1
|
Tsang CH, De Rosa A, Kozielewicz P. Identification and molecular characterization of missense mutations in orphan G protein-coupled receptor GPR61 occurring in severe obesity. Mol Pharmacol 2025; 107:100026. [PMID: 40133016 PMCID: PMC12060159 DOI: 10.1016/j.molpha.2025.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025] Open
Abstract
Severe obesity is a complex chronic metabolic condition with a body mass index over 40 and can be caused, for example, by dysregulated G protein-coupled receptors (GPCRs) signaling. The orphan GPCR GPR61 had been linked to the regulation of metabolism and, here, we identify 34 mutations in the GPR61 gene which are present with much higher frequency in severe obesity samples from the UK10K obesity screen compared to the normal population. Furthermore, the cumulative sum of GPR61 mutations was found to be higher compared to the highly mutated and well-established target, melanocortin 4 receptor. Some GPR61 mutations presented an impact on ligand-independent GPR61-induced cAMP production. Specifically, R236C5.66 compromised Gs protein activation and altered the pattern of cellular expression. Our data warrant further studies to assess the role of this orphan GPCR in metabolism in greater detail. SIGNIFICANCE STATEMENT: This study identified missense mutations, including previously unknown variants, of the GPR61 gene in severely obese patients. This occurrence was higher than for the well-established obesity target melanocortin 4 receptor. In the in vitro assays, 3 mutations of GPR61, in particular R236C5.66, were loss of function because they reduced the constitutive activity of the receptor. The data support the notion that GPR61 can act as a promising target in obesity and its functions should be explored in future studies.
Collapse
Affiliation(s)
- Choi Har Tsang
- Molecular Pharmacology of GPCRs, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Alexander De Rosa
- Molecular Pharmacology of GPCRs, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paweł Kozielewicz
- Molecular Pharmacology of GPCRs, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
2
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
3
|
McNaught-Flores DA, Chen YC, Arias-Montaño JA, Panula P, Leurs R. Pharmacological characterization of the zebrafish Hrh2a histamine H 2 receptor. Eur J Pharmacol 2024; 981:176870. [PMID: 39117262 DOI: 10.1016/j.ejphar.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The zebrafish, Danio rerio, is a widely adopted in vivo model that conserves organs such as the liver, kidney, stomach, and brain, being, therefore, suitable for studying human diseases, drug discovery and toxicology. The brain aminergic systems are also conserved and the histamine H1, H2 and H3 receptors were previously cloned and identified in the zebrafish brain. Genome studies identified another putative H2 receptor (Hrh2) with ∼50% sequence identity with H2 receptor orthologs. In this study, we recombinantly expressed both zebrafish H2 receptor paralogs (hrh2a and hrh2b) and compared their pharmacology with the human H2 receptor ortholog. Our results showed that both zebrafish receptors conserve all the class A GPCR motifs. However, in contrast with the Hrh2a paralog, the Hrh2b does not possess all the amino acid residues shown to participate in histamine binding. The zebrafish Hrh2a receptor displays high affinity for [3H]-tiotidine with a binding profile for H2 receptor ligands similar to that of the human H2 receptor. The zebrafish Hrh2a receptor couples to GαS and Gαq/11 proteins, resulting in cAMP accumulation and activation of several reporter genes linked to the Gαq/11 pathway. Additionally, this receptor shows high constitutive activity, with histamine potency in the low nanomolar range for cAMP accumulation and the micromolar range for the activation of the NFAT response element. Moreover, dimaprit and amthamine seem to preferentially activate GαS over Gαq/11 proteins via the zebrafish Hrh2a receptor. These results can contribute to clarifying the functional roles of the H2 receptor in zebrafish.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Jose-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Yang S, Zhang L, Khan K, Travers J, Huang R, Jovanovic VM, Veeramachaneni R, Sakamuru S, Tristan CA, Davis EE, Klumpp-Thomas C, Witt KL, Simeonov A, Shaw ND, Xia M. Identification of Environmental Compounds That May Trigger Early Female Puberty by Activating Human GnRHR and KISS1R. Endocrinology 2024; 165:bqae103. [PMID: 39254333 PMCID: PMC11384912 DOI: 10.1210/endocr/bqae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 09/11/2024]
Abstract
There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vukasin M Jovanovic
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rithvik Veeramachaneni
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos A Tristan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
- Department of Pediatrics, Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Zhang K, Han Y, Zhang P, Zheng Y, Cheng A. Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT. Front Cell Neurosci 2023; 17:1166480. [PMID: 37333890 PMCID: PMC10272411 DOI: 10.3389/fncel.2023.1166480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The communication between neurons and, in some cases, between neurons and non-neuronal cells, through neurotransmission plays a crucial role in various physiological and pathological processes. Despite its importance, the neuromodulatory transmission in most tissues and organs remains poorly understood due to the limitations of current tools for direct measurement of neuromodulatory transmitters. In order to study the functional roles of neuromodulatory transmitters in animal behaviors and brain disorders, new fluorescent sensors based on bacterial periplasmic binding proteins (PBPs) and G-protein coupled receptors have been developed, but their results have not been compared to or multiplexed with traditional methods such as electrophysiological recordings. In this study, a multiplexed method was developed to measure acetylcholine (ACh), norepinephrine (NE), and serotonin (5-HT) in cultured rat hippocampal slices using simultaneous whole-cell patch clamp recordings and genetically encoded fluorescence sensor imaging. The strengths and weaknesses of each technique were compared, and the results showed that both techniques did not interfere with each other. In general, genetically encoded sensors GRABNE and GRAB5HT1.0 showed better stability compared to electrophysiological recordings in detecting NE and 5-HT, while electrophysiological recordings had faster temporal kinetics in reporting ACh. Moreover, genetically encoded sensors mainly report the presynaptic neurotransmitter release while electrophysiological recordings provide more information of the activation of downstream receptors. In sum, this study demonstrates the use of combined techniques to measure neurotransmitter dynamics and highlights the potential for future multianalyte monitoring.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiong Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aobing Cheng
- Department of Anesthesiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
7
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Echeverría E, Ripoll S, Fabián L, Shayo C, Monczor F, Fernández NC. Novel inhibitors of phosphorylation independent activity of GRK2 modulate cAMP signaling. Pharmacol Res Perspect 2022; 10:e00913. [PMID: 35184416 PMCID: PMC8858223 DOI: 10.1002/prp2.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
G protein-coupled receptors kinase 2 (GRK2) plays a major role in receptor regulation and, as a consequence, in cell biology and physiology. GRK2-mediated receptor desensitization is performed by its kinase domain, which exerts receptor phosphorylation promoting G protein uncoupling and the cessation of signaling, and by its RGS homology (RH) domain, able to interrupt G protein signaling. Since GRK2 activity is exacerbated in several pathologies, many efforts to develop inhibitors have been conducted. Most of them were directed toward GRK2 kinase activity and showed encouraging results on in vitro systems and animal models. Nevertheless, limitations including unspecific effects or pharmacokinetics issues prevented them from advancing to clinical trials. Surprisingly, even though the RH domain demonstrated the ability to desensitize GPCRs, this domain has been less explored. Herein, we show in vitro activity of a series of compounds that, by inhibiting GRK2 RH domain, increase receptor cAMP response, avoid GRK2 translocation to the plasma membrane, inhibit coimmunoprecipitation of GRK2 with Gαs subunit of heterotrimeric G protein, and prevent receptor desensitization. Also, we preliminarily evaluated candidates' ADMET properties and observed suitable lipophilicity and cytotoxicity. These novel inhibitors of phosphorylation-independent actions of GRK2 might be useful in elucidating other RH domain roles and lay the foundation for the development of innovative pharmacologic therapy for diseases where GRK2 activity is exacerbated.
Collapse
Affiliation(s)
- Emiliana Echeverría
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Sonia Ripoll
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lucas Fabián
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental (IByME)CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Natalia C. Fernández
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
9
|
Hasan MM, Ragnarsson L, Cardoso FC, Lewis RJ. Transfection methods for high-throughput cellular assays of voltage-gated calcium and sodium channels involved in pain. PLoS One 2021; 16:e0243645. [PMID: 33667217 PMCID: PMC7935312 DOI: 10.1371/journal.pone.0243645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.
Collapse
Affiliation(s)
- Md. Mahadhi Hasan
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Fernanda C. Cardoso
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
- * E-mail: (FCC); (RJL)
| | - Richard J. Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
- * E-mail: (FCC); (RJL)
| |
Collapse
|
10
|
Zhang S, Li X, Zhao S, Drobizhev M, Ai HW. A fast, high-affinity fluorescent serotonin biosensor engineered from a tick lipocalin. Nat Methods 2021; 18:258-261. [PMID: 33633410 DOI: 10.1038/s41592-021-01078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) is an important signaling monoamine and neurotransmitter. We report structure-guided engineering of a green fluorescent, genetically encoded serotonin sensor (G-GESS) from a 5-HT-binding lipocalin in the soft tick Argas monolakensis. G-GESS shows fast response kinetics and high affinity, specificity, brightness and photostability. We used G-GESS to image 5-HT dynamics in cultured cells, brain slices and behaving mice.
Collapse
Affiliation(s)
- Shen Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Xinyu Li
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Shengyu Zhao
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Mikhail Drobizhev
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. .,Department of Chemistry, University of Virginia, Charlottesville, VA, USA. .,The UVA Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
11
|
Casarini L, Lazzaretti C, Paradiso E, Limoncella S, Riccetti L, Sperduti S, Melli B, Marcozzi S, Anzivino C, Sayers NS, Czapinski J, Brigante G, Potì F, La Marca A, De Pascali F, Reiter E, Falbo A, Daolio J, Villani MT, Lispi M, Orlando G, Klinger FG, Fanelli F, Rivero-Müller A, Hanyaloglu AC, Simoni M. Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. iScience 2020; 23:101812. [PMID: 33299978 PMCID: PMC7702187 DOI: 10.1016/j.isci.2020.101812] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Classically, follicle-stimulating hormone receptor (FSHR)-driven cAMP-mediated signaling boosts human ovarian follicle growth and oocyte maturation. However, contradicting in vitro data suggest a different view on physiological significance of FSHR-mediated cAMP signaling. We found that the G-protein-coupled estrogen receptor (GPER) heteromerizes with FSHR, reprogramming cAMP/death signals into proliferative stimuli fundamental for sustaining oocyte survival. In human granulosa cells, survival signals are missing at high FSHR:GPER ratio, which negatively impacts follicle maturation and strongly correlates with preferential Gαs protein/cAMP-pathway coupling and FSH responsiveness of patients undergoing controlled ovarian stimulation. In contrast, FSHR/GPER heteromers triggered anti-apoptotic/proliferative FSH signaling delivered via the Gβγ dimer, whereas impairment of heteromer formation or GPER knockdown enhanced the FSH-dependent cell death and steroidogenesis. Therefore, our findings indicate how oocyte maturation depends on the capability of GPER to shape FSHR selective signals, indicating hormone receptor heteromers may be a marker of cell proliferation. G-protein-coupled estrogen receptor (GPER) interacts with FSH receptor (FSHR) FSHR/GPER heteromers reprogram FSH-induced death signals to proliferative stimuli Anti-apoptotic signaling of heteromers is via a GPER-Gαs inhibitory complex and Gβγ Heteromer formation impacts follicle maturation and FSH responses of IVF patients
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Serena Marcozzi
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Anzivino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Niamh S Sayers
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy.,Clinica EUGIN, Modena, Italy
| | | | - Eric Reiter
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Angela Falbo
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Jessica Daolio
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Monica Lispi
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy.,Global Medical Affair, Merck KGaA, Darmstadt, Germany
| | | | - Francesca G Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.,PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
12
|
Mensching L, Rading S, Nikolaev V, Karsak M. Monitoring Cannabinoid CB2 -Receptor Mediated cAMP Dynamics by FRET-Based Live Cell Imaging. Int J Mol Sci 2020; 21:ijms21217880. [PMID: 33114208 PMCID: PMC7660676 DOI: 10.3390/ijms21217880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
G-protein coupled cannabinoid CB2 receptor signaling and function is primarily mediated by its inhibitory effect on adenylate cyclase. The visualization and monitoring of agonist dependent dynamic 3′,5′-cyclic adenosine monophosphate (cAMP) signaling at the single cell level is still missing for CB2 receptors. This paper presents an application of a live cell imaging while using a Förster resonance energy transfer (FRET)-based biosensor, Epac1-camps, for quantification of cAMP. We established HEK293 cells stably co-expressing human CB2 and Epac1-camps and quantified cAMP responses upon Forskolin pre-stimulation, followed by treatment with the CB2 ligands JWH-133, HU308, β-caryophyllene, or 2-arachidonoylglycerol. We could identify cells showing either an agonist dependent CB2-response as expected, cells displaying no response, and cells with constitutive receptor activity. In Epac1-CB2-HEK293 responder cells, the terpenoid β-caryophyllene significantly modified the cAMP response through CB2. For all of the tested ligands, a relatively high proportion of cells with constitutively active CB2 receptors was identified. Our method enabled the visualization of intracellular dynamic cAMP responses to the stimuli at single cell level, providing insights into the nature of heterologous CB2 expression systems that contributes to the understanding of Gαi-mediated G-Protein coupled receptor (GPCR) signaling in living cells and opens up possibilities for future investigations of endogenous CB2 responses.
Collapse
Affiliation(s)
- Leonore Mensching
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (L.M.); (S.R.)
| | - Sebastian Rading
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (L.M.); (S.R.)
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany;
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Meliha Karsak
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (L.M.); (S.R.)
- Correspondence:
| |
Collapse
|
13
|
Echeverría E, Cabrera M, Burghi V, Sosa M, Ripoll S, Yaneff A, Monczor F, Davio C, Shayo C, Fernández N. The Regulator of G Protein Signaling Homologous Domain of G Protein-Coupled Receptor Kinase 2 Mediates Short-Term Desensitization of β3-Adrenergic Receptor. Front Pharmacol 2020; 11:113. [PMID: 32153413 PMCID: PMC7047201 DOI: 10.3389/fphar.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 01/05/2023] Open
Abstract
G protein coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR signaling. Canonical mechanism of GPCR desensitization involves receptor phosphorylation by GRKs followed by arrestin recruitment and uncoupling from heterotrimeric G protein. Although β3-adrenergic receptor (β3AR) lacks phosphorylation sites by GRKs, agonist treatment proved to induce β3AR desensitization in many cell types. Here we show that GRK2 mediates short-term desensitization of β3AR by a phosphorylation independent mechanism but mediated by its domain homologous to the regulator of G protein signaling (RGS). HEK293T cells overexpressing human β3AR presented a short-term desensitization of cAMP response stimulated by the β3AR agonist, BRL37344, and not by forskolin. We found that β3AR desensitization was higher in cells co-transfected with GRK2. Similarly, overexpression of the RGS homology domain but not kinase domain of GRK2 increased β3AR desensitization. Consistently, stimulation of β3AR increased interaction between GRK2 and Gαs subunit. Furthermore, in rat cardiomyocytes endogenously expressing β3AR, transfection with dominant negative mutant of RH domain of GRK2 (GRK2/D110A) increased cAMP response to BRL37344 and inhibited receptor desensitization. We expect our study to be a starting point for more sophisticated characterization of the consequences of GRK2 mediated desensitization of the β3AR in heart function and disease.
Collapse
Affiliation(s)
- Emiliana Echeverría
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maia Cabrera
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Burghi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Máximo Sosa
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia Ripoll
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina
| | - Natalia Fernández
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Lin SR, Lin SY, Chen CC, Fu YS, Weng CF. Exploring a New Natural Treating Agent for Primary Hypertension: Recent Findings and Forthcoming Perspectives. J Clin Med 2019; 8:E2003. [PMID: 31744165 PMCID: PMC6912567 DOI: 10.3390/jcm8112003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Primary hypertension describes abnormally-high systolic/diastolic blood pressure in a resting condition caused by various genetic or environmental risk factors. Remarkably, severe complications, such as ischemic cardiovascular disease, stroke, and chronic renal disease have led to primary hypertension becoming a huge burden for almost one-third of the total population. Medication is the major regimen for treating primary hypertension; however, recent medications may have adverse effects that attenuate energy levels. Hence, the search for new hypotensive agents from folk or traditional medicine may be fruitful in the discovery and development of new drugs. This review assembles recent findings for natural antihypertensive agents, extracts, or decoctions published in PubMed, and provides insights into the search for new hypotensive compounds based on blood-pressure regulating mechanisms, including the renin-angiotensin-aldosterone system and the sympathetic/adrenergic receptor/calcium channel system.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Shiuan-Yea Lin
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Cheng Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan; (S.-R.L.); (C.-C.C.)
- Camillian Saint Mary’s Hospital Luodong,160 Zhongzheng S. Rd. Luodong, Yilan 26546, Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Feng Weng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Basic Medical Science, Center for Transitional Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
15
|
Monczor F, Chatzopoulou A, Zappia CD, Houtman R, Meijer OC, Fitzsimons CP. A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Front Pharmacol 2019; 10:214. [PMID: 30930776 PMCID: PMC6425864 DOI: 10.3389/fphar.2019.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.
Collapse
Affiliation(s)
- Federico Monczor
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonia Chatzopoulou
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Carlos Daniel Zappia
- Laboratorio de Farmacología de Receptores, Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - René Houtman
- PamGene International B.V., 's-Hertogenbosch, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlos P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Díaz Nebreda A, Zappia CD, Rodríguez González A, Sahores A, Sosa M, Burghi V, Monczor F, Davio C, Fernández N, Shayo C. Involvement of histamine H 1 and H 2 receptor inverse agonists in receptor's crossregulation. Eur J Pharmacol 2019; 847:42-52. [PMID: 30685431 DOI: 10.1016/j.ejphar.2019.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Histamine [2-(4-Imidazolyl)-ethylamine] modulates different biological processes, through histamine H1 and H2 receptors, and their respective blockers are widely used in treating allergic and gastric acid-related disorders. Histamine H1 and H2 receptor crossdesensitization and cointernalization induced by its agonists have been previously described. In this study, we show how this crosstalk determines the response to histamine H1 and H2 receptor inverse agonists and how histamine H1 and H2 receptor inverse agonists interfere with the other receptor's response to agonists. By desensitization assays we demonstrate that histamine H1 and H2 receptor inverse agonists induce a crossregulation between both receptors. In this sense, the histamine H1 receptor inverse agonists desensitize the cAMP response to amthamine, a histamine H2 receptor agonist. In turn, histamine H2 receptor inverse agonists interfere with histamine H1 receptor signaling. We also determine that the crossdesensitization induced by histamine H1 or H2 receptor agonists alters the histamine inverse agonists receptor response: activation of histamine H1 receptor affects cAMP response induced by histamine H2 receptor inverse agonists, whereas histamine H2 receptor agonist induces a negative regulation on the anti-inflammatory response of histamine H1 receptor inverse agonists. Binding studies revealed that histamine H1 and H2 receptors cointernalize after stimulus with histamine receptor inverse agonists. In addition, the inhibition of the internalization process prevents receptor crossregulation. Our study provides new insights in the mechanisms of action of histamine H1 and H2 receptors that explain the effect of histamine H1 and H2 receptor inverse agonists and opens up new venues for novel therapeutic applications.
Collapse
Affiliation(s)
- Antonela Díaz Nebreda
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina
| | - Carlos Daniel Zappia
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina
| | - Ana Sahores
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Máximo Sosa
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Valeria Burghi
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Carlos Davio
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Natalia Fernández
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Granja-Galeano G, Zappia CD, Fabián L, Davio C, Shayo C, Fernández N, Monczor F. Effect of mutation of Phe 243 6.44 of the histamine H 2 receptor on cimetidine and ranitidine mechanism of action. Biochem Pharmacol 2017; 146:117-126. [DOI: 10.1016/j.bcp.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
|
18
|
Felce JH, Latty SL, Knox RG, Mattick SR, Lui Y, Lee SF, Klenerman D, Davis SJ. Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure. Cell Rep 2017; 20:2654-2665. [PMID: 28903045 PMCID: PMC5608970 DOI: 10.1016/j.celrep.2017.08.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∼700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification.
Collapse
Affiliation(s)
- James H Felce
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah L Latty
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rachel G Knox
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Susan R Mattick
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yuan Lui
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Simon J Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
19
|
Gargiulo L, May M, Rivero EM, Copsel S, Lamb C, Lydon J, Davio C, Lanari C, Lüthy IA, Bruzzone A. A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:43-57. [PMID: 28074314 DOI: 10.1007/s10911-017-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Caroline Lamb
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - John Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
20
|
Müller M, Ausländer S, Spinnler A, Ausländer D, Sikorski J, Folcher M, Fussenegger M. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat Chem Biol 2017; 13:309-316. [DOI: 10.1038/nchembio.2281] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023]
|
21
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Bai P, Ye H, Xie M, Saxena P, Zulewski H, Charpin-El Hamri G, Djonov V, Fussenegger M. A synthetic biology-based device prevents liver injury in mice. J Hepatol 2016; 65:84-94. [PMID: 27067456 PMCID: PMC4914822 DOI: 10.1016/j.jhep.2016.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.
Collapse
Affiliation(s)
- Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Medicine, University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland; Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063 Zurich, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Université Claude Bernard 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Baltzerstrasse 2, CH-3000 Berne, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
23
|
Gargiulo L, Copsel S, Rivero EM, Galés C, Sénard JM, Lüthy IA, Davio C, Bruzzone A. Differential β₂-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines. Oncotarget 2015; 5:10058-69. [PMID: 25375203 PMCID: PMC4259405 DOI: 10.18632/oncotarget.2460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/06/2014] [Indexed: 11/27/2022] Open
Abstract
Breast cancer is the most frequent malignancy in women. Several reports demonstrated that adrenergic receptors (ARs) are involved in breast cancer. Here we observed that epinephrine (Epi), an endogenous AR agonist, caused opposite effects in non-tumorigenic (MCF-10A and HBL-100) and tumor cells (MCF-7 and MDA-MB-231). Thus, Epi, in non-tumor breast cells, as well as isoproterenol (β-agonist), in all cell lines, maintained a benign phenotype, decreasing cell proliferation and migration, and stimulating cell adhesion. β-AR expression and cAMP levels were higher in MCF-10A than in MCF-7 cells. β2-AR knock-down caused a significant increase of cell proliferation and migration, and a decrease of cell adhesion both in basal and in Iso-stimulated conditions. Coincidently, β2-AR over-expression induced a significant decrease of cell proliferation and migration, and an increase of cell adhesion. Therefore, β2-AR is implied in cell phenotype and its agonists or antagonists could eventually complement cancer therapy.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina. Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 (1113) CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier, F-31432 Toulouse, France
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 (1113) CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, CABA, Argentina
| |
Collapse
|
24
|
Vedel L, Bräuner-Osborne H, Mathiesen JM. A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors. ACTA ACUST UNITED AC 2015; 20:849-57. [PMID: 25851033 DOI: 10.1177/1087057115580019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) is an important second messenger, and quantification of intracellular cAMP levels is essential in studies of G protein-coupled receptors (GPCRs). The intracellular cAMP levels are regulated by the adenylate cyclase (AC) upon activation of either Gs- or Gi-coupled GPCRs, which leads to increased or decreased cAMP levels, respectively. Here we describe a real-time Förster resonance energy transfer (FRET)-based cAMP high-throughput screening (HTS) assay for identification and characterization of Gs-coupled GPCR ligands and phosphodiesterase (PDE) inhibitors in living cells. We used the β2-adrenergic receptor (β(2)AR) as a representative Gs-coupled receptor and characterized two cell lines with different expression levels. Low receptor expression allowed detection of desensitization kinetics and delineation of partial agonism, whereas high receptor expression resulted in prolonged signaling and enabled detection of weak partial agonists and/or ligands with low potency, which is highly advantageous in large HTS settings and hit identification. In addition, the assay enabled detection of β(2)AR inverse agonists and PDE inhibitors. High signal-to-noise ratios were also observed for the other representative Gs-coupled GPCRs tested, GLP-1R and GlucagonR. The FRET-based cAMP biosensor assay is robust, reproducible, and inexpensive with good Z factors and is highly applicable for HTS.
Collapse
Affiliation(s)
- Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mosolff Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Type-3 BRET, an improved competition-based bioluminescence resonance energy transfer assay. Biophys J 2015; 106:L41-3. [PMID: 24940791 DOI: 10.1016/j.bpj.2014.04.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 11/24/2022] Open
Abstract
We show that in conventional, competition-based bioluminescence resonance energy transfer (BRET) assays of membrane protein stoichiometry, the presence of competitors can alter tagged-protein density and artifactually reduce energy transfer efficiency. A well-characterized monomeric type I membrane protein, CD86, and two G protein-coupled receptors β2AR and mCannR2, all of which behave as dimers in these conventional assays, exhibit monomeric behavior in an improved competition-based type-3 BRET assay designed to circumvent such artifacts.
Collapse
|
26
|
Kienitz MC, Mintert-Jancke E, Hertel F, Pott L. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes. Cell Signal 2014; 26:1182-92. [PMID: 24576551 DOI: 10.1016/j.cellsig.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 12/23/2022]
Abstract
Opening of G-protein-activated inward-rectifying K(+) (GIRK, Kir3) channels is regulated by interaction with βγ-subunits of Pertussis-toxin-sensitive G proteins upon activation of appropriate GPCRs. In atrial and neuronal cells agonist-independent activity (I(basal)) contributes to the background K(+) conductance, important for stabilizing resting potential. Data obtained from the Kir3 signaling pathway reconstituted in Xenopus oocytes suggest that I(basal) requires free G(βγ). In cells with intrinsic expression of Kir3 channels this issue has been scarcely addressed experimentally. Two G(βγ)-binding proteins (myristoylated phosducin - mPhos - and G(αi1)) were expressed in atrial myocytes using adenoviral gene transfer, to interrupt G(βγ)-signaling. Agonist-induced and basal currents were recorded using whole cell voltage-clamp. Expression of mPhos and G(αi1) reduced activation of Kir3 current via muscarinic M(2) receptors (IK(ACh)). Inhibition of IK(ACh) by mPhos consisted of an irreversible component and an agonist-dependent reversible component. Reduction in density of IK(ACh) by overexpressed Gαi1, in contrast to mPhos, was paralleled by substantial slowing of activation, suggesting a reduction in density of functional M2 receptors, rather than G(βγ)-scavenging as underlying mechanism. In line with this notion, current density and activation kinetics were rescued by fusing the αi1-subunit to an Adenosine A(1) receptor. Neither mPhos nor G(αi1) had a significant effect on I(basal), defined by the inhibitory peptide tertiapin-Q. These data demonstrate that basal Kir3 current in a native environment is unrelated to G-protein signaling or agonist-independent free G(βγ). Moreover, our results illustrate the importance of physiological expression levels of the signaling components in shaping key parameters of the response to an agonist.
Collapse
Affiliation(s)
| | | | - Fabian Hertel
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Lutz Pott
- Institute of Physiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
27
|
Zaytseva N, Lynn JG, Wu Q, Mudaliar DJ, Sun H, Kuang PQ, Fang Y. Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. SENSORS AND ACTUATORS. B, CHEMICAL 2013; 188:10.1016/j.snb.2013.08.012. [PMID: 24319319 PMCID: PMC3852437 DOI: 10.1016/j.snb.2013.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell adhesion to extracellular matrix (ECM) is fundamental to many distinct aspects of cell biology, and has been an active topic for label-free biosensors. However, little attention has been paid to study the impact of receptor signaling on the cell adhesion process. We here report the development of resonant waveguide grating biosensor-enabled label-free and fluorescent approaches, and their use for investigating the adhesion of an engineered HEK-293 cell line stably expressing green fluorescent protein (GFP) tagged β2-adrenergic receptor (β2-AR) onto distinct surfaces under both ambient and physiological conditions. Results showed that cell adhesion is sensitive to both temperature and ECM coating, and distinct mechanisms govern the cell adhesion process under different conditions. The β2-AR agonists, but not its antagonists or partial agonists, were found to be capable of triggering signaling during the adhesion process, leading to an increase in the adhesion of the engineered cells onto fibronectin-coated biosensor surfaces. These results suggest that the dual approach presented is useful to investigate the mechanism of cell adhesion, and to identify drug molecules and receptor signaling that interfere with cell adhesion.
Collapse
Affiliation(s)
- Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Jeffery G. Lynn
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Qi Wu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | | | | | - Patty Q. Kuang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| |
Collapse
|
28
|
Antihistaminergics and inverse agonism: potential therapeutic applications. Eur J Pharmacol 2013; 715:26-32. [PMID: 23831018 DOI: 10.1016/j.ejphar.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022]
Abstract
The accurate characterization of the molecular mechanisms involved in the action of receptor ligands is important for their appropriate therapeutic use and safety. It is well established that ligands acting at the histamine system currently used in the clinic exert their actions by specifically antagonizing G-protein coupled H1 and H2 receptors. However, most of these ligands, assumed to be neutral antagonists, behave as inverse agonists displaying negative efficacy in experimental systems. This suggests that their therapeutic actions may involve not only receptor blockade, but also the decrease of spontaneous receptor activity. The mechanisms whereby inverse agonists achieve negative efficacy are diverse. Theoretical models predict at least three possible mechanisms, all of which are supported by experimental observations. Depending on the mechanism of action engaged, the inverse agonist could interfere specifically with signaling events triggered by unrelated receptors. This possibility opens up new venues to explain the therapeutic actions of inverse agonists of the histamine receptor and perhaps new therapeutic applications.
Collapse
|
29
|
Alonso N, Fernandez N, Notcovich C, Monczor F, Simaan M, Baldi A, Gutkind JS, Davio C, Shayo C. Cross-desensitization and cointernalization of H1 and H2 histamine receptors reveal new insights into histamine signal integration. Mol Pharmacol 2013; 83:1087-98. [PMID: 23462507 PMCID: PMC3629830 DOI: 10.1124/mol.112.083394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/05/2013] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.
Collapse
Affiliation(s)
- Natalia Alonso
- Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Meens MJPMT, Mattheij NJA, van Loenen PB, Spijkers LJA, Lemkens P, Nelissen J, Compeer MG, Alewijnse AE, De Mey JGR. G-protein βγ subunits in vasorelaxing and anti-endothelinergic effects of calcitonin gene-related peptide. Br J Pharmacol 2012; 166:297-308. [PMID: 22074193 DOI: 10.1111/j.1476-5381.2011.01774.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) has been proposed to relax vascular smooth muscle cells (VSMC) via cAMP and can promote dissociation of endothelin-1 (ET-1) from ET(A) receptors. The latter is not mimicked by other stimuli of adenylate cyclases. Therefore, we evaluated the involvement of G-protein βγ subunits (Gβγ) in the arterial effects of CGRP receptor stimulation. EXPERIMENTAL APPROACH To test the hypothesis that instead of α subunits of G-proteins (Gαs), Gβγ mediates the effects of CGRP receptor activation, we used (i) rat isolated mesenteric resistance arteries (MRA), (ii) pharmacological modulators of cyclic nucleotides; and (iii) low molecular weight inhibitors of the functions of Gβγ, gallein and M119. To validate these tools with respect to CGRP receptor function, we performed organ bath studies with rat isolated MRA, radioligand binding on membranes from CHO cells expressing human CGRP receptors and cAMP production assays in rat cultured VSMC. KEY RESULTS In isolated arteries contracted with K(+) or ET-1, IBMX (PDE inhibitor) increased sodium nitroprusside (SNP)- and isoprenaline (ISO)- but not CGRP-induced relaxations. While fluorescein (negative control) was without effects, gallein increased binding of [(125) I]-CGRP in the absence and presence of GTPγS. Gallein also increased CGRP-induced cAMP production in VSMC. Despite these stimulating effects, gallein and M119 selectively inhibited the relaxing and anti-endothelinergic effects of CGRP in isolated arteries while not altering contractile responses to K(+) or ET-1 or relaxing responses to ISO or SNP. CONCLUSION AND IMPLICATIONS Activated CGRP receptors induce cyclic nucleotide-independent relaxation of VSMC and terminate arterial effects of ET-1 via Gβγ.
Collapse
Affiliation(s)
- M J P M T Meens
- Department of Pharmacology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
32
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2011; 51:518-28. [PMID: 21118696 PMCID: PMC3085055 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C. Jensen
- Cardiology Division, VA Medical Center; Cardiovascular Research Institute; and Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA
- University of North Carolina, Cardiology Division, 160 Dental Circle, Chapel Hill, NC 27599-7075 USA
| | - Timothy D. O'Connell
- Cardiovascular Health Research Center, Sanford Research/University of South Dakota, 2301 E. 60th Street, Sioux Falls, SD 57104, USA
| | - Paul C. Simpson
- Cardiology Division, VA Medical Center; Cardiovascular Research Institute; and Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 2010; 62:701-25. [PMID: 21079041 PMCID: PMC2993260 DOI: 10.1124/pr.110.002667] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Laboratory,University Avenue, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|