1
|
Li S, Mingoia S, Montégut L, Lambertucci F, Chen H, Dong Y, De Palma FDE, Scuderi SA, Rong Y, Carbonnier V, Martins I, Maiuri MC, Kroemer G. Atlas of expression of acyl CoA binding protein/diazepam binding inhibitor (ACBP/DBI) in human and mouse. Cell Death Dis 2025; 16:134. [PMID: 40011442 PMCID: PMC11865319 DOI: 10.1038/s41419-025-07447-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Acyl CoA binding protein encoded by diazepam binding inhibitor (ACBP/DBI) is a tissue hormone that stimulates lipo-anabolic responses and inhibits autophagy, thus contributing to aging and age-related diseases. Protein expression profiling of ACBP/DBI was performed on mouse tissues to identify organs in which this major tissue hormone is expressed. Transcriptomic and proteomic data bases corroborated a high level of human-mouse interspecies conservation of ACBP/DBI expression in different organs. Single-cell RNA-seq data confirmed that ACBP/DBI was strongly expressed by parenchymatous cells from specific human and mouse organs (e.g., kidney, large intestine, liver, lung) as well as by myeloid or glial cells from other organs (e.g., adipose tissue, brain, eye) following a pattern that was conserved among the two species. We identified a panel of 44 mRNAs that are strongly co-expressed with ACBP/DBI mRNA in normal and malignant human and normal mouse tissues. Of note, 22 (50%) of these co-expressed mRNAs encode proteins localized at mitochondria, and mRNAs with metabolism-related functions are strongly overrepresented (66%). Systematic data mining was performed to identify transcription factors that regulate ACBP/DBI expression in human and mouse. Several transcription factors, including growth response 1 (EGR1), E2F Transcription Factor 1 (E2F1, which interacts with retinoblastoma, RB) and transformation-related protein 53 (TRP53, best known as p53), which are endowed with oncosuppressive effects, consistently repress ACBP/DBI expression as well as its co-expressed mRNAs across multiple datasets, suggesting a mechanistic basis for a coregulation network. Furthermore, we identified multiple transcription factors that transactivate ACBP/DBI gene expression together with its coregulation network. Altogether, this study indicates the existence of conserved mechanisms determining the expression of ACBP/DBI in specific cell types of the mammalian organism.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Silvia Mingoia
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yanbing Dong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Yan Rong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
2
|
Isnard S, Mabanga T, Royston L, Berini CA, Bu S, Aiyana O, Feng H, Lebouché B, Costiniuk CT, Cox J, Kroemer G, Durand M, Routy JP, the Biobanque Québécoise de la COVID-19 (BQC-19). Extracellular acyl-CoA-binding protein as an independent biomarker of COVID-19 disease severity. Front Immunol 2025; 15:1505752. [PMID: 39835130 PMCID: PMC11743960 DOI: 10.3389/fimmu.2024.1505752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Background Factors leading to severe COVID-19 remain partially known. New biomarkers predicting COVID-19 severity that are also causally involved in disease pathogenesis could improve patient management and contribute to the development of innovative therapies. Autophagy, a cytosolic structure degradation pathway is involved in the maintenance of cellular homeostasis, degradation of intracellular pathogens and generation of energy for immune responses. Acyl-CoA binding protein (ACBP) is a key regulator of autophagy in the context of diabetes, obesity and anorexia. The objective of our work was to assess whether circulating ACBP levels are associated with COVID-19 severity, using proteomics data from the plasma of 903 COVID-19 patients. Methods Somalogic proteomic analysis was used to detect 5000 proteins in plasma samples collected between March 2020 and August 2021 from hospitalized participants in the province of Quebec, Canada. Plasma samples from 903 COVID-19 patients collected during their admission during acute phase of COVID-19 and 295 hospitalized controls were assessed leading to 1198 interpretable proteomic profiles. Levels of anti-SARS-CoV-2 IgG were measured by ELISA and a cell-binding assay. Results The median age of the participants was 59 years, 46% were female, 65% had comorbidities. Plasma ACBP levels correlated with COVID-19 severity, in association with inflammation and anti-SARS-CoV-2 antibody levels, independently of sex or the presence of comorbidities. Samples collected during the second COVID-19 wave in Quebec had higher levels of plasma ACBP than during the first wave. Plasma ACBP levels were negatively correlated with biomarkers of T and NK cell responses interferon-γ, tumor necrosis factor-α and interleukin-21, independently of age, sex, and severity. Conclusions Circulating ACBP levels can be considered a biomarker of COVID-19 severity linked to inflammation. The contribution of extracellular ACBP to immunometabolic responses during viral infection should be further studied.
Collapse
Affiliation(s)
- Stephane Isnard
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Tsoarello Mabanga
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Léna Royston
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Carolina A. Berini
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Simeng Bu
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Orthy Aiyana
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Hansen Feng
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Bertrand Lebouché
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Centre for Outcomes Research & Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Joseph Cox
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, assistance publique des hôpitaux de Paris (AP-HP), Paris, France
| | - Madeleine Durand
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Inflammation and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Pan H, Tian AL, Chen H, Xia Y, Sauvat A, Moriceau S, Lambertucci F, Motiño O, Zhao L, Liu P, Mao M, Li S, Zhang S, Joseph A, Durand S, Aprahamian F, Luo Z, Ou Y, Shen Z, Xue E, Pan Y, Carbonnier V, Stoll G, Forveille S, Leduc M, Cerrato G, Cerone A, Maiuri MC, Castinetti F, Brue T, Wang H, Ma Y, Martins I, Kepp O, Kroemer G. Pathogenic role of acyl coenzyme A binding protein (ACBP) in Cushing's syndrome. Nat Metab 2024; 6:2281-2299. [PMID: 39578649 DOI: 10.1038/s42255-024-01170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
Cushing's syndrome is caused by an elevation of endogenous or pharmacologically administered glucocorticoids. Acyl coenzyme A binding protein (ACBP, encoded by the gene diazepam binding inhibitor, Dbi) stimulates food intake and lipo-anabolic reactions. Here we found that plasma ACBP/DBI concentrations were elevated in patients and mice with Cushing's syndrome. We used several methods for ACBP/DBI inhibition in mice, namely, (1) induction of ACBP/DBI autoantibodies, (2) injection of a neutralizing monoclonal antibody, (3) body-wide or hepatocyte-specific knockout of the Dbi gene, (4) mutation of the ACBP/DBI receptor Gabrg2 and (5) injections of triiodothyronine or (6) the thyroid hormone receptor-β agonist resmetirom to block Dbi transcription. These six approaches abolished manifestations of Cushing's syndrome such as increased food intake, weight gain, excessive adiposity, liver damage, hypertriglyceridaemia and type 2 diabetes. In conclusion, it appears that ACBP/DBI constitutes an actionable target that is causally involved in the development of Cushing's syndrome.
Collapse
Affiliation(s)
- Hui Pan
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Ai-Ling Tian
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Hui Chen
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Yifan Xia
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Allan Sauvat
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Stephanie Moriceau
- Institut Imagine, Platform for Neurobehavioral and Metabolism, Structure Federative de Recherche Necker, 26 INSERM US24/CNRS UAR, Paris, France
| | - Flavia Lambertucci
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Omar Motiño
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Misha Mao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Sijing Li
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Shuai Zhang
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrien Joseph
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Service de Réanimation Medicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Zeyu Luo
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Yang Ou
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhe Shen
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Enfu Xue
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
| | - Yuhong Pan
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Faculté de Médecine, Université Paris-Saclay, Paris, France
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Vincent Carbonnier
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Gautier Stoll
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Sabrina Forveille
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Alexandra Cerone
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Maria Chiara Maiuri
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - Frederic Castinetti
- Assistance Publique Hôpitaux de Marseille, Department of Endocrinology, La Conception Hospital, Marseille, France
| | - Thierry Brue
- Assistance Publique Hôpitaux de Marseille, Department of Endocrinology, La Conception Hospital, Marseille, France
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Isabelle Martins
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Université Paris Cité, Sorbonne Université, Paris, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
4
|
Chen H, Moriceau S, Joseph A, Mailliet F, Li S, Tolle V, Duriez P, Dardennes R, Durand S, Carbonnier V, Stoll G, Sauvat A, Lachkar S, Aprahamian F, Alves Costa Silva C, Pan H, Montégut L, Anagnostopoulos G, Lambertucci F, Motiño O, Nogueira-Recalde U, Bourgin M, Mao M, Pan Y, Cerone A, Boedec E, Gouveia ZL, Marmorino F, Cremolini C, Derosa L, Zitvogel L, Kepp O, López-Otín C, Maiuri MC, Perez F, Gorwood P, Ramoz N, Oury F, Martins I, Kroemer G. Acyl-CoA binding protein for the experimental treatment of anorexia. Sci Transl Med 2024; 16:eadl0715. [PMID: 39141698 DOI: 10.1126/scitranslmed.adl0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/25/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.
Collapse
Affiliation(s)
- Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Stéphanie Moriceau
- Institut Imagine, Platform for Neurobehavioral and Metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, 75015 Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Service de Réanimation Médicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Francois Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Virginie Tolle
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
| | - Philibert Duriez
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Roland Dardennes
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Rheumatology Research Group (GIR), Biomedical Research Institute of A Coruña (INIBIC), Professor Novoa Santos Foundation, 15006 A Coruña, Spain
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, Zhejiang, China
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Alexandra Cerone
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Erwan Boedec
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Biochemistry and Biophysics (B&B) Core Facility, 75014 Paris, France
| | - Zelia L Gouveia
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, 28248 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Philip Gorwood
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Nicolas Ramoz
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
5
|
New LE, Yanagawa Y, McConkey GA, Deuchars J, Deuchars SA. GABAergic regulation of cell proliferation within the adult mouse spinal cord. Neuropharmacology 2023; 223:109326. [PMID: 36336067 DOI: 10.1016/j.neuropharm.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Manipulation of neural stem cell proliferation and differentiation in the postnatal CNS is receiving significant attention due to therapeutic potential. In the spinal cord, such manipulations may promote repair in conditions such as multiple sclerosis or spinal cord injury, but may also limit excessive cell proliferation contributing to tumours such as ependymomas. We show that when ambient γ-aminobutyric acid (GABA) is increased in vigabatrin-treated or decreased by GAD67 allele haplodeficiency in glutamic acid decarboxylase67-green fluorescent protein (GAD67-GFP) mice of either sex, the numbers of proliferating cells respectively decreased or increased. Thus, intrinsic spinal cord GABA levels are correlated with the extent of cell proliferation, providing important evidence for manipulating these levels. Diazepam binding inhibitor, an endogenous protein that interacts with GABA receptors and its breakdown product, octadecaneuropeptide, which preferentially activates central benzodiazepine (CBR) sites, were highly expressed in spinal cord, especially in ependymal cells surrounding the central canal. Furthermore, animals with reduced CBR activation via treatment with flumazenil or Ro15-4513, or with a G2F77I mutation in the CBR binding site had greater numbers of Ethynyl-2'-deoxyuridine positive cells compared to control, which maintained their stem cell status since the proportion of newly proliferated cells becoming oligodendrocytes or astrocytes was significantly lower. Altering endogenous GABA levels or modulating GABAergic signalling through specific sites on GABA receptors therefore influences NSC proliferation in the adult spinal cord. These findings provide a basis for further study into how GABAergic signalling could be manipulated to enable spinal cord self-regeneration and recovery or limit pathological proliferative activity.
Collapse
Affiliation(s)
- Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University, Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
6
|
Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, Lambertucci F, Anagnostopoulos G, Lachkar S, Dichtinger S, Maiuri MC, Goldwasser F, Blanchet B, Fumeron F, Martins I, Madeo F, Kroemer G. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: Evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell 2022; 22:e13751. [PMID: 36510662 PMCID: PMC9835587 DOI: 10.1111/acel.13751] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance,Service de médecine intensive réanimationHôpital Saint‐LouisParisFrance
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Department of CardiologyMedical University of GrazGrazAustria,BioTechMed‐GrazGrazAustria
| | | | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Silvia Dichtinger
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - François Goldwasser
- Department of Medical OncologyCochin Hospital, AP‐HPParisFrance,URP4466, Université Paris CitéParisFrance
| | - Benoit Blanchet
- Pharmacokinetics and Pharmacochemistry UnitCochin Hospital, Paris Descartes University, CARPEM, AP‐HPParisFrance,UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, University of Paris, PRES Sorbonne Paris Cité, CARPEMParisFrance
| | - Frédéric Fumeron
- Institut Necker‐Enfants Malades, Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253ParisFrance
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria,Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
7
|
ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proc Natl Acad Sci U S A 2022; 119:e2207344119. [PMID: 36191214 PMCID: PMC9565466 DOI: 10.1073/pnas.2207344119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.
Collapse
|
8
|
Everlien I, Yen TY, Liu YC, Di Marco B, Vázquez-Marín J, Centanin L, Alfonso J, Monyer H. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 2022; 110:3139-3153.e6. [PMID: 35998632 DOI: 10.1016/j.neuron.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.
Collapse
Affiliation(s)
- Isabelle Everlien
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ting-Yun Yen
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Anagnostopoulos G, Motiño O, Li S, Carbonnier V, Chen H, Sica V, Durand S, Bourgin M, Aprahamian F, Nirmalathasan N, Donne R, Desdouets C, Sola MS, Kotta K, Montégut L, Lambertucci F, Surdez D, Sandrine G, Delattre O, Maiuri MC, Bravo-San Pedro JM, Martins I, Kroemer G. An obesogenic feedforward loop involving PPARγ, acyl-CoA binding protein and GABA A receptor. Cell Death Dis 2022; 13:356. [PMID: 35436993 PMCID: PMC9016078 DOI: 10.1038/s41419-022-04834-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.
Collapse
Affiliation(s)
- Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Valentina Sica
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Romain Donne
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, 75006, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | | | - Konstantina Kotta
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Grossetête Sandrine
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005, Paris, France
- Unité de Génétique Somatique, Service d'oncogénétique, Institut Curie, Centre Hospitalier, 75005, Paris, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
10
|
Sun Y, Cao X, Guo Y, Liu B, Zhang Y. The Prognostic and Molecular Landscape of Autophagy-Related Long Noncoding RNA in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5614915. [PMID: 35097120 PMCID: PMC8794669 DOI: 10.1155/2022/5614915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Current evidence suggests that autophagy is closely correlated with the pathogenesis and development of malignant tumors. This study is aimed at assessing the potential prognostic significance of autophagy-related long noncoding RNA (ARlncRNA) in colorectal cancer (CRC). 3145 ARlncRNAs were obtained from autophagy-related genes (ARGs) by Pearson correlation analysis, and we established a competing endogenous RNA (ceRNA) network mediated by ARlncRNAs. A novel six-ARlncRNA prognostic signature was constructed based on TCGA samples used as the training group. Kaplan-Meier survival analysis and independent prognosis analysis were performed on the internal (training and test groups) and external validations (GEO datasets) to assess the accuracy and clinical practicability. Moreover, the nomogram combining the two independent prognostic factors (age and ARlncRNA-risk score (ARlncRNA-RS)) intuitively displayed overall survival. Gene set enrichment analysis (GSEA) conducted on the prognostic signature revealed that the gene set of the high-risk group was significantly enriched in the hallmark gene set "hypoxia" and the gene set of the low-risk group was enriched in KEGG pathways, including "peroxisome," "the citrate cycle (TCA cycle)," and "other glycan degradation." Assessment of antineoplastic therapy susceptibility and microsatellite instability (MSI) analysis were performed on CRC samples based on the prognostic signature. Moreover, Spearman correlation analysis was conducted on the expression of six ARlncRNAs of the prognostic signature and cancer stem cell (CSC) index as well as the tumor microenvironment (TME). In conclusion, this study established a six-ARlncRNA prognostic signature, which yielded favorable prognostic significance and demonstrated the correlation between ARlncRNAs and CRC progression.
Collapse
Affiliation(s)
- YuanLin Sun
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - XueYuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - YuChen Guo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
11
|
Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab 2021; 32:890-903. [PMID: 34565656 PMCID: PMC8785413 DOI: 10.1016/j.tem.2021.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
Four decades ago Costa and colleagues identified a small, secreted polypeptide in the brain that can displace the benzodiazepine diazepam from the GABAA receptor, and was thus termed diazepam binding inhibitor (DBI). Shortly after, an identical polypeptide was identified in liver by its ability to induce termination of fatty acid synthesis, and was named acyl-CoA binding protein (ACBP). Since then, ACBP/DBI has been studied in parallel without a clear and integrated understanding of its dual roles. The first genetic loss-of-function models have revived the field, allowing targeted approaches to better understand the physiological roles of ACBP/DBI in vivo. We discuss the roles of ACBP/DBI in central and tissue-specific functions in mammals, with an emphasis on metabolism and mechanisms of action.
Collapse
Affiliation(s)
- Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pharmacology and Physiology, Biochemistry, and Neurosciences, Université de Montréal, Montreal, QC, Canada.
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
12
|
Astrocyte Gliotransmission in the Regulation of Systemic Metabolism. Metabolites 2021; 11:metabo11110732. [PMID: 34822390 PMCID: PMC8623475 DOI: 10.3390/metabo11110732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
Collapse
|
13
|
Lamtahri R, Hazime M, Gowing EK, Nagaraja RY, Maucotel J, Alasoadura M, Quilichini PP, Lehongre K, Lefranc B, Gach-Janczak K, Marcher AB, Mandrup S, Vaudry D, Clarkson AN, Leprince J, Chuquet J. The Gliopeptide ODN, a Ligand for the Benzodiazepine Site of GABA A Receptors, Boosts Functional Recovery after Stroke. J Neurosci 2021; 41:7148-7159. [PMID: 34210784 PMCID: PMC8372017 DOI: 10.1523/jneurosci.2255-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.
Collapse
Affiliation(s)
- Rhita Lamtahri
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | - Mahmoud Hazime
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | - Emma K Gowing
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 76000, 9054, New Zealand
| | - Raghavendra Y Nagaraja
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 76000, 9054, New Zealand
| | - Julie Maucotel
- Normandie Université, UNIROUEN, Animal Facility, Rouen, 76000, France
| | - Michael Alasoadura
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | | | - Katia Lehongre
- Inserm U 1127, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7225, Sorbonne Universités, UPMC Univ Paris 06 Unite Mixte de Recherche S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France
| | - Benjamin Lefranc
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
- Institute for Research and Innovation in Biomedicine, Normandie Université, PRIMACEN, Rouen, 76000, France
| | - Katarzyna Gach-Janczak
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
- Department of Biomolecular Chemistry, Medicinal University of Łódź, Łódź, 90-137, Poland
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - David Vaudry
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
- Institute for Research and Innovation in Biomedicine, Normandie Université, PRIMACEN, Rouen, 76000, France
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, 76000, 9054, New Zealand
| | - Jérôme Leprince
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
- Institute for Research and Innovation in Biomedicine, Normandie Université, PRIMACEN, Rouen, 76000, France
| | - Julien Chuquet
- Normandie Université, UNIROUEN, Institut National de la Santé et de la Recherche Médicale U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| |
Collapse
|
14
|
Li S, Joseph A, Martins I, Kroemer G. Elevated plasma levels of the appetite-stimulator ACBP/DBI in fasting and obese subjects. Cell Stress 2021; 5:89-98. [PMID: 34308254 PMCID: PMC8283301 DOI: 10.15698/cst2021.07.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release the phylogenetically ancient protein acyl coenzyme A binding protein (ACBP, which in humans is encoded by the gene DBI, diazepam binding inhibitor) upon nutrient deprivation. Accordingly, mice that are starved for one to two days and humans that undergo voluntary fasting for one to three weeks manifest an increase in the plasma concentration of ACBP/DBI. Paradoxically, ACBP/DBI levels also increase in obese mice and humans. Since ACBP/DBI stimulates appetite, this latter finding may explain why obesity constitutes a self-perpetuating state. Here, we present a theoretical framework to embed these findings in the mechanisms of weight control, as well as a bioinformatics analysis showing that, irrespective of the human cell or tissue type, one single isoform of ACBP/DBI (ACBP1) is preponderant (~90% of all DBI transcripts, with the sole exception of the testis, where it is ~70%). Based on our knowledge, we conclude that ACBP1 is subjected to a biphasic transcriptional and post-transcriptional regulation, explaining why obesity and fasting both are associated with increased circulating ACBP1 protein levels.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France.,SL and AJ equally contributed to this paper
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Joseph A, Chen H, Anagnostopoulos G, Montégut L, Lafarge A, Motiño O, Castedo M, Maiuri MC, Clément K, Terrisse S, Martin AL, Vaz-Luis I, Andre F, Grundler F, de Toledo FW, Madeo F, Zitvogel L, Goldwasser F, Blanchet B, Fumeron F, Roussel R, Martins I, Kroemer G. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis 2021; 12:599. [PMID: 34108446 PMCID: PMC8190068 DOI: 10.1038/s41419-021-03864-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
In mice, the plasma concentrations of the appetite-stimulatory and autophagy-inhibitory factor acyl-coenzyme A binding protein (ACBP, also called diazepam-binding inhibitor, DBI) acutely increase in response to starvation, but also do so upon chronic overnutrition leading to obesity. Here, we show that knockout of Acbp/Dbi in adipose tissue is sufficient to prevent high-fat diet-induced weight gain in mice. We investigated ACBP/DBI plasma concentrations in several patient cohorts to discover a similar dual pattern of regulation. In relatively healthy subjects, ACBP/DBI concentrations independently correlated with body mass index (BMI) and age. The association between ACBP/DBI and BMI was lost in subjects that underwent major weight gain in the subsequent 3-9 years, as well as in advanced cancer patients. Voluntary fasting, undernutrition in the context of advanced cancer, as well as chemotherapy were associated with an increase in circulating ACBP/DBI levels. Altogether, these results support the conclusion that ACBP/DBI may play an important role in body mass homeostasis as well as in its failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Antoine Lafarge
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Castedo
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karine Clément
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France
| | - Safae Terrisse
- Department of Medical Oncology, Saint-Louis Hospital, Paris Descartes University, AP-HP, Paris, France
| | | | - Ines Vaz-Luis
- INSERM Unit 981, Gustave Roussy, Cancer Campus, Villejuif, France
- Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | - Fabrice Andre
- INSERM Unit 981, Gustave Roussy, Cancer Campus, Villejuif, France
- Medical Oncology, Gustave Roussy, Cancer Campus, Villejuif, France
| | | | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Laurence Zitvogel
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
- INSERM U1015, Gustave Roussy, Cancer Campus, 94800, Villejuif, France
- INSERM CICBT1428, Centre d'Investigation Clinique-Biothérapie, 94800, Villejuif, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
- URP4466, Paris University, Paris, France
| | - Benoit Blanchet
- Pharmacokinetics and Pharmacochemistry Unit, Cochin Hospital, Paris Descartes University, CARPEM, AP-HP, Paris, France
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, University of Paris, PRES Sorbonne Paris Cité, CARPEM, 75006, Paris, France
| | - Frédéric Fumeron
- Centre de Recherche des Cordeliers, UMR-S 1138, INSERM, Université de Paris, Paris, France
| | - Ronan Roussel
- Centre de Recherche des Cordeliers, UMR-S 1138, INSERM, Université de Paris, Paris, France
- Department of Diabetology, Endocrinology, Nutrition, AP-HP, Bichat Hospital, Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Department of Physiology, University Complutense of Madrid, Madrid, Spain.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Genes Encoding Microbial Acyl Coenzyme A Binding Protein/Diazepam-Binding Inhibitor Orthologs Are Rare in the Human Gut Microbiome and Show No Links to Obesity. Appl Environ Microbiol 2021; 87:e0047121. [PMID: 33837018 PMCID: PMC8174751 DOI: 10.1128/aem.00471-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acyl coenzyme A (CoA) binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a phylogenetically conserved protein that is expressed by all eukaryotic species as well as by some bacteria. Since elevated ACBP/DBI levels play a major role in the inhibition of autophagy, increase in appetite, and enhanced lipid storage that accompany obesity, we wondered whether ACBP/DBI produced by the human microbiome might affect host weight. We found that the genomes of bacterial commensals rarely contain ACBP/DBI homologues, which are rather encoded by genomes of some pathogenic or environmental taxa that were not prevalent in human feces. Exhaustive bioinformatic analyses of 1,899 gut samples from healthy individuals refuted the hypothesis that bacterial ACBP/DBI might affect the body mass index (BMI) in a physiological context. Thus, the physiological regulation of BMI is unlikely to be affected by microbial ACBP/DBI-like proteins. However, at the speculative level, it remains possible that ACBP/DBI produced by potential pathogenic bacteria might enhance their virulence by inhibiting autophagy and hence subverting innate immune responses. IMPORTANCE Acyl coenzyme A (CoA) binding protein (ACBP) can be encoded by several organisms across the domains of life, including microbes, and has shown to play major roles in human metabolic processes. However, little is known about its presence in the human gut microbiome and whether its microbial counterpart could also play a role in human metabolism. In the present study, we found that microbial ACBP/DBI sequences were rarely present in the gut microbiome across multiple metagenomic data sets. Microbes that carried ACBP/DBI in the human gut microbiome included Saccharomyces cerevisiae, Lautropia mirabilis, and Comamonas kerstersii, but these microorganisms were not associated with body mass index, further indicating an unconvincing role for microbial ACBP/DBI in human metabolism.
Collapse
|
17
|
Padmanabhan S, Manjithaya R. Facets of Autophagy Based Unconventional Protein Secretion-The Road Less Traveled. Front Mol Biosci 2020; 7:586483. [PMID: 33363205 PMCID: PMC7755989 DOI: 10.3389/fmolb.2020.586483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Unconventional protein secretion (UCPS) of leaderless proteins bypasses the conventional endoplasmic reticulum (ER)-Golgi route. The proportion of UCPS in the secretome varies tremendously across eukaryotes. Interestingly, macroautophagy, an intracellular recycling process that is generally involved in cargo degradation, also participates in UCPS. This emerging field of secretory mode of autophagy is underexplored and has several unanswered questions regarding the composition of players, cargo, and the mechanisms that drive it. As secretomes vary considerably across cell types and physiological conditions, the contribution of secretory autophagy in healthy and pathophysiological states remain to be elucidated. Recent studies have begun to shed light on this enigmatic process.
Collapse
Affiliation(s)
- Sreedevi Padmanabhan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
18
|
Masmoudi-Kouki O, Namsi A, Hamdi Y, Bahdoudi S, Ghouili I, Chuquet J, Leprince J, Lefranc B, Ghrairi T, Tonon MC, Lizard G, Vaudry D. Cytoprotective and Neurotrophic Effects of Octadecaneuropeptide (ODN) in in vitro and in vivo Models of Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:566026. [PMID: 33250858 PMCID: PMC7672186 DOI: 10.3389/fendo.2020.566026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Octadecaneuropeptide (ODN) and its precursor diazepam-binding inhibitor (DBI) are peptides belonging to the family of endozepines. Endozepines are exclusively produced by astroglial cells in the central nervous system of mammals, and their release is regulated by stress signals and neuroactive compounds. There is now compelling evidence that the gliopeptide ODN protects cultured neurons and astrocytes from apoptotic cell death induced by various neurotoxic agents. In vivo, ODN causes a very strong neuroprotective action against neuronal degeneration in a mouse model of Parkinson's disease. The neuroprotective activity of ODN is based on its capacity to reduce inflammation, apoptosis, and oxidative stress. The protective effects of ODN are mediated through its metabotropic receptor. This receptor activates a transduction cascade of second messengers to stimulate protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathways, which in turn inhibits the expression of proapoptotic factor Bax and the mitochondrial apoptotic pathway. In N2a cells, ODN also promotes survival and stimulates neurite outgrowth. During the ODN-induced neuronal differentiation process, numerous mitochondria and peroxisomes are identified in the neurites and an increase in the amount of cholesterol and fatty acids is observed. The antiapoptotic and neurotrophic properties of ODN, including its antioxidant, antiapoptotic, and pro-differentiating effects, suggest that this gliopeptide and some of its selective and stable derivatives may have therapeutic value for the treatment of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amira Namsi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism/University Bourgogne Franche-Comté (UBFC)/Inserm, Dijon, France
| | - Yosra Hamdi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Seyma Bahdoudi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Ikram Ghouili
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Julien Chuquet
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Jérôme Leprince
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Benjamin Lefranc
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation, LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Marie-Christine Tonon
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism/University Bourgogne Franche-Comté (UBFC)/Inserm, Dijon, France
| | - David Vaudry
- Normandy University, Neuronal and Neuroendocrine Differentiation and Communication, Inserm U1239, Rouen, France
- Normandy University, Regional Platform for Cell Imaging of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
19
|
Lebrun B, Barbot M, Tonon MC, Prévot V, Leprince J, Troadec JD. Glial endozepines and energy balance: Old peptides with new tricks. Glia 2020; 69:1079-1093. [PMID: 33105065 DOI: 10.1002/glia.23927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level. However, it is only recently that their modes of action, including the mechanisms by which they modulate energy metabolism, have begun to be elucidated. The data available today are abundant, significant, and sometimes contradictory, revealing a much more complex regulation than initially expected. Several mechanisms of action of endozepines seem to coexist at the central level, particularly in the hypothalamus. The brainstem has also recently emerged as a potential site of action for endozepines. In addition to their central anorexigenic effects, endozepines may also display peripheral effects promoting orexigenic actions, adding to their complexity and raising yet more questions. In this review, we attempt to provide an overview of our current knowledge in this rapidly evolving field and to pinpoint questions that remain unanswered.
Collapse
Affiliation(s)
- Bruno Lebrun
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| | - Manon Barbot
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| | - Marie-Christine Tonon
- INSERM U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Vincent Prévot
- University of Lille, INSERM, CHU Lille, Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, European Genomic Institute of Diabetes (EGID), Lille, France
| | - Jérôme Leprince
- INSERM U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Jean-Denis Troadec
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| |
Collapse
|
20
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
21
|
Cavalli G, Cenci S. Autophagy and Protein Secretion. J Mol Biol 2020; 432:2525-2545. [PMID: 31972172 DOI: 10.1016/j.jmb.2020.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Autophagy - conventional for macroautophagy - is a major recycling strategy that ensures cellular homeostasis through the selective engulfment of cytoplasmic supramolecular cargos in double membrane vesicles and their rapid dispatch to the lysosome for digestion. As autophagy operates in the cytoplasm, its interference with secretory proteins, that is, proteins destined to the plasma membrane or the extracellular space, generally synthesized and routed within the endoplasmic reticulum (ER), has been relatively overlooked in the past. However, mounting evidence reveals that autophagy in fact heavily regulates protein secretion through diverse mechanisms. First, autophagy is closely involved in the unconventional secretion of leaderless proteins, a pool of proteins destined extracellularly, but lacking an ER-targeted leader sequence, and thus manufactured in the cytosol. Autophagy-related (ATG) genes now appear instrumental to the underlying pathways, hence the recently coined concept of secretory autophagy, or better ATG gene-dependent secretion. Indeed, ATG genes regulate unconventional protein secretion at multiple levels, ranging from intracellular inflammatory signaling, for example, through the control of mitochondrial health and inflammasome activity, to trafficking of leaderless proteins. Moreover, perhaps less expectedly, autophagy also participates in the control of conventional secretion, intersecting the secretory apparatus at multiple points, though with surprising differences among professional secretory cell types that disclose remarkable and unpredicted specificity. This review synopsizes the multiple mechanisms whereby autophagy interfaces with conventional and unconventional protein secretory pathways and discusses the relative teleology. Altogether, the diverse controls exerted on protein secretion broaden and deepen the homeostatic significance of autophagy within the cell.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Ospedale San Raffaele, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milano, Italy; Unit of Age Related Diseases, Division of Genetics and Cell Biology, Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
22
|
Bouyakdan K, Martin H, Liénard F, Budry L, Taib B, Rodaros D, Chrétien C, Biron É, Husson Z, Cota D, Pénicaud L, Fulton S, Fioramonti X, Alquier T. The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. J Clin Invest 2019; 129:2417-2430. [PMID: 30938715 PMCID: PMC6546475 DOI: 10.1172/jci123454] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glial cells have emerged as key players in the central control of energy balance and etiology of obesity. Astrocytes play a central role in neural communication via the release of gliotransmitters. Acyl-CoA binding protein (ACBP)-derived endozepines are secreted peptides that modulate the GABAA receptor. In the hypothalamus, ACBP is enriched in arcuate nucleus (ARC) astrocytes, ependymocytes and tanycytes. Central administration of the endozepine octadecaneuropeptide (ODN) reduces feeding and improves glucose tolerance, yet the contribution of endogenous ACBP in energy homeostasis is unknown. We demonstrated that ACBP deletion in GFAP+ astrocytes, but not in Nkx2.1-lineage neural cells, promoted diet-induced hyperphagia and obesity in both male and female mice, an effect prevented by viral rescue of ACBP in ARC astrocytes. ACBP-astrocytes were observed in apposition with proopiomelanocortin (POMC) neurons and ODN selectively activated POMC neurons through the ODN-GPCR but not GABAA, and supressed feeding while increasing carbohydrate utilization via the melanocortin system. Similarly, ACBP overexpression in ARC astrocytes reduced feeding and weight gain. Finally, the ODN-GPCR agonist decreased feeding and promoted weight loss in ob/ob mice. These findings uncover ACBP as an ARC gliopeptide playing a key role in energy balance control and exerting strong anorectic effects via the central melanocortin system.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Martin
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Budry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Bouchra Taib
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Chrétien
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Éric Biron
- Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Quebec, Quebec, Canada
| | - Zoé Husson
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Stromalab, CNRS ERL 5311, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, NutriNeuro, Bordeaux, France
- Bordeaux INP, NutriNeuro, Talence, France
- Centre des Sciences du Goût et de l’Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pathology and Cell Biology, Biochemistry, Neurosciences, and Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Abstract
OBJECTIVES Anxiety and adjustment disorders are among the most prevalent mental health conditions. This review focuses on γ-aminobutyric acid receptor type A (GABAAR)-mediated anxiolysis, describing the action of both endogenous and exogenous modulators of GABAAR. Future directions and innovative strategies to alleviate anxiety symptoms are discussed, with a particular emphasis on etifoxine. METHODS We used available data from the recent literature to update the mode of action of anxiolytics. We focussed our search on anxiolytics acting at GABAARs, as well as on the pharmacological properties of formerly and currently prescribed anxiolytics. RESULTS Considering the adverse effects of current treatments aimed at increasing inhibitory controls, optimisation of existing pharmacotherapies is of crucial importance. Among the alternative compounds targeting the GABAergic system, translocator protein (TSPO) ligands, such as etifoxine (EFX), which promote endogenous neurosteroidogenesis, are emerging as promising candidates for anxiety relief. In several papers comparing the efficacy of benzodiazepines and EFX, EFX showed interesting properties with limited side effects. Indeed, neurosteroids are potent GABAAR modulators with highly underrated anxiolytic properties. CONCLUSIONS Novel therapeutic strategies have been emerging following the recognition of neurosteroids as potent anxiolytics. Featured at the top of the list for well-tolerated anxiety relief, TSPO ligands such as etifoxine appear promising.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Geraldine Gazzo
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Laurent Calvel
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| |
Collapse
|
24
|
|
25
|
Ghouili I, Bahdoudi S, Morin F, Amri F, Hamdi Y, Coly PM, Walet-Balieu ML, Leprince J, Zekri S, Vaudry H, Vaudry D, Castel H, Amri M, Tonon MC, Masmoudi-Kouki O. Endogenous Expression of ODN-Related Peptides in Astrocytes Contributes to Cell Protection Against Oxidative Stress: Astrocyte-Neuron Crosstalk Relevance for Neuronal Survival. Mol Neurobiol 2017; 55:4596-4611. [PMID: 28698967 DOI: 10.1007/s12035-017-0630-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022]
Abstract
Astroglial cells are important actors in the defense of brain against oxidative stress injuries. Glial cells synthesize and release the octadecaneuropeptide ODN, a diazepam-binding inhibitor (DBI)-related peptide, which acts through its metabotropic receptor to protect neurons and astrocytes from oxidative stress-induced apoptosis. The purpose of the present study is to examine the contribution of the endogenous ODN in the protection of astrocytes and neurons from moderate oxidative stress. The administration of H2O2 (50 μM, 6 h) induced a moderate oxidative stress in cultured astrocytes, i.e., an increase in reactive oxygen species, malondialdehyde, and carbonyl group levels, but it had no effect on astrocyte death. Mass spectrometry and QPCR analysis revealed that 50 μM H2O2 increased ODN release and DBI mRNA levels. The inhibition of ODN release or pharmacological blockage of the effects of ODN revealed that in these conditions, 50 μM H2O2 induced the death of astrocytes. The transfection of astrocytes with DBI siRNA increased the vulnerability of cells to moderate stress. Finally, the addition of 1 nM ODN to culture media reversed cell death observed in DBI-deficient astrocytes. The treatment of neurons with media from 50 μM H2O2-stressed astrocytes significantly reduced the neuronal death induced by H2O2; this effect is greatly attenuated by the administration of an ODN metabotropic receptor antagonist. Overall, these results indicate that astrocytes produce authentic ODN, notably in a moderate oxidative stress situation, and this glio- and neuro-protective agent may form part of the brain defense mechanisms against oxidative stress injury.
Collapse
Affiliation(s)
- Ikram Ghouili
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.,Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Fabrice Morin
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Fatma Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Yosra Hamdi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Pierre Michael Coly
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Marie-Laure Walet-Balieu
- Regional Proteomic Platform (Pissaro), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.,Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Sami Zekri
- Electron Microscopy Laboratory, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - David Vaudry
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.,Regional Proteomic Platform (Pissaro), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,Regional Platform for Cell Imaging of Normandie (PRIMACEN), IRIB, University of Rouen Normandie, Mont-Saint-Aignan, France.,International Associated Laboratory Samuel de Champlain, University of Rouen Normandie, Mont-Saint-Aignan, France
| | - Hélène Castel
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Marie-Christine Tonon
- Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76128, Mont-Saint-Aignan, France.
| | - Olfa Masmoudi-Kouki
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Research Unit UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.
| |
Collapse
|
26
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
27
|
Budry L, Bouyakdan K, Tobin S, Rodaros D, Marcher AB, Mandrup S, Fulton S, Alquier T. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice. Behav Brain Res 2016; 313:201-207. [PMID: 27363924 DOI: 10.1016/j.bbr.2016.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
Abstract
Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam.
Collapse
Affiliation(s)
- Lionel Budry
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Khalil Bouyakdan
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Biochemistry, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Stephanie Tobin
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Demetra Rodaros
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Ann-Britt Marcher
- Departments of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Susanne Mandrup
- Departments of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stephanie Fulton
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Biochemistry, University of Montreal, Montreal, QC, H3T 1J4, Canada; Departments of Pathology and Cell Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
28
|
Lanfray D, Caron A, Roy MC, Laplante M, Morin F, Leprince J, Tonon MC, Richard D. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. eLife 2016; 5. [PMID: 26880548 PMCID: PMC4821795 DOI: 10.7554/elife.11742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/14/2016] [Indexed: 11/28/2022] Open
Abstract
Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. DOI:http://dx.doi.org/10.7554/eLife.11742.001 Obesity is an increasingly common problem worldwide. To treat it effectively, we must understand how the body controls how much food a person consumes and how much energy they expend. The hypothalamus is one region of the brain that plays a critical role in regulating this energy balance. Some of the neurons in the hypothalamus can change their activity when they detect satiety hormones including the leptin, which is produced by fat cells and suppresses appetite. However, it is not clear exactly how the neurons respond to leptin and other energy-related signals. Recent studies have linked the gene that encodes a protein called ACBD7 with obesity, and showed that it is one of the genes that is overexpressed in neurons that are sensitive to leptin. Now, Lanfray et al. have discovered a population of neurons that produce a new variant of the protein in the hypothalamus of mice. When this protein variant matures, it can be cut down to form a small protein-like molecule called NDN. Further experiments showed that leptin stimulates the production of both the new ABCD7 variant and NDN. Lanfray et al. then injected mice that had been denied food for a several hours with NDN. The injected mice ate less than untreated mice, and burn more energy. NDN appears to form part of the signaling pathway through which leptin signals to the hypothalamus to control appetite. In the future, creating mice in which the activity of the gene that encodes ACBD7 can be easily disrupted could help to reveal more about how the hypothalamus helps to control energy balance. DOI:http://dx.doi.org/10.7554/eLife.11742.002
Collapse
Affiliation(s)
- Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Claude Roy
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Fabrice Morin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
29
|
Neess D, Bek S, Engelsby H, Gallego SF, Færgeman NJ. Long-chain acyl-CoA esters in metabolism and signaling: Role of acyl-CoA binding proteins. Prog Lipid Res 2015; 59:1-25. [PMID: 25898985 DOI: 10.1016/j.plipres.2015.04.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/03/2023]
Abstract
Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular processes including fatty acid-, glycerolipid- and glycerophospholipid biosynthesis, β-oxidation, cellular differentiation and proliferation as well as in the regulation of numerous enzyme activities. Little is known about the specific roles of the ACBDs in the regulation of these processes, however, recent studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function of ACBD1, commonly known as ACBP.
Collapse
Affiliation(s)
- Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Signe Bek
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanne Engelsby
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sandra F Gallego
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
30
|
Bouyakdan K, Taïb B, Budry L, Zhao S, Rodaros D, Neess D, Mandrup S, Faergeman NJ, Alquier T. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes. J Neurochem 2015; 133:253-65. [PMID: 25598214 DOI: 10.1111/jnc.13035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), Montreal, Quebec, Canada; Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Since their introduction in the 1960s, benzodiazepines (BZs) remain one of the most commonly prescribed medications, acting as potent sedatives, hypnotics, anxiolytics, anticonvulsants, and muscle relaxants. The primary neural action of BZs and related compounds is augmentation of inhibitory transmission, which occurs through allosteric modulation of the gamma-aminobutyric acid (GABA)-induced current at the gamma-aminobutyric acid receptor (GABAAR). The discovery of the BZ-binding site on GABAARs encouraged many to speculate that the brain produces its own endogenous ligands to this site (Costa & Guidotti, 1985). The romanticized quest for endozepines, endogenous ligands to the BZ-binding site, has uncovered a variety of ligands that might fulfill this role, including oleamides (Cravatt et al., 1995), nonpeptidic endozepines (Rothstein et al., 1992), and the protein diazepam-binding inhibitor (DBI) (Costa & Guidotti, 1985). Of these ligands, DBI, and affiliated peptide fragments, is the most extensively studied endozepine. The quest for the "brain's Valium" over the decades has been elusive as mainly negative allosteric modulatory effects have been observed (Alfonso, Le Magueresse, Zuccotti, Khodosevich, & Monyer, 2012; Costa & Guidotti, 1985), but recent evidence is accumulating that DBI displays regionally discrete endogenous positive modulation of GABA transmission through activation of the BZ receptor (Christian et al., 2013). Herein, we review the literature on this topic, focusing on identification of the endogenous molecule and its region-specific expression and function.
Collapse
|
32
|
Smith CC, Gibbs TT, Farb DH. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology (Berl) 2014; 231:3537-56. [PMID: 24997854 PMCID: PMC4625978 DOI: 10.1007/s00213-014-3643-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022]
Abstract
RATIONALE The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. OBJECTIVES New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. RESULTS Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca(2+)- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca(2+) levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. CONCLUSIONS PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.
Collapse
Affiliation(s)
- Conor C. Smith
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Terrell T. Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - David H. Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| |
Collapse
|
33
|
Loomis WF. Cell signaling during development of Dictyostelium. Dev Biol 2014; 391:1-16. [PMID: 24726820 PMCID: PMC4075484 DOI: 10.1016/j.ydbio.2014.04.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Continuous communication between cells is necessary for development of any multicellular organism and depends on the recognition of secreted signals. A wide range of molecules including proteins, peptides, amino acids, nucleic acids, steroids and polylketides are used as intercellular signals in plants and animals. They are also used for communication in the social ameba Dictyostelium discoideum when the solitary cells aggregate to form multicellular structures. Many of the signals are recognized by surface receptors that are seven-transmembrane proteins coupled to trimeric G proteins, which pass the signal on to components within the cytoplasm. Dictyostelium cells have to judge when sufficient cell density has been reached to warrant transition from growth to differentiation. They have to recognize when exogenous nutrients become limiting, and then synchronously initiate development. A few hours later they signal each other with pulses of cAMP that regulate gene expression as well as direct chemotactic aggregation. They then have to recognize kinship and only continue developing when they are surrounded by close kin. Thereafter, the cells diverge into two specialized cell types, prespore and prestalk cells, that continue to signal each other in complex ways to form well proportioned fruiting bodies. In this way they can proceed through the stages of a dependent sequence in an orderly manner without cells being left out or directed down the wrong path.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 2014; 34:3793-806. [PMID: 24599476 DOI: 10.1523/jneurosci.3153-13.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.
Collapse
|
35
|
Bloksgaard M, Neess D, Færgeman NJ, Mandrup S. Acyl-CoA binding protein and epidermal barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:369-76. [DOI: 10.1016/j.bbalip.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
|
36
|
Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci U S A 2013; 110:20278-83. [PMID: 24262146 DOI: 10.1073/pnas.1318031110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates that diazepam-binding inhibitor (DBI) mediates an endogenous benzodiazepine-mimicking (endozepine) effect on synaptic inhibition in the thalamic reticular nucleus (nRT). Here we demonstrate that DBI peptide colocalizes with both astrocytic and neuronal markers in mouse nRT, and investigate the role of astrocytic function in endozepine modulation in this nucleus by testing the effects of the gliotoxin fluorocitrate (FC) on synaptic inhibition and endozepine signaling in the nRT using patch-clamp recordings. FC treatment reduced the effective inhibitory charge of GABAA receptor (GABAAR)-mediated spontaneous inhibitory postsynaptic currents in WT mice, indicating that astrocytes enhance GABAAR responses in the nRT. This effect was abolished by both a point mutation that inhibits classical benzodiazepine binding to GABAARs containing the α3 subunit (predominant in the nRT) and a chromosomal deletion that removes the Dbi gene. Thus, astrocytes are required for positive allosteric modulation via the α3 subunit benzodiazepine-binding site by DBI peptide family endozepines. Outside-out sniffer patches pulled from neurons in the adjacent ventrobasal nucleus, which does not contain endozepines, show a potentiated response to laser photostimulation of caged GABA when placed in the nRT. FC treatment blocked the nRT-dependent potentiation of this response, as did the benzodiazepine site antagonist flumazenil. When sniffer patches were placed in the ventrobasal nucleus, however, subsequent treatment with FC led to potentiation of the uncaged GABA response, suggesting nucleus-specific roles for thalamic astrocytes in regulating inhibition. Taken together, these results suggest that astrocytes are required for endozepine actions in the nRT, and as such can be positive modulators of synaptic inhibition.
Collapse
|
37
|
Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H, Bouchard C, Monge-Roffarello B, Richard D, Pelletier G, Vaudry H, Tonon MC, Morin F. Gliotransmission and brain glucose sensing: critical role of endozepines. Diabetes 2013; 62:801-10. [PMID: 23160530 PMCID: PMC3581199 DOI: 10.2337/db11-0785] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Damien Lanfray
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Sébastien Arthaud
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5167, University Claude Bernard Lyon 1, Lyon, France
| | - Johanne Ouellet
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Vincent Compère
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Department of Anaesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - Jean-Luc Do Rego
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Hélène Castel
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Cynthia Bouchard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Boris Monge-Roffarello
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Denis Richard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Hubert Vaudry
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Marie-Christine Tonon
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| | - Fabrice Morin
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| |
Collapse
|
38
|
Kim SH, Kwon C, Lee JH, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells 2012; 34:413-23. [PMID: 22772908 PMCID: PMC3887786 DOI: 10.1007/s10059-012-0098-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022] Open
Abstract
Autophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed. In addition, growing evidence suggests that autophagy communicates with other cellular pathways such as the ubiquitin-proteasome system, protein secretory pathway, and endocytic pathway. An increase in our understanding of plant autophagy will undoubtedly help test the hypothesized functions of plant autophagy in programmed cell death, vacuole biogenesis, and responses to biotic, abiotic, and nutritional stresses. In this review, we summarize recent progress on these topics and suggest topics for future research, after inspecting common phenotypes of current Arabidopsis atg mutants.
Collapse
Affiliation(s)
- Soon-Hee Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| | | | | | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
39
|
Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012; 7:e45427. [PMID: 23029002 PMCID: PMC3446899 DOI: 10.1371/journal.pone.0045427] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023] Open
Abstract
Background Sepsis is associated with systemic inflammatory responses and induction of coagulation system. Neutrophil extracellular traps (NETs) constitute an antimicrobial mechanism, recently implicated in thrombosis via platelet entrapment and aggregation. Methodology/Principal Findings In this study, we demonstrate for the first time the localization of thrombogenic tissue factor (TF) in NETs released by neutrophils derived from patients with gram-negative sepsis and normal neutrophils treated with either serum from septic patients or inflammatory mediators involved in the pathogenesis of sepsis. Localization of TF in acidified autophagosomes was observed during this process, as indicated by positive LC3B and LysoTracker staining. Moreover, phosphatidylinositol 3-kinase inhibition with 3-MA or inhibition of endosomal acidification with bafilomycin A1 hindered the release of TF-bearing NETs. TF present in NETs induced thrombin generation in culture supernatants, which further resulted in protease activated receptor-1 signaling. Conclusions/Significance This study demonstrates the involvement of autophagic machinery in the extracellular delivery of TF in NETs and the subsequent activation of coagulation cascade, providing evidence for the implication of this process in coagulopathy and inflammatory response in sepsis.
Collapse
|
40
|
Macroautophagy and cell responses related to mitochondrial dysfunction, lipid metabolism and unconventional secretion of proteins. Cells 2012; 1:168-203. [PMID: 24710422 PMCID: PMC3901093 DOI: 10.3390/cells1020168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 12/28/2022] Open
Abstract
Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion.
Collapse
|
41
|
Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. ACTA ACUST UNITED AC 2011; 195:979-92. [PMID: 22144692 PMCID: PMC3241719 DOI: 10.1083/jcb.201106098] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel membrane structure called CUPS is assembled during the secretion of unconventional cargo such as Acb1. The endoplasmic reticulum (ER)–Golgi-independent, unconventional secretion of Acb1 requires many different proteins. They include proteins necessary for the formation of autophagosomes, proteins necessary for the fusion of membranes with the endosomes, proteins of the multivesicular body pathway, and the cell surface target membrane SNARE Sso1, thereby raising the question of what achieves the connection between these diverse proteins and Acb1 secretion. In the present study, we now report that, upon starvation in Saccharomyces cerevisiae, Grh1 is collected into unique membrane structures near Sec13-containing ER exit sites. Phosphatidylinositol 3 phosphate, the ESCRT (endosomal sorting complex required for transport) protein Vps23, and the autophagy-related proteins Atg8 and Atg9 are recruited to these Grh1-containing membranes, which lack components of the Golgi apparatus and the endosomes, and which we call a novel compartment for unconventional protein secretion (CUPS). We describe the cellular proteins required for the biogenesis of CUPS, which we believe is the sorting station for Acb1’s release from the cells.
Collapse
Affiliation(s)
- Caroline Bruns
- Department of Cell and Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Anjard C, Su Y, Loomis WF. The polyketide MPBD initiates the SDF-1 signaling cascade that coordinates terminal differentiation in Dictyostelium. EUKARYOTIC CELL 2011; 10:956-63. [PMID: 21602484 PMCID: PMC3147415 DOI: 10.1128/ec.05053-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/08/2011] [Indexed: 12/24/2022]
Abstract
Dictyostelium uses a wide array of chemical signals to coordinate differentiation as it switches from a unicellular to a multicellular organism. MPBD, the product of the polyketide synthase encoded by stlA, regulates stalk and spore differentiation by rapidly stimulating the release of the phosphopeptide SDF-1. By analyzing specific mutants affected in MPBD or SDF-1 production, we delineated a signal transduction cascade through the membrane receptor CrlA coupled to Gα1, leading to the inhibition of GskA so that the precursor of SDF-1 is released. It is then processed by the extracellular protease of TagB on prestalk cells. SDF-1 apparently acts through the adenylyl cyclase ACG to activate the cyclic AMP (cAMP)-dependent protein kinase A (PKA) and trigger the production of more SDF-1. This signaling cascade shows similarities to the SDF-2 signaling pathway, which acts later to induce rapid spore encapsulation.
Collapse
Affiliation(s)
| | - Yongxuan Su
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0368
| | - William F. Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0368
| |
Collapse
|
43
|
Manjithaya R, Subramani S. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol 2011; 21:67-73. [PMID: 20961762 PMCID: PMC3025270 DOI: 10.1016/j.tcb.2010.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/06/2023]
Abstract
Autophagy, a cellular 'self-eating' process in eukaryotic cells, exists in both a basal and in an activated state that is induced in response to starvation. Basal and induced autophagy are associated with the packaging of cellular components, including damaged and/or redundant organelles, into double-membrane vesicles called autophagosomes, followed by autophagosome fusion with lysosomes, in which their contents are degraded and recycled. Recent results highlight a novel role for autophagy that does not involve lysosomal degradation of autophagosomal contents, but instead involves their redirection towards the extracellular delivery of an unconventionally secreted protein. Here, we discuss these findings, evaluate the strength of evidence, consider their implications for the field of protein trafficking, and suggest the next steps required to probe this interesting pathway.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| |
Collapse
|
44
|
Neess D, Bloksgaard M, Bek S, Marcher AB, Elle IC, Helledie T, Due M, Pagmantidis V, Finsen B, Wilbertz J, Kruhøffer M, Færgeman N, Mandrup S. Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning. J Biol Chem 2010; 286:3460-72. [PMID: 21106527 DOI: 10.1074/jbc.m110.161109] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C(14)-C(22) acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP(-/-)). These mice are viable and fertile and develop normally. However, around weaning, the ACBP(-/-) mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP(-/-) mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver.
Collapse
Affiliation(s)
- Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|