1
|
Zhang J, Zhao JJ, Zhou HD, Chen J, Hong MN, Wang JG, Gao PJ, Li XD. Endothelial KLF15/VASN Axis Inhibits Angiogenesis via Activation of Notch1 Signaling. Circ Res 2025. [PMID: 40297901 DOI: 10.1161/circresaha.124.325494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Angiogenesis is a dynamic process fine-tuned by transcription factors in endothelial cells. The KLF15 (Krüppel-like factor 15)-mediated transcriptional regulation mechanism is critical for cardiovascular diseases. However, the role of KLF15 in governing angiogenesis remains unknown. METHODS KLF15 and VASN (vasorin) were deleted from endothelial cells using tamoxifen-inducible Cdh5 promoter-driven Cre recombinase in EC-KLF15 knockout (KO) and EC-VASN KO mice, respectively. EC-KLF15 KO, EC-VASN KO, and control mice were subjected to retinal angiogenesis or tumor cell transplantation. The RNA sequencing, assay for transposase-accessible chromatin using sequencing, and chromatin immunoprecipitation sequencing were conducted to identify VASN as a downstream effector of KLF15. Cell proliferation, wound healing, tube formation, and sprouting assays were performed to delineate endothelial cell function. RESULTS In EC-KLF15 KO mice and adenovirus-mediated KLF15 overexpression mice, we showed that KLF15 negatively regulated retinal angiogenesis, as confirmed in cultured endothelial cells. KLF15 opened chromatin, bound to the promoters of GC-rich sequences, and transactivated the expression of VASN. Subsequently, VASN suppressed endothelial angiogenic function, which was essential for Dll4 (delta-like ligand 4)-induced Notch1 signaling activation. Moreover, increased expression of VASN in EC-KLF15 KO mice suppressed retinal angiogenesis, which was attenuated by γ-secretase inhibitor. EC-VASN KO mice recapitulated the promotion of retinal angiogenesis in EC-KLF15 KO mice. Finally, the EGF (epidermal growth factor)-like domain of VASN was essential for its interaction with Notch1, and VASN EGF-like domain-derived peptides activated Notch1 signaling and suppressed angiogenesis. CONCLUSIONS The KLF15/VASN axis negatively regulates angiogenesis by activating Notch1 signaling. KLF15 and VASN might represent novel therapeutic targets for the treatment of impaired angiogenesis-related diseases and tumors.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, China (J.Z.)
| | - Jia-Jia Zhao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Han-Dan Zhou
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Jing Chen
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., J.-J.Z., H.-D.Z., J.C., M.-N.H., J.-G.W., P.-J.G., X.-D.L.)
| |
Collapse
|
2
|
Zhang Y, Han S, Li Y, Zhou Y, Sun M, Hu M, Zhou C, Lin L, Lan J, Lu X, Zhang Q, Liu L, Jin J. Manganese inhibits HBV transcription and promotes HBsAg degradation at non-toxic levels. Int J Biol Macromol 2024; 280:135764. [PMID: 39299429 DOI: 10.1016/j.ijbiomac.2024.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to pose a significant global health challenge. However, therapeutic measures for a cure are lacking in clinical practice. Manganese, an essential trace element, has garnered attention due to its potential to activate innate immune pathways and its significant role in antiviral and antitumor immunity. Yet, the specific impact of manganese on chronic hepatitis B has been largely unexplored. Our research reveals that manganese substantially inhibits HBV replication in hepatocellular carcinoma cells at non-toxic levels. This suppression occurs independently of well-known anti-HBV innate immune pathways, such as the cGAS-STING pathway. Mechanistically, manganese decreases HBV transcription by diminishing the levels of liver-specific transcription factors. Furthermore, it activates the mTOR pathway, enhancing HBsAg ubiquitination through the upregulation of the ubiquitin ligase β-TrCP and increasing proteasome activity via the augmentation of its subunits, leading to a ubiquitin-dependent degradation of HBsAg. Significantly, our study also uncovers a notable clinical correlation between manganese levels and chronic hepatitis B infection. These findings position manganese as a critical element in diminishing HBV replication, offering a new direction in the management of chronic hepatitis B.
Collapse
Affiliation(s)
- Yong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| | - Shaowei Han
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuanyuan Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yuting Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengdan Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Mingna Hu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; School of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Chengcai Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Lu Lin
- Clinical Medical College, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xing Lu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Qinqin Zhang
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, Guangxi, China
| | - Lingyun Liu
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Department of Hepatobiliary and Pancreatic Surgery, Laboratory of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.
| |
Collapse
|
3
|
Fu M, Du Y, Liu F, Xiao J, Zhang L, Zeng Y, Yang Y, Yan Y. Prognostic value of KLFs family genes in renal clear cell carcinoma. Sci Rep 2024; 14:20204. [PMID: 39215019 PMCID: PMC11364764 DOI: 10.1038/s41598-024-69892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous studies have shown that the Krüppel-like factors (KLFs) family of transcription factors regulate various eukaryotic physiological processes including the proliferation, differentiation, senescence, death, and carcinogenesis of animal cells. In addition, they are involved in the regulation of key biological processes such as cell cycle, DNA repair, and immune response. Current studies focus on investigating the role of KLFs in normal physiological conditions and the incidence and development of diseases. However002C the significance of KLFs family genes in clear cell renal cell carcinoma (ccRCC) remains partly understood; therefore, an in-depth investigation of their role and clinical value in this cancer is desired. The study aimed to investigate the role of KLF family genes in the incidence, development, and prognosis of ccRCC, and to identify the related potential biomarkers and therapeutic targets. The expression of KLFs in the RNA sequencing data of 613 ccRCCs from the TCGA database was analyzed using R software, and UALCAN and GEPIA assessed the expression of KLF genes in ccRCC. Real-time fluorescence quantitative PCR analysis was performed using 10 pairs of paired ccRCC sample tissues and renal cancer cell lines from the First Affiliated Hospital of Nanchang University. Overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) of Kidney Clear Cell Carcinoma (KIRC) samples at differential expressions of KLFs in the TCGA database were analyzed using the R software, followed by generating a nomogram prediction model. GSCALite assessed the interactions of KLF genes with miRNAs and generated network maps. Protein interaction network maps of 50 neighboring genes associated with KLF mutations were analyzed using STRING with GO and KEGG functional enrichment analyses. The cBioPortal determined the probability of KLF gene mutations and their impact on OS and disease-free survival (DFS) in patients with ccRCC. Immune cell infiltration of KLFs was analyzed using TIMER. Finally, GSCALite was used to analyze the drug sensitivity and associated pathways of action of KLFs. Correlation validation using cellular experiments. KLF3/5/9/15 were significantly downregulated in ccRCC tissues, whereas KLF16/17 were upregulated compared with the adjacent tissues. Patients with high mRNA levels of KLF16/17 showed significantly lower OS, PFI, and DSS, whereas KLF3/5/9 showed a reverse trend. In patients with ccRCC, a significant correlation was observed between KLF mutations and OS and DSS. Furthermore, the correlation of KLF3/5/9 with immune cell infiltration was stronger than that of KLF15/16, while KLF17 was significantly associated with the Epithelial-Mesenchymal Transition (EMT) pathway. Overexpression of KLF5 inhibits the proliferative and migratory capacity of renal cancer cells (786-O and OS-RC-2), as well as their sensitivity to relevant small molecule drugs. Our research revealed the expression levels and biological significance of KLF genes in ccRCC, particularly highlighting the potential of KLF5 as a promising biomarker and therapeutic target for effective prognosis and diagnosis of ccRCC.
Collapse
Affiliation(s)
- MengRu Fu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - YuanZhuo Du
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China, 330000
| | - Fei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Jun Xiao
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yan Zeng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - YuJuan Yang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China.
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
4
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
5
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
6
|
Abstract
Research conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.
Collapse
Affiliation(s)
- Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Cardiology, Duke University, Durham, NC, USA.
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Constantin A, Comarița IK, Alexandru N, Filippi A, Bojin F, Gherghiceanu M, Vîlcu A, Nemecz M, Niculescu LS, Păunescu V, Georgescu A. Stem cell‐derived extracellular vesicles reduce the expression of molecules involved in cardiac hypertrophy—In a model of human-induced pluripotent stem cell-derived cardiomyocytes. Front Pharmacol 2022; 13:1003684. [PMID: 36299891 PMCID: PMC9589060 DOI: 10.3389/fphar.2022.1003684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiac pathological hypertrophy is the major risk factor that usually progresses to heart failure. We hypothesized that extracellular vesicles (EVs), known to act as important mediators in regulating physiological and pathological functions, could have the potential to reduce the cardiac hypertrophy and the ensuing cardiovascular diseases. Herein, the effects of mesenchymal stem cell-derived extracellular vesicles (EV-MSCs) on cardiac hypertrophy were investigated. EVs were isolated from the secretome of human adipose tissue-derived stem cells (EV-ADSCs) or bone marrow-derived stem cells (EV-BMMSCs). Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were stimulated with AngII and TGF-β1, in absence or presence of EVs. The results showed that exposure of hiPSC-CMs to AngII and TGF-β1 generated in vitro model of hypertrophic cardiomyocytes characterized by increases in surface area, reactive oxygen species production, protein expression of cardiac-specific biomarkers atrial natriuretic factor, migration inhibitory factor, cTnI, COL1A1, Cx43, α-SMA and signalling molecules SMAD2 and NF-kBp50. The presence of EV-ADSCs or EV-BMMSCs in the hiPSC-CM culture along with hypertrophic stimuli reduced the protein expressions of hypertrophic specific markers (ANF, MIF, cTnI, COL1A1) and the gene expressions of IL-6 molecule involved in inflammatory process associated with cardiac hypertrophy and transcription factors SMAD2, SMAD3, cJUN, cFOS with role in cardiomyocyte hypertrophic response induced by AngII and TGF-β1. The EV-ADSCs were more effective in reducing the protein expressions of hypertrophic and inflammatory markers, while EV-BMMSCs in reducing the gene expressions of transcription factors. Notably, neither EV-ADSCs nor EV-BMMSCs induced significant changes in cardiac biomarkers Cx43, α-SMA and fibronectin. These different effects of stem cell-derived EVs could be attributed to their miRNA content: some miRNAs (miR-126-3p, miR-222-3p, miR-30e-5p, miR-181b-5p, miR-124-3p, miR-155-5p, miR-210-3p hsa-miR-221-3p) were expressed in both types of EVs and others only in EV-ADSCs (miR-181a-5p, miR-185-5p, miR-21-5p) or in EV-BMMSCs (miR-143-3p, miR-146a-5p, miR-93-5p), some of these attenuating the cardiac hypertrophy while others enhance it. In conclusion, in hiPSC-CMs the stem cell-derived EVs through their cargo reduced the expression of hypertrophic specific markers and molecules involved in inflammatory process associated with cardiac hypertrophy. The data suggest the EV potential to act as therapeutic mediators to reduce cardiac hypertrophy and possibly the subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comarița
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Florina Bojin
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Mihaela Gherghiceanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Alexandra Vîlcu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Loredan Stefan Niculescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Virgil Păunescu
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- *Correspondence: Adriana Georgescu,
| |
Collapse
|
8
|
Liao B, Tian X. CTRP12 alleviates cardiomyocyte ischemia‑reperfusion injury via regulation of KLF15. Mol Med Rep 2022; 26:247. [PMID: 35656890 PMCID: PMC9185681 DOI: 10.3892/mmr.2022.12763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) serves a crucial role in myocardial infarction. C1q/TNF-related protein 12 (CTRP12) is a secretory protein involved in metabolism. It has been reported that CTRP12 participates in the regulation of numerous cardiovascular diseases. However, its role in myocardial I/R injury remains unclear. In the present study, the left anterior descending coronary artery in mice was ligated to establish a mouse I/R model. A myocardial hypoxia-reoxygenation (H/R) cell model was also established. Cardiomyocyte injury was evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 and a lactate dehydrogenase (LDH) kit. The expression levels of CTRP12 and Krueppel-like factor 15 (KLF15) in murine myocardial tissues and H9c2 cells were determined using reverse transcription-quantitative PCR and western blotting, as KLF15 was previously reported to protect against I/R-induced cardiomyocyte damage. Furthermore, inflammatory factors TNF-α, IL-1β and IL-6 were analyzed using ELISA while apoptosis was assessed using TUNEL assays and western blotting. Moreover, the activity of the CTRP12 promoter was determined using a dual-luciferase reporter assay. The results demonstrated that I/R surgery markedly exacerbated myocardial tissue damage, whereas H/R treatment significantly reduced cell viability and significantly increased LDH activity as well as the release of inflammatory factors and apoptosis. I/R and H/R induction significantly reduced the expression levels of CTRP12 and KLF15. CTRP12 overexpression significantly alleviated H/R-induced cell injury and significantly inhibited inflammation and apoptosis. Further analysis demonstrated that KLF15 could significantly promote the activity of the CTRP12 promoter. However, following CTRP12 knockdown, KLF15 overexpression exacerbated cell injury, inflammation and apoptosis. In conclusion, the present study demonstrated that CTRP12 may mitigate inflammation and apoptosis in H/R-induced cardiomyocytes, possibly via the regulation of KLF15, which provided a theoretical basis for the potential treatment of I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Bo Liao
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoyuan Tian
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
9
|
Hashimoto K, Kodama A, Ohira M, Kimoto M, Nakagawa R, Usui Y, Ujihara Y, Hanashima A, Mohri S. Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. iScience 2022; 25:104337. [PMID: 35602953 PMCID: PMC9118685 DOI: 10.1016/j.isci.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction of fetal cell cycle genes into damaged adult hearts has emerged as a promising strategy for stimulating proliferation and regeneration of postmitotic adult cardiomyocytes. We have recently identified Fam64a as a fetal-specific cell cycle promoter in cardiomyocytes. Here, we analyzed transgenic mice maintaining cardiomyocyte-specific postnatal expression of Fam64a when endogenous expression was abolished. Despite an enhancement of cardiomyocyte proliferation, these mice showed impaired cardiomyocyte differentiation during postnatal development, resulting in cardiac dysfunction in later life. Mechanistically, Fam64a inhibited cardiomyocyte differentiation by repressing Klf15, leading to the accumulation of undifferentiated cardiomyocytes. In contrast, introduction of Fam64a in differentiated adult wildtype hearts improved functional recovery upon injury with augmented cell cycle and no dedifferentiation in cardiomyocytes. These data demonstrate that Fam64a inhibits cardiomyocyte differentiation during early development, but does not induce de-differentiation in once differentiated cardiomyocytes, illustrating a promising potential of Fam64a as a cell cycle promoter to attain heart regeneration. Overexpression of cell cycle promoter Fam64a in cardiomyocytes causes heart failure Fam64a inhibits cardiomyocyte differentiation during development by repressing Klf15 Transient and local induction of Fam64a in adult hearts improves recovery upon injury Fam64a activates cardiomyocyte cell cycle without dedifferentiation upon injury
Collapse
Affiliation(s)
- Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Aya Kodama
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Momoko Ohira
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Misaki Kimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki 701-0192, Japan
| |
Collapse
|
10
|
Kitagawa A, Jacob C, Gupte SA. Glucose-6-phosphate dehydrogenase and MEG3 controls hypoxia-induced expression of serum response factor (SRF) and SRF-dependent genes in pulmonary smooth muscle cell. J Smooth Muscle Res 2022; 58:34-49. [PMID: 35491127 PMCID: PMC9057900 DOI: 10.1540/jsmr.58.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although hypoxia induces aberrant gene expression and dedifferentiation of smooth muscle cells (SMCs), mechanisms that alter dedifferentiation gene expression by hypoxia remain unclear. Therefore, we aimed to gain insight into the hypoxia-controlled gene expression in SMCs. We conducted studies using SMCs cultured in 3% oxygen (hypoxia) and the lungs of mice exposed to 10% oxygen (hypoxia). Our results suggest hypoxia upregulated expression of transcription factor CP2-like protein1, krüppel-like factor 4, and E2f transcription factor 1 enriched genes including basonuclin 2 (Bcn2), serum response factor (Srf), polycomb 3 (Cbx8), homeobox D9 (Hoxd9), lysine demethylase 1A (Kdm1a), etc. Additionally, we found that silencing glucose-6-phosphate dehydrogenase (G6PD) expression and inhibiting G6PD activity downregulated Srf transcript and hypomethylation of SMC genes (Myocd, Myh11, and Cnn1) and concomitantly increased their expression in the lungs of hypoxic mice. Furthermore, G6PD inhibition hypomethylated MEG3, a long non-coding RNA, gene and upregulated MEG3 expression in the lungs of hypoxic mice and in hypoxic SMCs. Silencing MEG3 expression in SMC mitigated the hypoxia-induced transcription of SRF. These findings collectively demonstrate that MEG3 and G6PD codependently regulate Srf expression in hypoxic SMCs. Moreover, G6PD inhibition upregulated SRF-MYOCD-driven gene expression, determinant of a differentiated SMC phenotype.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| |
Collapse
|
11
|
Wang C, Chu X, Deng Y, Wang J, Qiu T, Zhu J, Yang X, Pan C, Xiong J, Xie J, Chang Y, Zhang J. PA and OA induce abnormal glucose metabolism by inhibiting KLF15 in adipocytes. Nutr Metab (Lond) 2021; 18:100. [PMID: 34802421 PMCID: PMC8607635 DOI: 10.1186/s12986-021-00628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background Obesity-induced elevated serum free fatty acids (FFAs) levels result in the occurrence of type 2 diabetes mellitus (T2DM). However, the molecular mechanism remains largely enigmatic. This study was to explore the effect and mechanism of KLF15 on FFAs-induced abnormal glucose metabolism. Methods Levels of TG, TC, HDL-C, LDL-C, and glucose were measured by different assay kits. qRT-PCR and Western Blot were used to detect the levels of GPR120, GPR40, phosphorylation of p38 MAPK, KLF15, and downstream factors. Results KLF15 was decreased in visceral adipose tissue of obesity subjects and high-fat diet (HFD) mice. In HFD mice, GPR120 antagonist significantly promoted KLF15 protein expression level and phosphorylation of p38 MAPK, meanwhile reduced the blood glucose levels. While, blocking GPR40 inhibited the KLF15 expression. In 3T3-L1 adipocytes, 1500 μM PA inhibited KLF15 through a GPR120/P-p38 MAPK signal pathway, and 750 μM OA inhibited KLF15 mainly through GPR120 while not dependent on P-p38 MAPK, ultimately resulting in abnormal glucose metabolism. Unfortunately, GPR40 didn’t contribute to PA or OA-induced KLF15 reduction. Conclusions Both PA and OA inhibit KLF15 expression through GPR120, leading to abnormal glucose metabolism in adipocytes. Notably, the inhibition of KLF15 expression by PA depends on phosphorylation of p38 MAPK. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00628-2.
Collapse
Affiliation(s)
- Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Yuchun Deng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jingzhou Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Tongtong Qiu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jiaojiao Zhu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Xin Yang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Chongge Pan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jianyu Xiong
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Yongsheng Chang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China. .,Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
12
|
Tian Y, Wang Z, Zheng X, Song W, Cai L, Rane M, Zhao Y. KLF15 negatively regulates cardiac fibrosis by which SDF-1β attenuates cardiac fibrosis in type 2 diabetic mice. Toxicol Appl Pharmacol 2021; 427:115654. [PMID: 34310909 DOI: 10.1016/j.taap.2021.115654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a serious diabetic complication that lacks effective preventive or therapeutic approaches. Wild-type and Klf15 knockout (Klf15-KO) mice were fed with either high fat diet (HFD, 60% kcal from fat) or normal diet (ND, 10% kcal from fat) for 3 months and then injected with streptozotocin or vehicle, to induce type 2 diabetes (T2D). All T2D and age-matched control mice were treated with or without SDF-1β at 5 mg/kg body-weight twice a week and also continually received HFD or ND for 3 months. At the end of 6-month study, after cardiac functions were measured, mice were euthanized to collect heart tissue. For in vitro mechanistic study, H9c2 cells were exposed to palmitate to mimic in vivo condition of T2D. SDF-1β prevented T2D-induced cardiac dysfunction and fibrosis and T2D-down-regulated KLF15 expression in wild-type diabetic heart tissue. However, the preventive effects of SDF-1β on both KLF15 expression and fibrosis was abolished, with partial cardiac protection in Klf15-KO/T2D mice. These results demonstrate partial KLF15-dependence for SDF-1β's cardiac fibrotic protection from T2D, but not on SDF-1β's protective effects on T2D-induced cardiac dysfunction. Further study showed that SDF-1β inhibited palmitate-induced cardiomyocyte fibrosis through its receptor CXCR7-mediated activation of p38β MAPK signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhenyu Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiangyu Zheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Madhavi Rane
- Division Nephrology, Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
13
|
Narita K, Amiya E. Is branched-chain amino acid nutritional supplementation beneficial or detrimental in heart failure? World J Cardiol 2021; 13:163-169. [PMID: 34194634 PMCID: PMC8223699 DOI: 10.4330/wjc.v13.i6.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia or cachexia is often complicated in heart failure. Nutritional support, particularly branched-chain amino acid (BCAA) supplementation, is a candidate treatment for improving sarcopenia or cachexia in elderly patients. However, the efficacy of BCAA supplementation in patients with heart failure has not been established, and the issue is comparatively more complex. Indeed, there are conflicting reports on the efficacy of BCAA supplementation. The evidence for including BCAA supplementation in treating patients with heart failure was reviewed, and the complexity of the issue was discussed.
Collapse
Affiliation(s)
- Koichi Narita
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
14
|
Cid-Díaz T, Leal-López S, Fernández-Barreiro F, González-Sánchez J, Santos-Zas I, Andrade-Bulos LJ, Rodríguez-Fuentes ME, Mosteiro CS, Mouly V, Casabiell X, Relova JL, Pazos Y, Camiña JP. Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. J Cachexia Sarcopenia Muscle 2021; 12:493-505. [PMID: 33687156 PMCID: PMC8061369 DOI: 10.1002/jcsm.12677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A therapeutic approach for the treatment of glucocorticoid-induced skeletal muscle atrophy should be based on the knowledge of the molecular mechanisms determining the unbalance between anabolic and catabolic processes and how to re-establish this balance. Here, we investigated whether the obestatin/GPR39 system, an autocrine signalling system acting on myogenesis and with anabolic effects on the skeletal muscle, could protect against chronic glucocorticoid-induced muscle atrophy. METHODS In this study, we used an in vivo model of muscle atrophy induced by the synthetic glucocorticoid dexamethasone to examine the liaison molecules that define the interaction between the glucocorticoid receptor and the obestatin/GPR39 systems. The findings were extended to in vitro effects on human atrophy using human KM155C25 myotubes. RESULTS KLF15 and FoxO transcription factors were identified as direct targets of obestatin signalling in the control of proteostasis in skeletal muscle. The KLF15-triggered gene expression program, including atrogenes and FoxOs, was regulated via KLF15 ubiquitination by the E3 ubiquitin ligase NEDD4. Additionally, a specific pattern of FoxO post-translational modification, including FoxO4 phosphorylation by Akt pathway, was critical in the regulation of the ubiquitin-proteasome system. The functional cooperativity between Akt and NEDD4 in the regulation of FoxO and KLF15 provides integrated cues to counteract muscle proteostasis and re-establish protein synthesis. CONCLUSIONS The effective control of FoxO activity in response to glucocorticoid is critical to counteract muscle-related pathologies. These results highlight the potential of the obestatin/GPR39 system to fine-tune the effects of glucocorticoids on skeletal muscle wasting.
Collapse
Affiliation(s)
- Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Saúl Leal-López
- Laboratorio de Patología Digestiva, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Fátima Fernández-Barreiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Icía Santos-Zas
- Paris Cardiovascular Research Center-PARCC, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 970, Paris, France
| | - Luis J Andrade-Bulos
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Manuel E Rodríguez-Fuentes
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Vincent Mouly
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Xesús Casabiell
- Departamento de Fisiología, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Jose Luis Relova
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain.,Departamento de Fisiología, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Li H, Pan Y, Bao L, Li Y, Cheng C, Liu L, Xiang J, Cheng J, Zhang J, Chu W, Shen Y. Impact of short-term starvation and refeeding on the expression of KLF15 and regulatory mechanism of branched-chain amino acids metabolism in muscle of Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2020; 752:144782. [PMID: 32442577 DOI: 10.1016/j.gene.2020.144782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 10/25/2022]
Abstract
The branched-chain amino acids (BCAA) play an important role in muscle energy metabolism, and Krüppel-like factor 15 (KLF15) is an essential regulator of BCAA metabolism in muscle under nutritional deficiency. In this study, we analyzed the effect of normal feeding (starvation for 0 day), starvation for 3, 7, 10, 15 days, and refeeding for 7 days after 15 days of starvation on the expression of KLF15 and BCAA metabolism in muscle of Chinese soft-shelled turtles by a fasting-refeeding trial. The results showed that the level of KLF15 transcription was increased first and then decreased in muscle during short-term starvation, and the protein level was gradually increased. Both the mRNA and protein level of the KLF15 returned to normal feeding level after refeeding for 7 days. The changing trend of the activities of branched-chain aminotransferase (BCAT) and alanine aminotransferase (ALT) was consistent to that of KLF15 mRNA, but at the transcription level, the expression of BCAT mRNA was consistent with the change of enzyme activity as well as ALT continued to increase in muscle under starvation. In addition, BCAA content showed a trend that decreased first and then increased under starvation, while the alanine (Ala) was the contrary. The above results indicated that the regulatory role of KLF15 in BCAA catabolism of muscle in Chinese soft-shelled turtles under nutritional deficiency, which might be activated the catabolism of BCAA in muscle to provide energy and maintain the homeostasis by KLF15-BACC signaling axis.
Collapse
Affiliation(s)
- Honghui Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Lingsheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yulong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Congyi Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Li Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China; Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jing Xiang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jianshe Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Hussain S, Khan AW, Akhmedov A, Suades R, Costantino S, Paneni F, Caidahl K, Mohammed SA, Hage C, Gkolfos C, Björck H, Pernow J, Lund LH, Lüscher TF, Cosentino F. Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circ Res 2020; 127:1261-1273. [PMID: 32815777 DOI: 10.1161/circresaha.120.317132] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Hyperglycemia -induced reactive oxygen species are key mediators of cardiac dysfunction. JunD (Jund proto-oncogene subunit), a member of the AP-1 (activator protein-1) family of transcription factors, is emerging as a major gatekeeper against oxidative stress. However, its contribution to redox state and inflammation in the diabetic heart remains to be elucidated. OBJECTIVE The present study investigates the role of JunD in hyperglycemia-induced and reactive oxygen species-driven myocardial dysfunction. METHODS AND RESULTS JunD mRNA and protein expression were reduced in the myocardium of mice with streptozotocin-induced diabetes mellitus as compared to controls. JunD downregulation was associated with oxidative stress and left ventricular dysfunction assessed by electron spin resonance spectroscopy as well as conventional and 2-dimensional speckle-tracking echocardiography. Furthermore, myocardial expression of free radical scavenger superoxide dismutase 1 and aldehyde dehydrogenase 2 was reduced, whereas the NOX2 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 2) and NOX4 (NADPH [nicotinamide adenine dinucleotide phosphatase] oxidase subunit 4) were upregulated. The redox changes were associated with increased NF-κB (nuclear factor kappa B) binding activity and expression of inflammatory mediators. Interestingly, mice with cardiac-specific overexpression of JunD via the α MHC (α- myosin heavy chain) promoter (α MHC JunDtg) were protected against hyperglycemia-induced cardiac dysfunction. We also showed that JunD was epigenetically regulated by promoter hypermethylation, post-translational modification of histone marks, and translational repression by miRNA (microRNA)-673/menin. Reduced JunD mRNA and protein expression were confirmed in left ventricular specimens obtained from patients with type 2 diabetes mellitus as compared to nondiabetic subjects. CONCLUSIONS Here, we show that a complex epigenetic machinery involving DNA methylation, histone modifications, and microRNAs mediates hyperglycemia-induced JunD downregulation and myocardial dysfunction in experimental and human diabetes mellitus. Our results pave the way for tissue-specific therapeutic modulation of JunD to prevent diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shafaat Hussain
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Abdul Waheed Khan
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Rosa Suades
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.).,University Heart Center and Department of Research and Education, University Hospital Zürich, Switzerland (F.P.)
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery (K.C.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden (K.C.)
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Camilla Hage
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Christos Gkolfos
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Hanna Björck
- Center for Molecular Medicine, Department of Medicine (H.B.), Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Lars H Lund
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland (A.A., S.C., F.P., S.A.M., T.F.L.)
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (S.H., A.W.K., R.S., C.H., C.G., J.P., L.H.L., F.C.)
| |
Collapse
|
17
|
Ferdous A, Wang ZV, Luo Y, Li DL, Luo X, Schiattarella GG, Altamirano F, May HI, Battiprolu PK, Nguyen A, Rothermel BA, Lavandero S, Gillette TG, Hill JA. FoxO1-Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nat Commun 2020; 11:2551. [PMID: 32439985 PMCID: PMC7242347 DOI: 10.1038/s41467-020-16345-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O (FoxO) proteins and thyroid hormone (TH) have well established roles in cardiovascular morphogenesis and remodeling. However, specific role(s) of individual FoxO family members in stress-induced growth and remodeling of cardiomyocytes remains unknown. Here, we report that FoxO1, but not FoxO3, activity is essential for reciprocal regulation of types II and III iodothyronine deiodinases (Dio2 and Dio3, respectively), key enzymes involved in intracellular TH metabolism. We further show that Dio2 is a direct transcriptional target of FoxO1, and the FoxO1-Dio2 axis governs TH-induced hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo. Utilizing transverse aortic constriction as a model of hemodynamic stress in wild-type and cardiomyocyte-restricted FoxO1 knockout mice, we unveil an essential role for the FoxO1-Dio2 axis in afterload-induced pathological cardiac remodeling and activation of TRα1. These findings demonstrate a previously unrecognized FoxO1-Dio2 signaling axis in stress-induced cardiomyocyte growth and remodeling and intracellular TH homeostasis.
Collapse
Affiliation(s)
- Anwarul Ferdous
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Zhao V Wang
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Yuxuan Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Dan L Li
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Xiang Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Herman I May
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Pavan K Battiprolu
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Annie Nguyen
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Sergio Lavandero
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Advanced Center for Chronic Diseases (ACCDiS) and Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Universidad de Chile, Santiago, 8380492, Chile
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| |
Collapse
|
18
|
Noack C, Iyer LM, Liaw NY, Schoger E, Khadjeh S, Wagner E, Woelfer M, Zafiriou MP, Milting H, Sossalla S, Streckfuss-Boemeke K, Hasenfuß G, Zimmermann WH, Zelarayán LC. KLF15-Wnt-Dependent Cardiac Reprogramming Up-Regulates SHISA3 in the Mammalian Heart. J Am Coll Cardiol 2020; 74:1804-1819. [PMID: 31582141 DOI: 10.1016/j.jacc.2019.07.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.
Collapse
Affiliation(s)
- Claudia Noack
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Computational and Systems Biology, Genome Institute of Singapore (GIS), Singapore
| | - Norman Y Liaw
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
| | - Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
| | - Sara Khadjeh
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Eva Wagner
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Monique Woelfer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
| | - Maria-Patapia Zafiriou
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Samuel Sossalla
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Boemeke
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Gerd Hasenfuß
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
| | - Laura C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Georg-August University, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany.
| |
Collapse
|
19
|
Zou SF, Yu Y, Peng Y, Xiao YB, Jian Z, Jiang YH, Chen S, Tang FQ, Chen L. KLF15 is a protective regulatory factor of heart failure induced by pressure overload. Mol Med Rep 2020; 21:1336-1345. [PMID: 31922214 DOI: 10.3892/mmr.2020.10913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/09/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of Kruppel‑like factor 15 (KLF15) overexpression on heart failure (HF) induced by left ventricular (LV) pressure overload in mice. Wild‑type (WT) mice and cardiac‑specific KLF15‑overexpressed transgenic (TG) mice were selected as research subjects, and an LV pressure overload model was constructed by ascending aortic constriction surgery. Changes in cardiac morphology and function, and ultrastructure and molecular expression were observed via M‑mode echocardiography, histological and immunohistochemical staining, ELISA and western blotting at 2 and 6 weeks of LV overload. WT and TG mice subjected to 2 weeks of overload displayed adaptive LV hypertrophy characterized by ventricular thickness, cardiomyocyte size, ejection fraction and fractional shortening of heart‑lung weight ratio and KLF15, and increases in vascular endothelial growth factor (VEGF) expression without other pathological changes. WT mice subjected to 6 weeks of overload displayed enlargement of the LV chamber, severe interstitial remodeling, and HW/LW, cardiac capillary and heart function decline, accompanied by downregulated expression of KLF15 and VEGF, and upregulated expression of connective tissue growth factor, phosphorylated p38 (p‑p38) and phosphorylated Smad3 (p‑Smad3). In contrast, TG mice exhibited improved resistance to 6 weeks of overload and a slighter molecular expression response compared with WT mice. KLF15 was revealed to be a critical factor regulating the expression of CTGF, VEGF, p‑p38 and p‑Smad3, and could alleviate the progression from adaptive LV hypertrophy to decompensatory cardiac insufficiency.
Collapse
Affiliation(s)
- Shu-Fan Zou
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Yang Yu
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Yan Peng
- Department of Cardiology, Daping Hospital Affiliated to Army Medical University, Chongqing 400042, P.R. China
| | - Ying-Bin Xiao
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Zhao Jian
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Yun-Han Jiang
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Sai Chen
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Fu-Qin Tang
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| | - Lin Chen
- Department of Cardiovascular Surgery, Xinqiao Hospital Affiliated to Army Medical University, Chongqing 400030, P.R. China
| |
Collapse
|
20
|
Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, Al Batran R, Pherwani S, Ho KL, Boisvenue J, Karwi QG, Altamimi T, Wishart DS, Dyck JRB, Ussher JR, Oudit GY, Lopaschuk GD. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol 2019; 18:86. [PMID: 31277657 PMCID: PMC6610921 DOI: 10.1186/s12933-019-0892-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Branched chain amino acids (BCAA) can impair insulin signaling, and cardiac insulin resistance can occur in the failing heart. We, therefore, determined if cardiac BCAA accumulation occurs in patients with dilated cardiomyopathy (DCM), due to an impaired catabolism of BCAA, and if stimulating cardiac BCAA oxidation can improve cardiac function in mice with heart failure. METHOD For human cohorts of DCM and control, both male and female patients of ages between 22 and 66 years were recruited with informed consent from University of Alberta hospital. Left ventricular biopsies were obtained at the time of transplantation. Control biopsies were obtained from non-transplanted donor hearts without heart disease history. To determine if stimulating BCAA catabolism could lessen the severity of heart failure, C57BL/6J mice subjected to a transverse aortic constriction (TAC) were treated between 1 to 4-week post-surgery with either vehicle or a stimulator of BCAA oxidation (BT2, 40 mg/kg/day). RESULT Echocardiographic data showed a reduction in ejection fraction (54.3 ± 2.3 to 22.3 ± 2.2%) and an enhanced formation of cardiac fibrosis in DCM patients when compared to the control patients. Cardiac BCAA levels were dramatically elevated in left ventricular samples of patients with DCM. Hearts from DCM patients showed a blunted insulin signalling pathway, as indicated by an increase in P-IRS1ser636/639 and its upstream modulator P-p70S6K, but a decrease in its downstream modulators P-AKT ser473 and in P-GSK3β ser9. Cardiac BCAA oxidation in isolated working hearts was significantly enhanced by BT2, compared to vehicle, following either acute or chronic treatment. Treatment of TAC mice with BT2 significantly improved cardiac function in both sham and TAC mice (63.0 ± 1.8 and 56.9 ± 3.8% ejection fraction respectively). Furthermore, P-BCKDH and BCKDK expression was significantly decreased in the BT2 treated groups. CONCLUSION We conclude that impaired cardiac BCAA catabolism and insulin signaling occur in human heart failure, while enhancing BCAA oxidation can improve cardiac function in the failing mouse heart.
Collapse
Affiliation(s)
- Golam M Uddin
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Saumya Shah
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Arata Fukushima
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Keshav Gopal
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Rami Al Batran
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada.,Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Jamie Boisvenue
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada.,Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Tariq Altamimi
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Metabolomics Innovation Centre, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - John R Ussher
- Katz Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.,Divsion of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, 423 Heritage Medical Research Centre, Edmonton, T6G 2S2, Canada. .,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. .,Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
21
|
Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: Underlying mechanisms and therapeutic implications. J Mol Cell Cardiol 2019; 129:193-196. [PMID: 30831134 DOI: 10.1016/j.yjmcc.2019.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-β (TGF-β), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Madhavi J Rane
- Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
22
|
Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovasc Diabetol 2019; 18:1. [PMID: 30626440 PMCID: PMC6325856 DOI: 10.1186/s12933-019-0806-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Background In heart failure the myocardium becomes insulin resistant which negatively influences cardiac energy metabolism and function, while increasing cardiac insulin signalling improves cardiac function and prevents adverse remodelling in the failing heart. Glucagon’s action on cardiac glucose and lipid homeostasis counteract that of insulin’s action. We hypothesised that pharmacological antagonism of myocardial glucagon action, using a human monoclonal antibody (mAb A) against glucagon receptor (GCGR), a G-protein coupled receptor, will enhance insulin sensitivity and improve cardiac energy metabolism and function post myocardial infarction (MI). Methods Male C57BL/6 mice were subjected to a permanent left anterior descending coronary artery ligation to induce MI, following which they received either saline or mAb A (4 mg kg−1 week−1 starting at 1 week post-MI) for 3 weeks. Results Echocardiographic assessment at 4 weeks post-MI showed that mAb A treatment improved % ejection fraction (40.0 ± 2.3% vs 30.7 ± 1.7% in vehicle-treated MI heart, p < 0.05) and limited adverse remodelling (LV mass: 129 ± 7 vs 176 ± 14 mg in vehicle-treated MI hearts, p < 0.05) post MI. In isolated working hearts an increase in insulin-stimulated glucose oxidation was evident in the mAb A-treated MI hearts (1661 ± 192 vs 924 ± 165 nmol g dry wt−1 min−1 in vehicle-treated MI hearts, p < 0.05), concomitant with a decrease in ketone oxidation and fatty acid oxidation rates. The increase in insulin stimulated glucose oxidation was accompanied by activation of the IRS-1/Akt/AS160/GSK-3β pathway, an increase in GLUT4 expression and a reduction in pyruvate dehydrogenase phosphorylation. This enhancement in insulin sensitivity occurred in parallel with a reduction in cardiac branched chain amino acids content (374 ± 27 vs 183 ± 41 µmol g protein−1 in vehicle-treated MI hearts, p < 0.05) and inhibition of the mTOR/P70S6K hypertrophic signalling pathway. The MI-induced increase in the phosphorylation of transforming growth factor β-activated kinase 1 (p-TAK1) and p38 MAPK was also reduced by mAb A treatment. Conclusions mAb A-mediated cardioprotection post-myocardial infarction is associated with improved insulin sensitivity and a selective enhancement of glucose oxidation via, at least in part, enhancing branched chain amino acids catabolism. Antagonizing glucagon action represents a novel and effective pharmacological intervention to alleviate cardiac dysfunction and adverse remodelling post-myocardial infarction.
Collapse
|
23
|
Wang R, Lin J, Bagchi RA. Novel molecular therapeutic targets in cardiac fibrosis: a brief overview 1. Can J Physiol Pharmacol 2018; 97:246-256. [PMID: 30388374 DOI: 10.1139/cjpp-2018-0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis, characterized by excessive accumulation of extracellular matrix, abolishes cardiac contractility, impairs cardiac function, and ultimately leads to heart failure. In recent years, significant evidence has emerged that supports the highly dynamic and responsive nature of the cardiac extracellular matrix. Although our knowledge of cardiac fibrosis has advanced tremendously over the past decade, there is still a lack of specific therapies owing to an incomplete understanding of the disease etiology and process. In this review, we attempt to highlight some of the recently investigated molecular determinants of ischemic and non-ischemic fibrotic remodeling of the myocardium that present as promising avenues for development of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Ryan Wang
- a Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Justin Lin
- b Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rushita A Bagchi
- c Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Tang Q, Li MY, Su YF, Fu J, Zou ZY, Wang Y, Li SN. Absence of miR-223-3p ameliorates hypoxia-induced injury through repressing cardiomyocyte apoptosis and oxidative stress by targeting KLF15. Eur J Pharmacol 2018; 841:67-74. [PMID: 30336138 DOI: 10.1016/j.ejphar.2018.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023]
Abstract
Apoptosis of cardiomyocytes and oxidant stress are considered essential processes in the progression of cardiovascular diseases. A hypoxic stress which causes apoptosis of cardiomyocytes is the main problem in ischemic heart disease. The aim of the present study was to explore the functional role and potential mechanisms of miR-223-3p in hypoxia-induced cardiomyocyte apoptosis and oxidative stress. Here, we observed a increment of miR-223-3p level accompanied by the decrease of Krüppel-like zinc-finger transcription factor 15 (KLF15) expression in response to hypoxia. Additionally, absence of miR-223-3p manifestly dampened hypoxia-induced cardiomyocyte injury in H9c2 cells, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis accompanied by an increase in the expression of Bcl-2 and a decrease in the expression of Bax and C-caspase 3 in the setting of hypoxia. Moreover, depletion of miR-223-3p evidently retarded oxidant stress by inhibiting reactive oxygen species generation and lipid peroxidation, as well as enhancing antioxidant enzyme activity in H9c2 cells following exposure to hypoxia. More importantly, KLF15 was a direct and functional target of miR-223-3p. Further data validated that miR-223-3p negatively regulated the expression of KLF15. Mechanistically, deletion of KLF15 partly abrogated the suppressive effects of miR-223-3p deletion on hypoxia-induced cardiomyocyte apoptosis and oxidative stress. Taken all data together, our findings established that our study defines a novel mechanism by which miR-223-3p protects against cardiomyocyte apoptosis and oxidative stress by targeting KLF15, suggesting that the miR-223-3p/KLF15 may be a potential therapeutic target for ischemic heart conditions.
Collapse
Affiliation(s)
- Qing Tang
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Ming-Yue Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Yu-Fei Su
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Jia Fu
- Department of Infection, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Zong-Yi Zou
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Yi Wang
- Department of Critical Care Medicine, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China
| | - Shao-Ning Li
- Department of Emergency, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, PR China.
| |
Collapse
|
25
|
Hoa N, Ge L, Korach KS, Levin ER. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol 2018; 470:240-250. [PMID: 29127073 PMCID: PMC6242344 DOI: 10.1016/j.mce.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Maintaining a healthy, anti-hypertrophic state in the heart prevents progression to cardiac failure. In humans, angiotensin II (AngII) indirectly and directly stimulates hypertrophy and progression, while estrogens acting through estrogen receptor beta (ERβ) inhibit these AngII actions. The KLF15 transcription factor has been purported to provide anti-hypertrophic action. In cultured neonatal rat cardiomyocytes, we found AngII inhibited KLF1 expression and nuclear localization, substantially prevented by estradiol (E2) or β-LGND2 (β-LGND2), an ERβ agonist. AngII stimulation of transforming growth factor beta expression in the myocytes activated p38α kinase via TAK1 kinase, inhibiting KLF15 expression. All was comparably reduced by E2 or β-LGND2. Knockdown of KLF15 in the myocytes induced myocyte hypertrophy and limited the anti-hypertrophic actions of E2 and β-LGND2. Key aspects were confirmed in an in-vivo model of cardiac hypertrophy. Our findings define additional anti-hypertrophic effects of ERβ supporting testing specific receptor agonists in humans to prevent progression of cardiac disease.
Collapse
Affiliation(s)
- Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | - Lisheng Ge
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | | | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA; Department of Medicine, University of California, Irvine, CA, 92717, USA; Department of Biochemistry, University of California, Irvine, CA, 92717, USA.
| |
Collapse
|
26
|
Patel SK, Velkoska E, Gayed D, Ramchand J, Lesmana J, Burrell LM. Left ventricular hypertrophy in experimental chronic kidney disease is associated with reduced expression of cardiac Kruppel-like factor 15. BMC Nephrol 2018; 19:159. [PMID: 29970016 PMCID: PMC6029153 DOI: 10.1186/s12882-018-0955-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Left ventricular hypertrophy (LVH) increases the risk of death in chronic kidney disease (CKD). The transcription factor Kruppel-like factor 15 (KLF15) is expressed in the heart and regulates cardiac remodelling through inhibition of hypertrophy and fibrosis. It is unknown if KLF15 expression is changed in CKD induced LVH, or whether expression is modulated by blood pressure reduction using angiotensin converting enzyme (ACE) inhibition. Methods CKD was induced in Sprague–Dawley rats by subtotal nephrectomy (STNx), and rats received vehicle (n = 10) or ACE inhibition (ramipril, 1 mg/kg/day, n = 10) for 4 weeks. Control, sham-operated rats (n = 9) received vehicle. Cardiac structure and function and expression of KLF15 were assessed. Results STNx caused impaired kidney function (P < 0.001), hypertension (P < 0.01), LVH (P < 0.001) and fibrosis (P < 0.05). LVH was associated with increased gene expression of hypertrophic markers, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP, P < 0.01) and connective tissue growth factor (CTGF) (P < 0.05). Cardiac KLF15 mRNA and protein expression were reduced (P < 0.05) in STNx and levels of the transcription regulator, GATA binding protein 4 were increased (P < 0.05). Ramipril reduced blood pressure (P < 0.001), LVH (P < 0.001) and fibrosis (P < 0.05), and increased cardiac KLF15 gene (P < 0.05) and protein levels (P < 0.01). This was associated with reduced ANP, BNP and CTGF mRNA (all P < 0.05). Conclusion This is the first evidence that loss of cardiac KLF15 in CKD induced LVH is associated with unchecked trophic and fibrotic signalling, and that ACE inhibition ameliorates loss of cardiac KLF15.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Elena Velkoska
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Daniel Gayed
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jay Ramchand
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jessica Lesmana
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
27
|
Yuping Y, Hua C, Qing Z. Advances in the relationship between Kruppel-like factor 15 and cardiovascular disease research. Cardiovasc Endocrinol Metab 2018; 7:37-41. [PMID: 31646278 PMCID: PMC6739844 DOI: 10.1097/xce.0000000000000140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/10/2017] [Indexed: 11/26/2022]
Abstract
Kruppel-like factor 15 (KLF15) is a subtype of the Kruppel-like family of transcription factors (KLFs). KLFs have three high-fidelity zinc fingers at the carboxyl terminus that enable them to regulate the biological processes of proliferation, differentiation, cellular development, and apoptosis. KLF15 is highly expressed in the kidney, pancreas, and cardiac and skeletal muscle, and plays an essential role in the development and occurrence of multiple system diseases. In this paper, we underscored the important relationship between KLF15 and cardiovascular diseases such as atherosclerosis, heart failure, arrhythmia, aortic lesions, etc. On this basis, we identified KLF15 as a potential therapeutic target for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
| | - Chen Hua
- Department of Emergency, the Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | | |
Collapse
|
28
|
Patel SK, Ramchand J, Crocitti V, Burrell LM. Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy. Int J Mol Sci 2018; 19:E1303. [PMID: 29702551 PMCID: PMC5983718 DOI: 10.3390/ijms19051303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiovascular events and is often present in patients with hypertension. Treatment to reduce blood pressure and regress LVH is key to improving health outcomes, but currently available drugs have only modest cardioprotective effects. Improved understanding of the molecular mechanisms involved in the development of LVH may lead to new therapeutic targets in the future. There is now compelling evidence that the transcription factor Kruppel-like factor 15 (KLF15) is an important negative regulator of cardiac hypertrophy in both experimental models and in man. Studies have reported that loss or suppression of KLF15 contributes to LVH, through lack of inhibition of pro-hypertrophic transcription factors and stimulation of trophic and fibrotic signaling pathways. This review provides a summary of the experimental and human studies that have investigated the role of KLF15 in the development of cardiac hypertrophy. It also discusses our recent paper that described the contribution of genetic variants in KLF15 to the development of LVH and heart failure in high-risk patients.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.
| | - Jay Ramchand
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.
- Department of Cardiology, Austin Health, Melbourne, VIC 3084, Australia.
| | - Vincenzo Crocitti
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC 3084, Australia.
- Department of Cardiology, Austin Health, Melbourne, VIC 3084, Australia.
| |
Collapse
|
29
|
Zhao Y, Cai L. Does Krüppel Like Factor 15 Play an Important Role in the Left Ventricular Hypertrophy of Patients with Type 2 Diabetes? EBioMedicine 2017; 20:17-18. [PMID: 28499925 PMCID: PMC5478200 DOI: 10.1016/j.ebiom.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/07/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuguang Zhao
- Department of Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- The Pediatric Research Institute, The Department of Pediatrics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
30
|
Resveratrol-Mediated Expression of KLF15 in the Ischemic Myocardium is Associated with an Improved Cardiac Phenotype. Cardiovasc Drugs Ther 2017; 31:29-38. [PMID: 28064408 DOI: 10.1007/s10557-016-6707-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Myocardial infarction results in physiological derangements that lead to structural and functional alterations to the myocardium. In addition, oxidative stress potentiates cardiac remodeling and drives disease progression. Unfortunately, treatment with antioxidants in clinical trials have failed to show any therapeutic benefits despite the positive results reported in animal studies, which warrants further investigation into their mechanism(s) of action. Accordingly, the aim of this study was to elucidate a previously unknown mechanism of action for the antioxidant, resveratrol, in the treatment of the ischemic heart. METHODS Male Sprague-Dawley rats underwent four weeks of chronic myocardial ischemia with or without daily resveratrol treatment (10 mg/kg/day). The expression and signaling of Krüppel-like factor 15 (KLF15) were determined by immunoblot and qPCR analyses, respectively. RESULTS Chronic myocardial ischemia reduced the protein expression of KLF15. In parallel, mRNA transcripts of KLF15 gene targets actively involved in cardiac remodeling were robustly increased in untreated hearts. Importantly, daily treatment with resveratrol stimulated KLF15 expression, which was associated with attenuated gene expression and an improved cardiac phenotype. Additionally, we describe a novel role for KLF15 in the regulation of redox homeostasis. CONCLUSION Based on our current findings, it appears that resveratrol treatment induces KLF15 expression, which may, in part, explain its therapeutic efficacy to improve the cardiac phenotype following ischemic injury.
Collapse
|
31
|
KLF15 protects against isoproterenol-induced cardiac hypertrophy via regulation of cell death and inhibition of Akt/mTOR signaling. Biochem Biophys Res Commun 2017; 487:22-27. [PMID: 28336438 DOI: 10.1016/j.bbrc.2017.03.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Increasing evidence indicate that the Krüppel-like factor KLF15, a member of Cys2/His2 zinc-finger DNA-binding proteins, attenuates cardiac hypertrophy. However, the role of KLF15 in cardiovascular system is largely unknown and the exact molecular mechanism of its protective function is not fully elucidated. In the present study, we established a mouse model of cardiac hypertrophy and found that KLF15 expression was down-regulated in hypertrophic hearts. To evaluate the roles of KLF15 in cardiac hypertrophy, we generated transgenic mice overexpressing KLF15 of KLF15 knockdown mice and subsequently induced cardiac hypertrophy. The results indicated that KLF15 overexpression protects mice from ISO-induced cardiac hypertrophy, with reduced ratios of heart weight (HW)/body weight (BW) and cross-sectional area. We also observed that KLF15 overexpression attenuated cardiac fibrosis, inhibited apoptosis and induced autophagy in cardiomyocytes compared with KLF15 knockdown mice. More importantly, we found that the KLF15 overexpression inhibited the Akt/mTOR signaling pathway. Taken together, our findings imply that KLF15 possesses potential anti-hypertrophic and anti-fibrotic functions, possibly via regulation of cell death pathways and the inhibition of Akt/mTOR axis. KLF15 may constitute an efficient candidate drug for the treatment of heart failure and other cardiovascular diseases.
Collapse
|
32
|
Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2270-2275. [PMID: 27639835 DOI: 10.1016/j.bbadis.2016.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
Metabolic remodeling is a hall-mark of cardiac maturation and pathology. The switch of substrate utilization from glucose to fatty acid is observed during post-natal maturation period in developing heart, but the process is reversed from fatty acids to glucose in the failing hearts across different clinic and experimental models. Majority of the current investigations have been focusing on the regulatory mechanism and functional impact of this metabolic reprogramming involving fatty acids and carbohydrates. Recent progress in metabolomics and transcriptomic analysis, however, revealed another significant remodeled metabolic branch associated with cardiac development and disease, i.e. Branched-Chain Amino Acid (BCAA) catabolism. These findings have established BCAA catabolic deficiency as a novel metabolic feature in failing hearts with potentially significant impact on the progression of pathological remodeling and dysfunction. In this review, we will evaluate the current evidence and potential implication of these discoveries in the context of heart diseases and novel therapies. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yibin Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
33
|
Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z, Jeyaraj D, Youn JY, Ren S, Liu Y, Rau CD, Shah S, Ilkayeva O, Gui WJ, William NS, Wynn RM, Newgard CB, Cai H, Xiao X, Chuang DT, Schulze PC, Lynch C, Jain MK, Wang Y. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation 2016; 133:2038-49. [PMID: 27059949 DOI: 10.1161/circulationaha.115.020226] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. METHODS AND RESULTS Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain α-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload. CONCLUSIONS BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15-mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.
Collapse
Affiliation(s)
- Haipeng Sun
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Kristine C Olson
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Chen Gao
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Domenick A Prosdocimo
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Meiyi Zhou
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Zhihua Wang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Darwin Jeyaraj
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Ji-Youn Youn
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Shuxun Ren
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Yunxia Liu
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christoph D Rau
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Svati Shah
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Olga Ilkayeva
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Wen-Jun Gui
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Noelle S William
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - R Max Wynn
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christopher B Newgard
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Hua Cai
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Xinshu Xiao
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - David T Chuang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Paul Christian Schulze
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Christopher Lynch
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Mukesh K Jain
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany
| | - Yibin Wang
- From Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China (H.S., M.Z., Y.L., Y.W.); Division of Molecular Medicine, Departments of Anesthesiology, Medicine, and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles (H.S., C.G., Z.W., J.-Y.Y., S.R., C.D.R., H.C., X.X., Y.W.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (K.C.O., C.L.); Case Cardiovascular Research Institute, Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH (D.A.P., D.J., M.K.J.); Division of Cardiology, Department of Medicine (S.S.) and Sarah W. Stedman Nutrition and Metabolism Center, Departments of Medicine and Pharmacology and Cancer Biology (O.I., C.B.N.), and Duke University School of Medicine, Durham, NC; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (W.-J.G., N.S.W., R.M.W., D.T.C.); and Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (P.C.S.). Dr Schulze is now at the Department of Internal Medicine, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
34
|
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol 2016; 91:52-60. [PMID: 26721596 PMCID: PMC4764462 DOI: 10.1016/j.yjmcc.2015.12.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Eric M Small
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA.
| |
Collapse
|
35
|
Yu Y, Ma J, Xiao Y, Yang Q, Kang H, Zhen J, Yu L, Chen L. KLF15 is an essential negative regulatory factor for the cardiac remodeling response to pressure overload. Cardiology 2015; 130:143-52. [PMID: 25633973 DOI: 10.1159/000369382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the mechanism of Krüppel-like factor 15 (KLF15) in cardiac remodeling and interstitial fibrosis. METHODS A rat model was established by in vivo aortic coarctation followed by a period of pressure unloading and used to measure heart function, myocardial pathological changes, and KLF15, transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), and myocardin-related transcription factor A (MRTF-A) expression levels. In addition, cardiac fibroblasts were cultured in vitro and treated with KLF15-shRNA or KLF15 recombinant adenovirus to establish a TGF-β-mediated cardiac fibroblast hypertrophy model and analyze cell morphology, collagen secretion, and changes in the expression levels of 4 cytokines. RESULTS In vivo pressure overload impaired cardiac function and resulted in myocardial hypertrophy and fibrosis. These changes were accompanied by the downregulation of KLF15 mRNA levels and increased expression of the other factors. The response to unloading was the opposite. In in vitro cell experiments, by specifically targeting the KLF15 gene, changes in the expression levels of the 4 cytokines and the amounts of collagen I and III were observed. CONCLUSIONS In myocardial remodeling processes induced by mechanical or metabolic factors, KLF15 regulates TGF-β, CTGF, and MRTF-A expression and can ameliorate or even reverse myocardial fibrosis and improve cardiac function.
Collapse
Affiliation(s)
- Yang Yu
- Division of Cardiac Surgery, Xinqiao Hospital Affiliated to the Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
37
|
Tijsen AJ, van der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans MJ, van der Velden J, Duncker DJ, Pinto YM, Creemers EE. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res 2014; 104:61-71. [PMID: 25103110 DOI: 10.1093/cvr/cvu184] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS The overloaded heart remodels by cardiomyocyte hypertrophy and interstitial fibrosis, which contributes to the development of heart failure. Signalling via the TGFβ-pathway is crucial for this remodelling. Here we tested the hypothesis that microRNAs in the overloaded heart regulate this remodelling process via inhibition of the TGFβ-pathway. METHODS AND RESULTS We show that the miRNA-15 family, which we found to be up-regulated in the overloaded heart in multiple species, inhibits the TGFβ-pathway by targeting of TGFBR1 and several other genes within this pathway directly or indirectly, including p38, SMAD3, SMAD7, and endoglin. Inhibition of miR-15b by subcutaneous injections of LNA-based antimiRs in C57BL/6 mice subjected to transverse aorta constriction aggravated fibrosis and to a lesser extent also hypertrophy. CONCLUSION We identified the miR-15 family as a novel regulator of cardiac hypertrophy and fibrosis acting by inhibition of the TGFβ-pathway.
Collapse
Affiliation(s)
- Anke J Tijsen
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Maarten M van den Hoogenhof
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wino J Wijnen
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Elza D van Deel
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nina E de Groot
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Sergey Alekseev
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Kees Fluiter
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marie-José Goumans
- Department of Molecular and Cell Biology, Centre of Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
38
|
Wang J, Chen T, Feng F, Wei H, Pang W, Yang G, Shen QW. KLF15 regulates slow myosin heavy chain expression through NFATc1 in C2C12 myotubes. Biochem Biophys Res Commun 2014; 446:1231-6. [DOI: 10.1016/j.bbrc.2014.03.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
|
39
|
Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice. Biochem Biophys Res Commun 2014; 443:683-8. [DOI: 10.1016/j.bbrc.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 02/02/2023]
|
40
|
Gao X, Wu G, Gu X, Fu L, Mei C. Kruppel-like factor 15 modulates renal interstitial fibrosis by ERK/MAPK and JNK/MAPK pathways regulation. Kidney Blood Press Res 2013; 37:631-640. [PMID: 24356553 DOI: 10.1159/000355743] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal interstitial fibrosis is a hallmark of progressive chronic kidney disease (CKD). Previous studies reported that kruppel-like factor 15 (KLF15) is an important regulator of cardiac fibrosis and could reduce the expression of extracellular matrix in mesangial cells. However, the role of this transcription factor in renal interstitial fibrosis has not been reported. METHODS In this study, we examined KLF15 expression in the remnant kidney of 5/6 nephrectomized rats 12 or 24 weeks after operation. In vitro we examined the effect of altered KLF15 expression on the production of extracellular matrix and the pro-fibrotic factor CTGF in rat renal fibroblasts (NRK-49F), and further explored the related mechanisms. RESULTS The level of KLF15 was drastically decreased in the renal interstitium of 5/6 nephrectomized rats with progressive interstitial fibrosis, especially at 24 weeks. Our in vitro evidence showed that overexpression of KLF15 repressed basal and transforming growth factor-β1 (TGF-β1)-induced extracellular matrix and CTGF in NRK-49F cells. In addition, TGF-β1-mediated activation of extracellular-regulated kinase (ERK) / mitogen-activated protein kinase (MAPK) and Jun N-terminal kinase (JNK) /MAPK downregulated KLF15 expression and increased the level of extracellular matrix and CTGF, and all these effects were completely abolished by ERK1/2 inhibitor and JNK inhibitor in NRK-49F cells. CONCLUSIONS Our findings implicate that KLF15 plays an important role and may prove to be an antifibrotic factor in renal interstitial fibrosis through regulation of ERK/MAPK and JNK/MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiang Gao
- Kidney Institute of PLA, Department of Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Noack C, Zafiriou MP, Schaeffer HJ, Renger A, Pavlova E, Dietz R, Zimmermann WH, Bergmann MW, Zelarayán LC. Krueppel-like factor 15 regulates Wnt/β-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart. EMBO Mol Med 2012; 4:992-1007. [PMID: 22767436 PMCID: PMC3491830 DOI: 10.1002/emmm.201101043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/25/2022] Open
Abstract
Wnt/β-catenin signalling controls adult heart remodelling in part via regulation of cardiac progenitor cell (CPC) differentiation. An enhanced understanding of mechanisms controlling CPC biology might facilitate the development of new therapeutic strategies in heart failure. We identified and characterized a novel cardiac interaction between Krueppel-like factor 15 and components of the Wnt/β-catenin pathway leading to inhibition of transcription. In vitro mutation, reporter assays and co-localization analyses revealed that KLF15 requires both the C-terminus, necessary for nuclear localization, and a minimal N-terminal regulatory region to inhibit transcription. In line with this, functional Klf15 knock-out mice exhibited cardiac β-catenin transcriptional activation along with functional cardiac deterioration in normal homeostasis and upon hypertrophy. We further provide in vivo and in vitro evidences for preferential endothelial lineage differentiation of CPCs upon KLF15 deletion. Via inhibition of β-catenin transcription, KLF15 controls CPC homeostasis in the adult heart similar to embryonic cardiogenesis. This knowledge may provide a tool for reactivation of this apparently dormant CPC population in the adult heart and thus be an attractive approach to enhance endogenous cardiac repair.
Collapse
Affiliation(s)
- Claudia Noack
- Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
In search of novel targets for heart disease: myocardin and myocardin-related transcriptional cofactors. Biochem Res Int 2012; 2012:973723. [PMID: 22666593 PMCID: PMC3362810 DOI: 10.1155/2012/973723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that gene-regulatory networks, which are responsible for directing cardiovascular development, are altered under stress conditions in the adult heart. The cardiac gene regulatory network is controlled by cardioenriched transcription factors and multiple-cell-signaling inputs. Transcriptional coactivators also participate in gene-regulatory circuits as the primary targets of both physiological and pathological signals. Here, we focus on the recently discovered myocardin-(MYOCD) related family of transcriptional cofactors (MRTF-A and MRTF-B) which associate with the serum response transcription factor and activate the expression of a variety of target genes involved in cardiac growth and adaptation to stress via overlapping but distinct mechanisms. We discuss the involvement of MYOCD, MRTF-A, and MRTF-B in the development of cardiac dysfunction and to what extent modulation of the expression of these factors in vivo can correlate with cardiac disease outcomes. A close examination of the findings identifies the MYOCD-related transcriptional cofactors as putative therapeutic targets to improve cardiac function in heart failure conditions through distinct context-dependent mechanisms. Nevertheless, we are in support of further research to better understand the precise role of individual MYOCD-related factors in cardiac function and disease, before any therapeutic intervention is to be entertained in preclinical trials.
Collapse
|
43
|
Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS One 2012; 7:e36754. [PMID: 22586493 PMCID: PMC3346753 DOI: 10.1371/journal.pone.0036754] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 04/09/2012] [Indexed: 01/02/2023] Open
Abstract
The Kruppel-like factor (KLF) family of transcription factors regulates diverse cell biological processes including proliferation, differentiation, survival and growth. Previous studies have shown that KLF15 inhibits cardiac hypertrophy by repressing the activity of pivotal cardiac transcription factors such as GATA4, MEF2 and myocardin. We set out this study to characterize the interaction of KLF15 with putative other transcription factors. We first show that KLF15 interacts with myocardin-related transcription factors (MRTFs) and strongly represses the transcriptional activity of MRTF-A and MRTF-B. Second, we identified a region within the C-terminal zinc fingers of KLF15 that contains the nuclear localization signal. Third, we investigated whether overexpression of KLF15 in the heart would have therapeutic potential. Using recombinant adeno-associated viruses (rAAV) we have overexpressed KLF15 specifically in the mouse heart and provide the first evidence that elevation of cardiac KLF15 levels prevents the development of cardiac hypertrophy in a model of Angiotensin II induced hypertrophy.
Collapse
|
44
|
Amin AS, Giudicessi JR, Tijsen AJ, Spanjaart AM, Reckman YJ, Klemens CA, Tanck MW, Kapplinger JD, Hofman N, Sinner MF, Müller M, Wijnen WJ, Tan HL, Bezzina CR, Creemers EE, Wilde AAM, Ackerman MJ, Pinto YM. Variants in the 3' untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 2011; 33:714-23. [PMID: 22199116 PMCID: PMC3303714 DOI: 10.1093/eurheartj/ehr473] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aims Heterozygous mutations in KCNQ1 cause type 1 long QT syndrome (LQT1), a disease characterized by prolonged heart rate-corrected QT interval (QTc) and life-threatening arrhythmias. It is unknown why disease penetrance and expressivity is so variable between individuals hosting identical mutations. We aimed to study whether this can be explained by single nucleotide polymorphisms (SNPs) in KCNQ1's 3′ untranslated region (3′UTR). Methods and results This study was performed in 84 LQT1 patients from the Academic Medical Center in Amsterdam and validated in 84 LQT1 patients from the Mayo Clinic in Rochester. All patients were genotyped for SNPs in KCNQ1's 3′UTR, and six SNPs were found. Single nucleotide polymorphisms rs2519184, rs8234, and rs10798 were associated in an allele-specific manner with QTc and symptom occurrence. Patients with the derived SNP variants on their mutated KCNQ1 allele had shorter QTc and fewer symptoms, while the opposite was also true: patients with the derived SNP variants on their normal KCNQ1 allele had significantly longer QTc and more symptoms. Luciferase reporter assays showed that the expression of KCNQ1's 3′UTR with the derived SNP variants was lower than the expression of the 3′UTR with the ancestral SNP variants. Conclusion Our data indicate that 3′UTR SNPs potently modify disease severity in LQT1. The allele-specific effects of the SNPs on disease severity and gene expression strongly suggest that they are functional variants that directly alter the expression of the allele on which they reside, and thereby influence the balance between proteins stemming from either the normal or the mutant KCNQ1 allele.
Collapse
Affiliation(s)
- Ahmad S Amin
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 2011; 109:1342-53. [PMID: 22021931 DOI: 10.1161/circresaha.111.255075] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease of desmosome proteins characterized by fibroadipogenesis in the myocardium. We have implicated signaling properties of junction protein plakoglobin (PG) in the pathogenesis of ARVC. OBJECTIVE To delineate the pathogenic role of PG in adipogenesis in ARVC. METHODS AND RESULTS We generated mice overexpressing PG, either a wildtype (PG(WT)) or a truncated (PG(TR)), known to cause ARVC, in the heart; and PG null (PG⁻/⁻) embryos. PG(WT) and PG(TR) mice exhibited fibro-adiposis, cardiac dysfunction, and premature death. Subcellular protein fractionation and immunofluorescence showed nuclear localization of PG(WT) and PG(TR) and reduced membrane localization of PG(TR). Coimmunoprecipitation showed reduced binding of PG(TR) but not PG(WT) to desmosome proteins DSP and DSG2. Transgene PG(WT) and PG(TR) were expressed in c-Kit+:Sca1+ cardiac progenitor cells (CPCs) isolated from the hearts of PG(WT) and PG(TR) by fluorescence activated cell sorting. CPCs isolated from the transgenic hearts showed enhanced adipogenesis, increased levels of adipogenic factors KLF15, C/EBP-α and noncanonical Wnt5b, and reduced level of CTGF, an inhibitor of adipogenesis. Treatment with BIO activated the canonical Wnt signaling, reversed the proadipogenic transcriptional switch and prevented adipogenesis in a dose-dependent manner. Moreover, c-Kit+ CPCs, isolated from PG⁻/⁻ embryos, were resistant to adipogenesis, expressed high mRNA levels of CTGF and other canonical Wnt signaling targets. CONCLUSIONS Nuclear PG provokes adipogenesis in c-Kit+ CPCs by repressing the canonical Wnt signaling and inducing a proadipogenic gene expression. The findings suggest that adipocytes in ARVC, at least in part, originate from c-Kit+ CPCs.
Collapse
Affiliation(s)
- Raffaella Lombardi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
46
|
Torrado M, Iglesias R, Centeno A, López E, Mikhailov AT. Targeted gene-silencing reveals the functional significance of myocardin signaling in the failing heart. PLoS One 2011; 6:e26392. [PMID: 22028870 PMCID: PMC3196561 DOI: 10.1371/journal.pone.0026392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/26/2011] [Indexed: 12/20/2022] Open
Abstract
Background Myocardin (MYOCD), a potent transcriptional coactivator of smooth muscle (SM) and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF). However, the molecular and functional consequences of myocd upregulation in HF are still unclear. Methodology/Principal Findings The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox)-induced diastolic HF (DHF) model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV) myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1) a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2) amelioration of impaired diastolic dysfunction, and (3) higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery) led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. Conclusions/Significance These data provide the first evidence that a moderate inhibition (e.g., normalization) of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view.
Collapse
Affiliation(s)
- Mario Torrado
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Raquel Iglesias
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Alberto Centeno
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Eduardo López
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Alexander T. Mikhailov
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- * E-mail:
| |
Collapse
|
47
|
Dmitriev P, Petrov A, Ansseau E, Stankevicins L, Charron S, Kim E, Bos TJ, Robert T, Turki A, Coppée F, Belayew A, Lazar V, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. The Krüppel-like factor 15 as a molecular link between myogenic factors and a chromosome 4q transcriptional enhancer implicated in facioscapulohumeral dystrophy. J Biol Chem 2011; 286:44620-31. [PMID: 21937448 DOI: 10.1074/jbc.m111.254052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.
Collapse
Affiliation(s)
- Petr Dmitriev
- CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
49
|
Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 2010; 89:265-72. [DOI: 10.1093/cvr/cvq308] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|