1
|
Uzun HD, Malysenko E, Justesen BH, Pomorski TG. Functional reconstitution of plant plasma membrane H +-ATPase into giant unilamellar vesicles. Sci Rep 2025; 15:8541. [PMID: 40074791 PMCID: PMC11903852 DOI: 10.1038/s41598-025-92663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Membrane transporters are essential for numerous biological processes by controlling the movement of ions and molecules across cell membranes. However, dissecting their molecular dynamics in complex cellular environments presents significant challenges. Reconstitution of membrane transporters in model systems offers a powerful solution. In this study, we focused on the reconstitution conditions suitable for the P3 ATPase Arabidopsis thaliana H+-ATPase isoform 2 and compatible with various giant unilamellar vesicle generation techniques. Among the methods evaluated for GUV formation, including electroformation, gel-assisted formation, and charge-mediated fusion, only the gel-assisted approach successfully generated AHA2-containing giant unilamellar vesicles while preserving the pump activity. Our findings underscore the importance of carefully managing the reconstitution conditions, including the presence of ions, and selecting the appropriate lipid composition to enhance the stability and activity of AHA2 in proteoliposomes. Addressing these factors is essential for the successful formation and functional analysis of AHA2 and other P-type ATPases in experimental settings.
Collapse
Affiliation(s)
- Huriye D Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ekaterina Malysenko
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Bo H Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
3
|
Blackburn MR, Nguyen TT, Patton SE, Bartosiak JM, Sussman MR. Covalent labeling of the Arabidopsis plasma membrane H +-ATPase reveals 3D conformational changes involving the C-terminal regulatory domain. FEBS Lett 2025; 599:545-558. [PMID: 39627950 DOI: 10.1002/1873-3468.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 02/25/2025]
Abstract
The plasma membrane proton pump is the primary energy transducing, electrogenic ion pump of the plasma membrane in plants and fungi. Compared to its fungal counterpart, the plant plasma membrane proton pump's regulatory C-terminal domain (CTD) contains an additional regulatory segment that links multiple sensory pathways regulating plant cell length through phosphorylation and recruitment of regulatory 14-3-3 proteins. However, a complete structural model of a plant proton pump is lacking. Here, we performed covalent labeling with mass spectrometric analysis (CL-MS) on the Arabidopsis pump AHA2 to identify potential interactions between the CTD and the catalytic domains. Our results suggest that autoinhibition in the plant enzyme is much more structurally complex than in the fungal enzyme.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Biochemistry and Center for Genomic Sciences Innovation, University of Wisconsin-Madison, WI, USA
| | - Thao T Nguyen
- Department of Biochemistry and Center for Genomic Sciences Innovation, University of Wisconsin-Madison, WI, USA
| | - Sophia E Patton
- Department of Biochemistry and Center for Genomic Sciences Innovation, University of Wisconsin-Madison, WI, USA
| | - Jordan M Bartosiak
- Department of Biochemistry and Center for Genomic Sciences Innovation, University of Wisconsin-Madison, WI, USA
| | - Michael R Sussman
- Department of Biochemistry and Center for Genomic Sciences Innovation, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
4
|
Kinoshita SN, Taki K, Okamoto F, Nomoto M, Takahashi K, Hayashi Y, Ohkanda J, Tada Y, Finkemeier I, Kinoshita T. Plasma membrane H +-ATPase activation increases global transcript levels and promotes the shoot growth of light-grown Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70034. [PMID: 39918907 PMCID: PMC11804978 DOI: 10.1111/tpj.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Plant cell growth requires the elongation of cells mediated by cell wall remodelling and turgor pressure changes. The plasma membrane (PM) H+-ATPase facilitates both cell wall loosening and turgor pressure changes by acidifying the apoplast of cells, referred to as acid growth. The acid growth theory is mostly established on the auxin-induced activation of PM H+-ATPase in non-photosynthetic tissues. However, how PM H+-ATPase affects the growth in photosynthetic tissues of Arabidopsis remains unclear. Here, a combination of transcriptomics and cis-regulatory element analysis was conducted to identify the impact of PM H+-ATPase on global transcript levels and the molecular mechanism downstream of the PM H+-ATPase. The PM H+-ATPase activation increased transcript levels globally, especially cell wall modification-related genes. The transcript level changes were in PM H+-ATPase-dependent manner. Involvement of Ca2+ was suggested as CAMTA motif was enriched in the promoter of PM H+-ATPase-induced genes and cytosolic Ca2+ elevated upon PM H+-ATPase activation. PM H+-ATPase activation in photosynthetic tissues promotes the expression of cell wall modification enzymes and shoot growth, adding a novel perspective of photosynthesis-dependent PM H+-ATPase activation in photosynthetic tissues to the acid growth theory that has primarily based on findings from non-photosynthetic tissues.
Collapse
Affiliation(s)
- Satoru Naganawa Kinoshita
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
- Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kyomi Taki
- Graduate School of ScienceNagoya UniversityNagoyaJapan
| | | | - Mika Nomoto
- Graduate School of ScienceNagoya UniversityNagoyaJapan
- Center for Gene ResearchNagoya UniversityNagoyaJapan
| | - Koji Takahashi
- Graduate School of ScienceNagoya UniversityNagoyaJapan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityNagoyaJapan
| | - Yuki Hayashi
- Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Junko Ohkanda
- Institute of AgricultureShinshu UniversityNaganoJapan
| | - Yasuomi Tada
- Graduate School of ScienceNagoya UniversityNagoyaJapan
- Center for Gene ResearchNagoya UniversityNagoyaJapan
| | - Iris Finkemeier
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Toshinori Kinoshita
- Graduate School of ScienceNagoya UniversityNagoyaJapan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityNagoyaJapan
| |
Collapse
|
5
|
Lin Z, Zhu P, Gao L, Chen X, Li M, Wang Y, He J, Miao Y, Miao R. Recent Advances in Understanding the Regulatory Mechanism of Plasma Membrane H+-ATPase through the Brassinosteroid Signaling Pathway. PLANT & CELL PHYSIOLOGY 2024; 65:1515-1529. [PMID: 38372617 DOI: 10.1093/pcp/pcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The polyhydroxylated steroid phytohormone brassinosteroid (BR) controls many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase and summarize recent progress towards understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pan Zhu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanyi Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijing Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhe Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junxian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Li P, Bågenholm V, Hägglund P, Lindkvist-Petersson K, Wang K, Gourdon P. The structure and function of P5A-ATPases. Nat Commun 2024; 15:9605. [PMID: 39505844 PMCID: PMC11541931 DOI: 10.1038/s41467-024-53757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Endoplasmic reticulum (ER) membrane resident P5A-ATPases broadly affect protein biogenesis and quality control, and yet their molecular function remains debated. Here, we report cryo-EM structures of a P5A-ATPase, CtSpf1, covering multiple transport intermediates of the E1 → E1-ATP → E1P-ADP → E1P → E2P → E2.Pi → E2 → E1 cycle. In the E2P and E2.Pi states a cleft spans the entire membrane, holding a polypeptide cargo molecule. The cargo includes an ER luminal extension, pinpointed as the C-terminus in the E2.Pi state, which reenters the membrane in E2P. The E1 structure harbors a cytosol-facing cavity that is blocked by an insertion we refer to as the Plug-domain. The Plug-domain is nestled to key ATPase features and is displaced in the E1P-ADP and E1P states. Collectively, our findings are compatible with a broad range of proteins as cargo, with the P5A-ATPases serving a role in membrane removal of helices, although insertion/secretion cannot be excluded, as well as with a mechanistic role of the Plug-domain.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| | - Viktoria Bågenholm
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
- Department of Biomedical Sciences, University of Copenhagen, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
7
|
Deng R, Huang S, Du J, Luo D, Liu J, Zhao Y, Zheng C, Lei T, Li Q, Zhang S, Jiang M, Jin T, Liu D, Wang S, Zhang Y, Wang X. The brassinosteroid receptor StBRI1 promotes tuber development by enhancing plasma membrane H+-ATPase activity in potato. THE PLANT CELL 2024; 36:3498-3520. [PMID: 38819320 PMCID: PMC11371173 DOI: 10.1093/plcell/koae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jia Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongyang Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siwei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dehai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanfeng Zhang
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Li CZ, Ullah A, Tian P, Yu XZ. Boron deficiency energizes cyanide uptake and assimilation through activating plasma membrane H +-ATPase in rice plants. CHEMOSPHERE 2024; 352:141290. [PMID: 38280649 DOI: 10.1016/j.chemosphere.2024.141290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The effect of boron (B) deficiency on mediating the contribution of H+-ATPase in the uptake and assimilation of exogenous cyanide (CN-) is investigated. Under CN- treatments, rice seedlings with B-deficient (-B) conditions exhibited significantly higher CN- uptake and assimilation rates than B-supplemented (+B) seedlings, whereas NH4+ uptake and assimilation rates were slightly higher in -B rice seedlings than in +B. In this connection, the expression pattern of genes encoding β-CAS, ST, and H+-ATPase was assessed to unravel their role in the current scenario. The abundances of three β-CAS isogenes (OsCYS-D1, OsCYS-D2, and OsCYS-C1) in rice tissues are upregulated from both "CN--B" and "CN-+B" treatments, however, only OsCYS-C1 in roots from the "CN--B" treatments was significantly upregulated than "CN-+B" treatments. Expression patterns of ST-related genes (OsStr9, OsStr22, and OsStr23) are tissue specific, in which significantly higher upregulation of ST-related genes was observed in shoots from "CN--B" treatments than "CN-+B" treatments. Expression pattern of 7 selected H+-ATPase isogenes, OsA1, OSA2, OsA3, OsA4, OsA7, OsA8, and OsA9 are quite tissue specific between "CN-+B" and "CN--B" treatments. Among these, OsA4 and OsA7 genes were highly activated in the uptake and assimilation of exogenous CN- in -B nutrient solution. These results indicated that B deficiency disturbs the pattern of N cycles in CN--treated rice seedlings, where activation of ST during CN- assimilation decreases the flux of the innate pool of NH4+ produced from CN- assimilation by the β-CAS pathway in plants. Collectively, the B deficiency increased the uptake and assimilation of exogenous CN- through activating H+-ATPase.
Collapse
Affiliation(s)
- Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
Young MR, Heit S, Bublitz M. Structure, function and biogenesis of the fungal proton pump Pma1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119600. [PMID: 37741574 DOI: 10.1016/j.bbamcr.2023.119600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The fungal plasma membrane proton pump Pma1 is an integral plasma membrane protein of the P-type ATPase family. It is an essential enzyme responsible for maintaining a constant cytosolic pH and for energising the plasma membrane to secondary transport processes. Due to its importance for fungal survival and absence from animals, Pma1 is also a highly sought-after drug target. Until recently, its characterisation has been limited to functional, mutational and localisation studies, due to a lack of high-resolution structural information. The determination of three cryo-EM structures of Pma1 in its unique hexameric state offers a new level of understanding the molecular mechanisms underlying the protein's stability, regulated activity and druggability. In light of this context, this article aims to review what we currently know about the structure, function and biogenesis of fungal Pma1.
Collapse
Affiliation(s)
- Margaret R Young
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
10
|
Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps. Int J Mol Sci 2023; 24:ijms24054512. [PMID: 36901943 PMCID: PMC10003446 DOI: 10.3390/ijms24054512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Two ATP-dependent proton pumps function in plant cells. Plasma membrane H+-ATPase (PM H+-ATPase) transfers protons from the cytoplasm to the apoplast, while vacuolar H+-ATPase (V-ATPase), located in tonoplasts and other endomembranes, is responsible for proton pumping into the organelle lumen. Both enzymes belong to two different families of proteins and, therefore, differ significantly in their structure and mechanism of action. The plasma membrane H+-ATPase is a member of the P-ATPases that undergo conformational changes, associated with two distinct E1 and E2 states, and autophosphorylation during the catalytic cycle. The vacuolar H+-ATPase represents rotary enzymes functioning as a molecular motor. The plant V-ATPase consists of thirteen different subunits organized into two subcomplexes, the peripheral V1 and the membrane-embedded V0, in which the stator and rotor parts have been distinguished. In contrast, the plant plasma membrane proton pump is a functional single polypeptide chain. However, when the enzyme is active, it transforms into a large twelve-protein complex of six H+-ATPase molecules and six 14-3-3 proteins. Despite these differences, both proton pumps can be regulated by the same mechanisms (such as reversible phosphorylation) and, in some processes, such as cytosolic pH regulation, may act in a coordinated way.
Collapse
|
11
|
The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun Biol 2022; 5:1312. [PMID: 36446861 PMCID: PMC9708826 DOI: 10.1038/s42003-022-04291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C‑terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+‑ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.
Collapse
|
12
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
13
|
Dieudonné T, Herrera SA, Laursen MJ, Lejeune M, Stock C, Slimani K, Jaxel C, Lyons JA, Montigny C, Pomorski TG, Nissen P, Lenoir G. Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders. eLife 2022; 11:75272. [PMID: 35416773 PMCID: PMC9045818 DOI: 10.7554/elife.75272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
P4-ATPases flip lipids from the exoplasmic to the cytosolic leaflet, thus maintaining lipid asymmetry in eukaryotic cell membranes. Mutations in several human P4-ATPase genes are associated with severe diseases, for example in ATP8B1 causing progressive familial intrahepatic cholestasis, a rare inherited disorder progressing toward liver failure. ATP8B1 forms a binary complex with CDC50A and displays a broad specificity to glycerophospholipids, but regulatory mechanisms are unknown. Here, we report functional studies and the cryo-EM structure of the human lipid flippase ATP8B1-CDC50A at 3.1 Å resolution. We find that ATP8B1 is autoinhibited by its N- and C-terminal tails, which form extensive interactions with the catalytic sites and flexible domain interfaces. Consistently, ATP hydrolysis is unleashed by truncation of the C-terminus, but also requires phosphoinositides, most markedly phosphatidylinositol-3,4,5-phosphate (PI(3,4,5)P3), and removal of both N- and C-termini results in full activation. Restored inhibition of ATP8B1 truncation constructs with a synthetic peptide mimicking the C-terminal segment further suggests molecular communication between N- and C-termini in the autoinhibition and demonstrates that the regulatory mechanism can be interfered with by exogenous compounds. A recurring (G/A)(Y/F)AFS motif of the C-terminal segment suggests that this mechanism is employed widely across P4-ATPase lipid flippases in plasma membrane and endomembranes.
Collapse
Affiliation(s)
- Thibaud Dieudonné
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Sara Abad Herrera
- Department of Molecular Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | - Maylis Lejeune
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Charlott Stock
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kahina Slimani
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Joseph A Lyons
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Conformational changes of a phosphatidylcholine flippase in lipid membranes. Cell Rep 2022; 38:110518. [PMID: 35294892 DOI: 10.1016/j.celrep.2022.110518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Type 4 P-type ATPases (P4-ATPases) actively and selectively translocate phospholipids across membrane bilayers. Driven by ATP hydrolysis, P4-ATPases undergo conformational changes during lipid flipping. It is unclear how the active flipping states of P4-ATPases are regulated in the lipid membranes, especially for phosphatidylcholine (PC)-flipping P4-ATPases whose substrate, PC, is a substantial component of membranes. Here, we report the cryoelectron microscopy structures of a yeast PC-flipping P4-ATPase, Dnf1, in lipid environments. In native yeast lipids, Dnf1 adopts a conformation in which the lipid flipping pathway is disrupted. Only when the lipid composition is changed can Dnf1 be captured in the active conformations that enable lipid flipping. These results suggest that, in the native membrane, Dnf1 may stay in an idle conformation that is unable to support the trans-membrane movement of lipids. Dnf1 may have altered conformational preferences in membranes with different lipid compositions.
Collapse
|
15
|
Ren Z, Suolang B, Fujiwara T, Yang D, Saijo Y, Kinoshita T, Wang Y. Promotion and Upregulation of a Plasma Membrane Proton-ATPase Strategy: Principles and Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:749337. [PMID: 35003152 PMCID: PMC8728062 DOI: 10.3389/fpls.2021.749337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Plasma membrane proton-ATPase (PM H+-ATPase) is a primary H+ transporter that consumes ATP in vivo and is a limiting factor in the blue light-induced stomatal opening signaling pathway. It was recently reported that manipulation of PM H+-ATPase in stomatal guard cells and other tissues greatly improved leaf photosynthesis and plant growth. In this report, we review and discuss the function of PM H+-ATPase in the context of the promotion and upregulation H+-ATPase strategy, including associated principles pertaining to enhanced stomatal opening, environmental plasticity, and potential applications in crops and nanotechnology. We highlight the great potential of the promotion and upregulation H+-ATPase strategy, and explain why it may be applied in many crops in the future.
Collapse
Affiliation(s)
- Zirong Ren
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Bazhen Suolang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Tadashi Fujiwara
- Division of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Dan Yang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yusuke Saijo
- Division of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
16
|
Lin W, Zhou X, Tang W, Takahashi K, Pan X, Dai J, Ren H, Zhu X, Pan S, Zheng H, Gray WM, Xu T, Kinoshita T, Yang Z. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 2021; 599:278-282. [PMID: 34707287 PMCID: PMC8549421 DOI: 10.1038/s41586-021-03976-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.
Collapse
Affiliation(s)
- Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Xiang Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Wenxin Tang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Xue Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Jiawei Dai
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Xiaoyue Zhu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqin Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Tongda Xu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA.
| |
Collapse
|
17
|
Abstract
In human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson’s disease. In human cells, P5B‐ATPases execute export of spermine from lysosomes to the cytosol, but the mechanisms of spermine recognition, uptake and transport remain elusive. Here the authors present cryo‐EM structures of a yeast homolog of human ATP13A2‐5, Ypk9, which depict three separate transport cycle intermediates, including spermine‐bound conformations
Collapse
|
18
|
Miao R, Yuan W, Wang Y, Garcia-Maquilon I, Dang X, Li Y, Zhang J, Zhu Y, Rodriguez PL, Xu W. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H +-ATPase 2. SCIENCE ADVANCES 2021; 7:7/12/eabd4113. [PMID: 33731345 PMCID: PMC7968848 DOI: 10.1126/sciadv.abd4113] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.
Collapse
Affiliation(s)
- Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Yue Wang
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Irene Garcia-Maquilon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Xiaolin Dang
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | | | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China.
| |
Collapse
|
19
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
20
|
Lapshin NK, Piotrovskii MS, Trofimova MS. Involvement of plasma membrane H +-ATPase in diamide-induced extracellular alkalization by roots from pea seedlings. PLANTA 2021; 253:10. [PMID: 33389194 DOI: 10.1007/s00425-020-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.
Collapse
Affiliation(s)
- Nikita K Lapshin
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Michail S Piotrovskii
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Marina S Trofimova
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276.
| |
Collapse
|
21
|
Lyons JA, Timcenko M, Dieudonné T, Lenoir G, Nissen P. P4-ATPases: how an old dog learnt new tricks — structure and mechanism of lipid flippases. Curr Opin Struct Biol 2020; 63:65-73. [DOI: 10.1016/j.sbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
|
22
|
Kostaki KI, Coupel-Ledru A, Bonnell VC, Gustavsson M, Sun P, McLaughlin FJ, Fraser DP, McLachlan DH, Hetherington AM, Dodd AN, Franklin KA. Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture. PLANT PHYSIOLOGY 2020; 182:1404-1419. [PMID: 31949030 PMCID: PMC7054865 DOI: 10.1104/pp.19.01528] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis (Arabidopsis thaliana). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H+-ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.
Collapse
Affiliation(s)
| | - Aude Coupel-Ledru
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Verity C Bonnell
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Mathilda Gustavsson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Peng Sun
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Fiona J McLaughlin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Donald P Fraser
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Deirdre H McLachlan
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | | | - Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
23
|
Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. ACTA ACUST UNITED AC 2019; 26:69. [PMID: 31782726 PMCID: PMC6884021 DOI: 10.1051/parasite/2019069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology and Immunology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
24
|
Yang Y, Wu Y, Ma L, Yang Z, Dong Q, Li Q, Ni X, Kudla J, Song C, Guo Y. The Ca 2+ Sensor SCaBP3/CBL7 Modulates Plasma Membrane H +-ATPase Activity and Promotes Alkali Tolerance in Arabidopsis. THE PLANT CELL 2019; 31:1367-1384. [PMID: 30962395 PMCID: PMC6588306 DOI: 10.1105/tpc.18.00568] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 05/21/2023]
Abstract
Saline-alkali soil is a major environmental constraint impairing plant growth and crop productivity. In this study, we identified a Ca2+ sensor/kinase/plasma membrane (PM) H+-ATPase module as a central component conferring alkali tolerance in Arabidopsis (Arabidopsis thaliana). We report that the SCaBP3 (SOS3-LIKE CALCIUM BINDING PROTEIN3)/CBL7 (CALCINEURIN B-LIKE7) loss-of-function plants exhibit enhanced stress tolerance associated with increased PM H+-ATPase activity and provide fundamental mechanistic insights into the regulation of PM H+-ATPase activity. Consistent with the genetic evidence, interaction analyses, in vivo reconstitution experiments, and determination of H+-ATPase activity indicate that interaction of the Ca2+ sensor SCaBP3 with the C-terminal Region I domain of the PM H+-ATPase AHA2 (Arabidopsis thaliana PLASMA MEMBRANE PROTON ATPASE2) facilitates the intramolecular interaction of the AHA2 C terminus with the Central loop region of the PM H+-ATPase to promote autoinhibition of H+-ATPase activity. Concurrently, direct interaction of SCaPB3 with the kinase PKS5 (PROTEIN KINASE SOS2-LIKE5) stabilizes the kinase-ATPase interaction and thereby fosters the inhibitory phosphorylation of AHA2 by PKS5. Consistently, yeast reconstitution experiments and genetic analysis indicate that SCaBP3 provides a bifurcated pathway for coordinating intramolecular and intermolecular inhibition of PM H+-ATPase. We propose that alkaline stress-triggered Ca2+ signals induce SCaBP3 dissociation from AHA2 to enhance PM H+-ATPase activity. This work illustrates a versatile signaling module that enables the stress-responsive adjustment of plasma membrane proton fluxes.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujiao Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhijia Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany
| | - Qinpei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuping Ni
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Münster, Germany
| | - ChunPeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
26
|
Palmgren M, Morsomme P. The plasma membrane H + -ATPase, a simple polypeptide with a long history. Yeast 2019; 36:201-210. [PMID: 30447028 PMCID: PMC6590192 DOI: 10.1002/yea.3365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 11/11/2022] Open
Abstract
The plasma membrane H+ -ATPase of fungi and plants is a single polypeptide of fewer than 1,000 residues that extrudes protons from the cell against a large electric and concentration gradient. The minimalist structure of this nanomachine is in stark contrast to that of the large multi-subunit FO F1 ATPase of mitochondria, which is also a proton pump, but under physiological conditions runs in the reverse direction to act as an ATP synthase. The plasma membrane H+ -ATPase is a P-type ATPase, defined by having an obligatory phosphorylated reaction cycle intermediate, like cation pumps of animal membranes, and thus, this pump has a completely different mechanism to that of FO F1 ATPases, which operates by rotary catalysis. The work that led to these insights in plasma membrane H+ -ATPases of fungi and plants has a long history, which is briefly summarized in this review.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST)UCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
27
|
Lekeux G, Laurent C, Joris M, Jadoul A, Jiang D, Bosman B, Carnol M, Motte P, Xiao Z, Galleni M, Hanikenne M. di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer nanomolar affinity for zinc and are essential for HMA4 function in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5547-5560. [PMID: 30137564 PMCID: PMC6255694 DOI: 10.1093/jxb/ery311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/13/2018] [Indexed: 05/22/2023]
Abstract
The PIB ATPase heavy metal ATPase 4 (HMA4) has a central role in the zinc homeostasis network of Arabidopsis thaliana. This membrane protein loads metal from the pericycle cells into the xylem in roots, thereby allowing root to shoot metal translocation. Moreover, HMA4 is key for zinc hyperaccumulation as well as zinc and cadmium hypertolerance in the pseudometallophyte Arabidopsis halleri. The plant-specific cytosolic C-terminal extension of HMA4 is rich in putative metal-binding residues and has substantially diverged between A. thaliana and A. halleri. To clarify the function of the domain in both species, protein variants with truncated C-terminal extension, as well as with mutated di-Cys motifs and/or a His-stretch, were functionally characterized. We show that di-Cys motifs, but not the His-stretch, contribute to high affinity zinc binding and function in planta. We suggest that the HMA4 C-terminal extension is at least partly responsible for protein targeting to the plasma membrane. Finally, we reveal that the C-terminal extensions of both A. thaliana and A. halleri HMA4 proteins share similar function, despite marginally different zinc-binding capacity.
Collapse
Affiliation(s)
- Gilles Lekeux
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Clémentine Laurent
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- Present address: EyeD Pharma, Quartier Hôpital, Avenue Hippocrate, 54000 Liège, Belgium
| | - Marine Joris
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Alice Jadoul
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Dan Jiang
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS – PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Monique Carnol
- InBioS – PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Present address: Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Moreno Galleni
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- Correspondence:
| |
Collapse
|
28
|
Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Functional role of highly conserved residues of the N-terminal tail and first transmembrane segment of a P4-ATPase. Biochem J 2018; 475:887-899. [DOI: 10.1042/bcj20170749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022]
Abstract
The P4 family of P-type ATPases (P4-ATPases) plays an important role in maintaining phospholipid asymmetry in eukaryotic cell membranes. Leishmania miltefosine transporter (LMT) is a plasma membrane (PM) P4-ATPase that catalyses translocation into the parasite of the leishmanicidal drug miltefosine as well as phosphatidylcholine and phosphatidylethanolamine analogues. In the present study, we analysed the role, in LMT, of a series of highly conserved amino acids previously undescribed in the N-terminal region of P4-ATPases. Seven residues were identified and, according to an LMT structural model, five were located in the cytosolic N-terminal tail (Asn58, Ile60, Lys64, Tyr65 and Phe70) and the other two (Pro72 and Phe79) in the first transmembrane segment (TM1). Alanine-scanning mutagenesis analysis showed that N58A, Y65A and F79A mutations caused a considerable reduction in the LMT translocase activity. These mutations did not affect protein expression levels. We generated additional mutations in these three residues to assess the influence of the conservation degree on LMT translocase activity. Some of these mutations reduced expression levels without affecting the interaction between LMT and its CDC50 subunit, LRos3. Conserved and non-conserved mutations in the invariant residue Asn58 drastically reduced the translocase activity. Consequently, Asn58 may be necessary to achieve optimal catalytic LMT activity as previously described for the potentially equivalent Asn39 of the sarco/endoplasmic reticulum Ca2+-ATPase isoform 1a (SERCA1a). Additionally, conservation of a hydrophobic residue at position 79 is crucial for LMT stability.
Collapse
|
30
|
Haruta M, Tan LX, Bushey DB, Swanson SJ, Sussman MR. Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H +-ATPase. PLANT PHYSIOLOGY 2018; 176:364-377. [PMID: 29042459 PMCID: PMC5761788 DOI: 10.1104/pp.17.01126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/14/2017] [Indexed: 05/03/2023]
Abstract
A P-type H+-ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis (Arabidopsis thaliana) plant expressing H+-ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H+ secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Li Xuan Tan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Sarah J Swanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
31
|
Jiang Q, Garcia A, Han M, Cornelius F, Apell HJ, Khandelia H, Clarke RJ. Electrostatic Stabilization Plays a Central Role in Autoinhibitory Regulation of the Na +,K +-ATPase. Biophys J 2017; 112:288-299. [PMID: 28122215 DOI: 10.1016/j.bpj.2016.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
The Na+,K+-ATPase is present in the plasma membrane of all animal cells. It plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane, which are essential in numerous physiological processes, e.g., nerve, muscle, and kidney function. Its cellular activity must, therefore, be under tight metabolic control. Consideration of eosin fluorescence and stopped-flow kinetic data indicates that the enzyme's E2 conformation is stabilized by electrostatic interactions, most likely between the N-terminus of the protein's catalytic α-subunit and the adjacent membrane. The electrostatic interactions can be screened by increasing ionic strength, leading to a more evenly balanced equilibrium between the E1 and E2 conformations. This represents an ideal situation for effective regulation of the Na+,K+-ATPase's enzymatic activity, because protein modifications, which perturb this equilibrium in either direction, can then easily lead to activation or inhibition. The effect of ionic strength on the E1:E2 distribution and the enzyme's kinetics can be mathematically described by the Gouy-Chapman theory of the electrical double layer. Weakening of the electrostatic interactions and a shift toward E1 causes a significant increase in the rate of phosphorylation of the enzyme by ATP. Electrostatic stabilization of the Na+,K+-ATPase's E2 conformation, thus, could play an important role in regulating the enzyme's physiological catalytic turnover.
Collapse
Affiliation(s)
| | - Alvaro Garcia
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia; Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Minwoo Han
- MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | | | | | - Himanshu Khandelia
- MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Ronald J Clarke
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
32
|
Han N, Ji XL, Du YP, He X, Zhao XJ, Zhai H. Identification of a Novel Alternative Splicing Variant of VvPMA1 in Grape Root under Salinity. FRONTIERS IN PLANT SCIENCE 2017; 8:605. [PMID: 28484478 PMCID: PMC5399082 DOI: 10.3389/fpls.2017.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
It has been well-demonstrated that the control of plasma membrane H+-ATPase (PM H+-ATPase) activity is important to plant salt tolerance. This study found a significant increase in PM H+-ATPase (PMA) activity in grape root exposed to NaCl. Furthermore, 7 Vitis vinifera PM H+-ATPase genes (VvPMAs) were identified within the grape genome and the expression response of these VvPMAs in grape root under salinity was analyzed. Two VvPMAs (VvPMA1 and VvPMA3) were expressed more strongly in roots than the other five VvPMAs. Moreover, roots exhibited diverse patterns of gene expression of VvPMA1 and VvPMA3 responses to salt stress. Interestingly, two transcripts of VvPMA1, which were created through alternative splicing (AS), were discovered and isolated from salt stressed root. Comparing the two VvPMA1 cDNA sequences (designated VvPMA1α and VvPMA1β) with the genomic sequence revealed that the second intron was retained in the VvPMA1β cDNA. This intron retention was predicted to generate a novel VvPMA1 through N-terminal truncation because of a 5'- terminal frame shift. Yeast complementation assays of the two splice variants showed that VvPMA1β could enhance the ability to complement Saccharomyces cerevisiae deficient in PM H+-ATPase activity. In addition, the expression profiles of VvPMA1α and VvPMA1β differed under salinity. Our data suggests that through AS, the N-terminal length of VvPMA1 may be regulated to accurately modulate PM H+-ATPase activity of grape root in salt stress.
Collapse
Affiliation(s)
- Ning Han
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xing-Long Ji
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Yuan-Peng Du
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Xi He
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xin-Jie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Heng Zhai
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| |
Collapse
|
33
|
Focht D, Croll TI, Pedersen BP, Nissen P. Improved Model of Proton Pump Crystal Structure Obtained by Interactive Molecular Dynamics Flexible Fitting Expands the Mechanistic Model for Proton Translocation in P-Type ATPases. Front Physiol 2017; 8:202. [PMID: 28443028 PMCID: PMC5387105 DOI: 10.3389/fphys.2017.00202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/20/2017] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane H+-ATPase is a proton pump of the P-type ATPase family and essential in plants and fungi. It extrudes protons to regulate pH and maintains a strong proton-motive force that energizes e.g., secondary uptake of nutrients. The only crystal structure of a H+-ATPase (AHA2 from Arabidopsis thaliana) was reported in 2007. Here, we present an improved atomic model of AHA2, obtained by a combination of model rebuilding through interactive molecular dynamics flexible fitting (iMDFF) and structural refinement based on the original data, but using up-to-date refinement methods. More detailed map features prompted local corrections of the transmembrane domain, in particular rearrangement of transmembrane helices 7 and 8, and the cytoplasmic N- and P-domains, and the new model shows improved overall quality and reliability scores. The AHA2 structure shows similarity to the Ca2+-ATPase E1 state, and provides a valuable starting point model for structural and functional analysis of proton transport mechanism of P-type H+-ATPases. Specifically, Asp684 protonation associated with phosphorylation and occlusion of the E1P state may result from hydrogen bond interaction with Asn106. A subsequent deprotonation associated with extracellular release in the E2P state may result from an internal salt bridge formation to an Arg655 residue, which in the present E1 state is stabilized in a solvated pocket. A release mechanism based on an in-built counter-cation was also later proposed for Zn2+-ATPase, for which structures have been determined in Zn2+ released E2P-like states with the salt bridge interaction formed.
Collapse
Affiliation(s)
- Dorota Focht
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark.,DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus UniversityAarhus, Denmark.,PUMPkin, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| | - Tristan I Croll
- Institute of Health Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Bjorn P Pedersen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark.,PUMPkin, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus UniversityAarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhus, Denmark.,DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus UniversityAarhus, Denmark.,PUMPkin, Danish National Research Foundation, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
34
|
Azouaoui H, Montigny C, Dieudonné T, Champeil P, Jacquot A, Vázquez-Ibar JL, Le Maréchal P, Ulstrup J, Ash MR, Lyons JA, Nissen P, Lenoir G. High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions. J Biol Chem 2017; 292:7954-7970. [PMID: 28302728 DOI: 10.1074/jbc.m116.751487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/10/2017] [Indexed: 01/08/2023] Open
Abstract
P4-ATPases, also known as phospholipid flippases, are responsible for creating and maintaining transbilayer lipid asymmetry in eukaryotic cell membranes. Here, we use limited proteolysis to investigate the role of the N and C termini in ATP hydrolysis and auto-inhibition of the yeast flippase Drs2p-Cdc50p. We show that limited proteolysis of the detergent-solubilized and purified yeast flippase may result in more than 1 order of magnitude increase of its ATPase activity, which remains dependent on phosphatidylinositol 4-phosphate (PI4P), a regulator of this lipid flippase, and specific to a phosphatidylserine substrate. Using thrombin as the protease, Cdc50p remains intact and in complex with Drs2p, which is cleaved at two positions, namely after Arg104 and after Arg 1290, resulting in a homogeneous sample lacking 104 and 65 residues from its N and C termini, respectively. Removal of the 1291-1302-amino acid region of the C-terminal extension is critical for relieving the auto-inhibition of full-length Drs2p, whereas the 1-104 N-terminal residues have an additional but more modest significance for activity. The present results therefore reveal that trimming off appropriate regions of the terminal extensions of Drs2p can greatly increase its ATPase activity in the presence of PI4P and demonstrate that relief of such auto-inhibition remains compatible with subsequent regulation by PI4P. These experiments suggest that activation of the Drs2p-Cdc50p flippase follows a multistep mechanism, with preliminary release of a number of constraints, possibly through the binding of regulatory proteins in the trans-Golgi network, followed by full activation by PI4P.
Collapse
Affiliation(s)
- Hassina Azouaoui
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Cédric Montigny
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Thibaud Dieudonné
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Philippe Champeil
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Aurore Jacquot
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - José Luis Vázquez-Ibar
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Pierre Le Maréchal
- the Neuro-PSI-UMR CNRS 9197, Bâtiment 430, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France, and
| | - Jakob Ulstrup
- the DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Miriam-Rose Ash
- the DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Joseph A Lyons
- the DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Poul Nissen
- the DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Guillaume Lenoir
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France,
| |
Collapse
|
35
|
Calì T, Brini M, Carafoli E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:259-296. [PMID: 28526135 DOI: 10.1016/bs.ircmb.2017.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plasma membrane Ca2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It has 10 transmembrane helices and 2 cytosolic loops, one of which contains the catalytic center. Its most distinctive feature is a C-terminal tail that contains most of the regulatory sites including that for calmodulin. The pump is also regulated by acidic phospholipids, kinases, a dimerization process, and numerous protein interactors. In mammals, four genes code for the four basic isoforms. Isoform complexity is increased by alternative splicing of primary transcripts. Pumps 2 and 3 are expressed preferentially in the nervous system. The pumps coexist with more powerful systems that clear Ca2+ from the bulk cytosol: their role is thus the regulation of Ca2+ in selected subplasma membrane microdomains, where a number of important Ca2+-dependent enzymes interact with them. Malfunctions of the pump lead to disease phenotypes that affect the nervous system preferentially.
Collapse
Affiliation(s)
- T Calì
- University of Padova, Padova, Italy
| | - M Brini
- University of Padova, Padova, Italy
| | - E Carafoli
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
36
|
Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, Christensen AL, Justesen BH, Jørgensen IL, Schiller J, Hatzakis NS, Grabe M, Pomorski TG, Stamou D. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 2016; 351:1469-73. [PMID: 27013734 DOI: 10.1126/science.aad6429] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.
Collapse
Affiliation(s)
- Salome Veshaguri
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Sune M Christensen
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Gerdi C Kemmer
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark
| | - Garima Ghale
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads P Møller
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Lohr
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Andreas L Christensen
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Bo H Justesen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark
| | - Ida L Jørgensen
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Nikos S Hatzakis
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Thomas Günther Pomorski
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg Denmark
| | - Dimitrios Stamou
- Bionanotecnology and Nanomedicine Laboratory, University of Copenhagen, Copenhagen, Denmark. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark. Nano-Science Center, University of Copenhagen, Copenhagen, Denmark. Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|
38
|
Montigny C, Lyons J, Champeil P, Nissen P, Lenoir G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:767-783. [PMID: 26747647 DOI: 10.1016/j.bbalip.2015.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Joseph Lyons
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Poul Nissen
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
Sitsel O, Grønberg C, Autzen HE, Wang K, Meloni G, Nissen P, Gourdon P. Structure and Function of Cu(I)- and Zn(II)-ATPases. Biochemistry 2015; 54:5673-83. [PMID: 26132333 DOI: 10.1021/acs.biochem.5b00512] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper and zinc are micronutrients essential for the function of many enzymes while also being toxic at elevated concentrations. Cu(I)- and Zn(II)-transporting P-type ATPases of subclass 1B are of key importance for the homeostasis of these transition metals, allowing ion transport across cellular membranes at the expense of ATP. Recent biochemical studies and crystal structures have significantly improved our understanding of the transport mechanisms of these proteins, but many details about their structure and function remain elusive. Here we compare the Cu(I)- and Zn(II)-ATPases, scrutinizing the molecular differences that allow transport of these two distinct metal types, and discuss possible future directions of research in the field.
Collapse
Affiliation(s)
- Oleg Sitsel
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, University of Copenhagen , Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Henriette Elisabeth Autzen
- Department of Biomedical Sciences, University of Copenhagen , Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen , Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Gabriele Meloni
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen , Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Experimental Medical Science, Lund University , Sölvegatan 19, SE-221 84 Lund, Sweden
| |
Collapse
|
40
|
Pedersen JT, Falhof J, Ekberg K, Buch-Pedersen MJ, Palmgren M. Metal Fluoride Inhibition of a P-type H+ Pump: STABILIZATION OF THE PHOSPHOENZYME INTERMEDIATE CONTRIBUTES TO POST-TRANSLATIONAL PUMP ACTIVATION. J Biol Chem 2015; 290:20396-406. [PMID: 26134563 DOI: 10.1074/jbc.m115.639385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 11/06/2022] Open
Abstract
The plasma membrane H(+)-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H(+)/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H(+)-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H(+)-ATPases is labile in the basal state, which may provide an explanation for the low H(+)/ATP coupling ratio of these pumps in the basal state.
Collapse
Affiliation(s)
- Jesper Torbøl Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Janus Falhof
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Kira Ekberg
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark kiek@
| | - Morten Jeppe Buch-Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Michael Palmgren
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
41
|
Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration. PLoS One 2015; 10:e0125960. [PMID: 25992547 PMCID: PMC4437780 DOI: 10.1371/journal.pone.0125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/27/2015] [Indexed: 11/22/2022] Open
Abstract
We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H+-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.
Collapse
Affiliation(s)
- Martin Korn
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Johannes Schmidpeter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Marlis Dahl
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Susanne Müller
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Lars M. Voll
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Christian Koch
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
- * E-mail:
| |
Collapse
|
42
|
Wielandt AG, Pedersen JT, Falhof J, Kemmer GC, Lund A, Ekberg K, Fuglsang AT, Pomorski TG, Buch-Pedersen MJ, Palmgren M. Specific Activation of the Plant P-type Plasma Membrane H+-ATPase by Lysophospholipids Depends on the Autoinhibitory N- and C-terminal Domains. J Biol Chem 2015; 290:16281-91. [PMID: 25971968 DOI: 10.1074/jbc.m114.617746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules.
Collapse
Affiliation(s)
- Alex Green Wielandt
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Janus Falhof
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Gerdi Christine Kemmer
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Anette Lund
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Kira Ekberg
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Thomas Günther Pomorski
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Morten Jeppe Buch-Pedersen
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Michael Palmgren
- From the Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
43
|
Azouaoui H, Montigny C, Ash MR, Fijalkowski F, Jacquot A, Grønberg C, López-Marqués RL, Palmgren MG, Garrigos M, le Maire M, Decottignies P, Gourdon P, Nissen P, Champeil P, Lenoir G. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. PLoS One 2014; 9:e112176. [PMID: 25393116 PMCID: PMC4230938 DOI: 10.1371/journal.pone.0112176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023] Open
Abstract
P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.
Collapse
Affiliation(s)
- Hassina Azouaoui
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Cédric Montigny
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Miriam-Rose Ash
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Frank Fijalkowski
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Aurore Jacquot
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Christina Grønberg
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rosa L. López-Marqués
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Garrigos
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Marc le Maire
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Paulette Decottignies
- CNRS, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, Orsay, France
- Univ Paris-Sud, Orsay, France
| | - Pontus Gourdon
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philippe Champeil
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
| | - Guillaume Lenoir
- Univ Paris-Sud, UMR 8221, Orsay, France
- CEA, iBiTec-S (Institut de Biologie et de Technologies de Saclay), SBSM (Service de Bioénergétique, Biologie Structurale et Mécanismes), Laboratoire des Protéines Membranaires, Gif-sur-Yvette, France
- CNRS, UMR 8221, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
44
|
van Veen S, Sørensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders. Front Mol Neurosci 2014; 7:48. [PMID: 24904274 PMCID: PMC4033846 DOI: 10.3389/fnmol.2014.00048] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na(+)/K(+)-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.
Collapse
Affiliation(s)
- Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Danny M Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| | - Henrik W Holen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease - PUMPkin, University of Copenhagen Frederiksberg, Denmark
| | - Michael G Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease - PUMPkin, University of Copenhagen Frederiksberg, Denmark
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven Leuven, Belgium
| |
Collapse
|
45
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
46
|
Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta Gen Subj 2014; 1850:461-75. [PMID: 24746984 DOI: 10.1016/j.bbagen.2014.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
47
|
Wang E, Yu N, Bano SA, Liu C, Miller AJ, Cousins D, Zhang X, Ratet P, Tadege M, Mysore KS, Downie JA, Murray JD, Oldroyd GED, Schultze M. A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and Medicago truncatula. THE PLANT CELL 2014; 26:1818-1830. [PMID: 24781115 PMCID: PMC4036588 DOI: 10.1105/tpc.113.120527] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/25/2014] [Accepted: 04/09/2014] [Indexed: 05/18/2023]
Abstract
Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells.
Collapse
Affiliation(s)
- Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Nan Yu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - S Asma Bano
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Chengwu Liu
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pascal Ratet
- Institut des Sciences du Végétale, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Million Tadege
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | | | | | - Michael Schultze
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
48
|
Rodrigues RB, Sabat G, Minkoff BB, Burch HL, Nguyen TT, Sussman MR. Expression of a translationally fused TAP-tagged plasma membrane proton pump in Arabidopsis thaliana. Biochemistry 2014; 53:566-78. [PMID: 24397334 PMCID: PMC3985734 DOI: 10.1021/bi401096m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Arabidopsis thaliana plasma
membrane proton ATPase genes, AHA1 and AHA2, are the two most highly expressed isoforms of an 11 gene family
and are collectively essential for embryo development. We report the
translational fusion of a tandem affinity-purification tag to the
5′ end of the AHA1 open reading frame in a genomic clone. Stable
expression of TAP-tagged AHA1 in Arabidopsis rescues the embryonic lethal phenotype of endogenous double aha1/aha2 knockdowns. Western blots of SDS-PAGE and Blue
Native gels show enrichment of AHA1 in plasma membrane fractions and
indicate a hexameric quaternary structure. TAP-tagged AHA1 rescue
lines exhibited reduced vertical root growth. Analysis of the plasma
membrane and soluble proteomes identified several plasma membrane-localized
proteins with alterred abundance in TAP-tagged AHA1 rescue lines compared
to wild type. Using affinity-purification mass spectrometry, we uniquely
identified two additional AHA isoforms, AHA9 and AHA11, which copurified
with TAP-tagged AHA1. In conclusion, we have generated transgenic Arabidopsis lines in which a TAP-tagged AHA1 transgene
has complemented all essential endogenous AHA1 and AHA2 functions
and have shown that these plants can be used to purify AHA1 protein
and to identify in planta interacting proteins by
mass spectrometry.
Collapse
Affiliation(s)
- Rachel B Rodrigues
- Department of Biochemistry, Biotechnology Center, University of Wisconsin , 425 Henry Mall, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
49
|
Zhou X, Sebastian TT, Graham TR. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail. J Biol Chem 2013; 288:31807-15. [PMID: 24045945 DOI: 10.1074/jbc.m113.481986] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drs2p, a yeast type IV P-type ATPase (P4-ATPase), or flippase, couples ATP hydrolysis to phosphatidylserine translocation and the establishment of membrane asymmetry. A previous study has shown that affinity-purified Drs2p, possessing an N-terminal tandem affinity purification tag (TAPN-Drs2), retains ATPase and translocase activity, but Drs2p purified using a C-terminal tag (Drs2-TAPC) was inactive. In this study, we show that the ATPase activity of N-terminally purified Drs2p associates primarily with a proteolyzed form of Drs2p lacking the C-terminal cytosolic tail. Truncation of most of the Drs2p C-terminal tail sequence activates its ATPase activity by ∼4-fold. These observations are consistent with the hypothesis that the C-terminal tail of Drs2p is auto-inhibitory to Drs2p activity. Phosphatidylinositol 4-phosphate (PI(4)P) has been shown to positively regulate Drs2p activity in isolated Golgi membranes through interaction with the C-terminal tail. In proteoliposomes reconstituted with purified, N-terminally TAP-tagged Drs2p, both ATPase and flippase activity were significantly higher in the presence of PI(4)P. In contrast, PI(4)P had no significant effect on the activity of a truncated form of Drs2p, which lacked the C-terminal tail. This work provides the first direct evidence, in a purified system, that a phospholipid flippase is subject to auto-inhibition by its C-terminal tail, which can be relieved by a phosphoinositide to stimulate flippase activity.
Collapse
Affiliation(s)
- Xiaoming Zhou
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | | | | |
Collapse
|
50
|
Kim HS, Oh JM, Luan S, Carlson JE, Ahn SJ. Cold stress causes rapid but differential changes in properties of plasma membrane H(+)-ATPase of camelina and rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:828-37. [PMID: 23399403 DOI: 10.1016/j.jplph.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/05/2013] [Accepted: 01/10/2013] [Indexed: 05/09/2023]
Abstract
Camelina (Camelina sativa) and rapeseed (Brassica napus) are well-established oil-seed crops with great promise also for biofuels. Both are cold-tolerant, and camelina is regarded to be especially appropriate for production on marginal lands. We examined physiological and biochemical alterations in both species during cold stress treatment for 3 days and subsequent recovery at the temperature of 25°C for 0, 0.25, 0.5, 1, 2, 6, and 24h, with particular emphasis on the post-translational regulation of the plasma membrane (PM) H(+)-ATPase (EC3.6.3.14). The activity and translation of the PM H(+)-ATPase, as well as 14-3-3 proteins, increased after 3 days of cold stress in both species but recovery under normal conditions proceeded differently. The increase in H(+)-ATPase activity was the most dramatic in camelina roots after recovery for 2h at 25°C, followed by decay to background levels within 24h. In rapeseed, the change in H(+)-ATPase activity during the recovery period was less pronounced. Furthermore, H(+)-pumping increased in both species after 15min recovery, but to twice the level in camelina roots compared to rapeseed. Protein gel blot analysis with phospho-threonine anti-bodies showed that an increase in phosphorylation levels paralleled the increase in H(+)-transport rate. Thus our results suggest that cold stress and recovery in camelina and rapeseed are associated with PM H(+)-fluxes that may be regulated by specific translational and post-translational modifications.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Department of Bioenergy Science and Technology, Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|