cancerous cells by upregulation of the NKG2D ligands MICA and MICB in a ceRNA manner.
Collapse
|
50
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|