1
|
Wen J, Geng L, Wang R, Zhang X, Sui Y, Liu X, Han X. Carboxylesterase 1 regulates peroxisome proliferator-activated receptor gamma to inhibit the growth and metastasis of breast cancer cells. J Mol Histol 2025; 56:167. [PMID: 40418235 DOI: 10.1007/s10735-025-10446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Breast cancer is a common malignancy in women, and it has an absence of effective therapies. Carboxylesterase 1 (CES1), a member of the carboxylesterase family, has anti-tumor properties in several types of cancer. However, the function of CES1 in breast cancer remains unclear. Peroxisome proliferator-activated receptor gamma (PPARG) is a downstream regulator of CES1 and exhibits anti-breast cancer properties. Both CES1 and PPARG were downregulated in breast cancer tissues. Low CES1 and PPARG expression were linked to poorer breast cancer survival. We constructed CES1 knockdown and overexpression models of breast cancer cells by CES1 overexpressing plasmids and plasmids containing short hairpin RNA. High expression of CES1 inhibited breast cancer cell proliferation, evidenced by diminished cell viability, decreased DNA replication, and G1 phase arrest. CES1 overexpression decreased the protein levels of CDK2, CDK6 and cyclin B1 in breast cancer cells. CES1 inhibited the Bcl-2/Bax axis and increased Cleaved caspase-3 levels. Transwell assays showed that CES1 inhibited cell migration and invasion. CES1 increased E-cadherin protein expression and decreased Vimentin protein expression. CES1 knockdown facilitated the proliferation, migration, and invasion of breast cancer cells. CES1 was found to regulate PPARG expression in breast cancer cells positively. We transfected PPARG-interfering plasmids into breast cancer cells with CES1 overexpression. Inhibition of PPARG abrogated the anti-growth and anti-metastasis functions of CES1 in breast cancer cells. This study elucidates that CES1 inhibits the malignant progression of breast cancer by up-regulating the expression of PPARG.
Collapse
Affiliation(s)
- Jingli Wen
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Lei Geng
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Ruohan Wang
- Department of Pathology, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Xiaolei Zhang
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Yanmin Sui
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China
| | - Xiaofang Liu
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, 257091, Shandong, China
| | - Xin Han
- Department of Oncology, Dongying People's Hospital, 317 Nanyi Road, Dongying, 257091, Shandong, China.
| |
Collapse
|
2
|
Wang H, Zhu C, Swamynathan MM, Rajput S, Jayanetti K, Rendina D, Takemura K, Bogdan D, Wang L, Rizzo RC, Kaczocha M, Trotman LC, Bialkowska AB, Ojima I. Fatty acid binding protein 5 inhibitors as novel anticancer agents against metastatic castration-resistant prostate cancer. Bioorg Med Chem 2025; 122:118136. [PMID: 40058274 DOI: 10.1016/j.bmc.2025.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Prostate cancer (PCa) is one of the most common malignancies diagnosed among men and is the second leading cause of cancer-related death. Despite recent advancements in early diagnosis of PCa, androgen deprivation therapy (ADT) remains the most common treatment of PCa. Docetaxel (DTX) and Cabazitaxel (CTX) are two of the most extensively used drugs for metastatic castration-resistant prostate cancer (mCRPC). However, there is a clear medical need for newer and more efficacious therapies for CRPC. FABP5 is overexpressed in prostate cancer cells and chaperones fatty acids to PPARs, which leads to the upregulation of proangiogenic factors, resulting in cell survival and metastasis. The critical role and upregulation of FABP5 in PCa make FABP5 an excellent druggable target for CRPC. We reported a promising anti-PCa activity of truxillic acid monoester (TAME)-based FABP5 inhibitors (SB-FIs) and their synergy with DTX and CTX in vitro and in vivo against PC-3 cells and PC-3 tumor xenografts. In the present work, we performed an extensive SAR study on the potencies of 2nd- and 3rd-generation SB-FIs against PC-3 and RCaP cell lines. RCaP is a mouse PCa cell line, resistant to anti-androgen and first-line taxane chemotherapies, and shows a high level of the Fabp5-gene. This SAR study led to the identification of a number of 3rd-generation SB-FIs with strong cytotoxicity against these two PCa cell lines. Cell cycle analysis of selected SB-FIs revealed a clear evolution of apoptotic potency in the 1st-, 2nd- and 3rd-generation SB-FIs. Since taxanes, DTX and CTX, are ineffective against RCaP cell line, we selected a topoisomerase I inhibitor, topotecan (TPT) as a replacement for taxanes. We screened the library of SB-FIs for synergy with TPT and identified 3 SB-FIs (L3, α-11 and α-4), exhibiting strong synergy, which could remarkably expand the therapeutic window of TPT.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chuanzhou Zhu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Shubhra Rajput
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Kathryn Takemura
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Diane Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8480, USA
| | - Liqun Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Robert C Rizzo
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8480, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Agnieszka B Bialkowska
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8176, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
3
|
Li M, Wang X, Guo J, Qu J, Cao Y, Song Q, Lu J. Effects of FABP5 Expression on Clinicopathological and Survival Characteristics in Digestive System Malignancies: A Systematic Review and Meta-Analysis. Cancer Med 2025; 14:e70794. [PMID: 40178066 PMCID: PMC11966564 DOI: 10.1002/cam4.70794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Digestive system malignancies are a major global health burden, and the role of fatty acid binding protein 5 (FABP5) in these tumors remains controversial. AIMS This meta-analysis aimed to evaluate the correlation between FABP5 expression and clinicopathological features, as well as survival outcomes in digestive system malignancies. MATERIALS AND METHODS Data from 11 studies (1207 patients) retrieved from PubMed, Embase, Cochrane Library, CNKI, and WanFang were analyzed. RESULTS FABP5 overexpression was associated with poorer overall survival (OS), larger tumor size, advanced UICC stage, and increased risk of vascular invasion and lymph node metastasis. Notably, FABP5 overexpression is particularly associated with poorer OS in the subgroup of digestive tract malignancies and larger tumor sizes in the subgroup of Chinese patients. DISCUSSION Cellular experiments demonstrated that FABP5 overexpression enhances proliferation, migration, and invasion in hepatocellular carcinoma (Huh7) and gastric cancer (HGC-27) cell lines, while FABP5 knockdown reduces these effects. Mechanistically, FABP5 may drive tumor progression through PPARβ/δ signaling, epithelial-mesenchymal transition induction, angiogenesis regulation, and potential effects on fatty acid metabolism and hypoxia-related pathways. CONCLUSION FABP5 overexpression correlates with adverse clinicopathological features and prognosis in digestive system malignancies, suggesting its potential as a biomarker for these tumors. Further research is warranted.
Collapse
Affiliation(s)
- Miaoqing Li
- Department of Medical Oncology, Laboratory for Clinical MedicineBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Xiaoxia Wang
- Department of Medical Oncology, Laboratory for Clinical MedicineBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Jia Guo
- Department of Medical Oncology, Laboratory for Clinical MedicineBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Junchen Qu
- Department of Medical Oncology, Laboratory for Clinical MedicineBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Yu Cao
- Department of Clinical Epidemiology ResearchBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Qingkun Song
- Department of Clinical Epidemiology ResearchBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| | - Jun Lu
- Department of Medical Oncology, Laboratory for Clinical MedicineBeijing YouAn Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Rolver MG, Severin M, Pedersen SF. Regulation of cancer cell lipid metabolism and oxidative phosphorylation by microenvironmental acidosis. Am J Physiol Cell Physiol 2024; 327:C869-C883. [PMID: 39099426 DOI: 10.1152/ajpcell.00429.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The expansion of cancer cell mass in solid tumors generates a harsh environment characterized by dynamically varying levels of acidosis, hypoxia, and nutrient deprivation. Because acidosis inhibits glycolytic metabolism and hypoxia inhibits oxidative phosphorylation, cancer cells that survive and grow in these environments must rewire their metabolism and develop a high degree of metabolic plasticity to meet their energetic and biosynthetic demands. Cancer cells frequently upregulate pathways enabling the uptake and utilization of lipids and other nutrients derived from dead or recruited stromal cells, and in particular lipid uptake is strongly enhanced in acidic microenvironments. The resulting lipid accumulation and increased reliance on β-oxidation and mitochondrial metabolism increase susceptibility to oxidative stress, lipotoxicity, and ferroptosis, in turn driving changes that may mitigate such risks. The spatially and temporally heterogeneous tumor microenvironment thus selects for invasive, metabolically flexible, and resilient cancer cells capable of exploiting their local conditions and of seeking out more favorable surroundings. This phenotype relies on the interplay between metabolism, acidosis, and oncogenic mutations, driving metabolic signaling pathways such as peroxisome proliferator-activated receptors (PPARs). Understanding the particular vulnerabilities of such cells may uncover novel therapeutic liabilities of the most aggressive cancer cells.
Collapse
Affiliation(s)
- Michala G Rolver
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Severin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Sun J, Esplugues E, Bort A, Cardelo MP, Ruz-Maldonado I, Fernández-Tussy P, Wong C, Wang H, Ojima I, Kaczocha M, Perry R, Suárez Y, Fernández-Hernando C. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nat Metab 2024; 6:741-763. [PMID: 38664583 DOI: 10.1038/s42255-024-01019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Enric Esplugues
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Magdalena P Cardelo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Wong
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, New York, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, New York, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York, NY, USA
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine. Stony Brook University, New York, NY, USA
| | - Rachel Perry
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Hamilton HL, Kinscherf NA, Balmer G, Bresque M, Salamat SM, Vargas MR, Pehar M. FABP7 drives an inflammatory response in human astrocytes and is upregulated in Alzheimer's disease. GeroScience 2024; 46:1607-1625. [PMID: 37688656 PMCID: PMC10828232 DOI: 10.1007/s11357-023-00916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid β fragment 25-35 (Aβ25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.
Collapse
Affiliation(s)
- Haylee L Hamilton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah A Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
| | - Garrett Balmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Bresque
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahriar M Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA.
- Geriatric Research Education Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
8
|
Hao J, Yu J, Yorek MS, Yu CL, Pope RM, Chimenti MS, Xiong Y, Klingelhutz A, Jabbari A, Li B. Keratinocyte FABP5-VCP complex mediates recruitment of neutrophils in psoriasis. Cell Rep 2023; 42:113449. [PMID: 37967009 PMCID: PMC10729729 DOI: 10.1016/j.celrep.2023.113449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
One of the hallmarks of intractable psoriasis is neutrophil infiltration in skin lesions. However, detailed molecular mechanisms of neutrophil chemotaxis and activation remain unclear. Here, we demonstrate a significant upregulation of epidermal fatty acid binding protein (E-FABP, FABP5) in the skin of human psoriasis and psoriatic mouse models. Genetic deletion of FABP5 in mice by global knockout and keratinocyte conditional (Krt6a-Cre) knockout, but not myeloid cell conditional (LysM-Cre) knockout, attenuates psoriatic symptoms. Immunophenotypic analysis shows that FABP5 deficiency specifically reduces skin recruitment of Ly6G+ neutrophils. Mechanistically, activated keratinocytes produce chemokines and cytokines that trigger neutrophil chemotaxis and activation in an FABP5-dependent manner. Proteomic analysis further identifies that FABP5 interacts with valosin-containing protein (VCP), a key player in NF-κB signaling activation. Silencing of FABP5, VCP, or both inhibits NF-κB/neutrophil chemotaxis signaling. Collectively, these data demonstrate dysregulated FABP5 as a molecular mechanism promoting NF-κB signaling and neutrophil infiltration in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Matthew S Yorek
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Chi-Li Yu
- Proteomics Facility, University of Iowa, Iowa City, IA, USA
| | | | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, USA; Iowa City VA Medical Center, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Cao Y, Xiong Y, Sun H, Wang Z. Neurorescuing effect of Cinacalcet against hypercalcemia-induced nerve injury in chronic kidney disease via TRAF2/cIAP1/KLF2/SERPINA3 signal axis. Cell Biol Toxicol 2023; 39:1-17. [PMID: 35635602 DOI: 10.1007/s10565-022-09717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Hypercalcemia is a common complication in chronic kidney disease (CKD) and unfortunately contributes to nerve injury. This study aims to investigate the potential role and underlying mechanisms of Cinacalcet (CIN) in hypercalcemia-driven nerve injury in CKD. A CKD mouse model was first established by adenine feeding to identify the therapeutic effects of CIN. Molecules related to CIN and CKD were predicted by bioinformatics analysis and their expression in the kidney tissues of CKD mice was measured by immunochemistry. Gain- and loss-of-functions assays were performed both in vitro and in vivo to evaluate their effects on nerve injury in CKD, as reflected by Scr and BUN, and brain calcium content as well as behavior tests. CIN ameliorated hypercalcemia-driven nerve injury in CKD mice. Interactions among TRAF2, an E3-ubiquitin ligase, KLF2, and SERPINA3 were bioinformatically predicted on CIN effect. CIN restricted the ubiquitin-mediated degradation of KLF2 by downregulating TRAF2. KLF2 targeted and inversely regulated SERPINA3 to repress hypercalcemia-driven nerve injury in CKD. CIN was substantiated in vivo to ameliorate hypercalcemia-driven nerve injury in CKD mice through the TRAF2/KLF2/SERPINA3 regulatory axis. Together, CIN suppresses SERPINA3 expression via TRAF2-mediated inhibition of the ubiquitin-dependent degradation of KLF2, thus repressing hypercalcemia-induced nerve injury in CKD mice.
Collapse
Affiliation(s)
- Yaochen Cao
- The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Yingquan Xiong
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Hongming Sun
- Department of Neurology, the Fourth Hospital of Daqing, Daqing, 163712, People's Republic of China.
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan.
| | - Ziqiang Wang
- Department of Nephrology, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
10
|
George Warren W, Osborn M, Yates A, Wright K, E O'Sullivan S. The emerging role of fatty acid binding protein 5 (FABP5) in cancers. Drug Discov Today 2023:103628. [PMID: 37230284 DOI: 10.1016/j.drudis.2023.103628] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Fatty acid binding protein 5 (FABP5, or epidermal FABP) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. In patient-derived tumours, FABP5 expression is increased up to tenfold, often co-expressed with other cancer-related proteins. High tumoral FABP5 expression is associated with poor prognosis. FABP5 activates transcription factors (TFs) leading to increased expression of proteins involved in tumorigenesis. Genetic and pharmacological preclinical studies show that inhibiting FABP5 reduces protumoral markers, whereas elevation of FABP5 promotes tumour growth and spread. Thus, FABP5 might be a valid target for novel therapeutics. The evidence base is currently strongest for liver, prostate, breast, and brain cancers, and squamous cell carcinoma (SCC), which could represent relevant patient populations for any drug discovery programme. Teaser: This review presents the growing evidence that upregulated fatty acid binding protein 5 (FABP5) plays a role in the progression of multiple cancer types, and may represent a novel therapeutic target.
Collapse
Affiliation(s)
| | | | - Andy Yates
- Artelo Biosciences, Solana Beach, CA, USA
| | - Karen Wright
- Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | |
Collapse
|
11
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
12
|
Tang J, Ouyang H, Chen X, Jiang D, Tian Y, Huang Y, Shen X. Comparative Transcriptome Analyses of Leg Muscle during Early Growth between Geese ( Anser cygnoides) Breeds Differing in Body Size Characteristics. Genes (Basel) 2023; 14:genes14051048. [PMID: 37239409 DOI: 10.3390/genes14051048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Goose is an important poultry commonly raised for meat. The early growth performance of geese significantly influences their market weight and slaughter weight, affecting the poultry industry's economic benefits. To identify the growth surge between the Shitou goose and the Wuzong goose, we collected the early growth body traits from 0 to 12 weeks. In addition, we investigated the transcriptomic changes in leg muscles at the high growth speed period to reveal the difference between the two geese breeds. We also estimated the growth curve parameters under three models, including the logistic, von Bertalanffy, and Gompertz models. The results showed that except for body length and keel length, the best-fitting model between the body weight and body size of the Shitou and Wuzong was the logistic model. The growth turning points of Shitou and Wuzong were 5.954 and 4.944 weeks, respectively, and the turning point of their body weight was 1459.01 g and 478.54 g, respectively. Growth surge occurred at 2-9 weeks in Shitou goose and at 1-7 weeks in Wuzong goose. The body size traits of the Shitou goose and Wuzong goose showed a trend of rapid growth in the early stage and slow growth in the later stage, and the Shitou goose growth was higher than the Wuzong goose. For transcriptome sequencing, a total of 87 differentially expressed genes (DEGs) were identified with a fold change ≥ 2 and a false discovery rate < 0.05. Many DEGs have a potential function for growth, such as CXCL12, SSTR4, FABP5, SLC2A1, MYLK4, and EIF4E3. KEGG pathway analysis identified that some DEGs were significantly enriched in the calcium signaling pathway, which may promote muscle growth. The gene-gene interaction network of DEGs was mainly related to the transmission of cell signals and substances, hematological system development, and functions. This study can provide theoretical guidance for the production and breeding management of the Shitou goose and Wuzong goose and help reveal the genetic mechanisms underlying diverse body sizes between two goose breeds.
Collapse
Affiliation(s)
- Jun Tang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xiaomei Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| |
Collapse
|
13
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
14
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
15
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
16
|
Garcia KA, Costa ML, Lacunza E, Martinez ME, Corsico B, Scaglia N. Fatty acid binding protein 5 regulates lipogenesis and tumor growth in lung adenocarcinoma. Life Sci 2022; 301:120621. [PMID: 35545133 DOI: 10.1016/j.lfs.2022.120621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
AIMS Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.
Collapse
Affiliation(s)
- Karina Andrea Garcia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Lucía Costa
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María Elizabeth Martinez
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de la Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222413571. [PMID: 34948368 PMCID: PMC8703661 DOI: 10.3390/ijms222413571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.
Collapse
|
19
|
Yin D, Hao J, Jin R, Yi Y, Bodduluri SR, Hua Y, Anand A, Deng Y, Haribabu B, Egilmez NK, Sauter ER, Li B. Epidermal Fatty Acid Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol 2021; 142:1824-1834.e7. [DOI: 10.1016/j.jid.2021.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
|
20
|
Jin R, Hao J, Yi Y, Sauter E, Li B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158964. [PMID: 33984518 PMCID: PMC8169605 DOI: 10.1016/j.bbalip.2021.158964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Macrophages are almost everywhere in the body, where they serve pivotal functions in maintaining tissue homeostasis, remodeling, and immunoregulation. Macrophages are traditionally thought to differentiate from bone marrow-derived hematopoietic stem cells (HSCs). Emerging studies suggest that some tissue macrophages at steady state originate from embryonic precursors in the yolk sac or fetal liver and are maintained in situ by self-renewal, but bone marrow-derived monocytes can give rise to tissue macrophages in pathogenic settings, such as inflammatory injuries and cancer. Macrophages are popularly classified as Th1 cytokine (e.g. IFNγ)-activated M1 macrophages (the classical activation) or Th2 cytokine (e.g. IL-4)-activated M2 macrophages (the alternative activation). However, given the myriad arrays of stimuli macrophages may encounter from local environment, macrophages exhibit notorious heterogeneity in their phenotypes and functions. Determining the underlying metabolic pathways engaged during macrophage activation is critical for understanding macrophage phenotypic and functional adaptivity under different disease settings. Fatty acid binding proteins (FABPs) represent a family of evolutionarily conserved proteins facilitating lipid transport, metabolism and responses inside cells. More specifically, adipose-FABP (A-FABP) and epidermal-FABP (E-FABP) are highly expressed in macrophages and play a central role in integrating metabolic and inflammatory pathways. In this review we highlight how A-FABP and E-FABP are respectively upregulated in different subsets of activated macrophages and provide a unique perspective in defining macrophage phenotypic and functional heterogeneity through FABP-regulated lipid metabolic and inflammatory pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yanmei Yi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, China
| | - Edward Sauter
- Division of Cancer Prevention, NIH/NCI, Bethesda, MD, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
21
|
Wang W, Liu Z, Chen X, Lu Y, Wang B, Li F, Lu S, Zhou X. Downregulation of FABP5 Suppresses the Proliferation and Induces the Apoptosis of Gastric Cancer Cells Through the Hippo Signaling Pathway. DNA Cell Biol 2021; 40:1076-1086. [PMID: 34160301 DOI: 10.1089/dna.2021.0370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fatty acid binding protein 5 (FABP5) has been reported to play an important role in various cancers. We found that high FABP5 expression was associated with poor histological differentiation and vascular invasion. High FABP5 expression indicated a poor prognosis. Downregulation of FABP5 suppressed cell proliferation, cell migration and invasion, and induced cell apoptosis. Bioinformatic analysis revealed that the Hippo signaling pathway was related to FABP5. We found that overexpression of yes-associated protein 1 (YAP1) could partially reverse the effect of FABP5 knockdown on growth and apoptosis. The FABP5 inhibitor SBFI-26 suppressed the proliferation and promoted the apoptosis of gastric cancer (GC) cells and interfered with the Hippo signaling pathway by inhibiting YAP1. Our data suggested that FABP5 might act as a potential target associated with the Hippo signaling pathway for GC treatment.
Collapse
Affiliation(s)
- Wendong Wang
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Zhenzhen Liu
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Yongqu Lu
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Bingyan Wang
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Fei Li
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Siyi Lu
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Peking University, Beijing, China
| |
Collapse
|
22
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
23
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
24
|
Liu RZ, Godbout R. An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis. Cancers (Basel) 2020; 12:E3823. [PMID: 33352874 PMCID: PMC7766576 DOI: 10.3390/cancers12123823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Treatment for early stage and localized prostate cancer (PCa) is highly effective. Patient survival, however, drops dramatically upon metastasis due to drug resistance and cancer recurrence. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. It is therefore crucial to decipher the key genetic alterations and relevant molecular pathways driving PCa metastatic progression so that predictive biomarkers and precise therapeutic targets can be developed. Through PCa cohort analysis, we found that a fatty acid-binding protein (FABP) gene cluster (containing five FABP family members) is preferentially amplified and overexpressed in metastatic PCa. All five FABP genes reside on chromosome 8 at 8q21.13, a chromosomal region frequently amplified in PCa. There is emerging evidence that these FABPs promote metastasis through distinct biological actions and molecular pathways. In this review, we discuss how these FABPs may serve as drivers/promoters for PCa metastatic transformation using patient cohort analysis combined with a review of the literature.
Collapse
Affiliation(s)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| |
Collapse
|
25
|
O'Sullivan SE, Kaczocha M. FABP5 as a novel molecular target in prostate cancer. Drug Discov Today 2020; 25:S1359-6446(20)30375-5. [PMID: 32966866 PMCID: PMC8059105 DOI: 10.1016/j.drudis.2020.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that dysregulated lipid signaling is a key factor in prostate cancer (PC), through fatty acid activation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), leading to the upregulation of protumoral genes. Fatty acid-binding proteins (FABPs) are intracellular lipid-binding proteins that transport fatty acid to PPARs, facilitating their activation. FABP5 is overexpressed in PC, and correlates with poor patient prognosis and survival. Genetic knockdown or silencing of FABP5 decreases the proliferation and invasiveness of PC cells in vitro, and reduces tumor growth and metastasis in vivo. Pharmacological FABP5-specific inhibitors also reduce tumor growth and metastases, and produce synergistic effects with taxanes. In this review, we present current data supporting FABP5 as a novel molecular target for PC.
Collapse
Affiliation(s)
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NYH, USA
| |
Collapse
|
26
|
Killoy KM, Harlan BA, Pehar M, Vargas MR. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia 2020; 68:2693-2704. [PMID: 32619303 DOI: 10.1002/glia.23879] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 01/15/2023]
Abstract
Fatty acid binding proteins (FABPs) are key regulators of lipid metabolism, energy homeostasis, and inflammation. They participate in fatty acid metabolism by regulating their uptake, transport, and availability of ligands to nuclear receptors. In the adult brain, FABP7 is especially abundant in astrocytes that are rich in cytoplasmic granules originated from damaged mitochondria. Mitochondrial dysfunction and oxidative stress have been implicated in the neurodegenerative process observed in amyotrophic lateral sclerosis (ALS), either as a primary cause or as a secondary component of the pathogenic process. Here we investigated the expression of FABP7 in animal models of human superoxide dismutase 1 (hSOD1)-linked ALS. In the spinal cord of symptomatic mutant hSOD1-expressing mice, FABP7 is upregulated in gray matter astrocytes. Using a coculture model, we examined the effect of increased FABP7 expression in astrocyte-motor neuron interaction. Our data show that FABP7 overexpression directly promotes an NF-κB-driven pro-inflammatory response in nontransgenic astrocytes that ultimately is detrimental for motor neuron survival. Addition of trophic factors, capable of supporting motor neuron survival in pure cultures, did not prevent motor neuron loss in cocultures with FABP7 overexpressing astrocytes. In addition, astrocyte cultures obtained from symptomatic hSOD1-expressing mice display upregulated FABP7 expression. Silencing endogenous FABP7 in these cultures decreases the expression of inflammatory markers and their toxicity toward cocultured motor neurons. Our results identify a key role of FABP7 in the regulation of the inflammatory response in astrocytes and identify FABP7 as a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.
Collapse
Affiliation(s)
- Kelby M Killoy
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
28
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
29
|
Deregulating the CYP2C19/Epoxy-Eicosatrienoic Acid-Associated FABP4/FABP5 Signaling Network as a Therapeutic Approach for Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12010199. [PMID: 31941087 PMCID: PMC7016875 DOI: 10.3390/cancers12010199] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recurrence and metastasis are the main causes of triple-negative breast cancer (TNBC) mortality. On the basis of our clinical cohorts and integrative omics analyses, we hypothesized that understanding the interplay between fatty acid binding protein (FABP) and epoxy-eicosatrienoic acid (EET) driven metastatic progression can uncover a new opportunity for TNBC intervention. In this study, the biological relevance of increased protein expression of CYP2C19, FABP4, and FABP5 in TNBC tumors and in the TNBC cell line (MDA-MB-231), as well as its highly metastatic lung seeking variant (LM6) were delineated from publicly available datasets, shRNA-mediated knockdown, EET supplementation, cancer and stromal cell co-cultures, and an orthotopic and resection xenograft tumor mouse model. We found that the high expression levels of CYP2C19 and FABP4 and FABP5 are critical in TNBC metastatic transformation and stromal cell interactions. Furthermore, EET-associated nuclear translocation of FABP4 and FABP5 and nuclear accumulation of SREBP-2 or PPAR-γ influence TNBC cell proliferation, migratory transformation, and distal metastasis priming. Most notably, we uncovered novel bioefficacy and modes of action of the anticancer drug doxorubicin and a phytogalactolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG), which effectively attenuated TNBC recurrence and lung metastasis through deregulating the FABP/EET dynamics and levels. This study, therefore, introduces a novel approach to combating TNBC by targeting the FABP/EET/CYP-associated metastatic signaling network.
Collapse
|
30
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Glucose Favors Lipid Anabolic Metabolism in the Invasive Breast Cancer Cell Line MDA-MB-231. BIOLOGY 2020; 9:biology9010016. [PMID: 31936882 PMCID: PMC7168317 DOI: 10.3390/biology9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Metabolic reprogramming in tumor cells is considered one of the hallmarks of cancer. Many studies have been carried out in order to elucidate the effects of tumor cell metabolism on invasion and tumor progression. However, little is known about the immediate substrate preference in tumor cells. In this work, we wanted to study this short-time preference using the highly invasive, hormone independent breast cancer cell line MDA-MB-231. By means of Seahorse and uptake experiments, our results point to a preference for glucose. However, although both glucose and glutamine are required for tumor cell proliferation, MDA-MB-231 cells can survive two days in the absence of glucose, but not in the absence of glutamine. On the other hand, the presence of glucose increased palmitate uptake in this cell line, which accumulates in the cytosol instead of going to the plasma membrane. In order to exert this effect, glucose needs to be converted to glycerol-3 phosphate, leading to palmitate metabolism through lipid synthesis, most likely to the synthesis of triacylglycerides. The effect of glucose on the palmitate uptake was also found in other triple-negative, invasive breast cancer cell lines, but not in the non-invasive ones. The results presented in this work suggest an important and specific role of glucose in lipid biosynthesis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (M.C.O.); (B.M.-P.); (A.R.Q.)
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
- Correspondence: ; Tel.: +34-952137132
| |
Collapse
|
31
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Hsiao YH, Chen NC, Koh YC, Nagabhushanam K, Ho CT, Pan MH. Pterostilbene Inhibits Adipocyte Conditioned-Medium-Induced Colorectal Cancer Cell Migration through Targeting FABP5-Related Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10321-10329. [PMID: 31419115 DOI: 10.1021/acs.jafc.9b03997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pterostilbene (PTS) is a phenolic compound with diverse pharmacologic activities. However, its potential for inhibiting obesity-related colorectal cancer (CRC) remains unclear. Our study evaluated the mechanism of inhibitory effects of PTS on adipocyte conditioned-medium (aCM)-induced malignant transformation in HT-29 colorectal adenocarcinoma cells. The results demonstrated that PTS could downregulate the expression of aCM-induced fatty acid-binding protein 5 (FABP5) and prometastatic factors such as vascular endothelial growth factor, matrix metalloproteinase-2 (MMP2), MMP9, and extracellular tumor necrosis factor α via inhibiting aCM-induced nuclear factor-kappa B (NF-κB), β-catenin, and peroxisome proliferator-activated receptor γ (PPAR-γ). Moreover, PTS can suppress aCM-stimulated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinases 1/2 (JNK 1/2) signaling pathways activation that are upstream of NF-κB, β-catenin, and PPAR-γ. Therefore, we suggest that PTS could alleviate adiposity-induced metastasis in CRC via inhibiting cell migration through downregulating FABP5 gene expression.
Collapse
Affiliation(s)
- Yu-Hsuan Hsiao
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | - Nien-Chi Chen
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | - Yen-Chun Koh
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
- Department of Medical Research , China Medical University Hospital, China Medical University , Taichung 404 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
33
|
Liu D, Cao Z, Xu W, Lin G, Zhou X, Ding X, Wang N, Wu C, Su B. Enhancement of chemosensitivity by WEE1 inhibition in EGFR-TKIs resistant non-small cell lung cancer. Biomed Pharmacother 2019; 117:109185. [PMID: 31387179 DOI: 10.1016/j.biopha.2019.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/01/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is the first-line treatment in non-resectable non-small lung cancer (NSCLC) with EGFR mutation. However, EGFR-TIKs resistance would inevitably develop within 9-14 months after treatment. And, chemotherapy is the main treatment for EGFR-TKIs resistant patients. WEE1 kinase, a G2/M checkpoint regulator, was recently considered as a putative biomarker for the platinum-based chemo-response. The aim of this study is to clarify the relationship between WEE1 kinase and chemosensitivity in EGFR-TKIs resistant NSCLC. WEE1 expression was tested in EGFR-TKIs resistant cell lines (H1299, PC9/G2) and patients' specimens by western blot, qPCR and immunohistochemistry (IHC). In in vitro experiment, WEE1 expression was higher in EGFR-TKIs resistant than EGFR-TKIs sensitive cell lines and was gradually increased following cisplatin or gemcitabine treatment with the enrichment of G2/M cell cycle phase. And, for patients with acquired Icotinib/Gefitinib resistance, 58.4% (7/12) had increased WEE1 expression compared to its initial expression level. In order to explore the impact of WEE1 on chemo-response, WEE1 knockdown was conducted in EGFR-TKIs resistant H1299 and PC9/G2 cells. MTT and colony formation assay showed that the efficacy of cisplatin and gemcitabine was enhanced in the two cell lines after WEE1 knockdown. And, the IC50 value of cisplatin decreased from 8.64 μg/ml to 3.10 μg/ml or 2.38 μg/ml in H1299 and from 3.66 μg/ml to 0.97 μg/ml or 1.18 μg/ml in PC9/G2 after WEE1 knockdown with two specific shRNAs. This study revealed that WEE1 expression was increased after EGFR-TKIs resistance, and WEE1 knockdown could enhance chemosensitivity in EGFR-TKIs resistant NSCLC. It is suggested the combination of WEE1 inhibitor and chemotherapy might improve the clinical outcome of NSCLC patients with acquired EGFR-TKIs resistance.
Collapse
Affiliation(s)
- Di Liu
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Ziyang Cao
- Department of Pathology, Tongji University School of Medicine, Shanghai, PR China
| | - Wen Xu
- Department of Respiratory Medicine, Tongji University School of Medicine, Shanghai, PR China
| | - Ge Lin
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiao Zhou
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Xi Ding
- Department of Thoracic Surgery, Tongji University School of Medicine, Shanghai, PR China
| | - Na Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chunyan Wu
- Department of Pathology, Tongji University School of Medicine, Shanghai, PR China.
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
34
|
McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal 2019; 62:109336. [PMID: 31170472 DOI: 10.1016/j.cellsig.2019.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
Fatty acid binding proteins (FABPs) are small, water soluble proteins that bind long chain fatty acids and other biologically active ligands to facilitate intracellular localization. Twelve FABP family members have been identified to date, with 10 isoforms expressed in humans. Functionally, FABPs are important in fatty acid metabolism and transport, with distinct family members having the capacity to influence gene transcription. Expression of FABPs is usually cell/tissue specific to one predominant FABP family member. Dysregulation of FABP expression can occur through genetic mutation and/or environmental-lifestyle influences. In addition to intracellular function, exogenous, circulating FABP expression can occur and is associated with specific disease states such as insulin resistance. A role for FABPs is increasingly being reported in tumor biology with elevated exogenous FABP expression being associated with tumor progression and invasiveness. However, a less clear role has been appreciated for dysregulated FABP expression during cell transformation and early expansion.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Cara A Girardi
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
35
|
Ramer R, Schwarz R, Hinz B. Modulation of the Endocannabinoid System as a Potential Anticancer Strategy. Front Pharmacol 2019; 10:430. [PMID: 31143113 PMCID: PMC6520667 DOI: 10.3389/fphar.2019.00430] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoid receptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
36
|
Pan J, Dai Q, Zhang T, Li C. Palmitate acid promotes gastric cancer metastasis via FABP5/SP1/UCA1 pathway. Cancer Cell Int 2019; 19:69. [PMID: 30948929 PMCID: PMC6431020 DOI: 10.1186/s12935-019-0787-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) has a clear predilection for metastasis toward omentum which is primarily composed of adipose tissue, combine with our previous research that long non-coding RNA Urothelial cancer associated 1 (UCA1) could promote the peritoneal metastasis of GC, we put forward the hypothesis that fatty acids (FAs) might contribute to these phenomena and a connection between FAs and UCA1 might exist. Methods TCGA database was applied to investigate the expression levels of UCA1 in GC tissues and normal gastric tissues and its correlation with GC patients’ survival. Transfection of siRNA was utilized to knockdown cellular levels of FA-binding protein 5 (FABP5), SP1, UCA1. Migration assay and invasion assay were performed to assess the biological effects of palmitate acid (PA), FABP5, SP1 and UCA1 on GC metastasis. The underlying mechanism was investigated via western blot, immunofluorescence (IF), semi-quantitative RT-PCR (sqRT-PCR) and quantitative RT-PCR (qRT-PCR) analysis. Results Here we demonstrated that PA could promote the nuclear transport of FABP5, which then increased the nuclear protein levels of SP1. Consequently, GC cellular expression levels of UCA1 were increased which promoted the metastatic properties of GC. Besides, the cellular levels of UCA1 in GC tumor tissues were significantly higher than that in normal tissues. Its levels in GC tumor tissues also negatively correlated with the prognosis of GC patients using TCGA database. Conclusions Our research revealed the potential tumor-promoting effect of FA transport protein FABP5. We also established a connection between non-coding RNA and FA metabolism, treatment targeted either to patients’ diets or FABP5 might improve the prognosis of GC patients.
Collapse
Affiliation(s)
- Jiaomeng Pan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People's Republic of China
| | - Qingqiang Dai
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People's Republic of China
| | - Tianqi Zhang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People's Republic of China
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People's Republic of China
| |
Collapse
|
37
|
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 2018; 50:253-271.e6. [PMID: 30471926 DOI: 10.1016/j.immuni.2018.11.004] [Citation(s) in RCA: 1382] [Impact Index Per Article: 197.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
Abstract
Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.
Collapse
Affiliation(s)
- Timothy R Hammond
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connor Dufort
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Lasse Dissing-Olesen
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stefanie Giera
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Newborn Medicine, Department of Medicine, Boston, MA, USA
| | - Adam Young
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec J Walker
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Frederick Gergits
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Michael Segel
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arpiar Saunders
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Evan Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, Biopolis, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A(∗)STAR, Biopolis, Singapore
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Xianhua Piao
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Division of Newborn Medicine, Department of Medicine, Boston, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Senga S, Kobayashi N, Kawaguchi K, Ando A, Fujii H. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1057-1067. [DOI: 10.1016/j.bbalip.2018.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/11/2018] [Accepted: 06/10/2018] [Indexed: 01/18/2023]
|
39
|
Senga S, Kawaguchi K, Kobayashi N, Ando A, Fujii H. A novel fatty acid-binding protein 5-estrogen-related receptor α signaling pathway promotes cell growth and energy metabolism in prostate cancer cells. Oncotarget 2018; 9:31753-31770. [PMID: 30167092 PMCID: PMC6114981 DOI: 10.18632/oncotarget.25878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/21/2018] [Indexed: 01/16/2023] Open
Abstract
Epidermal or cutaneous fatty acid-binding protein is an intracellular lipid-binding protein, also known as FABP5, and its expression level is closely related to cancer cell proliferation and metastatic activities in various types of carcinoma. However, the molecular mechanisms of FABP5 in cancer cell proliferation and its other functions have remained unclear. In the present study, we have clearly revealed that FABP5 activated expression of metabolic genes (ATP5B, LCHAD, ACO2, FH and MFN2) via a novel signaling pathway in an ERRα (estrogen-related receptor α)-dependent manner in prostate cancer cell lines. To clarify the novel function of FABP5, we examined the activation mechanisms of the ERRα target genes via FABP5. A direct protein-protein interaction between FABP5 and ERRα was demonstrated by immunoprecipitation and GST pull-down assays. We have clearly revealed that FABP5 interacted directly with transcriptional complex containing ERRα and its co-activator PGC-1β to increase expression of the ERRα target genes. In addition, we have shown that FABP5 knockdown induced high energy stress leading to induction of apoptosis and cell cycle arrest via AMPK-FOXO3A signaling pathway in prostate cancer cells, suggesting that FABP5 plays an important role in cellular energy status directing metabolic adaptation to support cellular proliferation and survival.
Collapse
Affiliation(s)
- Shogo Senga
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Koichiro Kawaguchi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Narumi Kobayashi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Akira Ando
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Hiroshi Fujii
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting-Edge Research, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| |
Collapse
|
40
|
Yang D, Li Y, Xing L, Tan Y, Sun J, Zeng B, Xiang T, Tan J, Ren G, Wang Y. Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun Signal 2018; 16:32. [PMID: 29914512 PMCID: PMC6006729 DOI: 10.1186/s12964-018-0221-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To determine whether adipocyte-derived lipids could be transferred into breast cancer cells and investigate the underlying mechanisms of subsequent lipolysis and fatty acid trafficking in breast cancer cells. METHODS A Transwell co-culture system was used in which human breast cancer cells were cultured in the absence or presence of differentiated murine 3 T3-L1 adipocytes. Migration/invasion and proliferation abilities were compared between breast cancer cells that were cultivated alone and those co-cultivated with mature adipocytes. The ability of lipolysis in breast cancer cells were measured, as well as the expression of the rate-limiting lipase ATGL and fatty acid transporter FABP5. ATGL and FABP5 were then ablated to investigate their impact on the aggressiveness of breast cancer cells that were surrounded by adipocytes. Further, immunohistochemistry was performed to detect differential expression of ATGL and FABP5 in breast cancer tissue sections. RESULTS The migration and invasion abilities of cancer cells were significantly enhanced after co-culture with adipocytes, accompanied by elevated lipolysis and expression of ATGL and FABP5. Abrogation of ATGL and FABP5 sharply attenuated the malignancy of co-cultivated breast cancer cells. However, this phenomenon was not observed if a lipid emulsion was added to the culture medium to substitute for adipocytes. Furthermore, epithelial-mesenchymal transaction was induced in co-cultivated breast cancer cells. That may partially due to the stimulation of PPARβ/δ and MAPK, which was resulted from upregulation of FABP5. As evidenced by immunohistochemistry, ATGL and FABP5 also had higher expression levels at the invasive front of the breast tumor, in where the adipocytes abound, compared to the central area in tissue specimens. CONCLUSIONS Lipid originating from tumor-surrounding adipocytes could be transferred into breast cancer cells. Adipocyte-cancer cell crosstalk rather than lipids alone induced upregulation of lipases and fatty acid transport protein in cancer cells to utilize stored lipids for tumor progression. The increased expression of the key lipase ATGL and intracellular fatty acid trafficking protein FABP5 played crucial roles in this process via fueling or signaling.
Collapse
Affiliation(s)
- Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Xing
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiqing Tan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiazheng Sun
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinxiang Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yuanyuan Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
41
|
Resveratrol Suppresses the Growth and Enhances Retinoic Acid Sensitivity of Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2018; 19:ijms19041030. [PMID: 29596381 PMCID: PMC5979404 DOI: 10.3390/ijms19041030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a highly lethal undifferentiated malignancy without reliable therapies. Retinoic acid (RA) has been employed to promote redifferentiation of thyroid cancers by increasing their I131 uptake and radio-sensitivity, but its effect(s) on ATCs has not yet been ascertained. Likewise, resveratrol induces cancer redifferentiation but, also in this case, its effects on ATCs remain unknown. These issues have been addresses in the current study using three human ATC cell lines (THJ-11T, THJ-16T, and THJ-21T) through multiple experimental approaches. The results reveal that RA exerts a small inhibitory effect on these cell lines. In comparison with normally cultured cells, the total cell number in resveratrol-treated THJ-16T and THJ-21T cultures significantly decreased (p < 0.05), and this effect was accompanied by reduced Cyclin D1 immuno-labeling, increased apoptotic fractions, and distinct caspase-3 activation. Resveratrol failed to inhibit growth but enhanced RA sensitivity of THJ-11T cells, suppressed peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ), and upregulated cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor beta (RAR-β) expression. Increased thyroglobulin (Tg) and E-cadherin levels and appearance of membranous E-cadherin were evidenced in resveratrol-treated THJ-11T cells. Our results demonstrate for the first time: (1) the therapeutic value of resveratrol by itself or in combination with RA in the management of ATCs, (2) the capacity of resveratrol to overcome RA resistance in ATC cells by reprogramming CRABP2/RAR- and fatty acid-binding protein 5 (FABP5)/PPAR-β/δ-mediated RA signaling, and (3) the redifferentiating potential of resveratrol in ATC cells.
Collapse
|
42
|
Guaita-Esteruelas S, Gumà J, Masana L, Borràs J. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol 2018; 462:107-118. [PMID: 28163102 DOI: 10.1016/j.mce.2017.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes.
Collapse
Affiliation(s)
- S Guaita-Esteruelas
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut, Avda. de la Universitat, 43204 Reus, Spain; Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain; Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain.
| | - J Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L Masana
- Research Unit on Lipids and Atherosclerosis, Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universitat Rovira i Virgili, Sant Llorenç, 21 43201 Reus, Spain
| | - J Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr, Josep Laporte, 2, 43204 Reus, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| |
Collapse
|
43
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
44
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
45
|
Guaita-Esteruelas S, Saavedra-García P, Bosquet A, Borràs J, Girona J, Amiliano K, Rodríguez-Balada M, Heras M, Masana L, Gumà J. Adipose-Derived Fatty Acid-Binding Proteins Plasma Concentrations Are Increased in Breast Cancer Patients. Oncologist 2017; 22:1309-1315. [PMID: 28701570 PMCID: PMC5679823 DOI: 10.1634/theoncologist.2016-0483] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022] Open
Abstract
Circulating FABP4 and FABP5 may be a biomarker for breast cancer. This article focuses on the association of FABP4 and FABP5 plasma levels with the presence of breast cancer. Background. Adipose tissue is an endocrine organ that could play a role in tumor progression via its secreted adipokines. The role of adipose‐derived fatty acid‐binding protein (FABP) 4 and FABP5 in breast cancer is presently under study, but their circulating levels in this pathology are poorly known. We analyzed the blood concentrations of FABP4 and FABP5 in breast cancer patients to determine whether there is an association between them and breast cancer. Materials and Methods. We studied 294 women in the oncology department with a family history of breast cancer; 198 of the women had breast cancer, and 96 were healthy controls. The levels of FABP4, FABP5, lipid profile, standard biochemical parameter, and high‐sensitivity C‐reactive protein (hsCRP) were determined. We analyzed the association of FABP4 and FABP5 with breast cancer, while adjusting for demographic, anthropometric, and biochemical parameters. Results. Breast cancer patients had a 24.8% (p < .0001) and 11.4% (p < .05) higher blood concentration of FABP4 and FABP5, respectively. Fatty acid‐binding protein 4 was positively associated with age, body mass index (BMI), FABP5, very‐low‐density lipoprotein cholesterol (VLDLc), non‐high‐density lipoprote in cholesterol (non‐HDLc), Apolipoprotein B 100 (ApoB100), triglycerides, glycerol, glucose, and hsCRP (p < .05), and was negatively associated with HDLc (p < .005) in breast cancer patients. Fatty acid‐binding protein 5 was positively associated with BMI, FABP4, VLDLc, triglycerides, glycerol, and hsCRP (p < .05), and was negatively associated with HDLc and Apolipoprotein AI (ApoAI) (p < .05) in breast cancer patients. Using a logistic regression analysis and adjusting for age, BMI, hsCRP, non‐HDLc, and triglycerides, FABP4 was independently associated with breast cancer (odds ratio [OR]: 1.091 [95% CI: 1.037–1.149]). Moreover, total cholesterol, VLDLc, non‐HDLc, ApoB100, triglycerides, and hsCRP were significantly increased in breast cancer patients (p < .005). In contrast, the non‐esterified fatty acids concentrations were significantly decreased in breast cancer patients (p < .05). Conclusion. Circulating FABP4 and FABP5 levels were increased in breast cancer patients compared with controls. The positive association of FABP4 with breast cancer was maintained after adjusting for important covariates, while the association with FABP5 was lost. Our data reinforce the role of adipose tissue and their adipokines in breast cancer. Despite these data, further studies must be performed to better explain the prognosis or diagnostic value of these blood parameters and their possible role in breast cancer. Implications for Practice. We focus on the effect of adipose tissue on cancer, which is increasingly recognized. The association between adipocyte‐derived adipokines and breast cancer opens new diagnosis and therapy perspectives. In this study, we provide original data concerning FABP4 and FABP5 plasma concentrations in breast cancer patients. Compared to control group, breast cancer patients show higher FABP4 and FABP5 blood levels. Our data suggest that, particularly, circulating FABP4 levels could be considered a new independent breast cancer biomarker. Our work translates basic science data to clinic linking the relationship between adipose tissue and lipid metabolism to breast cancer.
Collapse
Affiliation(s)
- Sandra Guaita-Esteruelas
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut, Avda. de la Universitat, Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, Reus, Spain
| | - Paula Saavedra-García
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, London, United Kingdom
| | - Alba Bosquet
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Centre d'R+D+I en Nutrició i Salut, Avda. de la Universitat, Reus, Spain
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
| | - Joan Borràs
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, Reus, Spain
| | - Josefa Girona
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
| | - Kepa Amiliano
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, Reus, Spain
| | - Marta Rodríguez-Balada
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, Reus, Spain
| | - Mercedes Heras
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
| | - Luís Masana
- Research Unit on Lipids and Atherosclerosis, Universitat Rovira i Virgili, Sant Llorenç, Reus, Spain
| | - Josep Gumà
- Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, Reus, Spain
| |
Collapse
|
46
|
Rong Z, Fan T, Li H, Li J, Wang K, Wang X, Dong J, Chen J, Wang F, Wang J, Wang A. Differential Proteomic Analysis of Gender-dependent Hepatic Tumorigenesis in Hras12V Transgenic Mice. Mol Cell Proteomics 2017; 16:1475-1490. [PMID: 28512230 DOI: 10.1074/mcp.m116.065474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/29/2017] [Indexed: 12/18/2022] Open
Abstract
Male prevalence is an outstanding characteristic of hepatocellular carcinoma (HCC), and the underlying mechanisms for this have remained largely unknown. In the present study, Hras12V transgenic mice, in which hepatocyte-specific expression of the ras oncogene induces male-biased hepatic tumorigenesis, were studied, and altered proteins were detected by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Protein samples from hepatic tumor tissues (T) and peritumor tissues (P) of transgenic males and females and the corresponding normal liver tissues (Wt) of nontransgenic males and females were subjected to pairwise comparisons based on proteomic analysis. Among 2381 autodetected protein spots, more than 1600 were differentially expressed based on a pairwise comparison (|ratio| > = 1.5, p < = 0.05). Of these, 180 spots were randomly selected for matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) identification; finally, 89 distinct proteins were obtained. Among these 89 proteins, 7 and 50 proteins were further validated by Western blotting and literature investigation, respectively. Intriguingly, compared with Wt, the altered proteins were relatively concentrated in T in transgenic females but in P in transgenic males. Consistently, the levels of p-ERK and p-mTOR were significantly higher in the T of females compared with that of males. The pathway enrichment assay showed that 5 pathways in males but only 1 in females were significantly altered in terms of the upregulated proteins in T compared with Wt. These data indicate that female hepatocytes are disturbed by oncogenes with great difficulty, whereas male hepatocytes readily do so. In addition, 33 proteins were gender-dependently altered in hepatic tumorigenesis. Moreover, 4% DNA packaging and 4% homeostasis-related functional proteins were found in females but not in males, and more nucleus proteins were found in females (8%) than in males (3%). In conclusion, the proteomic data and comparative analysis presented here offer crucial clues for elucidating the mechanisms that underlie the male prevalence in HCC.
Collapse
Affiliation(s)
- Zhuona Rong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Tingting Fan
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Huiling Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Juan Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Kangwei Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Xinxin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jianyi Dong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jun Chen
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Fujin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jingyu Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| | - Aiguo Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| |
Collapse
|
47
|
Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem 2017; 292:11009-11020. [PMID: 28487365 DOI: 10.1074/jbc.m116.768176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Upon infection, the intracellular parasite Toxoplasma gondii co-opts critical functions of its host cell to avoid immune clearance and gain access to nutritional resources. One route by which Toxoplasma co-opts its host cell is through hijacking host organelles, many of which have roles in immunomodulation. Here we demonstrate that Toxoplasma infection results in increased biogenesis of host lipid droplets through rewiring of multiple components of host neutral lipid metabolism. These metabolic changes cause increased responsiveness of host cells to free fatty acid, leading to a radical increase in the esterification of free fatty acids into triacylglycerol. We identified c-Jun kinase and mammalian target of rapamycin (mTOR) as components of two distinct host signaling pathways that modulate the parasite-induced lipid droplet accumulation. We also found that, unlike many host processes dysregulated during Toxoplasma infection, the induction of lipid droplet generation is conserved not only during infection with genetically diverse Toxoplasma strains but also with Neospora caninum, which is closely related to Toxoplasma but has a restricted host range and uses different effector proteins to alter host signaling. Finally, by showing that a Toxoplasma strain deficient in exporting a specific class of effectors is unable to induce lipid droplet accumulation, we demonstrate that the parasite plays an active role in this process. These results indicate that, despite their different host ranges, Toxoplasma and Neospora use a conserved mechanism to co-opt these host organelles, which suggests that lipid droplets play a critical role at the coccidian host-pathogen interface.
Collapse
Affiliation(s)
- Xiaoyu Hu
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Derk Binns
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Michael L Reese
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| |
Collapse
|
48
|
PPAR δ as a Metabolic Initiator of Mammary Neoplasia and Immune Tolerance. PPAR Res 2016; 2016:3082340. [PMID: 28077942 PMCID: PMC5203902 DOI: 10.1155/2016/3082340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
PPARδ is a ligand-activated nuclear receptor that regulates the transcription of genes associated with proliferation, metabolism, inflammation, and immunity. Within this transcription factor family, PPARδ is unique in that it initiates oncogenesis in a metabolic and tissue-specific context, especially in mammary epithelium, and can regulate autoimmunity in some tissues. This review discusses its role in these processes and how it ultimately impacts breast cancer.
Collapse
|
49
|
Müller R. PPARβ/δ in human cancer. Biochimie 2016; 136:90-99. [PMID: 27916645 DOI: 10.1016/j.biochi.2016.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
The nuclear receptor factor peroxisome proliferator-activated receptor (PPARβ/δ) can regulate its target genes by transcriptional activation or repression through both ligand-dependent and independent mechanism as well as by interactions with other transcription factors. PPARβ/δ exerts essential regulatory functions in intermediary metabolism that have been elucidated in detail, but clearly also plays a role in inflammation, differentiation, apoptosis and other cancer-associated processes, which is, however, mechanistically only partly understood. Consistent with these functions clinical associations link the expression of PPARβ/δ and its target genes to an unfavorable outcome of several human cancers. However, the available data do not yield a clear picture of PPARβ/δ's role in cancer-associated processes and are in fact partly controversial. This article provides an overview of this research area and discusses the role of PPARβ/δ in cancer in light of the complex mechanisms of its transcriptional regulation and its potential as a druggable anti-cancer target.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
50
|
Zhang W, Vreeland AC, Noy N. RNA-binding protein HuR regulates nuclear import of protein. J Cell Sci 2016; 129:4025-4033. [PMID: 27609837 PMCID: PMC5117209 DOI: 10.1242/jcs.192096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022] Open
Abstract
The RNA-binding protein HuR binds to elements rich in adenylate and uridylate (AU-rich elements) in target mRNAs and stabilizes them against degradation. The complete spectrum of genes whose expression is regulated by HuR and are the basis for the broad range of cellular functions of the protein is incompletely understood. We show that HuR controls the expression of multiple components of the nuclear import machinery. Consequently, HuR is crucial for the nuclear import of cellular retinoic acid-binding protein 2 (CRABP2), which delivers RA to the nuclear retinoic acid receptor (RAR) and whose mobilization to the nucleus is mediated by a 'classical-like' nuclear localization signal (NLS). HuR is also required for heregulin-induced nuclear translocation of the NFκB subunit p65, which contains both classical and non-canonical NLSs. HuR thus regulates the transcriptional activities of both RAR and NFκB. The observations reveal that HuR plays a central role in regulating nuclear import of proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Amanda C Vreeland
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Noa Noy
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|