1
|
Lan Z, Tian Y, Li C, Wang Y, Yi P, Zhang R. ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic. iScience 2025; 28:111973. [PMID: 40083718 PMCID: PMC11904568 DOI: 10.1016/j.isci.2025.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
P4-ATPases are phospholipid flippases responsible for the transbilayer lipid asymmetry. ATP8A1, a P4-ATPase family member, has been reported to be involved in phosphatidylserine (PS) translocation at the trans-Golgi network, early endosomes and recycling endosomes. However, the possible roles of the PS on late endosomes/lysosomes pathway and how they are regulated remain to be elucidated. This study showed enrichment of ATP8A1 in Rab7-positive late endosomal compartments, and that ATP8A1 primarily flips the endosomal PS from the luminal leaflet to the cytosolic leaflet but not the PS in the inner leaflet of the plasma membrane. ATP8A1 depletion accelerates the lysosome-destined cargo proteins transfer into the intraluminal vesicles (ILVs) of multivesicular bodies (MVBs) and alters the signaling of epidermal growth factor receptor. Mechanistically, ATP8A1 depletion leads to PS loading in the luminal leaflet of MVB's limiting membrane, which fine-tunes ILVs initiation and endosomal sorting complex required for transport (ESCRT) component recruitment.
Collapse
Affiliation(s)
- Zengmei Lan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hebei Key Laboratory of Medical Data Science, School of Medicine, Hebei University of Engineering, Handan, China
| | - Chengang Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudong Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Adhikari DP, Stoneman MR, Raicu V. Impact of photobleaching of fluorescent proteins on FRET measurements under two-photon excitation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125294. [PMID: 39437697 DOI: 10.1016/j.saa.2024.125294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Förster resonance energy transfer (FRET) is a widely used technique for nanoscale molecular distance measurements, which makes FRET ideal for studying protein interactions and quaternary structure of protein complexes. In this work, we were interested in how photobleaching of donor and acceptor molecules affects the FRET results under various excitation conditions. We conducted a systematic study, under two-photon excitation, of the effects of the excitation power and the choice of excitation wavelengths upon the measured FRET efficiencies of multiplex protein constructs, consisting of one donor (D) and two acceptors (A) or one acceptor and a non-fluorescent tag (N), using both the kinetic theory of FRET and numerical simulations under given excitation conditions. We found that under low excitation power and properly chosen excitation wavelengths the relationship between the FRET efficiency of a trimeric construct ADA agrees within 2% with the FRET efficiency computed (via the kinetic theory of FRET in the absence of photobleaching) from two dimeric constructs ADN and NDA. By contrast, at higher excitation powers the FRET efficiencies changed significantly due to the photobleaching of both the donor (through direct excitation) and the acceptor (mostly through FRET-induced excitation). Based on these results and numerical simulations using a simple but competent algorithm, we developed guidelines for choosing appropriate experimental conditions for reliable FRET measurements, as well as for interpreting the results of existing experiments using different excitation schemes.
Collapse
Affiliation(s)
- Dhruba P Adhikari
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
3
|
Zhou X, Septien-Gonzalez H, Husaini S, Ward RJ, Milligan G, Gradinaru CC. Diffusion and Oligomerization States of the Muscarinic M 1 Receptor in Live Cells─The Impact of Ligands and Membrane Disruptors. J Phys Chem B 2024; 128:4354-4366. [PMID: 38683784 PMCID: PMC11090110 DOI: 10.1021/acs.jpcb.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 μm2/s), slow (∼0.04 μm2/s), and fast (∼0.14 μm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.
Collapse
Affiliation(s)
- Xiaohan Zhou
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Horacio Septien-Gonzalez
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Sami Husaini
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Richard J. Ward
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department
of Chemical & Physical Sciences, University
of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
4
|
The M 1 muscarinic receptor is present in situ as a ligand-regulated mixture of monomers and oligomeric complexes. Proc Natl Acad Sci U S A 2022; 119:e2201103119. [PMID: 35671422 PMCID: PMC9214538 DOI: 10.1073/pnas.2201103119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is appreciated that members of the large family of rhodopsin-like cell surface receptors can form dimeric or larger protein complexes when expressed at high levels in cultured cells, their organizational state within native cells and tissues of the body is largely unknown. We assessed this in neurons of the central nervous system by replacing the M1 muscarinic acetylcholine receptor in mice with a form of this receptor with an added fluorescent protein. Receptor function was unaltered by this change, and the biophysical approach we used demonstrated that the receptor exists as a mixture of monomers and dimers or oligomers. Drug treatments that target this receptor promote its monomerization, which may have significance for receptor function. The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)–linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti–green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP–expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.
Collapse
|
5
|
Tahk MJ, Torp J, Ali MAS, Fishman D, Parts L, Grätz L, Müller C, Keller M, Veiksina S, Laasfeld T, Rinken A. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses-which way to go with measuring ligand binding to M 4 muscarinic receptors? Open Biol 2022; 12:220019. [PMID: 35674179 PMCID: PMC9175271 DOI: 10.1098/rsob.220019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023] Open
Abstract
M4 muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer's disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M4 receptor. Using budded baculovirus particles as M4 receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM4R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.
Collapse
Affiliation(s)
- Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jane Torp
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Mohammed A. S. Ali
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Dmytro Fishman
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Leopold Parts
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
6
|
Cevheroğlu O, Murat M, Mingu-Akmete S, Son ÇD. Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. J Phys Chem B 2021; 125:9526-9536. [PMID: 34433281 DOI: 10.1021/acs.jpcb.1c05872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligomerization of G protein-coupled receptors (GPCRs) may play important roles in maturation, internalization, signaling, and pharmacology of these receptors. However, the nature and extent of their oligomerization is still under debate. In our study, Ste2p, a yeast mating pheromone GPCR, was tagged with enhanced green fluorescent protein (EGFP), mCherry, and with split florescent protein fragments at the receptor C-terminus. The Förster resonance energy transfer (FRET) technique was used to detect receptors' oligomerization by calculating the energy transfer from EGFP to mCherry. Stimulation of Ste2p oligomers with the receptor ligand did not result in any significant change on observed FRET values. The bimolecular fluorescence complementation (BiFC) assay was combined with FRET to further investigate the tetrameric complexes of Ste2p. Our results suggest that in its quiescent (nonligand-activated) state, Ste2p is found at least as a tetrameric complex on the plasma membrane. Intriguingly, receptor tetramers in their active form showed a significant increase in FRET. This study provides a direct in vivo visualization of Ste2p tetramers and the pheromone effect on the extent of the receptor oligomerization.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey
| | - Merve Murat
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Sara Mingu-Akmete
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Shivnaraine RV, Kelly B, Elmslie G, Huang XP, Dong YJ, Seidenberg M, Wells JW, Ellis J. Allostery of atypical modulators at oligomeric G protein-coupled receptors. Sci Rep 2021; 11:9265. [PMID: 33927236 PMCID: PMC8085029 DOI: 10.1038/s41598-021-88399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) are therapeutic targets, with most drugs acting at the orthosteric site. Some GPCRs also possess allosteric sites, which have become a focus of drug discovery. In the M2 muscarinic receptor, allosteric modulators regulate the binding and functional effects of orthosteric ligands through a mix of conformational changes, steric hindrance and electrostatic repulsion transmitted within and between the constituent protomers of an oligomer. Tacrine has been called an atypical modulator because it exhibits positive cooperativity, as revealed by Hill coefficients greater than 1 in its negative allosteric effect on binding and response. Radioligand binding and molecular dynamics simulations were used to probe the mechanism of that modulation in monomers and oligomers of wild-type and mutant M2 receptors. Tacrine is not atypical at monomers, which indicates that its atypical effects are a property of the receptor in its oligomeric state. These results illustrate that oligomerization of the M2 receptor has functional consequences.
Collapse
Affiliation(s)
- Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, B163 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA.
| | - Brendan Kelly
- Departments of Computer Science, Molecular and Cellular Physiology, and Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gwendolynne Elmslie
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Xi-Ping Huang
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Pharmacology, The National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yue John Dong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Margaret Seidenberg
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| | - John Ellis
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Psychiatry H073, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
8
|
Işbilir A, Serfling R, Möller J, Thomas R, De Faveri C, Zabel U, Scarselli M, Beck-Sickinger AG, Bock A, Coin I, Lohse MJ, Annibale P. Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells. Nat Protoc 2021; 16:1419-1451. [PMID: 33514946 DOI: 10.1038/s41596-020-00458-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.
Collapse
Affiliation(s)
- Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Romy Thomas
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chiara De Faveri
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,ISAR Bioscience Institute, Munich, Germany.
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
9
|
Paprocki J, Biener G, Stoneman M, Raicu V. In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. J Phys Chem B 2020; 124:10062-10076. [DOI: 10.1021/acs.jpcb.0c06081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
10
|
Beltrame SP, Carrera Páez LC, Auger SR, Sabra AH, Bilder CR, Waldner CI, Goin JC. Impairment of agonist-induced M 2 muscarinic receptor activation by autoantibodies from chagasic patients with cardiovascular dysautonomia. Clin Immunol 2020; 212:108346. [PMID: 31954803 DOI: 10.1016/j.clim.2020.108346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Previous studies showed that circulating autoantibodies against M2 muscarinic receptors (anti-M2R Ab) are associated with decreased cardiac parasympathetic modulation in patients with chronic Chagas disease (CD). Here we investigated whether the exposure of M2R to such antibodies could impair agonist-induced receptor activation, leading to the inhibition of associated signaling pathways. Preincubation of M2R-expressing HEK 293T cells with serum IgG fractions from chagasic patients with cardiovascular dysautonomia, followed by the addition of carbachol, resulted in the attenuation of agonist-induced Gi protein activation and arrestin-2 recruitment. These effects were not mimicked by the corresponding Fab fractions, suggesting that they occur through receptor crosslinking. IgG autoantibodies did not enhance M2R/arrestin interaction or promote M2R internalization, suggesting that their inhibitory effects are not likely a result of short-term receptor regulation. Rather, these immunoglobulins could function as negative allosteric modulators of acetylcholine-mediated responses, thereby contributing to the development of parasympathetic dysfunction in patients with CD.
Collapse
Affiliation(s)
- Sabrina P Beltrame
- Laboratorio de Farmacología Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET-UBA) and II Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Buenos Aires, Argentina.
| | - Laura C Carrera Páez
- Laboratorio de Farmacología Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET-UBA) and II Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Buenos Aires, Argentina.
| | - Sergio R Auger
- Hospital D.F. Santojanni, Pilar 950, PB, C1408INH Buenos Aires, Argentina.
| | - Ahmad H Sabra
- Hospital D.F. Santojanni, Pilar 950, PB, C1408INH Buenos Aires, Argentina.
| | - Claudio R Bilder
- Laboratorio de Neurogastroenterología, Fundación Favaloro-Hospital Universitario, Av. Belgrano 1746, 1er Piso, C1093AAS Buenos Aires, Argentina.
| | - Claudia I Waldner
- Laboratorio de Inmunidad Celular y Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Buenos Aires, Argentina.
| | - Juan C Goin
- Laboratorio de Farmacología Molecular, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET-UBA) and II Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Buenos Aires, Argentina.
| |
Collapse
|
11
|
Pin JP, Kniazeff J, Prézeau L, Liu JF, Rondard P. GPCR interaction as a possible way for allosteric control between receptors. Mol Cell Endocrinol 2019; 486:89-95. [PMID: 30849406 DOI: 10.1016/j.mce.2019.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
For more than twenty years now, GPCR dimers and larger oligomers have been the subject of intense debates. Evidence for a role of such complexes in receptor trafficking to and from the plasma membrane have been provided. However, one main issue is of course to determine whether or not such a phenomenon can be responsible for an allosteric and reciprocal control (allosteric control) of the subunits. Such a possibility would indeed add to the possible ways a cell integrates various signals targeting GPCRs. Among the large GPCR family, the class C receptors that include mGlu and GABAB receptors, represent excellent models to examine such a possibility as they are mandatory dimers. In the present review, we will report on the observed allosteric interaction between the subunits of class C GPCRs, both mGluRs and GABABRs, and on the structural bases of these interactions. We will then discuss these findings for other GPCR types such as the rhodopsin-like class A receptors. We will show that many of the observations made with class C receptors have also been reported with class A receptors, suggesting that the mechanisms involved in the allosteric control between subunits in GPCR dimers may not be unique to class C GPCRs.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jiang-Feng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
12
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
13
|
Li Y, Shivnaraine RV, Huang F, Wells JW, Gradinaru CC. Ligand-Induced Coupling between Oligomers of the M 2 Receptor and the G i1 Protein in Live Cells. Biophys J 2018; 115:881-895. [PMID: 30131171 DOI: 10.1016/j.bpj.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Uncertainty over the mechanism of signaling via G protein-coupled receptors (GPCRs) relates in part to questions regarding their supramolecular structure. GPCRs and heterotrimeric G proteins are known to couple as monomers under various conditions. Many GPCRs form oligomers under many of the same conditions, however, and the biological role of those complexes is unclear. We have used dual-color fluorescence correlation spectroscopy to identify oligomers of the M2 muscarinic receptor and of Gi1 in purified preparations and live Chinese hamster ovary cells. Measurements on differently tagged receptors (i.e., eGFP-M2 and mCherry-M2) and G proteins (i.e., eGFP-Gαi1β1γ2 and mCherry-Gαi1β1γ2) detected significant cross-correlations between the two fluorophores in each case, both in detergent micelles and in live cells, indicating that both the receptor and Gi1 can exist as homo-oligomers. Oligomerization of differently tagged Gi1 decreased upon the activation of co-expressed wild-type M2 receptor by an agonist. Measurements on a tagged M2 receptor (M2-mCherry) and eGFP-Gαi1β1γ2 co-expressed in live cells detected cross-correlations only in the presence of an agonist, which therefore promoted coupling of the receptor and the G protein. The effect of the agonist was retained when a fluorophore-tagged receptor lacking the orthosteric site (i.e., M2(D103A)-mCherry) was co-expressed with the wild-type receptor and eGFP-Gαi1β1γ2, indicating that the ligand acted via an oligomeric receptor. Our results point to a model in which an agonist promotes transient coupling of otherwise independent oligomers of the M2 receptor on the one hand and of Gi1 on the other and that an activated complex leads to a reduction in the oligomeric size of the G protein. They suggest that GPCR-mediated signaling proceeds, at least in part, via oligomers.
Collapse
Affiliation(s)
- Yuchong Li
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Fei Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
14
|
Marsango S, Ward RJ, Alvarez-Curto E, Milligan G. Muscarinic receptor oligomerization. Neuropharmacology 2018; 136:401-410. [PMID: 29146505 PMCID: PMC6078712 DOI: 10.1016/j.neuropharm.2017.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization remain topics of intense speculation. Muscarinic acetylcholine receptors belong to class A of the GPCR family. Each muscarinic receptor subtype has its own particular distribution throughout the central and peripheral nervous systems. In the central nervous system, muscarinic receptors regulate several sensory, cognitive, and motor functions while, in the peripheral nervous system, they are involved in the regulation of heart rate, stimulation of glandular secretion and smooth muscle contraction. Muscarinic acetylcholine receptors have long been used as a model for the study of GPCR structure and function and to address aspects of GPCR dimerization using a broad range of approaches. In this review, the prevailing knowledge regarding the quaternary arrangement for the various muscarinic acetylcholine receptors has been summarized by discussing work ranging from initial results obtained using more traditional biochemical approaches to those generated with more modern biophysical techniques. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
15
|
Sleno R, Hébert TE. The Dynamics of GPCR Oligomerization and Their Functional Consequences. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:141-171. [PMID: 29699691 DOI: 10.1016/bs.ircmb.2018.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of G protein-coupled receptor (GPCR) oligomerization remains controversial. Although obligate dimers of class C GPCRs are well accepted, the generalizability of this phenomenon is still strongly debated with respect to other classes of GPCRs. In this review, we focus on understanding the organization and dynamics between receptor equivalents and their signaling partners in oligomeric receptor complexes, with a view toward integrating disparate viewpoints into a unified understanding. We discuss the nature of functional oligomeric entities, and how asymmetries in receptor structure and function created by oligomers might have implications for receptor function as allosteric machines and for future drug discovery.
Collapse
|
16
|
Pediani JD, Ward RJ, Marsango S, Milligan G. Spatial Intensity Distribution Analysis: Studies of G Protein-Coupled Receptor Oligomerisation. Trends Pharmacol Sci 2017; 39:175-186. [PMID: 29032835 PMCID: PMC5783713 DOI: 10.1016/j.tips.2017.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Spatial intensity distribution analysis (SpIDA) is a recently developed approach for determining quaternary structure information on fluorophore-labelled proteins of interest in situ. It can be applied to live or fixed cells and native tissue. Using confocal images, SpIDA generates fluorescence intensity histograms that are analysed by super-Poissonian distribution functions to obtain density and quantal brightness values of the fluorophore-labelled protein of interest. This allows both expression level and oligomerisation state of the protein to be determined. We describe the application of SpIDA to investigate the oligomeric state of G protein-coupled receptors (GPCRs) at steady state and following cellular challenge, and consider how SpIDA may be used to explore GPCR quaternary organisation in pathophysiology and to stratify medicines. GPCRs may exist and function as monomers: however, abundant evidence suggests they can form dimers/oligomers. This concept has implications for drug discovery as it may offer opportunities to modulate the effects of known pharmaceuticals or identify new drug therapies. A variety of approaches have been applied to this issue from traditional biochemical techniques, via resonance energy transfer approaches to recently developed image analysis-based techniques such as SpIDA. This uses mathematical analysis of confocal microscopy images to generate quantal brightness and density information for a fluorophore-tagged receptor. SpIDA can be applied to live or fixed cells and native tissue. SpIDA has been applied to GPCRs from each of the major subfamilies to explore their oligomerisation status at steady state and their regulation by receptor density and ligand binding.
Collapse
Affiliation(s)
- John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
17
|
An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat Commun 2017; 8:15100. [PMID: 28452360 PMCID: PMC5414349 DOI: 10.1038/ncomms15100] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/21/2017] [Indexed: 01/12/2023] Open
Abstract
Clustering of the T-cell receptor (TCR) is thought to initiate downstream signalling. However, the detection of protein clustering with high spatial and temporal resolution remains challenging. Here we establish a Förster resonance energy transfer (FRET) sensor, named CliF, which reports intermolecular associations of neighbouring proteins in live cells. A key advantage of the single-chain FRET sensor is that it can be combined with image correlation spectroscopy (ICS), single-particle tracking (SPT) and fluorescence lifetime imaging microscopy (FLIM). We test the sensor with a light-sensitive actuator that induces protein aggregation upon radiation with blue light. When applied to T cells, the sensor reveals that TCR triggering increases the number of dense TCR–CD3 clusters. Further, we find a correlation between cluster movement within the immunological synapse and cluster density. In conclusion, we develop a sensor that allows us to map the dynamics of protein clustering in live T cells. Cellular signalling is often facilitated by membrane protein clustering, but detection of protein clustering at high spatiotemporal resolution is challenging. Here the authors develop a single-chain FRET sensor they name CliF to look at intermolecular associations and dynamics of TCR-CD3 clusters on the T cell surface.
Collapse
|
18
|
Cevheroğlu O, Kumaş G, Hauser M, Becker JM, Son ÇD. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:698-711. [PMID: 28073700 DOI: 10.1016/j.bbamem.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Gözde Kumaş
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
19
|
Shivnaraine RV, Fernandes DD, Ji H, Li Y, Kelly B, Zhang Z, Han YR, Huang F, Sankar KS, Dubins DN, Rocheleau JV, Wells JW, Gradinaru CC. Single-Molecule Analysis of the Supramolecular Organization of the M2 Muscarinic Receptor and the Gαi1 Protein. J Am Chem Soc 2016; 138:11583-98. [DOI: 10.1021/jacs.6b04032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rabindra V. Shivnaraine
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Dennis D. Fernandes
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Huiqiao Ji
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yuchong Li
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Brendan Kelly
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Krembil Research
Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Zhenfu Zhang
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yi Rang Han
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fei Huang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Krishana S. Sankar
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David N. Dubins
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jonathan V. Rocheleau
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute
of Biomedical and Biomaterial Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - James W. Wells
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
20
|
Shivnaraine RV, Kelly B, Sankar KS, Redka DS, Han YR, Huang F, Elmslie G, Pinto D, Li Y, Rocheleau JV, Gradinaru CC, Ellis J, Wells JW. Allosteric modulation in monomers and oligomers of a G protein-coupled receptor. eLife 2016; 5. [PMID: 27151542 PMCID: PMC4900804 DOI: 10.7554/elife.11685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/30/2016] [Indexed: 12/03/2022] Open
Abstract
The M2 muscarinic receptor is the prototypic model of allostery in GPCRs, yet the molecular and the supramolecular determinants of such effects are unknown. Monomers and oligomers of the M2 muscarinic receptor therefore have been compared to identify those allosteric properties that are gained in oligomers. Allosteric interactions were monitored by means of a FRET-based sensor of conformation at the allosteric site and in pharmacological assays involving mutants engineered to preclude intramolecular effects. Electrostatic, steric, and conformational determinants of allostery at the atomic level were examined in molecular dynamics simulations. Allosteric effects in monomers were exclusively negative and derived primarily from intramolecular electrostatic repulsion between the allosteric and orthosteric ligands. Allosteric effects in oligomers could be positive or negative, depending upon the allosteric-orthosteric pair, and they arose from interactions within and between the constituent protomers. The complex behavior of oligomers is characteristic of muscarinic receptors in myocardial preparations. DOI:http://dx.doi.org/10.7554/eLife.11685.001 Proteins called G protein-coupled receptors (GPCRs) are found on the surface of cells throughout the body. Hormones or other signal molecules – collectively known as ligands – from outside the cell can bind to the receptors to activate them. This causes a change in the structure of the receptor, which triggers a signal inside the cell to alter the cell’s behavior. GPCRs are known to form clusters of two or more receptor units, but it is not known if these clusters have unique properties or what role they play in cells. Many drugs can bind to GPCRs and most of them block the activity of the receptors by taking the place of the natural ligand. Another way to alter the activity of a GPCR is with so-called 'allosteric' drugs. These bind to different sites on the receptor than the natural ligands do and can inhibit or enhance binding of the ligands by altering the shape of the receptor. Shivnaraine et al. investigated how a type of GPCR called muscarinic cholinergic receptors interact within clusters. This involved developing a method to track the receptor in mammalian cells using a fluorescent sensor that detects changes in the allosteric site. The experiments show that two or more GPCRs need to interact for the receptors to respond to allosteric drugs in a manner that reflects the normal effect of the drugs on the body. This result is unexpected in light of the assumption that individual receptor molecules act independently. Shivnaraine et al.’s findings indicate that the clusters may play a role in the normal behavior of GPCRs in cells. A future challenge is to understand exactly how the GPCRs interact with each other. DOI:http://dx.doi.org/10.7554/eLife.11685.002
Collapse
Affiliation(s)
- Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Brendan Kelly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | - Dar'ya S Redka
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Yi Rang Han
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Fei Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Gwendolynne Elmslie
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
| | - Daniel Pinto
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto, Toronto, Canada
| | | | | | - John Ellis
- Departments of Psychiatry and Pharmacology, Hershey Medical Center, Hershey, United States
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Patowary S, Pisterzi LF, Biener G, Holz JD, Oliver JA, Wells JW, Raicu V. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Biophys J 2016; 108:1613-1622. [PMID: 25863053 DOI: 10.1016/j.bpj.2015.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022] Open
Abstract
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.
Collapse
Affiliation(s)
- Suparna Patowary
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | | | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Jessica D Holz
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Julie A Oliver
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - James W Wells
- The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
| |
Collapse
|
22
|
Chidiac P, Hébert TE. GPCR Retreat 2014: a good view leads to many discoveries! J Recept Signal Transduct Res 2015; 35:208-12. [PMID: 26366680 DOI: 10.3109/10799893.2015.1072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The GPCR gods smiled on us last year as the 15th Annual GPCR Retreat was held last October 2nd-4th in Bromont, Québec. The fall colors were at their peak and the meeting attendees were also in fine form. The program was one of the best we have seen at any GPCR-related meeting in years and there was a great deal of excitement about new methodological approaches to understanding receptor biology, new concepts in GPCR signaling and a continued emphasis on translation of these discoveries. This year was also the first year we opened the meeting with a short course on biased agonism and how to measure and analyze it.
Collapse
Affiliation(s)
- Peter Chidiac
- a Department of Physiology and Pharmacology , Schulich School of Medicine & Dentistry, University of Western Ontario , London , Ontario , Canada and
| | - Terence E Hébert
- b Department of Pharmacology and Therapeutics , McGill University , Montréal, Québec , Canada
| |
Collapse
|
23
|
Wan M, Zhang W, Tian Y, Xu C, Xu T, Liu J, Zhang R. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor. Sci Rep 2015; 5:11408. [PMID: 26094760 PMCID: PMC4476042 DOI: 10.1038/srep11408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence (374)KKKPPPS(380) servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching (374)KKKPPPS(380) to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, (361)VARKIVKMTKQPA(373), which is normally masked in the presence of the downstream sequence (374)KKKPPPS(380). Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent.
Collapse
Affiliation(s)
- Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Aslanoglou D, Alvarez-Curto E, Marsango S, Milligan G. Distinct Agonist Regulation of Muscarinic Acetylcholine M2-M3 Heteromers and Their Corresponding Homomers. J Biol Chem 2015; 290:14785-96. [PMID: 25918156 PMCID: PMC4505543 DOI: 10.1074/jbc.m115.649079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 01/01/2023] Open
Abstract
Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic receptors. These display loss of potency for acetylcholine/carbachol alongside a concurrent gain in potency for the ligand clozapine N-oxide. Co-expression of a form of wild type human M2 and a RASSL variant of the human M3 receptor resulted in concurrent detection of each of M2-M2 and M3-M3 homomers alongside M2-M3 heteromers at the surface of stably transfected Flp-InTM T-RExTM 293 cells. In this setting occupancy of the receptors with a muscarinic antagonist was without detectable effect on any of the muscarinic oligomers. However, selective agonist occupancy of the M2 receptor resulted in enhanced M2-M2 homomer interactions but decreased M2-M3 heteromer interactions. By contrast, selective activation of the M3 RASSL receptor did not significantly alter either M3-M3 homomer or M2-M3 heteromer interactions. Selectively targeting closely related receptor oligomers may provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Elisa Alvarez-Curto
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Sara Marsango
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
25
|
Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J, Oliver JA, Ruoho A, Raicu V. The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 2015; 466:263-271. [PMID: 25510962 PMCID: PMC4500508 DOI: 10.1042/bj20141321] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sigma-1 receptor (S1R) is a 223-amino-acid membrane protein that resides in the endoplasmic reticulum and the plasma membrane of some mammalian cells. The S1R is regulated by various synthetic molecules including (+)-pentazocine, cocaine and haloperidol and endogenous molecules such as sphingosine, dimethyltryptamine and dehydroepiandrosterone. Ligand-regulated protein chaperone functions linked to oxidative stress and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and neuropathic pain have been attributed to the S1R. Several client proteins that interact with S1R have been identified including various types of ion channels and G-protein coupled receptors (GPCRs). When S1R constructs containing C-terminal monomeric GFP2 and YFP fusions were co-expressed in COS-7 cells and subjected to FRET spectrometry analysis, monomers, dimers and higher oligomeric forms of S1R were identified under non-liganded conditions. In the presence of the prototypic S1R agonist, (+)-pentazocine, however, monomers and dimers were the prevailing forms of S1R. The prototypic antagonist, haloperidol, on the other hand, favoured higher order S1R oligomers. These data, in sum, indicate that heterologously expressed S1Rs occur in vivo in COS-7 cells in multiple oligomeric forms and that S1R ligands alter these oligomeric structures. We suggest that the S1R oligomerization states may regulate its function(s).
Collapse
Affiliation(s)
- Ashish K. Mishra
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Timur Mavlyutov
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Deo R. Singh
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Julie A. Oliver
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Arnold Ruoho
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|
26
|
Hill SJ, May LT, Kellam B, Woolard J. Allosteric interactions at adenosine A(1) and A(3) receptors: new insights into the role of small molecules and receptor dimerization. Br J Pharmacol 2014; 171:1102-13. [PMID: 24024783 DOI: 10.1111/bph.12345] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022] Open
Abstract
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs -protein-coupled adenosine receptors (A2A and A2B ), or inhibit AC activity, in the case of Gi/o -coupled adenosine receptors (A1 and A3 ). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1 - and A3 -receptor allosteric modulators on in vivo pharmacology.
Collapse
Affiliation(s)
- Stephen J Hill
- Cell Signalling Research Group, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
27
|
Redka DS, Morizumi T, Elmslie G, Paranthaman P, Shivnaraine RV, Ellis J, Ernst OP, Wells JW. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor. J Biol Chem 2014; 289:24347-65. [PMID: 25023280 DOI: 10.1074/jbc.m114.559294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins.
Collapse
Affiliation(s)
- Dar'ya S Redka
- From the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Takefumi Morizumi
- the Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Gwendolynne Elmslie
- the Departments of Psychiatry and Pharmacology, Hershey Medical Center, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, and
| | - Pranavan Paranthaman
- From the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Rabindra V Shivnaraine
- From the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - John Ellis
- the Departments of Psychiatry and Pharmacology, Hershey Medical Center, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, and
| | - Oliver P Ernst
- the Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada, the Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James W Wells
- From the Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada,
| |
Collapse
|
28
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
29
|
Jiang X, Dias JA, He X. Structural biology of glycoprotein hormones and their receptors: insights to signaling. Mol Cell Endocrinol 2014; 382:424-451. [PMID: 24001578 DOI: 10.1016/j.mce.2013.08.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/18/2023]
Abstract
This article reviews the progress made in the field of glycoprotein hormones (GPH) and their receptors (GPHR) by several groups of structural biologists including ourselves aiming to gain insight into GPH signaling mechanisms. The GPH family consists of four members, with follicle-stimulating hormone (FSH) being the prototypic member. GPH members belong to the cystine-knot growth factor superfamily, and their receptors (GPHR), possessing unusually large N-terminal ectodomains, belong to the G-protein coupled receptor Family A. GPHR ectodomains can be divided into two subdomains: a high-affinity hormone binding subdomain primarily centered on the N-terminus, and a second subdomain that is located on the C-terminal region of the ectodomain that is involved in signal specificity. The two subdomains unexpectedly form an integral structure comprised of leucine-rich repeats (LRRs). Following the structure determination of hCG in 1994, the field of FSH structural biology has progressively advanced. Initially, the FSH structure was determined in partially glycosylated free form in 2001, followed by a structure of FSH bound to a truncated FSHR ectodomain in 2005, and the structure of FSH bound to the entire ectodomain in 2012. Comparisons of the structures in three forms led a proposal of a two-step monomeric receptor activation mechanism. First, binding of FSH to the FSHR high-affinity hormone-binding subdomain induces a conformational change in the hormone to form a binding pocket that is specific for a sulfated-tyrosine found as sTyr 335 in FSHR. Subsequently, the sTyr is drawn into the newly formed binding pocket, producing a lever effect on a helical pivot whereby the docking sTyr provides as the 'pull & lift' force. The pivot helix is flanked by rigid LRRs and locked by two disulfide bonds on both sides: the hormone-binding subdomain on one side and the last short loop before the first transmembrane helix on the other side. The lift of the sTyr loop frees the tethered extracellular loops of the 7TM domain, thereby releasing a putative inhibitory influence of the ectodomain, ultimately leading to the activating conformation of the 7TM domain. Moreover, the data lead us to propose that FSHR exists as a trimer and to present an FSHR activation mechanism consistent with the observed trimeric crystal form. A trimeric receptor provides resolution of the enigmatic, but important, biological roles played by GPH residues that are removed from the primary FSH-binding site, as well as several important GPCR phenomena, including negative cooperativity and asymmetric activation. Further reflection pursuant to this review process revealed additional novel structural characteristics such as the identification of a 'seat' sequence in GPH. Together with the 'seatbelt', the 'seat' enables a common heteodimeric mode of association of the common α subunit non-covalently and non-specifically with each of the three different β subunits. Moreover, it was possible to establish a dimensional order that can be used to estimate LRR curvatures. A potential binding pocket for small molecular allosteric modulators in the FSHR 7TM domain has also been identified.
Collapse
Affiliation(s)
- Xuliang Jiang
- EMD Serono Research & Development Institute, Billerica, MA 01821, United States.
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany-SUNY, Albany, NY 12222, United States
| | - Xiaolin He
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| |
Collapse
|
30
|
Biener G, Stoneman MR, Acbas G, Holz JD, Orlova M, Komarova L, Kuchin S, Raicu V. Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation. Int J Mol Sci 2013; 15:261-76. [PMID: 24378851 PMCID: PMC3907809 DOI: 10.3390/ijms15010261] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/15/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022] Open
Abstract
Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.
Collapse
Affiliation(s)
- Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Gheorghe Acbas
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Jessica D Holz
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Marianna Orlova
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Liudmila Komarova
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sergei Kuchin
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
31
|
Redka DS, Heerklotz H, Wells JW. Efficacy as an Intrinsic Property of the M2 Muscarinic Receptor in Its Tetrameric State. Biochemistry 2013; 52:7405-27. [DOI: 10.1021/bi4003869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dar’ya S. Redka
- Department of Pharmaceutical
Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Heiko Heerklotz
- Department of Pharmaceutical
Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - James W. Wells
- Department of Pharmaceutical
Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
32
|
Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 2013; 84:630-42. [PMID: 23907214 PMCID: PMC3781380 DOI: 10.1124/mol.113.087072] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/01/2013] [Indexed: 11/22/2022] Open
Abstract
The issue of G protein-coupled receptor (GPCR) oligomer status has not been resolved. Although many studies have provided evidence in favor of receptor-receptor interactions, there is no consensus as to the exact oligomer size of class A GPCRs. Previous studies have reported monomers, dimers, tetramers, and higher-order oligomers. In the present study, this issue was examined using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH) analysis, a sensitive method for monitoring diffusion and oligomer size of plasma membrane proteins. Six different class A GPCRs were selected from the serotonin (5-HT2A), adrenergic (α1b-AR and β2-AR), muscarinic (M1 and M2), and dopamine (D1) receptor families. Each GPCR was C-terminally labeled with green fluorescent protein (GFP) or yellow fluorescent protein (YFP) and expressed in human embryonic kidney 293 cells. FCS provided plasma membrane diffusion coefficients on the order of 7.5 × 10(-9) cm(2)/s. PCH molecular brightness analysis was used to determine the GPCR oligomer size. Known monomeric (CD-86) and dimeric (CD-28) receptors with GFP and YFP tags were used as controls to determine the molecular brightness of monomers and dimers. PCH analysis of fluorescence-tagged GPCRs revealed molecular brightness values that were twice the monomeric controls and similar to the dimeric controls. Reduced χ(2) analyses of the PCH data best fit a model for a homogeneous population of homodimers, without tetramers or higher-order oligomers. The homodimer configuration was unaltered by agonist treatment and was stable over a 10-fold range of receptor expression level. The results of this study demonstrate that biogenic amine receptors freely diffusing within the plasma membrane are predominantly homodimers.
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (K.H.-D., E.G., J.E.M.); and Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut (A.C.)
| | | | | | | |
Collapse
|
33
|
Singh DR, Mohammad MM, Patowary S, Stoneman MR, Oliver JA, Movileanu L, Raicu V. Determination of the quaternary structure of a bacterial ATP-binding cassette (ABC) transporter in living cells. Integr Biol (Camb) 2013; 5:312-23. [PMID: 23223798 DOI: 10.1039/c2ib20218b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that affects patients with cystic fibrosis and immunocompromised individuals. This bacterium coexpresses two unique forms of lipopolysaccharides (LPSs) on its surface, the A- and B-band LPS, which are among the main virulence factors that contribute to its pathogenicity. The polysaccharides in A-band LPSs are synthesized in the cytoplasm and translocated into the periplasm via an ATP-binding cassette (ABC) transporter consisting of a transmembrane protein, Wzm, and a cytoplasmic nucleotide-binding protein, Wzt. Most of the biochemical studies of A-band PSs in Pseudomonas aeruginosa are focused on the stages of the synthesis and ligation of PS, leaving the export stage involving the ABC transporter mostly unexplored. This difficulty is compounded by the fact that the subunit composition and structure of this bi-component ABC transporter are still unknown. Here we propose a simple but powerful method, based on Förster Resonance Energy Transfer (FRET) and optical micro-spectroscopy technology, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of the Wzm-Wzt complex in living cells. It is found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.
Collapse
Affiliation(s)
- Deo R Singh
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 2013; 84:158-69. [PMID: 23632086 PMCID: PMC3684826 DOI: 10.1124/mol.113.084780] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/30/2013] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, ideas and experimental support for the hypothesis that G protein-coupled receptors may exist as dimeric or oligomeric complexes moved initially from heresy to orthodoxy, to the current situation in which the capacity of such receptors to interact is generally accepted but the prevalence, maintenance, and relevance of such interactions to both pharmacology and function remain unclear. A vast body of data obtained following transfection of cultured cells is still to be translated to native systems and, even where this has been attempted, results often remain controversial and contradictory. This review will consider approaches that are currently being applied and why these might be challenging to interpret, and will suggest means to overcome these limitations.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
35
|
Functional significance of serotonin receptor dimerization. Exp Brain Res 2013; 230:375-86. [PMID: 23811735 DOI: 10.1007/s00221-013-3622-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023]
Abstract
The original model of G-protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model, wherein two protomers of a GPCR dimer interact with a single G-protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with the results obtained from the studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer vs. tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers, and the development of bivalent ligands.
Collapse
|
36
|
The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem J 2013; 452:303-12. [DOI: 10.1042/bj20121902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The literature on GPCR (G-protein-coupled receptor) homo-oligomerization encompasses conflicting views that range from interpretations that GPCRs must be monomeric, through comparatively newer proposals that they exist as dimers or higher-order oligomers, to suggestions that such quaternary structures are rather ephemeral or merely accidental and may serve no functional purpose. In the present study we use a novel method of FRET (Förster resonance energy transfer) spectrometry and controlled expression of energy donor-tagged species to show that M3Rs (muscarinic M3 acetylcholine receptors) at the plasma membrane exist as stable dimeric complexes, a large fraction of which interact dynamically to form tetramers without the presence of trimers, pentamers, hexamers etc. That M3R dimeric units interact dynamically was also supported by co-immunoprecipitation of receptors synthesized at distinct times. On the basis of all these findings, we propose a conceptual framework that may reconcile the conflicting views on the quaternary structure of GPCRs.
Collapse
|
37
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Non-neuronal functions of the m2 muscarinic acetylcholine receptor. Genes (Basel) 2013; 4:171-97. [PMID: 24705159 PMCID: PMC3899973 DOI: 10.3390/genes4020171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
38
|
Arachiche A, de la Fuente M, Nieman MT. Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets. PLoS One 2013; 8:e55740. [PMID: 23405206 PMCID: PMC3566007 DOI: 10.1371/journal.pone.0055740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/29/2012] [Indexed: 12/17/2022] Open
Abstract
Thrombin activates platelets through protease activated receptors (PARs). Mouse platelets express PAR3 and PAR4. PAR3 does not signal in platelets. However, PAR4 is a relatively poor thrombin substrate and requires PAR3 as a cofactor at low thrombin concentrations. In this study we show that PAR3 also regulates PAR4 signaling. In response to thrombin (30–100 nM) or PAR4 activating peptide (AYPGKF), platelets from PAR3−/− mice had increased Gq signaling compared to wild type mice as demonstrated by a 1.6-fold increase in the maximum intracellular calcium (Ca2+) mobilization, an increase in phosphorylation level of protein kinase C (PKC) substrates, and a 2-fold increase of Ca2+ release from intracellular stores. Moreover, platelets from heterozygous mice (PAR3+/−) had an intermediate increase in maximum Ca2+ mobilization. Treatment of PAR3−/− mice platelets with P2Y12 antagonist (2MeSAMP) did not affect Ca2+ mobilization from PAR4 in response to thrombin or AYPGKF. The activation of RhoA-GTP downstream G12/13 signaling in response to thrombin was not significantly different between wild type and PAR3−/− mice. Since PAR3 influenced PAR4 signaling independent of agonist, we examined the direct interaction between PAR3 and PAR4 with bioluminescence resonance energy transfer (BRET). PAR3 and PAR4 form constitutive homodimers and heterodimers. In summary, our results demonstrate that in addition to enhancing PAR4 activation at low thrombin concentrations, PAR3 negatively regulates PAR4-mediated maximum Ca2+ mobilization and PKC activation in mouse platelets by physical interaction.
Collapse
Affiliation(s)
- Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - María de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:105-42. [DOI: 10.1016/b978-0-12-386931-9.00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Herda LR, Felix SB, Boege F. Drug-like actions of autoantibodies against receptors of the autonomous nervous system and their impact on human heart function. Br J Pharmacol 2012; 166:847-57. [PMID: 22220626 PMCID: PMC3412294 DOI: 10.1111/j.1476-5381.2012.01828.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies against cholinergic and adrenergic receptors (adrenoceptors) are frequent in serum of patients with chronic heart failure. Their prevalence is associated with Chagas' disease, idiopathic dilated cardiomyopathy (DCM), and ischaemic heart disease. Among the epitopes targeted are first and second extracellular loops of the β-adrenergic (β-adrenoceptor) and M2 muscarinic receptor. β1-adrenoceptor autoantibodies affect radioligand binding and cardiomyocyte function similar to agonists. Corresponding rodent immunizations induce symptoms compatible with chronic heart failure that are reversible upon removal of the antibodies, transferable via the serum and abrogated by adrenergic antagonists. In DCM patients, prevalence and stimulatory efficacy of β1-adrenoceptor autoantibodies are correlated to the decline in cardiac function, ventricular arrhythmia and higher incidence of cardiac death. In conclusion, such autoantibodies seem to cause or promote chronic human left ventricular dysfunction by acting on their receptor targets in a drug-like fashion. However, the pharmacology of this interaction is poorly understood. It is unclear how the autoantibodies trigger changes in receptor activity and second messenger coupling and how that is related to the pathogenesis and severity of the associated diseases. Here, we summarize the available evidence regarding these issues and discuss these findings in the light of recent knowledge about the conformational activation of the human β2-adrenoceptor and the properties of bona fide cardiopathogenic autoantibodies derived from immune-adsorption therapy of DCM patients. These considerations might contribute to the conception of therapy regimen aimed at counteracting or neutralizing cardiopathogenic receptor autoantibodies.
Collapse
Affiliation(s)
- L R Herda
- Department of Internal Medicine B, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
41
|
Herrick-Davis K, Grinde E, Lindsley T, Cowan A, Mazurkiewicz JE. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem 2012; 287:23604-14. [PMID: 22593582 PMCID: PMC3390635 DOI: 10.1074/jbc.m112.350249] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/05/2012] [Indexed: 11/06/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric.
Collapse
MESH Headings
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Diffusion/drug effects
- Endoplasmic Reticulum/metabolism
- Fluorescence
- Golgi Apparatus/metabolism
- Green Fluorescent Proteins/chemistry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Humans
- Luminescent Proteins/chemistry
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Mutation
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Protein Multimerization
- Protein Transport/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2C/chemistry
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin/pharmacology
- Spectrometry, Fluorescence/methods
- Transfection
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
42
|
Shivnaraine RV, Huang XP, Seidenberg M, Ellis J, Wells JW. Heterotropic cooperativity within and between protomers of an oligomeric M(2) muscarinic receptor. Biochemistry 2012; 51:4518-40. [PMID: 22551249 DOI: 10.1021/bi3000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least four allosteric sites have been found to mediate the dose-dependent effects of gallamine on the binding of [(3)H]quinuclidinylbenzilate (QNB) and N-[(3)H]methylscopolamine (NMS) to M(2) muscarinic receptors in membranes and solubilized preparations from porcine atria, CHO cells, and Sf9 cells. The rate of dissociation of [(3)H]QNB was affected in a bell-shaped manner with at least one Hill coefficient (n(H)) greater than 1, indicating that at least three allosteric sites are involved. The level of binding of [(3)H]QNB was decreased in a biphasic manner, revealing at least two allosteric sites; binding of [(3)H]NMS was affected in a triphasic, serpentine manner, revealing at least three sites, and values of n(H) >1 pointed to at least four sites. Several lines of evidence indicate that all effects of gallamine were allosteric in nature and could be observed at equilibrium. The rates of equilibration and dissociation suggest that the receptor was predominately oligomeric, and the heterogeneity revealed by gallamine can be attributed to differences in its affinity for the constituent protomers of a tetramer. Those differences appear to arise from inter- and intramolecular cooperativity between gallamine and the radioligand.
Collapse
Affiliation(s)
- Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | | | | | | | | |
Collapse
|
43
|
Comps‐Agrar L, Kniazeff J, Brock C, Trinquet E, Pin J. Stability of GABA
B
receptor oligomers revealed by dual TR‐FRET and drug‐induced cell surface targeting. FASEB J 2012; 26:3430-9. [DOI: 10.1096/fj.12-203646] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laëtitia Comps‐Agrar
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)‐5203Institut National de la Santé et de la Recherche Médicale (INSERM) U661 Montpellier France
- Universités Montpellier 1 and 2 Montpellier France
- Cisbio Bioassays Codolet France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)‐5203Institut National de la Santé et de la Recherche Médicale (INSERM) U661 Montpellier France
- Universités Montpellier 1 and 2 Montpellier France
| | - Carsten Brock
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)‐5203Institut National de la Santé et de la Recherche Médicale (INSERM) U661 Montpellier France
- Universités Montpellier 1 and 2 Montpellier France
| | - Eric Trinquet
- Universités Montpellier 1 and 2 Montpellier France
- Cisbio Bioassays Codolet France
| | - Jean‐Philippe Pin
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)‐5203Institut National de la Santé et de la Recherche Médicale (INSERM) U661 Montpellier France
- Universités Montpellier 1 and 2 Montpellier France
| |
Collapse
|
44
|
Deplazes E, Jayatilaka D, Corry B. ExiFRET: flexible tool for understanding FRET in complex geometries. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:011005. [PMID: 22352639 DOI: 10.1117/1.jbo.17.1.011005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence resonance energy transfer (FRET) can be utilized to gain low-resolution structural information by reporting on the proximity of molecules or measuring inter- and intramolecular distances. This method exploits the fact that the probability of the energy transfer is related to the separation between the fluorescent molecules. This relationship is well described for a single pair of fluorophores but is complicated in systems containing more than two fluorophores. Here, we present a Monte Carlo calculation scheme that has been implemented through a user-friendly web-based program called ExiFRET that can be used to determine the FRET efficiency in a wide range of fluorophore arrangements. ExiFRET is useful to model FRET for individual fluorophores randomly distributed in two or three dimensions, fluorophores linked in pairs or arranged in regular geometries with or without predefined stoichiometries. ExiFRET can model both uniform distributions and fluorophores that are aggregated in clusters. We demonstrate how this tool can be employed to understand the effect of labeling efficiency on FRET efficiency, estimate relative contributions of inter- and intramolecular FRET, investigate the structure of multimeric proteins, stoichiometries, and oligomers, and to aid experiments studying the aggregation of lipids and proteins in membrane environments. We also present an extension that can be used to study instances in which fluorophores have constrained orientations.
Collapse
Affiliation(s)
- Evelyne Deplazes
- University of Western Australia, School of Biomedical, Biomolecular and Chemical Sciences, Perth, Australia
| | | | | |
Collapse
|
45
|
Abstract
In almost 16 years since the word "dimer" was used in a publication to describe the organization of G protein-coupled receptors (GPCRs), a large number of studies have since weighed in on this notion. Are native, functional GPCRs monomers, dimers or as some would suggest even higher order structures? Here, we review some of the latest evidence regarding the organization of these receptors in both homo- and hetero-oligomeric formats, with a particular focus on β-adrenergic receptors. This is particularly important for understanding the allosteric nature of receptor/receptor interactions. It is likely that, over the course of evolution, mechanisms have come into play using all of the possible variations in receptor/receptor stoichiometry, depending on the cell and the physiological context in question. Finally, we provide some data that suggests that higher order structures of GPCRs, as with dimers themselves are probably assembled in the ER.
Collapse
|
46
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
47
|
The orexin OX(1) receptor exists predominantly as a homodimer in the basal state: potential regulation of receptor organization by both agonist and antagonist ligands. Biochem J 2011; 439:171-83. [PMID: 21770891 DOI: 10.1042/bj20110230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is unclear what proportion of a G-protein-coupled receptor is present in cells as dimers or oligomers. Saturation bioluminescence resonance energy transfer studies demonstrated the orexin OX(1) receptor to be present in such complexes. Forms of this receptor containing a minimal epitope tag, with the C-terminus linked to yellow fluorescent protein or modified at the N-terminus to incorporate a SNAP tag, migrated in SDS/PAGE gels as monomers, indicating a lack of covalent interactions. Solubilization with dodecylmaltoside, followed by Blue native-PAGE, indicated that the receptor constructs migrated predominantly as anticipated for dimeric species with evidence for further, higher-order, complexes, and this was true over a wide range of expression levels. Addition of SDS prior to separation by Blue native-PAGE resulted in much of the previously dimeric, and all of the higher-order, complexes being dissociated and now migrating at the size predicted for monomeric species. Expression of forms of the OX(1) receptor capable of generating enzyme complementation confirmed that solubilization itself did not result in interaction artefacts. Addition of the endogenous agonist orexin A enhanced the proportion of higher-order OX(1) receptor complexes, whereas selective OX(1) antagonists increased the proportion the OX(1) receptor migrating in Blue native-PAGE as a monomer. The antagonist effects were produced in a concentration-dependent manner, consistent with the affinity of the ligands for the receptor. Homogeneous time-resolved fluorescence resonance energy transfer studies using Tag-Lite™ reagents on cells expressing the SNAP-tagged OX(1) receptor identified cell-surface OX(1) homomers. Predominantly at low receptor expression levels, orexin A increased such fluorescence resonance energy transfer signals, also consistent with ligand-induced reorganization of the homomeric complex.
Collapse
|
48
|
Ward RJ, Pediani JD, Milligan G. Heteromultimerization of cannabinoid CB(1) receptor and orexin OX(1) receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem 2011; 286:37414-28. [PMID: 21908614 PMCID: PMC3199489 DOI: 10.1074/jbc.m111.287649] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/09/2011] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced internalization was observed for both inducible and constitutively expressed forms of the cannabinoid CB(1) receptor. These were also internalized by the peptide orexin A, which has no direct affinity for the cannabinoid CB(1) receptor, but only when the orexin OX(1) receptor was co-expressed along with the cannabinoid CB(1) receptor. This effect of orexin A was concentration-dependent and blocked by OX(1) receptor antagonists. Moreover, the ability of orexin A to internalize the CB(1) receptor was also blocked by CB(1) receptor antagonists. Remarkably, orexin A was substantially more potent in producing internalization of the CB(1) receptor than in causing internalization of the bulk OX(1) receptor population, and this was true in cells in which the CB(1) receptor was maintained at a constant level, whereas levels of OX(1) could be varied and vice versa. Both co-immunoprecipitation and cell surface, homogenous time-resolved fluorescence resonance energy transfer based on covalent labeling of N-terminal "SNAP" and "CLIP" tags present in the extracellular N-terminal domain of the receptors confirmed the capacity of these two receptors to heteromultimerize. These studies confirm the capacity of the CB(1) and OX(1) receptors to interact directly and demonstrate that this complex has unique regulatory characteristics. The higher potency of the agonist orexin A to regulate the CB(1)-OX(1) heteromer compared with the OX(1)-OX(1) homomer present in the same cells and the effects of CB(1) receptor antagonists on the function of orexin A suggest an interplay between these two systems that may modulate appetite, feeding, and wakefulness.
Collapse
Affiliation(s)
- Richard J. Ward
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - John D. Pediani
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Graeme Milligan
- From the Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
49
|
McMillin SM, Heusel M, Liu T, Costanzi S, Wess J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J Biol Chem 2011; 286:28584-98. [PMID: 21685385 PMCID: PMC3151100 DOI: 10.1074/jbc.m111.259788] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 01/03/2023] Open
Abstract
Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the "outer" (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1-7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1-5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance.
Collapse
Affiliation(s)
| | | | - Tong Liu
- From the Laboratory of Bioorganic Chemistry and
| | - Stefano Costanzi
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Jürgen Wess
- From the Laboratory of Bioorganic Chemistry and
| |
Collapse
|
50
|
Ma AWS, Dong JY, Ma D, Wells JW. Cleavage-resistant fusion proteins of the M(2) muscarinic receptor and Gα(i1). Homotropic and heterotropic effects in the binding of ligands. Biochim Biophys Acta Gen Subj 2011; 1810:592-602. [PMID: 21397664 DOI: 10.1016/j.bbagen.2011.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/28/2011] [Accepted: 03/02/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND G protein-coupled receptors fused to a Gα-subunit are functionally similar to their unfused counterparts. They offer an intriguing view into the nature of the receptor-G protein complex, but their usefulness depends upon the stability of the fusion. METHODS Fusion proteins of the M(2) muscarinic receptor and the α-subunit of G(i1) were expressed in CHO and Sf9 cells, extracted in digitonin-cholate, and examined for their binding properties and their electrophoretic mobility on western blots. RESULTS Receptor fused to native α(i1) underwent proteolysis near the point of fusion to release a fragment with the mobility of α(i1). The cleavage was prevented by truncation of the α-subunit at position 18. Binding of the agonist oxotremorine-M to the stable fusion protein from Sf9 cells was biphasic, and guanylylimidodiphosphate promoted an apparent interconversion of sites from higher to lower affinity. With receptor from CHO cells, the apparent capacity for N-[(3)H]methylscopolamine was 60% of that for [(3)H]quinuclidinylbenzilate; binding at saturating concentrations of the latter was inhibited in a noncompetitive manner at low concentrations of unlabeled N-methylscopolamine. CONCLUSIONS A stable fusion protein of the M(2) receptor and truncated α(i1) resembles the native receptor-G protein complex with respect to the guanyl nucleotide-sensitive binding of agonists and the noncompetitive binding of antagonists. GENERAL SIGNIFICANCE Release of the α-subunit is likely to occur with other such fusion proteins, rendering the data ambiguous or misleading. The properties of a chemically stable fusion protein support the notion that signaling proceeds via a stable multimeric complex of receptor and G protein.
Collapse
Affiliation(s)
- Amy W-S Ma
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|