1
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
2
|
Hatzold J, Nett V, Brantsch S, Zhang JL, Armistead J, Wessendorf H, Stephens R, Humbert PO, Iden S, Hammerschmidt M. Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects. PLoS Genet 2023; 19:e1010873. [PMID: 37566613 PMCID: PMC10446194 DOI: 10.1371/journal.pgen.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Verena Nett
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Stephanie Brantsch
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Jin-Li Zhang
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Joy Armistead
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Heike Wessendorf
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Rebecca Stephens
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Jang J, Cho EH, Cho Y, Ganzorig B, Kim KY, Kim MG, Kim C. Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2. Mol Cells 2022; 45:564-574. [PMID: 35950457 PMCID: PMC9385564 DOI: 10.14348/molcells.2022.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domainmediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14- dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.
Collapse
Affiliation(s)
- Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Youngkyung Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Binderya Ganzorig
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Yamashita F, Kaieda T, Shimomura T, Kawaguchi M, Lin C, Johnson MD, Tanaka H, Kiwaki T, Fukushima T, Kataoka H. Role of the polycystic kidney disease domain in matriptase chaperone activity and localization of hepatocyte growth factor activator inhibitor‐1. FEBS J 2022; 289:3422-3439. [DOI: 10.1111/febs.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takashi Kaieda
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
- Chitose Laboratory Corp Kanagawa Japan
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Chen‐Yong Lin
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Michael D Johnson
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| |
Collapse
|
5
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Jia B, Thompson HA, Barndt RB, Chiu YL, Lee MJ, Lee SC, Wang JK, Tang HJ, Lin CY, Johnson MD. Mild acidity likely accelerates the physiological matriptase autoactivation process: a comparative study between spontaneous and acid-induced matriptase zymogen activation. Hum Cell 2020; 33:1068-1080. [PMID: 32779152 DOI: 10.1007/s13577-020-00410-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
The pathophysiological functions of matriptase, a type 2 transmembrane serine protease, rely primarily on its enzymatic activity, which is under tight control through multiple mechanisms. Among those regulatory mechanisms, the control of zymogen activation is arguably the most important. Matriptase zymogen activation not only generates the mature active enzyme but also initiates suppressive mechanisms, such as rapid inhibition by HAI-1, and matriptase shedding. These tightly coupled events allow the potent matriptase tryptic activity to fulfill its biological functions at the same time as limiting undesired hazards. Matriptase is converted to the active enzyme via a process of autoactivation, in which the activational cleavage is thought to rely on the interactions of matriptase zymogen molecules and other as yet identified proteins. Matriptase autoactivation can occur spontaneously and is rapidly followed by the formation and then shedding of matriptase-HAI-1 complexes, resulting in the presence of relatively low levels of the complex on cells. Activation can also be induced by several non-protease factors, such as the exposure of cells to a mildly acidic buffer, which rapidly causes high-level matriptase zymogen activation in almost all cell lines tested. In the current study, the structural requirements for this acid-induced zymogen activation are compared with those required for spontaneous activation through a systematic analysis of the impact of 18 different mutations in various structural domains and motifs on matriptase zymogen activation. Our study reveals that both acid-induced matriptase activation and spontaneous activation depend on the maintenance of the structural integrity of the serine protease domain, non-catalytic domains, and posttranslational modifications. The common requirements of both modes of activation suggest that acid-induced matriptase activation may function as a physiological mechanism to induce pericellular proteolysis by accelerating matriptase autoactivation.
Collapse
Affiliation(s)
- Bailing Jia
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Hamishi A Thompson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Robert B Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Yi-Lin Chiu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.,Department of Biochemistry National Defense Medical Center, Taipei, 114, Taiwan
| | - Mon-Juan Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.,Department of Bioscience Technology, Chang Jung Christian University, Tainan, 71101, Taiwan.,Department of Medical Science, Chang Jung Christian University, Tainan, 71101, Taiwan
| | - See-Chi Lee
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Jehng-Kang Wang
- Department of Biochemistry National Defense Medical Center, Taipei, 114, Taiwan
| | - Hung-Jen Tang
- Section of Infectious Diseases, Internal Medicine, Chi-Mei Medical Center, No.901, Chung-Hwa Rd. Yung-Kang Dist., Tainan City, 71004, Taiwan, ROC.
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
7
|
Chang SC, Chiang CP, Lai CH, Du PWA, Hung YS, Chen YH, Yang HY, Fang HY, Lee SP, Tang HJ, Wang JK, Johnson MD, Lin CY. Matriptase and prostasin proteolytic activities are differentially regulated in normal and wounded skin. Hum Cell 2020; 33:990-1005. [PMID: 32617892 DOI: 10.1007/s13577-020-00385-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023]
Abstract
Orchestrated control of multiple overlapping and sequential processes is required for the maintenance of epidermal homeostasis and the response to and recovery from a variety of skin insults. Previous studies indicate that membrane-associated serine protease matriptase and prostasin play essential roles in epidermal development, differentiation, and barrier formation. The control of proteolysis is a highly regulated process, which depends not only on gene expression but also on zymogen activation and the balance between protease and protease inhibitor. Subcellular localization can affect the accessibility of protease inhibitors to proteases and, thus, also represents an integral component of the control of proteolysis. To understand how membrane-associated proteolysis is regulated in human skin, these key aspects of matriptase and prostasin were determined in normal and injured human skin by immunohistochemistry. This staining shows that matriptase is expressed predominantly in the zymogen form at the periphery of basal and spinous keratinocytes, and prostasin appears to be constitutively activated at high levels in polarized organelle-like structures of the granular keratinocytes in the adjacent quiescent skin. The membrane-associated proteolysis appears to be elevated via an increase in matriptase zymogen activation and prostasin protein expression in areas of skin recovering from epidermal insults. There was no noticeable change observed in other regulatory aspects, including the expression and tissue distribution of their cognate inhibitors HAI-1 and HAI-2. This study reveals that the membrane-associated proteolysis may be a critical epidermal mechanism involved in responding to, and recovering from, damage to human skin.
Collapse
Affiliation(s)
- Shun-Cheng Chang
- Division of Plastic Surgery, Integrated Burn and Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, 235, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-Service General Hospital, Taipei, 114, Taiwan.,Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan
| | - Chih-Hsin Lai
- Department of Dentistry Renai Branch, Taipei City Hospital, Taipei, 106, Taiwan
| | - Po-Wen A Du
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Yu-Sin Hung
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan
| | - Yu-Hsuan Chen
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan
| | - Hui-Yu Yang
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan
| | - Hao-Yu Fang
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan
| | - Shiao-Pieng Lee
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, 114, Taiwan.,Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Hung-Jen Tang
- Section of Infectious Diseases, Internal Medicine, Chi-Mei Medical Center, No.901, Chung-Hwa Rd., Yung-Kang Dist., Tainan City, 71004, Taiwan, ROC.
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Ming-Chung E. Rd, Taipei, 114, Taiwan.
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, W412 Research Building, 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
8
|
Lin CY, Wang JK, Johnson MD. The spatiotemporal control of human matriptase action on its physiological substrates: a case against a direct role for matriptase proteolytic activity in profilaggrin processing and desquamation. Hum Cell 2020; 33:459-469. [DOI: 10.1007/s13577-020-00361-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
|
9
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
11
|
Barna RF, Pomothy JM, Paréj Z, Pásztiné Gere E. Investigation of sphingosin-1-phosphate-triggered matriptase activation using a rat primary hepatocyte model. Acta Vet Hung 2019; 67:578-587. [PMID: 31842605 DOI: 10.1556/004.2019.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) has been reported as a matriptase activator. The aim of this study was to reveal if S1P can influence hepcidin production. Furthermore, we investigated how S1P can affect the viability and the redox status of primary hepatocytes. Rat primary hepatocytes were cultivated for 72 h and were treated with 50, 200, 1000 ng/ml S1P. Cell-free supernatants were collected every 24 h. Cell viability was tested by a colorimetric method using tetrazolium compound (MTS). The hepcidin levels in the cell-free supernatants were examined with hepcidin sandwich ELISA to determine the effect of S1P on the hepcidin-modulating ability of matriptase. In order to estimate the extent of S1P-generated oxidative stress, extracellular H2O2 measurements were performed by the use of fluorescent dye. Based on the findings, S1P treatment did not cause cell death for 72 h at concentrations up to 1000 ng/ml. S1P did not influence the extracellular H2O2 production for 72 h. The hepcidin levels were significantly suppressed in hepatocytes exposed to S1P treatment. Further studies would be needed to explore the exact mechanism of action of S1P.
Collapse
Affiliation(s)
- Réka Fanni Barna
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Judit Mercédesz Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Zsuzsanna Paréj
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Erzsébet Pásztiné Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| |
Collapse
|
12
|
Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 2019; 38:5580-5598. [DOI: 10.1038/s41388-019-0833-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
|
13
|
Ye F, Chen S, Liu X, Ye X, Wang K, Zeng Z, Su Y, Zhang X, Zhou H. 3-Cl-AHPC inhibits pro-HGF maturation by inducing matriptase/HAI-1 complex formation. J Cell Mol Med 2019; 23:155-166. [PMID: 30370662 PMCID: PMC6307790 DOI: 10.1111/jcmm.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.
Collapse
Affiliation(s)
- Fang Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Shuang Chen
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xingxing Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xiaohong Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Keqi Wang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Zhiping Zeng
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Ying Su
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Xiao‐kun Zhang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Hu Zhou
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| |
Collapse
|
14
|
Ceramide Metabolism Balance, a Multifaceted Factor in Critical Steps of Breast Cancer Development. Int J Mol Sci 2018; 19:ijms19092527. [PMID: 30149660 PMCID: PMC6163247 DOI: 10.3390/ijms19092527] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/12/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Ceramides are key lipids in energetic-metabolic pathways and signaling cascades, modulating critical physiological functions in cells. While synthesis of ceramides is performed in endoplasmic reticulum (ER), which is altered under overnutrition conditions, proteins associated with ceramide metabolism are located on membrane arrangement of mitochondria and ER (MAMs). However, ceramide accumulation in meta-inflammation, condition that associates obesity with a chronic low-grade inflammatory state, favors the deregulation of pathways such as insulin signaling, and induces structural rearrangements on mitochondrial membrane, modifying its permeability and altering the flux of ions and other molecules. Considering the wide biological processes in which sphingolipids are implicated, they have been associated with diseases that present abnormalities in their energetic metabolism, such as breast cancer. In this sense, sphingolipids could modulate various cell features, such as growth, proliferation, survival, senescence, and apoptosis in cancer progression; moreover, ceramide metabolism is associated to chemotherapy resistance, and regulation of metastasis. Cell–cell communication mediated by exosomes and lipoproteins has become relevant in the transport of several sphingolipids. Therefore, in this work we performed a comprehensive analysis of the state of the art about the multifaceted roles of ceramides, specifically the deregulation of ceramide metabolism pathways, being a key factor that could modulate neoplastic processes development. Under specific conditions, sphingolipids perform important functions in several cellular processes, and depending on the preponderant species and cellular and/or tissue status can inhibit or promote the development of metabolic and potentially breast cancer disease.
Collapse
|
15
|
Abstract
While normal angiogenesis is critical for development and tissue growth, pathological angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen as well as providing a conduit for distant metastasis. The interaction among extracellular matrix molecules, tumor cells, endothelial cells, fibroblasts, and immune cells is critical in pathological angiogenesis, in which various angiogenic growth factors, chemokines, and lipid mediators produced from these cells as well as hypoxic microenvironment promote angiogenesis by regulating expression and/or activity of various related genes. Sphingosine 1-phosphate and lysophosphatidic acid, bioactive lipid mediators which act via specific G protein-coupled receptors, play critical roles in angiogenesis. In addition, other lipid mediators including prostaglandin E2, lipoxin, and resolvins are produced in a stimulus-dependent manner and have pro- or anti-angiogenic effects, presumably through their specific GPCRs. Dysregulated lipid mediator signaling pathways are observed in the contxt of some tumors. This review will focus on LPA and S1P, two bioactive lipid mediators in their regulation of angiogenesis and cell migration that are critical for tumor growth and spread.
Collapse
Affiliation(s)
- Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Activated matriptase as a target to treat breast cancer with a drug conjugate. Oncotarget 2018; 9:25983-25992. [PMID: 29899836 PMCID: PMC5995259 DOI: 10.18632/oncotarget.25414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
The antitumor effects of a novel antibody drug conjugate (ADC) was tested against human solid tumor cell lines and against human triple negative breast cancer (TNBC) xenografts in immunosuppressed mice. The ADC targeting activated matriptase of tumor cells was synthesized by using the potent anti-tubulin toxin, monomethyl auristatin-E linked to the activated matriptase-specific monoclonal antibody (M69) via a lysosomal protease-cleavable dipeptide linker. This ADC was found to be cytotoxic against multiple activated matriptase-positive epithelial carcinoma cell lines in vitro and markedly inhibited growth of triple negative breast cancer xenografts and a primary human TNBC (PDX) in vivo. Overexpression of activated matriptase may be a biomarker for response to this ADC. The ADC had potent anti-tumor activity, while the unconjugated M69 antibody was ineffective in a mouse model study using MDA-MB-231 xenografts in mice. Treatment of a human TNBC (MDA-MB-231) showed potent anti-tumor effects in combination with cisplatin in mice. This ADC alone or in combination with cisplatin has the potential to improve the treatment outcomes of patients with TNBC as well as other tumors overexpressing activated matriptase.
Collapse
|
17
|
Tseng CC, Jia B, Barndt R, Gu Y, Chen CY, Tseng IC, Su SF, Wang JK, Johnson MD, Lin CY. Matriptase shedding is closely coupled with matriptase zymogen activation and requires de novo proteolytic cleavage likely involving its own activity. PLoS One 2017; 12:e0183507. [PMID: 28829816 PMCID: PMC5567652 DOI: 10.1371/journal.pone.0183507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Bailing Jia
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Robert Barndt
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Yayun Gu
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Chien-Yu Chen
- Department of Biochemistry National Defense Medical Center, Taipei, Taiwan
- School of Medicine National Defense Medical Center, Taipei, Taiwan
| | - I-Chu Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Sheng-Fang Su
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry National Defense Medical Center, Taipei, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- * E-mail: (CYL); (MDJ)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University, Washington DC, United States of America
- * E-mail: (CYL); (MDJ)
| |
Collapse
|
18
|
Ko CJ, Lan SW, Lu YC, Cheng TS, Lai PF, Tsai CH, Hsu TW, Lin HY, Shyu HY, Wu SR, Lin HH, Hsiao PW, Chen CH, Huang HP, Lee MS. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene 2017; 36:4597-4609. [PMID: 28368394 DOI: 10.1038/onc.2017.82] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic inflammation plays an important role in cancer development and progression. Cyclooxygenases-2 (COX-2) is a key enzyme in generating prostaglandins causing inflammation, is often found to be overexpressed in prostate cancer (PCa) and is correlated with PCa cell invasion and metastasis. We aim to investigate the molecular mechanism of how COX-2 promotes PCa cell invasion and metastasis and to evaluate the effect of COX-2 inhibitors in a selected model of PCa progression. Our results showed that the expression of COX-2 and Interleukin 1β (IL-1β) was upregulated in highly invasive PCa cells and was correlated with the activated levels of membrane-anchored serine protease matriptase. The expression levels of COX-2 were increased and were correlated with matriptase levels in PCa specimens. Moreover, results showed that COX-2 overexpression or a COX-2 product Prostaglandin E2 (PGE2) caused an increase in matriptase activation and PCa cell invasion, whereas COX-2 silencing antagonized matriptase activation and cell invasion. In addition, the inhibition of COX-2-mediated matriptase activation by Celebrex and sulindac sulfide suppressed the androgen-independent and COX2-overexpressing PCa PC-3 cell invasion, tumor growth and lung metastasis in an orthotopic xenograft model. Our results indicate that COX-2/matriptase signaling contributes to the invasion, tumor growth and metastasis of COX-2-overexpressing and androgen-independent PCa cells.
Collapse
Affiliation(s)
- C-J Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-W Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-C Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - T-S Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - P-F Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-H Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - T-W Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-Y Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-Y Shyu
- Bureau of Investigation, Ministry of Justice, Taipei, Taiwan
| | - S-R Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-H Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - P-W Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - C-H Chen
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - H-P Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - M-S Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Natural Endogenous Human Matriptase and Prostasin Undergo Zymogen Activation via Independent Mechanisms in an Uncoupled Manner. PLoS One 2016; 11:e0167894. [PMID: 27936035 PMCID: PMC5148038 DOI: 10.1371/journal.pone.0167894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
The membrane-associated serine proteases matriptase and prostasin are believed to function in close partnership. Their zymogen activation has been reported to be tightly coupled, either as a matriptase-initiated proteolytic cascade or through a mutually dependent mechanism involving the formation of a reciprocal zymogen activation complex. Here we show that this putative relationship may not apply in the context of human matriptase and prostasin. First, the tightly coupled proteolytic cascade between matriptase and prostasin might not occur when modest matriptase activation is induced by sphingosine 1-phospahte in human mammary epithelial cells. Second, prostasin is not required and/or involved in matriptase autoactivation because matriptase can undergo zymogen activation in cells that do not endogenously express prostasin. Third, matriptase is not required for and/or involved in prostasin activation, since activated prostasin can be detected in cells expressing no endogenous matriptase. Finally, matriptase and prostasin both undergo zymogen activation through an apparently un-coupled mechanism in cells endogenously expressing both proteases, such as in Caco-2 cells. In these human enterocytes, matriptase is detected primarily in the zymogen form and prostasin predominantly as the activated form, either in complexes with protease inhibitors or as the free active form. The negligible levels of prostasin zymogen with high levels of matriptase zymogen suggests that the reciprocal zymogen activation complex is likely not the mechanism for matriptase zymogen activation. Furthermore, high level prostasin activation still occurs in Caco-2 variants with reduced or absent matriptase expression, indicating that matriptase is not required and/or involved in prostasin zymogen activation. Collectively, these data suggest that any functional relationship between natural endogenous human matriptase and prostasin does not occur at the level of zymogen activation.
Collapse
|
20
|
Chen CY, Chen CJ, Lai CH, Wu BY, Lee SP, Johnson MD, Lin CY, Wang JK. Increased matriptase zymogen activation by UV irradiation protects keratinocyte from cell death. J Dermatol Sci 2016; 83:34-44. [DOI: 10.1016/j.jdermsci.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 02/03/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023]
|
21
|
Chen YW, Yin S, Lai YJJ, Johnson MD, Lin CY. Plasminogen-Dependent Matriptase Activation Accelerates Plasmin Generation by Differentiating Primary Human Keratinocytes. J Invest Dermatol 2016; 136:1210-1218. [DOI: 10.1016/j.jid.2016.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 11/25/2022]
|
22
|
Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood 2016; 127:3260-9. [PMID: 27114461 DOI: 10.1182/blood-2015-11-683110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Collapse
|
23
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
24
|
Reinforced Epithelial Barrier Integrity via Matriptase Induction with Sphingosine-1-Phosphate Did Not Result in Disturbances in Physiological Redox Status. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9674272. [PMID: 26823955 PMCID: PMC4707357 DOI: 10.1155/2016/9674272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Objectives. The relationship among matriptase function, cellular redox status, and maintenance of intestinal barrier integrity has not been established yet. The aim of this study is to reveal if the crosstalk between matriptase activators and intestinal epithelial monolayers can lead to perturbations in physiological redox regulation in vitro. Methods. The effects of suramin and sphingosine-1-phosphate (S1P) were tested on viability of intestinal porcine epithelial IPEC-J2 cells using MTS assay. Measurements of transepithelial electrical resistance (TER) were performed to determine changes in barrier integrity of cell monolayers. Amplex Red assay was used to monitor extracellular hydrogen peroxide production. Occludin distribution pattern was detected prior to and after matriptase activation using immunofluorescent staining technique. Results. TER reduction was observed in suramin-treated IPEC-J2 cell monolayers, which could be attributed to cell cytotoxic properties of 48 hr 50 μM suramin administration. In contrast, S1P treatment increased TER significantly and elevated occludin accumulation in tight junctions. It was also found that extracellular hydrogen peroxide levels were maintained in IPEC-J2 cells exposed to matriptase activators. Discussion. S1P administration not accompanied by redox imbalance might be one of the key strategies in the improvement of barrier function and consequently in the therapy of intestinal inflammations.
Collapse
|
25
|
Lai YJJ, Chang HHD, Lai H, Xu Y, Shiao F, Huang N, Li L, Lee MS, Johnson MD, Wang JK, Lin CY. N-Glycan Branching Affects the Subcellular Distribution of and Inhibition of Matriptase by HAI-2/Placental Bikunin. PLoS One 2015; 10:e0132163. [PMID: 26171609 PMCID: PMC4501743 DOI: 10.1371/journal.pone.0132163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
The gene product of SPINT 2, that encodes a transmembrane, Kunitz-type serine protease inhibitor independently designated as HAI-2 or placenta bikunin (PB), is involved in regulation of sodium absorption in human gastrointestinal track. Here, we show that SPINT 2 is expressed as two species of different size (30-40- versus 25-kDa) due to different N-glycans on Asn-57. The N-glycan on 25-kDa HAI-2 appears to be of the oligomannose type and that on 30-40-kDa HAI-2 to be of complex type with extensive terminal N-acetylglucosamine branching. The two different types of N-glycan differentially mask two epitopes on HAI-2 polypeptide, recognized by two different HAI-2 mAbs. The 30-40-kDa form may be mature HAI-2, and is primarily localized in vesicles/granules. The 25-kDa form is likely immature HAI-2, that remains in the endoplasmic reticulum (ER) in the perinuclear regions of mammary epithelial cells. The two different N-glycans could, therefore, represent different maturation stages of N-glycosylation with the 25-kDa likely a precursor of the 30-40-kDa HAI-2, with the ratio of their levels roughly similar among a variety of cells. In breast cancer cells, a significant amount of the 30-40-kDa HAI-2 can translocate to and inhibit matriptase on the cell surface, followed by shedding of the matriptase-HAI-2 complex. The 25-kDa HAI-2 appears to have also exited the ER/Golgi, being localized at the cytoplasmic face of the plasma membrane of breast cancer cells. While the 25-kDa HAI-2 was also detected at the extracellular face of plasma membrane at very low levels it appears to have no role in matriptase inhibition probably due to its paucity on the cell surface. Our study reveals that N-glycan branching regulates HAI-2 through different subcellular distribution and subsequently access to different target proteases.
Collapse
Affiliation(s)
- Ying-Jung J. Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Hsiang-Hua D. Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hongyu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Frank Shiao
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Linpei Li
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
- Affiliated Hospital of Hunan Traditional Chinese Medicine Research Institute, Changsha, Hunan, China,s
| | - Ming-Shyue Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine National Taiwan University, Taipei City, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
- * E-mail: (CYL); (JKW)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC, United States of America
- * E-mail: (CYL); (JKW)
| |
Collapse
|
26
|
Pászti-Gere E, Barna RF, Ujhelyi G, Steinmetzer T. Interaction exists between matriptase inhibitors and intestinal epithelial cells. J Enzyme Inhib Med Chem 2015; 31:736-41. [PMID: 26118419 DOI: 10.3109/14756366.2015.1060483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.
Collapse
Affiliation(s)
- Erzsebet Pászti-Gere
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Réka Fanni Barna
- a Faculty of Veterinary Science, Department of Pharmacology and Toxicology , Szent István University , Budapest , Hungary
| | - Gabriella Ujhelyi
- b Faculty of Pharmacy , Semmelweis University , Budapest , Hungary , and
| | - Torsten Steinmetzer
- c Institute of Pharmaceutical Chemistry, Philipps University , Marburg , Germany
| |
Collapse
|
27
|
Chang HHD, Xu Y, Lai H, Yang X, Tseng CC, Lai YJJ, Pan Y, Zhou E, Johnson MD, Wang JK, Lin CY. Differential subcellular localization renders HAI-2 a matriptase inhibitor in breast cancer cells but not in mammary epithelial cells. PLoS One 2015; 10:e0120489. [PMID: 25786220 PMCID: PMC4364774 DOI: 10.1371/journal.pone.0120489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/22/2015] [Indexed: 01/07/2023] Open
Abstract
The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells.
Collapse
Affiliation(s)
- Hsiang-Hua D. Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Hongyu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Xiaoyu Yang
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
- Department of Biology, Carleton College, Northfield, MN, 55057, United States of America
| | - Ying-Jung J. Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Yu Pan
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Emily Zhou
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22046, United States of America
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail:
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology Georgetown University Washington, DC, 20057, United States of America
| |
Collapse
|
28
|
Lee HS, Park BM, Cho Y, Kim S, Kim C, Kim MG, Park D. Shedding of epithin/PRSS14 is induced by TGF-β and mediated by tumor necrosis factor-α converting enzyme. Biochem Biophys Res Commun 2014; 452:1084-90. [PMID: 25245289 DOI: 10.1016/j.bbrc.2014.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 01/13/2023]
Abstract
Epithin/PRSS14, a type II transmembrane serine protease, plays critical roles in cancer metastasis. Previously, we have reported that epithin/PRSS14 undergoes ectodomain shedding in response to phorbol myristate acetate (PMA) stimulation. In this study, we show that transforming growth factor-β (TGF-β) induces rapid epithin/PRSS14 shedding through receptor mediated pathway in 427.1.86 thymoma cells. Tumor necrosis factor-α converting enzyme (TACE) is responsible for this shedding. Amino acid sequence encompassing the putative shedding cleavage site of epithin/PRSS14 exhibit strong homology to the cleavage site of l-selectin, a known TACE substrate. TACE inhibitor, TAPI-0 and TACE siRNA greatly reduced TGF-β-induced epithin/PRSS14 shedding. TGF-β treatment induces translocation of intracellular pool of TACE to the membrane where epithin/PRSS14 resides. These findings suggest that TGF-β induces epithin/PRSS14 shedding by mediating translocation of epithin/PRSS14 sheddase, TACE, to the membrane.
Collapse
Affiliation(s)
- Hyo Seon Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Bo Mi Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Youngkyung Cho
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Sauryang Kim
- Department of Biological Sciences, Inha University, Incheon 402-751, Republic of Korea
| | - Chungho Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-751, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea.
| |
Collapse
|
29
|
Chu LL, Xu Y, Yang JR, Hu YA, Chang HH, Lai HY, Tseng CC, Wang HY, Johnson MD, Wang JK, Lin CY. Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation. PLoS One 2014; 9:e92244. [PMID: 24663123 PMCID: PMC3963879 DOI: 10.1371/journal.pone.0092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
Collapse
Affiliation(s)
- Li-Ling Chu
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yuan Xu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jie-Ru Yang
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-An Hu
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsiang-Hua Chang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hong-Yu Lai
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Chun-Che Tseng
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- Department of Biology, Carleton College, Northfield, Minnesota, United States of America
| | - Hue-Yu Wang
- Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Michael D. Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail: (C-YL); (J-KW)
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America
- * E-mail: (C-YL); (J-KW)
| |
Collapse
|
30
|
Sales KU, Friis S, Konkel JE, Godiksen S, Hatakeyama M, Hansen KK, Rogatto SR, Szabo R, Vogel LK, Chen W, Gutkind JS, Bugge TH. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene 2014; 34:346-56. [PMID: 24469043 PMCID: PMC4112178 DOI: 10.1038/onc.2013.563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Abstract
The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.
Collapse
Affiliation(s)
- K U Sales
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Friis
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - J E Konkel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Godiksen
- 1] Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA [2] Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark [3] Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - M Hatakeyama
- 1] Department of Urology, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil [2] AC Camargo Cancer Center, Sao Paulo, Brazil
| | - K K Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S R Rogatto
- 1] Department of Urology, Faculty of Medicine, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil [2] AC Camargo Cancer Center, Sao Paulo, Brazil
| | - R Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - L K Vogel
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - W Chen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - T H Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Involvement of proteinase activated receptor-2in the vascular response to sphingosine 1-phosphate. Clin Sci (Lond) 2013; 126:545-56. [DOI: 10.1042/cs20130272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S1P exerts a diverse set of vascular responses, and PAR-2 has been shown to be involved in vascular inflammation as well as in other inflammatory-based diseases. In the present study, we demonstrate that S1P-mediated vascular effect involves PAR-2 activation.
Collapse
|
32
|
Godiksen S, Soendergaard C, Friis S, Jensen JK, Bornholdt J, Sales KU, Huang M, Bugge TH, Vogel LK. Detection of active matriptase using a biotinylated chloromethyl ketone peptide. PLoS One 2013; 8:e77146. [PMID: 24204759 PMCID: PMC3799725 DOI: 10.1371/journal.pone.0077146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 01/20/2023] Open
Abstract
Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), whereas the active non-inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK) inhibitor. Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells. The assay can be applied to a variety of cell systems and species.
Collapse
Affiliation(s)
- Sine Godiksen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | | | - Stine Friis
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer
| | - Jette Bornholdt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Mingdong Huang
- Danish-Chinese Centre for Proteases and Cancer
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, China
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
33
|
Matriptase regulates proliferation and early, but not terminal, differentiation of human keratinocytes. J Invest Dermatol 2013; 134:405-414. [PMID: 23900022 PMCID: PMC3925676 DOI: 10.1038/jid.2013.320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 04/17/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023]
Abstract
Genetic defects in matriptase are linked to two congenital ichthyoses: autosomal recessive ichthyosis with hypotrichosis (ARIH, OMIM 610765) and ichthyosis, follicular atrophoderma, hypotrichosis, and hypohidrosis (IFAH, OMIM 602400). Mouse models with matriptase deficiency indicate an involvement of matriptase in suprabasal keratinocytes in the maintenance of the epidermal barrier. In contrast to what has been reported for mouse skin, we show that in human skin matriptase is primarily expressed in the basal and spinous keratinocytes, but not in the more differentiated keratinocytes of the granular layer. In addition, matriptase zymogen activation was predominantly detected in the basal cells. Furthermore, by using skin organotypic cultures as a model system to monitor the course of human epidermal differentiation, we found elevated matriptase zymogen activation during early stages of epidermal differentiation, coupled with a loss of matriptase expression in the late stages of this process. We also show here that matriptase deficiency in HaCaT cells modestly reduces cell proliferation and temporally affects calcium-induced expression of differentiation markers. These collective data suggest that, unlike mouse matriptase, human matriptase may be involved in the regulation of keratinocyte growth and early differentiation, rather than terminal differentiation, providing mechanistic insights into the pathology of the two congenital ichthyoses: ARIH and IFAH.
Collapse
|
34
|
Antithrombin regulates matriptase activity involved in plasmin generation, syndecan shedding, and HGF activation in keratinocytes. PLoS One 2013; 8:e62826. [PMID: 23675430 PMCID: PMC3652837 DOI: 10.1371/journal.pone.0062826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/26/2013] [Indexed: 12/20/2022] Open
Abstract
Matriptase, a membrane-associated serine protease, plays an essential role in epidermal barrier function through activation of the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin. The matriptase-prostasin proteolytic cascade is tightly regulated by hepatocyte growth factor activator inhibitor (HAI)-1 such that matriptase autoactivation and prostasin activation occur simultaneously and are followed immediately by the inhibition of both enzymes by HAI-1. However, the mechanisms whereby matriptase acts on extracellular substrates remain elusive. Here we report that some active matriptase can escape HAI-1 inhibition by being rapidly shed from the cell surface. In the pericellular environment, shed active matriptase is able to activate hepatocyte growth factor (HGF), accelerate plasminogen activation, and shed syndecan 1. The amount of active matriptase shed is inversely correlated with the amount of antithrombin (AT) bound to the surface of the keratinocytes. Binding of AT to the surface of keratinocytes is dependent on a functional heparin binding site, Lys-125, and that the N-glycosylation site Asn-135 be unglycosylated. This suggests that β-AT, and not α-AT, is responsible for regulation of pericellular matriptase activity in keratinocytes. Keratinocytes appear to rely on AT to regulate the level of pericellular active matriptase much more than breast and prostate epithelial cells in which AT regulation of matriptase activity occurs at much lower levels than keratinocytes. These results suggest that keratinocytes employ two distinct serine protease inhibitors to control the activation and processing of two different sets of matriptase substrates leading to different biological events: 1) HAI-1 for prostasin activation/inhibition, and 2) AT for the pericellular proteolysis involved in HGF activation, accelerating plasminogen activation, and shedding of syndecans.
Collapse
|
35
|
Welman A, Sproul D, Mullen P, Muir M, Kinnaird AR, Harrison DJ, Faratian D, Brunton VG, Frame MC. Diversity of matriptase expression level and function in breast cancer. PLoS One 2012; 7:e34182. [PMID: 22514623 PMCID: PMC3325989 DOI: 10.1371/journal.pone.0034182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
Overexpression of matriptase has been reported in a variety of human cancers and is sufficient to trigger tumor formation in mice, but the importance of matriptase in breast cancer remains unclear. We analysed matriptase expression in 16 human breast cancer cell lines and in 107 primary breast tumors. The data revealed considerable diversity in the expression level of this protein indicating that the significance of matriptase may vary from case to case. Matriptase protein expression was correlated with HER2 expression and highest expression was seen in HER2-positive cell lines, indicating a potential role in this subgroup. Stable overexpression of matriptase in two breast cancer cell lines had different consequences. In MDA-MB-231 human breast carcinoma cells the only noted consequence of matriptase overexpression was modestly impaired growth in vivo. In contrast, overexpression of matriptase in 4T1 mouse breast carcinoma cells resulted in visible changes in morphology, actin staining and cell to cell contacts. This correlated with downregulation of the cell-cell adhesion molecule E-cadherin. These results suggest that the functions of matriptase in breast cancer are likely to be variable and cell context dependent.
Collapse
Affiliation(s)
- Arkadiusz Welman
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harris GL, Creason MB, Brulte GB, Herr DR. In vitro and in vivo antagonism of a G protein-coupled receptor (S1P3) with a novel blocking monoclonal antibody. PLoS One 2012; 7:e35129. [PMID: 22496900 PMCID: PMC3320623 DOI: 10.1371/journal.pone.0035129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/13/2012] [Indexed: 11/24/2022] Open
Abstract
Background S1P3 is a lipid-activated G protein-couple receptor (GPCR) that has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. Currently, there are no available high-affinity, subtype-selective drug compounds that can block activation of S1P3. We have developed a monoclonal antibody (7H9) that specifically recognizes S1P3 and acts as a functional antagonist. Methodology/Principal Findings Specific binding of 7H9 was demonstrated by immunocytochemistry using cells that over-express individual members of the S1P receptor family. We show, in vitro, that 7H9 can inhibit the activation of S1P3-mediated cellular processes, including arrestin translocation, receptor internalization, adenylate cyclase inhibiton, and calcium mobilization. We also demonstrate that 7H9 blocks activation of S1P3 in vivo, 1) by preventing lethality due to systemic inflammation, and 2) by altering the progression of breast tumor xenografts. Conclusions/Significance We have developed the first-reported monoclonal antibody that selectively recognizes a lipid-activated GPCR and blocks functional activity. In addition to serving as a lead drug compound for the treatment of sepsis and breast cancer, it also provides proof of concept for the generation of novel GPCR-specific therapeutic antibodies.
Collapse
Affiliation(s)
- Greg L. Harris
- Expression Drug Designs, LLC, San Marcos, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Michael B. Creason
- Expression Drug Designs, LLC, San Marcos, California, United States of America
| | - Greg B. Brulte
- Expression Drug Designs, LLC, San Marcos, California, United States of America
| | - Deron R. Herr
- Expression Drug Designs, LLC, San Marcos, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Xu H, Xu Z, Tseng IC, Chou FP, Chen YW, Wang JK, Johnson MD, Kataoka H, Lin CY. Mechanisms for the control of matriptase activity in the absence of sufficient HAI-1. Am J Physiol Cell Physiol 2011; 302:C453-62. [PMID: 22031598 DOI: 10.1152/ajpcell.00344.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Matriptase proteolytic activity must be tightly controlled for normal placental development, epidermal function, and epithelial integrity. Although hepatocyte growth factor activator inhibitor-1 (HAI-1) represents the predominant endogenous inhibitor for matriptase and the protein molar ratio of HAI-1 to matriptase is determined to be >10 in epithelial cells and the majority of carcinoma cells, an inverse HAI-1-to-matriptase ratio is seen in some ovarian and hematopoietic cancer cells. In the current study, cells with insufficient HAI-1 are investigated for the mechanisms through which the activity of matriptase is regulated. When matriptase activation is robustly induced in these cells, activated matriptase rapidly forms two complexes of 100- and 140-kDa in addition to the canonical 120-kDa matriptase-HAI-1 complex already described. Both 100- and 140-kDa complexes contain two-chain, cleaved matriptase but are devoid of gelatinolytic activity. Further biochemical characterization shows that the 140-kDa complex is a matriptase homodimer and that the 100-kDa complexes appear to contain reversible, tight binding serine protease inhibitor(s). The formation of the 140-kDa matriptase dimer is strongly associated with matriptase activation, and its levels are inversely correlated with the ratio of HAI-1 to matriptase. Given these observations and the likelihood that autoactivation requires the interaction of two matriptase molecules, it seems plausible that this activated matriptase homodimer may represent a matriptase autoactivation intermediate and that its accumulation may serve as a mechanism to control matriptase activity when protease inhibitor levels are limiting. These data suggest that matriptase activity can be rapidly inhibited by HAI-1 and other HAI-1-like protease inhibitors and "locked" in an inactive autoactivation intermediate, all of which places matriptase under very tight control.
Collapse
Affiliation(s)
- Han Xu
- Greenebaum Cancer Center, Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu Z, Chen YW, Battu A, Wilder P, Weber D, Yu W, Mackerell AD, Chen LM, Chai KX, Johnson MD, Lin CY. Targeting zymogen activation to control the matriptase-prostasin proteolytic cascade. J Med Chem 2011; 54:7567-78. [PMID: 21966950 DOI: 10.1021/jm200920s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane-associated serine protease matriptase has been implicated in human diseases and might be a drug target. In the present study, a novel class of matriptase inhibitors targeting zymogen activation is developed by a combination of the screening of compound library using a cell-based matriptase activation assay and a computer-aided search of commercially available analogues of a selected compound. Four structurally related compounds are identified that can inhibit matriptase activation with IC(50) at low micromolar concentration in both intact-cell and cell-free systems, suggesting that these inhibitors target the matriptase autoactivation machinery rather than the intracellular signaling pathways. These activation inhibitors can also inhibit prostasin activation, a downstream event that occurs in lockstep with matriptase activation. In contrast, the matriptase catalytic inhibitor CVS-3983 at a concentration 300-fold higher than its K(i) fails to inhibit activation of either protease. Our results suggest that inhibiting matriptase activation is an efficient way to control matriptase function.
Collapse
Affiliation(s)
- Zhenghong Xu
- School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chou FP, Xu H, Lee MS, Chen YW, Richards OXD, Swanson R, Olson ST, Johnson MD, Lin CY. Matriptase is inhibited by extravascular antithrombin in epithelial cells but not in most carcinoma cells. Am J Physiol Cell Physiol 2011; 301:C1093-103. [PMID: 21795523 DOI: 10.1152/ajpcell.00122.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antithrombin, a major anticoagulant, is robustly transported into extravascular compartments where its target proteases are largely unknown. This serpin was previously detected in human milk as complexes with matriptase, a membrane-bound serine protease broadly expressed in epithelial and carcinoma cells, and under tight regulation by hepatocyte growth factor activator inhibitor (HAI)-1, a transmembrane Kunitz-type serine protease inhibitor that forms heat-sensitive complexes with active matriptase. In the current study, we detect, in addition to matriptase-HAI-1 complexes, heat-resistant matriptase complexes generated by nontransformed mammary, prostate, and epidermal epithelial cells that we show to be matriptase-antithrombin complexes. These findings suggest that in addition to HAI-1, interstitial antithrombin participates in the regulation of matriptase activity in epithelial cells. This physiological mechanism appears, however, to largely be lost in cancer cells since matriptase-antithrombin complexes were not detected in all but two of a panel of seven breast, prostate, and ovarian cancer cell lines. Using purified active matriptase, we further characterize the formation of matriptase-antithrombin complex and show that heparin can significantly potentiate the inhibitory potency of antithrombin against matriptase. Second-order rate constants for the inhibition were determined to be 3.9 × 10(3) M(-1)s(-1) in the absence of heparin and 1.2 × 10(5) M(-1)s(-1) in the presence of heparin, a 30-fold increase, consistent with the established role of heparin in activating antithrombin function. Taken together these data suggest that normal epithelial cells employ a dual mechanism involving HAI-1 and antithrombin to control matriptase and that the antithrombin-based mechanism appears lost in the majority of carcinoma cells.
Collapse
Affiliation(s)
- Feng-Pai Chou
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:1-50. [PMID: 21238933 PMCID: PMC3697097 DOI: 10.1016/b978-0-12-385504-6.00001-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter reviews our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
41
|
|
42
|
Chen CJ, Wu BY, Tsao PI, Chen CY, Wu MH, Chan YLE, Lee HS, Johnson MD, Eckert RL, Chen YW, Chou F, Wang JK, Lin CY. Increased matriptase zymogen activation in inflammatory skin disorders. Am J Physiol Cell Physiol 2010; 300:C406-15. [PMID: 21123732 DOI: 10.1152/ajpcell.00403.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H(2)O(2) and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases.
Collapse
Affiliation(s)
- Cheng-Jueng Chen
- Dept. of Dermatolog, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brocklyn JRV. Regulation of cancer cell migration and invasion by sphingosine-1-phosphate. World J Biol Chem 2010; 1:307-12. [PMID: 21537464 PMCID: PMC3083934 DOI: 10.4331/wjbc.v1.i10.307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 02/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that has been implicated in regulation of a number of cancer cell malignant behaviors, including cell proliferation, survival, chemotherapeutic resistance and angiogenesis. However, the effects of S1P on cancer cell migration, invasion and metastasis, are perhaps its most complex, due to the fact that, depending upon the S1P receptors that mediate its responses and the crosstalk with other signaling pathways, S1P can either positively or negatively regulate invasion. This review summarizes the effects of S1P on cancer cell invasion and the mechanisms by which it affects this important aspect of cancer cell behavior.
Collapse
Affiliation(s)
- James R Van Brocklyn
- James R Van Brocklyn, Department of Pathology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
44
|
Chen YW, Wang JK, Chou FP, Chen CY, Rorke EA, Chen LM, Chai KX, Eckert RL, Johnson MD, Lin CY. Regulation of the matriptase-prostasin cell surface proteolytic cascade by hepatocyte growth factor activator inhibitor-1 during epidermal differentiation. J Biol Chem 2010; 285:31755-62. [PMID: 20696767 DOI: 10.1074/jbc.m110.150367] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matriptase, a membrane-tethered serine protease, plays essential roles in epidermal differentiation and barrier function, largely mediated via its activation of prostasin, a glycosylphosphatidylinositol-anchored serine protease. Matriptase activity is tightly regulated by its inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1) such that free active matriptase is only briefly available to act on its substrates. In the current study we provide evidence for how matriptase activates prostasin under this tight control by HAI-1. When primary human keratinocytes are induced to differentiate in a skin organotypic culture model, both matriptase and prostasin are constitutively activated and then inhibited by HAI-1. These processes also occur in HaCaT human keratinocytes when matriptase activation is induced by exposure of the cells to a pH 6.0 buffer. Using this acid-inducible activation system we demonstrate that prostatin activation is suppressed by matriptase knockdown and by blocking matriptase activation with sodium chloride, suggesting that prostatin activation is dependent on matriptase in this system. Kinetics studies further reveal that the timing of autoactivation of matriptase, prostasin activation, and inhibition of both enzymes by HAI-1 binding are closely correlated. These data suggest that, during epidermal differentiation, the matriptase-prostasin proteolytic cascade is tightly regulated by two mechanisms: 1) prostasin activation temporally coupled to matriptase autoactivation and 2) HAI-1 rapidly inhibiting not only active matriptase but also active prostasin, resulting in an extremely brief window of opportunity for both active matriptase and active prostasin to act on their substrates.
Collapse
Affiliation(s)
- Ya-Wen Chen
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matriptase/epithin participates in mammary epithelial cell growth and morphogenesis through HGF activation. Mech Dev 2010; 127:82-95. [DOI: 10.1016/j.mod.2009.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/26/2009] [Accepted: 10/13/2009] [Indexed: 11/23/2022]
|
46
|
Tseng IC, Xu H, Chou FP, Li G, Vazzano AP, Kao JPY, Johnson MD, Lin CY. Matriptase activation, an early cellular response to acidosis. J Biol Chem 2009; 285:3261-70. [PMID: 19940125 DOI: 10.1074/jbc.m109.055640] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular acidosis often rapidly causes intracellular acidification, alters ion channel activities, and activates G protein-coupled receptors. In this report, we demonstrated a novel cellular response to acidosis: induction of the zymogen activation of matriptase. Acid-induced matriptase activation is ubiquitous among epithelial and carcinoma cells and is characterized by rapid onset, fast kinetics, and the magnitude of activation seen. Trace amounts of activated matriptase can be detected 1 min after cells are exposed to pH 6.0 buffer, and the vast majority of latent matriptase within the cells is converted to activated matriptase within 20 min. Matriptase activation may be a direct response to proton exposure because acid-induced matriptase activation also occurs in an in vitro, cell-free setting in which intracellular signaling molecules and ion channel activities are largely absent. Acid-induced matriptase activation takes place both on the cell surface and inside the cells, likely due to the parallel intracellular acidification that activates intracellular matriptase. Following matriptase activation, the active enzyme is immediately inhibited by binding to hepatocyte growth factor activator inhibitor 1, resulting in stable matriptase-hepatocyte growth factor activator inhibitor 1 complexes that are rapidly secreted. As an early response to acidosis, matriptase activation can also be induced by perturbation of intracellular pH homeostasis by 5-(N-methyl-N-isobutyl)-amiloride and 5-(N-ethyl-N-isopropyl)-amiloride, both of which inhibit Na(+)/H(+) exchangers, and diisothiocyanostilbene-2,2'-disulfonic acid, which can inhibit other acid-base ion channels. This study uncovers a novel mechanism regulating proteolysis in epithelial and carcinoma cells, and also demonstrates that a likely function of matriptase is as an early response to acidosis.
Collapse
Affiliation(s)
- I-Chu Tseng
- From the Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, and
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2696-708. [PMID: 19147416 PMCID: PMC2765038 DOI: 10.1016/j.jchromb.2008.12.057] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve as both structural components of cellular membranes and signaling molecules capable of eliciting apoptosis, differentiation, chemotaxis, and other responses in mammalian cells. Comprehensive or "sphingolipidomic" analyses (structure specific, quantitative analyses of all sphingolipids, or at least all members of a critical subset) are required in order to elucidate the role(s) of sphingolipids in a given biological context because so many of the sphingolipids in a biological system are inter-converted structurally and metabolically. Despite the experimental challenges posed by the diversity of sphingolipid-regulated cellular responses, the detection and quantitation of multiple sphingolipids in a single sample has been made possible by combining classical analytical separation techniques such as high-performance liquid chromatography (HPLC) with state-of-the-art tandem mass spectrometry (MS/MS) techniques. As part of the Lipid MAPS consortium an internal standard cocktail was developed that comprises the signaling metabolites (i.e. sphingoid bases, sphingoid base-1-phosphates, ceramides, and ceramide-1-phosphates) as well as more complex species such as mono- and di-hexosylceramides and sphingomyelin. Additionally, the number of species that can be analyzed is growing rapidly with the addition of fatty acyl Co-As, sulfatides, and other complex sphingolipids as more internal standards are becoming available. The resulting LC-MS/MS analyses are one of the most analytically rigorous technologies that can provide the necessary sensitivity, structural specificity, and quantitative precision with high-throughput for "sphingolipidomic" analyses in small sample quantities. This review summarizes historical and state-of-the-art analytical techniques used for the identification, structure determination, and quantitation of sphingolipids from free sphingoid bases through more complex sphingolipids such as sphingomyelins, lactosylceramides, and sulfatides including those intermediates currently considered sphingolipid "second messengers". Also discussed are some emerging techniques and other issues remaining to be resolved for the analysis of the full sphingolipidome.
Collapse
Affiliation(s)
- Christopher A. Haynes
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048, U.S.A
| | - Hyejung Park
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - M. Cameron Sullards
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| |
Collapse
|
48
|
Type II transmembrane serine proteases in cancer and viral infections. Trends Mol Med 2009; 15:303-12. [PMID: 19581128 DOI: 10.1016/j.molmed.2009.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 01/08/2023]
Abstract
Regulated proteolysis of cellular factors is pivotal to tissue development and homeostasis, whereas uncontrolled proteolytic activity is linked to disease. Type II transmembrane serine proteases (TTSPs) are expressed at the cell surface and are thus ideally located to regulate cell-cell and cell-matrix interactions. Increasing evidence demonstrates that aberrant expression of TTSPs is a hallmark of several cancers and recent studies have defined molecular mechanisms underlying TTSP-promoted carcinogenesis. In addition, new findings suggest that influenza and other respiratory viruses could exploit TTSPs to promote their spread, making these proteases potential targets for intervention in cancer and viral infections. Here, we review the role of TTSPs in tumorigenesis and viral infection and discuss potential approaches to therapy.
Collapse
|
49
|
Wang JK, Lee MS, Tseng IC, Chou FP, Chen YW, Fulton A, Lee HS, Chen CJ, Johnson MD, Lin CY. Polarized epithelial cells secrete matriptase as a consequence of zymogen activation and HAI-1-mediated inhibition. Am J Physiol Cell Physiol 2009; 297:C459-70. [PMID: 19535514 DOI: 10.1152/ajpcell.00201.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matriptase, a transmembrane serine protease, is broadly expressed by, and crucial for the integrity of, the epithelium. Matriptase is synthesized as a zymogen and undergoes autoactivation to become an active protease that is immediately inhibited by, and forms complexes with, hepatocyte growth factor activator inhibitor (HAI-1). To investigate where matriptase is activated and how it is secreted in vivo, we determined the expression and activation status of matriptase in seminal fluid and urine and the distribution and subcellular localization of the protease in the prostate and kidney. The in vivo studies revealed that while the latent matriptase is localized at the basolateral surface of the ductal epithelial cells of both organs, only matriptase-HAI-1 complexes and not latent matriptase are detected in the body fluids, suggesting that activation, inhibition, and transcytosis of matriptase would have to occur for the secretion of matriptase. These complicated processes involved in the in vivo secretion were also observed in polarized Caco-2 intestinal epithelial cells. The cells target latent matriptase to the basolateral plasma membrane where activation, inhibition, and secretion of matriptase appear to take place. However, a proportion of matriptase-HAI-1 complexes, but not the latent matriptase, appears to undergo transcytosis to the apical plasma membrane for secretion. When epithelial cells lose their polarity, they secrete both latent and activated matriptase. Although most epithelial cells retain very low levels of matriptase-HAI-1 complex by rapidly secreting the complex, gastric chief cells may activate matriptase and store matriptase-HAI-1 complexes in the pepsinogen-secretory granules, suggesting an intracellular activation and regulated secretion in these cells. Taken together, while zymogen activation and closely coupled HAI-1-mediated inhibition are common features for matriptase regulation, the cellular location of matriptase activation and inhibition, and the secretory route for matriptase-HAI-1 complex may vary along with the functional divergence of different epithelial cells.
Collapse
Affiliation(s)
- Jehng-Kang Wang
- Department of Biochemistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tseng IC, Chou FP, Su SF, Oberst M, Madayiputhiya N, Lee MS, Wang JK, Sloane DE, Johnson M, Lin CY. Purification from human milk of matriptase complexes with secreted serpins: mechanism for inhibition of matriptase other than HAI-1. Am J Physiol Cell Physiol 2008; 295:C423-31. [PMID: 18550704 DOI: 10.1152/ajpcell.00164.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matriptase, a type 2 transmembrane serine protease, is predominately expressed by epithelial and carcinoma cells in which hepatocyte growth factor activator inhibitor 1 (HAI-1), a membrane-bound, Kunitz-type serine protease inhibitor, is also expressed. HAI-1 plays dual roles in the regulation of matriptase, as a conventional protease inhibitor and as a factor required for zymogen activation of matriptase. As a consequence, activation of matriptase is immediately followed by HAI-1-mediated inhibition, with the activated matriptase being sequestered into HAI-1 complexes. Matriptase is also expressed by peripheral blood leukocytes, such as monocytes and macrophages; however, in contrast to epithelial cells, monocytes and macrophages were reported not to express HAI-1, suggesting that these leukocytes possess alternate, HAI-1-independent mechanisms regulating the zymogen activation and protease inhibition of matriptase. In the present study, we characterized matriptase complexes of 110 kDa in human milk, which contained no HAI-1 and resisted dissociation in boiling SDS in the absence of reducing agents. These complexes were further purified and dissociated into 80-kDa and 45-kDa fragments by treatment with reducing agents. Proteomic and immunological methods identified the 45-kDa fragment as the noncatalytic domains of matriptase and the 80-kDa fragment as the matriptase serine protease domain covalently linked to one of three different secreted serpin inhibitors: antithrombin III, alpha1-antitrypsin, and alpha2-antiplasmin. Identification of matriptase-serpin inhibitor complexes provides evidence for the first time that the proteolytic activity of matriptase, from those cells that express no or low levels of HAI-1, may be controlled by secreted serpins.
Collapse
Affiliation(s)
- I-Chu Tseng
- Greenebaum Cancer Ctr., Dept. of Biochemistry and Molecular Biology, Univ. of Maryland Baltimore, BRB 10-027, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|