1
|
Falanga A, Bellavita R, Braccia S, Galdiero S. Hydrophobicity: The door to drug delivery. J Pept Sci 2024; 30:e3558. [PMID: 38115215 DOI: 10.1002/psc.3558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Rosa Bellavita
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
3
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
4
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
5
|
A boost to the antiviral activity: Cholesterol tagged peptides derived from glycoprotein B of Herpes Simplex virus type I. Int J Biol Macromol 2020; 162:882-893. [PMID: 32569683 DOI: 10.1016/j.ijbiomac.2020.06.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/20/2023]
Abstract
Conformational changes of viral glycoproteins govern the fusion of viral and cellular membranes in the entry of enveloped viruses. Peptides mimicking domains of viral glycoproteins are apt to interfere with the fusion event, likely hampering the conformational rearrangements from the pre- to the post-fusion structures. We previously developed a peptide sequence with a high potential to inhibit the entry of herpes simplex type 1, which was able to trap glycoprotein B at an intermediate stage, arresting fusion. We propose that similarly to other viruses, membrane targeting through cholesterol conjugation may potently block fusion. The peptide conjugated to polyethylenglycol and cholesterol interacts with viral and cell membranes thanks to the presence of cholesterol and blocks the conformational rearrangements of the glycoprotein B. Here, we also probed the effect of the linker (polyethylenglycol) length on the activity. By targeting the peptide gBh1m to the membranes where fusion occurs and by engineering sequences with increased binding affinity for gB we have enhanced the antiviral potency of our prototype inhibitors. Our results provide proof of concept for the application of cholesterol tagging to develop inhibitors of HSV-1.
Collapse
|
6
|
Galdiero E, de Alteriis E, De Natale A, D'Alterio A, Siciliano A, Guida M, Lombardi L, Falanga A, Galdiero S. Eradication of Candida albicans persister cell biofilm by the membranotropic peptide gH625. Sci Rep 2020; 10:5780. [PMID: 32238858 PMCID: PMC7113253 DOI: 10.1038/s41598-020-62746-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilm formation poses an important clinical trouble due to resistance to antimicrobial agents; therefore, there is an urgent demand for new antibiofilm strategies that focus on the use of alternative compounds also in combination with conventional drugs. Drug-tolerant persisters are present in Candida albicans biofilms and are detected following treatment with high doses of amphotericin B. In this study, persisters were found in biofilms treated with amphotericin B of two clinical isolate strains, and were capable to form a new biofilm in situ. We investigated the possibility of eradicating persister-derived biofilms from these two Candida albicans strains, using the peptide gH625 analogue (gH625-M). Confocal microscopy studies allowed us to characterize the persister-derived biofilm and understand the mechanism of interaction of gH625-M with the biofilm. These findings confirm that persisters may be responsible for Candida biofilm survival, and prove that gH625-M was very effective in eradicating persister-derived biofilms both alone and in combination with conventional antifungals, mainly strengthening the antibiofilm activity of fluconazole and 5-flucytosine. Our strategy advances our insights into the development of effective antibiofilm therapeutic approaches.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Angela D'Alterio
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - Lucia Lombardi
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
7
|
Galdiero E, Siciliano A, Lombardi L, Falanga A, Galdiero S, Martucci F, Guida M. Quantum dots functionalized with gH625 attenuate QDs oxidative stress and lethality in Caenorhabditis elegans: a model system. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:156-162. [PMID: 31927676 DOI: 10.1007/s10646-019-02158-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Nanomaterials have revolutionized many scientific fields and are widely applied to address environmental problems and to develop novel health care strategies. However, their mechanism of action is still poorly understood. Several nanomaterials for medical applications are based on quantum dots (QDs). Despite their amazing physico-chemical properties, quantum dots display significant adverse effects. In the present study, the effects of QDs on the motor nervous system of nematodes Caenorhabditis elegans have been investigated as a non-mammalian alternative model. We also explored the possibility of modifying the toxicity of QDs by coating with a cell-penetrating peptide gH625 and thus we analysed the effects determined by QDs-gH625 complexes on the nematodes. With this work, we have demonstrated, by in vivo experiments, that the peptide gH625 is able to reduce the side effects of metallic nanoparticle making them more suitable for medical applications.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy.
| | - Lucia Lombardi
- Department of Pharmacy, CiRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, via Università 100, 80055, Portici, Napoli, Italy
| | - Stefania Galdiero
- Department of Pharmacy, CiRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Francesca Martucci
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| |
Collapse
|
8
|
Ben Djemaa S, Hervé-Aubert K, Lajoie L, Falanga A, Galdiero S, Nedellec S, Soucé M, Munnier E, Chourpa I, David S, Allard-Vannier E. gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line. Biomacromolecules 2019; 20:3076-3086. [PMID: 31305991 DOI: 10.1021/acs.biomac.9b00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of small interfering RNA (siRNA) to regulate oncogenes appears as a promising strategy in the context of cancer therapy, especially if they are vectorized by a smart delivery system. In this study, we investigated the cellular trafficking of a siRNA nanovector (called CS-MSN) functionalized with the cell-penetrating peptide gH625 in a triple-negative breast cancer model. With complementary techniques, we showed that siRNA nanovectors were internalized by both clathrin- and caveolae-mediated endocytosis. The presence of gH625 at the surface of the siRNA nanovector did not modify the entry pathway of CS-MSN, but it increased the amount of siRNA found inside the cells. Results suggested an escape of siRNA from endosomes, which is enhanced by the presence of the peptide gH625, whereas nanoparticles continued their trafficking into lysosomes. The efficiency of CS-MSN to inhibit the GFP in MDA-MB-231 cells was 1.7-fold higher than that of the nanovectors without gH625.
Collapse
Affiliation(s)
- Sanaa Ben Djemaa
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Laurie Lajoie
- EA7501 Groupe Innovation et Ciblage Cellulaire, Equipe Fc Récepteurs, Anticorps et MicroEnvironnement, University of Tours , 37032 Tours , France.,Plateforme Scientifique et Technique, Analyse des systèmes biologiques département des cytométries, University of Tours , 37032 Tours , France
| | - Annarita Falanga
- Department of Agricultural Sciences , University of Naples "Federico II" , Via Università 100 , 80055 Portici , Italy
| | - Stefania Galdiero
- Department of Pharmacy , CIRPEB-University of Naples "Federico II" , Via Mezzocannone 16 , 80134 Napoli , Italy
| | - Steven Nedellec
- Plateforme microPICell, SFR santé François Bonamy-IRSUN , 8 quai Moncousu , BP 70721, 44007 Nantes Cedex, France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Emilie Munnier
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | | |
Collapse
|
9
|
de Alteriis E, Lombardi L, Falanga A, Napolano M, Galdiero S, Siciliano A, Carotenuto R, Guida M, Galdiero E. Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb Pathog 2018; 125:189-195. [PMID: 30227230 DOI: 10.1016/j.micpath.2018.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022]
Abstract
This work illustrates a new role for the membranotropic peptide gH625 and its derivative gH625-GCGKKK in impairing formation of polymicrobial biofilms. Mixed biofilms composed of Candida and bacterial species cause frequently infections and failure of medical silicone devices and also show a major drug resistance than single-species biofilms. Inhibition and eradication of biofilms were evaluated by complementary methods: XTT-reduction, and crystal violet staining (CV). Our results indicate that gH625-GCGKKKK, better than the native peptide, strongly inhibited formation of mixed biofilms of clinical isolates of C. tropicalis/S. marcescens and C. tropicalis/S. aureus and reduced the biofilm architecture, interfering with cell adhesion and polymeric matrix, as well as eradicated the long-term polymicrobial biofilms on silicone surface.
Collapse
Affiliation(s)
- E de Alteriis
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - L Lombardi
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - A Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - M Napolano
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - S Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - A Siciliano
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - R Carotenuto
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - M Guida
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy
| | - E Galdiero
- Department of Biology, University of Naples "Federico II", via Cinthia, 80100, Naples, Italy.
| |
Collapse
|
10
|
Falanga A, Iachetta G, Lombardi L, Perillo E, Lombardi A, Morelli G, Valiante S, Galdiero S. Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Sci Rep 2018; 8:13836. [PMID: 30218088 PMCID: PMC6138628 DOI: 10.1038/s41598-018-32095-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
We have investigated the crossing of the blood brain barrier (BBB) by the peptide gH625 and compared to the uptake by liver in vivo. We clearly observed that in vivo administration of gH625 allows the crossing of the BBB, although part of the peptide is sequestered by the liver. Furthermore, we used a combination of biophysical techniques to gain insight into the mechanism of interaction with model membranes mimicking the BBB and the liver. We observed a stronger interaction for membranes mimicking the BBB where gH625 clearly undergoes a change in secondary structure, indicating the key role of the structural change in the uptake mechanism. We report model studies on liposomes which can be exploited for the optimization of delivery tools.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Giuseppina Iachetta
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Lucia Lombardi
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Emiliana Perillo
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy.,National Institute of Biostructures and Biosystems (INBB), V. le Medaglie d'Oro, 00136, Rome, Italy
| | - Stefania Galdiero
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy. .,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
11
|
Tudisco C, Cambria MT, Giuffrida AE, Sinatra F, Anfuso CD, Lupo G, Caporarello N, Falanga A, Galdiero S, Oliveri V, Satriano C, Condorelli GG. Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe 3O 4 Magnetic Nanoparticles for Enhanced Cell Internalization. NANOSCALE RESEARCH LETTERS 2018; 13:45. [PMID: 29417388 PMCID: PMC5803153 DOI: 10.1186/s11671-018-2459-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.
Collapse
Affiliation(s)
- C Tudisco
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
- INSTM UdR di Catania, 95125, Catania, Italy
| | - M T Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - A E Giuffrida
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
- INSTM UdR di Catania, 95125, Catania, Italy
| | - F Sinatra
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - C D Anfuso
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - G Lupo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - N Caporarello
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, 95100, Catania, Italy
| | - A Falanga
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80134, Napoli, Italy
| | - S Galdiero
- Dipartimento di Farmacia, Università di Napoli "Federico II", 80134, Napoli, Italy
| | - V Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - C Satriano
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - G G Condorelli
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy.
- INSTM UdR di Catania, 95125, Catania, Italy.
| |
Collapse
|
12
|
Dimerization in tailoring uptake efficacy of the HSV-1 derived membranotropic peptide gH625. Sci Rep 2017; 7:9434. [PMID: 28842580 PMCID: PMC5572722 DOI: 10.1038/s41598-017-09001-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/14/2017] [Indexed: 01/24/2023] Open
Abstract
gH625 constitutes a promising delivery vehicle for the transport of therapeutic biomacromolecules across membrane barriers. We report an application of multivalency to create a complex nanosystem for delivery and to elucidate the mechanism of peptide-lipid bilayer interactions. Multivalency may offer a route to enhance gH625 cellular uptake as demonstrated by results obtained on dimers of gH625 by fluorescence spectroscopy, circular dichroism, and surface plasmon resonance. Moreover, using both phase contrast and light sheet fluorescence microscopy we were able to characterize and visualize for the first time the fusion of giant unilamellar vesicles caused by a membranotropic peptide.
Collapse
|
13
|
Guarnieri D, Melone P, Moglianetti M, Marotta R, Netti PA, Pompa PP. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. NANOSCALE 2017; 9:11288-11296. [PMID: 28758654 DOI: 10.1039/c7nr02350b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Delivery of therapeutic agents inside the cytosol, avoiding the confinement in endo-lysosomal compartments and their degradative environment, is one of the key targets of nanomedicine to gain the maximum remedial effects. Current approaches based on cell penetrating peptides (CPPs), despite improving the cellular uptake efficiency of nanocarriers, have shown controversial results in terms of intracellular localization. To elucidate the delivery potential of CPPs, in this work we analyzed the role of the particle size in influencing the ability of a membranotropic peptide, namely gH625, to escape the endo-lysosomal pathway and deliver the particles in the cytosol. To this aim, we carried out a systematic assessment of the cellular uptake and distribution of monodisperse platinum nanoparticles (PtNPs), having different diameters (2.5, 5 and 20 nm) and citrate capping or gH625 peptide functionalization. The presence of gH625 significantly increased the amount of internalized NPs in human cervix epithelioid carcinoma cells, as a function of particle size. However, scanning transmission electron microscopy (STEM) and electron tomography (ET) revealed a prevalent confinement of PtNPs within vesicular structures, regardless of the particle size and surface functionalization. Only in the case of the smallest 2.5 nm particles, the membranotropic peptide was able to partly maintain its functionality, enabling cytosolic delivery of a small fraction of internalized PtNPs, though particle agglomeration in culture medium limited single-particle transport across the cell membrane. Interestingly, membrane crossing by 2.5 nm functionalized-PtNPs seemed to occur by diffusion through the lipid bilayer, with no apparent membrane damage. For larger particle sizes (≥5 nm), their hindrance likely blocked the membranotropic mechanism. Combining the enhanced uptake and partial cytosolic delivery promoted by gH625, we were able to achieve a strong improvement of the antioxidant nanozyme function of 2.5 nm PtNPs, decreasing both the endogenous ROS level and its overproduction following an external oxidative insult.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Galdiero E, Falanga A, Siciliano A, Maselli V, Guida M, Carotenuto R, Tussellino M, Lombardi L, Benvenuto G, Galdiero S. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomedicine 2017; 12:2717-2731. [PMID: 28435254 PMCID: PMC5388222 DOI: 10.2147/ijn.s127226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of quantum dots (QDs) for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy and CiRPEB, University of Naples Federico II
| | | | | | | | | | | | - Lucia Lombardi
- Department of Experimental Medicine, Second University of Naples
| | | | | |
Collapse
|
15
|
Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications. Int J Mol Sci 2017; 18:ijms18030542. [PMID: 28273806 PMCID: PMC5372558 DOI: 10.3390/ijms18030542] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 01/09/2023] Open
Abstract
Microbial resistance to conventional antibiotics is one of the most outstanding medical and scientific challenges of our times. Despite the recognised need for new anti-infective agents, however, very few new drugs have been brought to the market and to the clinic in the last three decades. This review highlights the properties of a new class of antibiotics, namely dendrimeric peptides. These intriguing novel compounds, generally made of multiple peptidic sequences linked to an inner branched core, display an array of antibacterial, antiviral and antifungal activities, usually coupled to low haemolytic activity. In addition, several peptides synthesized in oligobranched form proved to be promising tools for the selective treatment of cancer cells.
Collapse
|
16
|
Franci G, Falanga A, Zannella C, Folliero V, Martora F, Galdiero M, Galdiero S, Morelli G, Galdiero M. Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J Pept Sci 2017; 23:311-319. [PMID: 28194842 PMCID: PMC7168125 DOI: 10.1002/psc.2979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/27/2023]
Abstract
Herpes simplex virus (HSV) is a human pathogen that infects epithelial cells. The cutaneous lesions, caused by the virus, spread to the nervous system creating several complications. Fusion of host membranes with the viral envelope is mandatory and mediated by a group of glycoproteins conserved in all Herpesviridae subfamilies, such as the glycoproteins B (gB), H (gH), L (gL) and D (gD). We investigated the inhibitory activity mediated by synthetic overlapping peptides spanning the entire ectodomains of gH and gL glycoproteins. We have performed a brute analysis of the complete gH/gL heterodimer in order to explore the inhibitory activity of peptides modelled on these glycoproteins against HSV‐1 infection. Twenty‐four of the gH peptides at a concentration of 150 μM reached the 50% of inhibition cut‐off. Interestingly, they are mainly located in the gH carboxy‐terminal domain. None of the gL peptides had a clear inhibiting effect. No peptide toxicity was observed by lactate dehydrogenase assay at the concentrations used in our experimental conditions. HSV‐1 therapy is based on acyclovir treatment, but some resistant strains are emerging. In this scenario, innovative approaches for HSV‐1 treatment are necessary. Our data support the direct involvement of the described domains in the process of virus penetration; therefore, these results are of relevance to the potential development of novel therapeutic compounds to prevent HSV‐1 infections. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gianluigi Franci
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Annarita Falanga
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Carla Zannella
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Veronica Folliero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Francesca Martora
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Marilena Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Stefania Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Giancarlo Morelli
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Massimiliano Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| |
Collapse
|
17
|
Falanga A, Lombardi L, Tarallo R, Franci G, Perillo E, Palomba L, Galdiero M, Pontoni D, Fragneto G, Weck M, Galdiero S. The intriguing journey of gH625-dendrimers. RSC Adv 2017. [DOI: 10.1039/c6ra28405a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The knowledge of the mechanism used by vectors to gain access to cell interiors is key to the development of effective drug delivery tools for different pathologies.
Collapse
|
18
|
Falanga AP, Pitingolo G, Celentano M, Cosentino A, Melone P, Vecchione R, Guarnieri D, Netti PA. Shuttle-mediated nanoparticle transport across an in vitro brain endothelium under flow conditions. Biotechnol Bioeng 2016; 114:1087-1095. [DOI: 10.1002/bit.26221] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 11/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea P. Falanga
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Gabriele Pitingolo
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Maurizio Celentano
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Armando Cosentino
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Pietro Melone
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterial for Health Care (CABHC); Istituto Italiano di Tecnologia; Largo Barsanti e Matteucci 53 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali (CRIB); Università di Napoli Federico II; Napoli Italy
- Dipartimento di Ingegneria; Università di Napoli Federico II; Napoli Italy
| |
Collapse
|
19
|
Perillo E, Porto S, Falanga A, Zappavigna S, Stiuso P, Tirino V, Desiderio V, Papaccio G, Galdiero M, Giordano A, Galdiero S, Caraglia M. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget 2016; 7:4077-92. [PMID: 26554306 PMCID: PMC4826191 DOI: 10.18632/oncotarget.6013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Emiliana Perillo
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Ceña-Díez R, Sepúlveda-Crespo D, Maly M, Muñoz-Fernández MA. Dendrimeric based microbicides against sexual transmitted infections associated to heparan sulfate. RSC Adv 2016. [DOI: 10.1039/c6ra06969j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell surface heparan sulfate (HS) represents a common link that many sexually transmitted infections (STIs) require for infection.
Collapse
Affiliation(s)
- Rafael Ceña-Díez
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| | - Marek Maly
- Department of Innovative Technologies
- University of Applied Science of Southern Switzerland
- Switzerland
- Faculty of Science
- J. E. Purkinje University
| | - Mª Angeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular
- Hospital General Universitario Gregorio Marañón
- 28007 Madrid
- Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)
| |
Collapse
|
21
|
Falanga A, Galdiero M, Galdiero S. Membranotropic Cell Penetrating Peptides: The Outstanding Journey. Int J Mol Sci 2015; 16:25323-37. [PMID: 26512649 PMCID: PMC4632803 DOI: 10.3390/ijms161025323] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Massimiliano Galdiero
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
22
|
Guarnieri D, Muscetti O, Falanga A, Fusco S, Belli V, Perillo E, Battista E, Panzetta V, Galdiero S, Netti PA. Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. NANOTECHNOLOGY 2015; 26:415101. [PMID: 26403519 DOI: 10.1088/0957-4484/26/41/415101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The membranotropic peptide gH625 is able to transport different cargos (i.e., liposomes, quantum dots, polymeric nanoparticles) within and across cells in a very efficient manner. However, a clear understanding of the detailed uptake mechanism remains elusive. In this work, we investigate the journey of gH625-functionalized polystyrene nanoparticles in mouse-brain endothelial cells from their interaction with the cell membrane to their intracellular final destination. The aim is to elucidate how gH625 affects the behavior of the nanoparticles and their cytotoxic effect. The results indicate that the mechanism of translocation of gH625 dictates the fate of the nanoparticles, with a relevant impact on the nanotoxicological profile of positively charged nanoparticles.
Collapse
Affiliation(s)
- D Guarnieri
- Center for Advanced Biomaterials for health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti, Napoli, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB), Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vitiello G, Falanga A, Petruk AA, Merlino A, Fragneto G, Paduano L, Galdiero S, D'Errico G. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism. SOFT MATTER 2015; 11:3003-3016. [PMID: 25734956 DOI: 10.1039/c4sm02769h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Valiante S, Falanga A, Cigliano L, Iachetta G, Busiello RA, La Marca V, Galdiero M, Lombardi A, Galdiero S. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats. Int J Nanomedicine 2015; 10:1885-98. [PMID: 25792823 PMCID: PMC4364164 DOI: 10.2147/ijn.s77734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Naples, Italy ; DFM Scarl, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Valeria La Marca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy ; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S. Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS One 2014; 9:e112128. [PMID: 25423477 PMCID: PMC4244103 DOI: 10.1371/journal.pone.0112128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/12/2014] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
| | - Rossella Tarallo
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Thomas Carberry
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | | | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Stefania Galdiero
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
26
|
Galdiero S, Falanga A, Morelli G, Galdiero M. gH625: a milestone in understanding the many roles of membranotropic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:16-25. [PMID: 25305339 PMCID: PMC7124228 DOI: 10.1016/j.bbamem.2014.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/05/2022]
Abstract
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood–brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. Membranotropic peptides and their therapeutic applications Membrane fusion, viral inhibition, drug delivery gH625, a peptide derived from Herpes simplex virus type I: a case study gH625 in vitro and in vivo delivery across the blood–brain barrier
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
27
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
28
|
Tah B, Pal P, Mishra S, Talapatra GB. Interaction of insulin with anionic phospholipid (DPPG) vesicles. Phys Chem Chem Phys 2014; 16:21657-63. [DOI: 10.1039/c4cp03028a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
30
|
Galdiero S, Falanga A, Vitiello M, Grieco P, Caraglia M, Morelli G, Galdiero M. Exploitation of viral properties for intracellular delivery. J Pept Sci 2014; 20:468-78. [PMID: 24889153 PMCID: PMC7168031 DOI: 10.1002/psc.2649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/23/2023]
Abstract
Nanotechnology is an expanding area of study with potentially pivotal applications in a discipline as medicine where new biomedical active molecules or strategies are continuously developing. One of the principal drawbacks for the application of new therapies is the difficulty to cross membranes that represent the main physiological barrier in our body and in all living cells. Membranes are selectively permeable and allow the selective internalization of substances; generally, they form a highly impermeable barrier to most polar and charged molecules, and represent an obstacle for drug delivery, limiting absorption to specific routes and mechanisms. Viruses provide attracting suggestions for the development of targeted drug carriers as they have evolved naturally to deliver their genomes to host cells with high fidelity. A detailed understanding of virus structure and their mechanisms of entry into mammalian cells will facilitate the development and analysis of virus‐based materials for medical applications. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, and Via Domenico Montesano 49, 80100, Napoli, Italy; Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy; Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134, Napoli, Italy; DFM Scarl, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Borchmann DE, Carberry TP, Weck M. "Bio"-macromolecules: polymer-protein conjugates as emerging scaffolds for therapeutics. Macromol Rapid Commun 2013; 35:27-43. [PMID: 24323623 DOI: 10.1002/marc.201300792] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/01/2013] [Indexed: 12/26/2022]
Abstract
Polymer-protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer-protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.
Collapse
Affiliation(s)
- Dorothee E Borchmann
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Sq. E., New York, New York, 10003, USA
| | | | | |
Collapse
|
32
|
Cantisani M, Falanga A, Incoronato N, Russo L, De Simone A, Morelli G, Berisio R, Galdiero M, Galdiero S. Conformational modifications of gB from herpes simplex virus type 1 analyzed by synthetic peptides. J Med Chem 2013; 56:8366-76. [PMID: 24160917 DOI: 10.1021/jm400771k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. The crystallized trimeric glycoprotein gB of herpes simplex virus has been described as a postfusion conformation, and several studies prove that like other class III fusion proteins, gB undergoes a pH-dependent switch between the pre- and postfusion conformations. Using several biophysical techniques, we show that peptides corresponding to the long helix of the gB postfusion structure interfere with the membrane fusion event, likely hampering the conformational rearrangements from the pre- to the postfusion structures. Those peptides represent good candidates for further design of peptidomimetic antagonists capable of blocking the fusion process.
Collapse
Affiliation(s)
- Marco Cantisani
- Department of Pharmacy, ‡CIRPEB, and §DFM Scarl, University of Naples "Federico II" , Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013; 14:18758-89. [PMID: 24036440 PMCID: PMC3794806 DOI: 10.3390/ijms140918758] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.
Collapse
|
34
|
Smaldone G, Falanga A, Capasso D, Guarnieri D, Correale S, Galdiero M, Netti PA, Zollo M, Galdiero S, Di Gaetano S, Pedone E. gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins. Int J Nanomedicine 2013; 8:2555-65. [PMID: 23901273 PMCID: PMC3726435 DOI: 10.2147/ijn.s44186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A genetically modified recombinant gH625-c-prune was prepared through conjugation of c-prune with gH625, a peptide encompassing 625-644 residues of the glycoprotein H of herpes simplex virus 1, which has been proved to possess the ability to carry cargo molecules across cell membranes. C-prune is the C-terminal domain of h-prune, overexpressed in breast, colorectal, and gastric cancers, interacting with multiple partners, and representing an ideal target for inhibition of cancer development. Its C-terminal domain results in an intrinsically disordered domain (IDD), and the peculiar properties of gH625 render it an optimal candidate to act as a carrier for this net negatively charged molecule by comparison with the positively charged TAT. A characterization of the recombinant gH625-c-prune fusion protein was conducted by biochemical, cellular biology and confocal microscopy means in comparison with TAT-c-prune. The results showed that the gH625-c-prune exhibited the ability to cross biomembranes, opening a new scenario on the use of gH625 as a novel multifunctional carrier.
Collapse
Affiliation(s)
- Giovanni Smaldone
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guarnieri D, Falanga A, Muscetti O, Tarallo R, Fusco S, Galdiero M, Galdiero S, Netti PA. Shuttle-mediated nanoparticle delivery to the blood-brain barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:853-862. [PMID: 23135878 DOI: 10.1002/smll.201201870] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Many therapeutic drugs are excluded from entering the brain due to their lack of transport through the blood-brain barrier (BBB). The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. To overcome this problem, a viral fusion peptide (gH625) derived from the glycoprotein gH of Herpes simplex virus type 1 is developed, which possesses several advantages including high cell translocation potency, absence of toxicity of the peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it is hypothesized that brain delivery of nanoparticles conjugated with gH625 should be efficiently enhanced. The surface of fluorescent aminated polystyrene nanoparticles (NPs) is functionalized with gH625 via a covalent binding procedure, and the NP uptake mechanism and permeation across in vitro BBB models are studied. At early incubation times, the uptake of NPs with gH625 by brain endothelial cells is greater than that of the NPs without the peptide, and their intracellular motion is mainly characterized by a random walk behavior. Most importantly, gH625 peptide decreases NP intracellular accumulation as large aggregates and enhances the NP BBB crossing. In summary, these results establish that surface functionalization with gH625 may change NP fate by providing a good strategy for the design of promising carriers to deliver drugs across the BBB for the treatment of brain diseases.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M. Peptide inhibitors against herpes simplex virus infections. J Pept Sci 2013; 19:148-58. [PMID: 23389903 DOI: 10.1002/psc.2489] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts protein-protein or viral protein-host cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tarallo R, Carberry TP, Falanga A, Vitiello M, Galdiero S, Galdiero M, Weck M. Dendrimers functionalized with membrane-interacting peptides for viral inhibition. Int J Nanomedicine 2013; 8:521-34. [PMID: 23429490 PMCID: PMC3575165 DOI: 10.2147/ijn.s37739] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Indexed: 11/30/2022] Open
Abstract
This contribution reports the synthesis of a poly(amide)-based dendrimer functionalized at the termini with a membrane-interacting peptide derived from the herpes simplex virus (HSV) type 1 glycoprotein H, namely gH625–644. This peptide has been shown to interact with model membranes and to inhibit viral infectivity. The peptidodendrimer inhibits both HSV-1 and HSV-2 at a very early stage of the entry process, most likely through an interaction with the viral envelope glycoproteins; thus, preventing the virus from coming into close contact with cellular membranes, a prerequisite of viral internalization. The 50% inhibitory concentration was 100 and 300 nM against HSV-1 and HSV-2 respectively, with no evidence of cell toxicity at these concentrations. These results show that the functionalization of a dendrimer with the peptide sequence derived from an HSV glycoprotein shows promising inhibitory activity towards viruses of the Herpesviridae family.
Collapse
Affiliation(s)
- Rossella Tarallo
- Dipartimento di Farmacia, Università di Napoli Federico II, and DFM Scarl, Napoli, Italia
| | | | | | | | | | | | | |
Collapse
|
38
|
Carberry TP, Tarallo R, Falanga A, Finamore E, Galdiero M, Weck M, Galdiero S. Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: towards intracellular delivery. Chemistry 2012; 18:13678-85. [PMID: 22968943 DOI: 10.1002/chem.201202358] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Indexed: 01/12/2023]
Abstract
A poly(amide)-based dendrimer was synthesized and functionalized with the membrane-interacting peptide gH(625-644) (gH625) derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H, which has previously been shown to assist in delivering large cargoes across the cellular membrane. We demonstrate that the attachment of the gH625 peptide sequence to the termini of a dendrimer allows the conjugate to penetrate into the cellular matrix, whereas the unfunctionalized dendrimer is excluded from translocation. The peptide-functionalized dendrimer is rapidly taken into the cells mainly through a non-active translocation mechanism. Our results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.
Collapse
Affiliation(s)
- Tom P Carberry
- Molecular Design Institute, Department of Chemistry, New York University, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Galdiero S, Russo L, Falanga A, Cantisani M, Vitiello M, Fattorusso R, Malgieri G, Galdiero M, Isernia C. Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system. Biochemistry 2012; 51:3121-8. [PMID: 22397737 DOI: 10.1021/bi201589m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycoprotein H (gH) of the herpes simplex virus type 1 is involved in the complex mechanism of membrane fusion of the viral envelope with host cells. The virus requires four glycoproteins (gB, gD, gH, gL) to execute fusion and the role played by gH remains mysterious. Mutational studies have revealed several regions of gH ectodomain required for fusion and identified the segment from amino acid 625 to 644 as the most fusogenic region. Here, we studied the behavior in a membrane-mimicking DPC micellar environment of a peptide encompassing this region (gH625-644) and determined its NMR solution structure and its orientation within the micelles.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Falanga A, Tarallo R, Vitiello G, Vitiello M, Perillo E, Cantisani M, D'Errico G, Galdiero M, Galdiero S. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus. PLoS One 2012; 7:e32186. [PMID: 22384173 PMCID: PMC3285657 DOI: 10.1371/journal.pone.0032186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.
Collapse
Affiliation(s)
- Annarita Falanga
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Rossella Tarallo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Giuseppe Vitiello
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | | | - Emiliana Perillo
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
| | - Marco Cantisani
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
| | - Gerardino D'Errico
- Department of Chemistry, University of Naples “Federico II” and Consorzio per lo Studio dei Sistemi a Grande Interfase, CSGI, Monte Sant'Angelo, Napoli, Italy
| | - Massimiliano Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Department of Experimental Medicine, II University of Naples, Napoli, Italy
| | - Stefania Galdiero
- Division of Biostructures, Department of Biological Sciences, University of Naples “Federico II”, Napoli, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
| |
Collapse
|
41
|
D'Errico G, Ercole C, Lista M, Pizzo E, Falanga A, Galdiero S, Spadaccini R, Picone D. Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3007-15. [DOI: 10.1016/j.bbamem.2011.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
|
42
|
Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules 2011; 16:8894-918. [PMID: 22024958 PMCID: PMC6264685 DOI: 10.3390/molecules16108894] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/30/2011] [Accepted: 10/19/2011] [Indexed: 11/16/2022] Open
Abstract
Virus infections pose significant global health challenges, especially in view of the fact that the emergence of resistant viral strains and the adverse side effects associated with prolonged use continue to slow down the application of effective antiviral therapies. This makes imperative the need for the development of safe and potent alternatives to conventional antiviral drugs. In the present scenario, nanoscale materials have emerged as novel antiviral agents for the possibilities offered by their unique chemical and physical properties. Silver nanoparticles have mainly been studied for their antimicrobial potential against bacteria, but have also proven to be active against several types of viruses including human imunodeficiency virus, hepatitis B virus, herpes simplex virus, respiratory syncytial virus, and monkey pox virus. The use of metal nanoparticles provides an interesting opportunity for novel antiviral therapies. Since metals may attack a broad range of targets in the virus there is a lower possibility to develop resistance as compared to conventional antivirals. The present review focuses on the development of methods for the production of silver nanoparticles and on their use as antiviral therapeutics against pathogenic viruses.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, Via Mezzocannone 16, 80134, Naples, Italy; E-Mails: (S.G.); (A.F.); (M.C.)
- CIRPeB, Department of Biological Sciences, - Via Mezzocannone 16, 80134, Naples, Italy
- IBB CNR, CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Annarita Falanga
- Department of Biological Sciences, Division of Biostructures, Via Mezzocannone 16, 80134, Naples, Italy; E-Mails: (S.G.); (A.F.); (M.C.)
| | - Mariateresa Vitiello
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138, Naples, Italy; E-Mails: (M.V.); (V.M.)
| | - Marco Cantisani
- Department of Biological Sciences, Division of Biostructures, Via Mezzocannone 16, 80134, Naples, Italy; E-Mails: (S.G.); (A.F.); (M.C.)
| | - Veronica Marra
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138, Naples, Italy; E-Mails: (M.V.); (V.M.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138, Naples, Italy; E-Mails: (M.V.); (V.M.)
- CIRPeB, Department of Biological Sciences, - Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
43
|
Tarallo R, Accardo A, Falanga A, Guarnieri D, Vitiello G, Netti P, D'Errico G, Morelli G, Galdiero S. Clickable functionalization of liposomes with the gH625 peptide from Herpes simplex virus type I for intracellular drug delivery. Chemistry 2011; 17:12659-68. [PMID: 21956538 DOI: 10.1002/chem.201101425] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 11/07/2022]
Abstract
Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane-perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPG)-based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30% after peptide introduction. Liposomes have been loaded with the cytotoxic drug doxorubicin and their ability to penetrate inside cells has been evaluated by confocal microscopy experiments. Results suggest that liposomes functionalized with gH625 may act as promising intracellular targeting carriers for efficient delivery of drugs, such as chemotherapeutic agents, into tumor cells.
Collapse
Affiliation(s)
- Rossella Tarallo
- Department of Biological Sciences, CIRPeB & IBB CNR, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:925-34. [PMID: 21664490 DOI: 10.1016/j.nano.2011.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 12/28/2022]
Abstract
UNLABELLED Cell membranes are impermeable to most molecules that are not actively imported by living cells, including all macromolecules and even small molecules whose physiochemical properties prevent passive membrane diffusion. However, recently, we have seen the development of increasingly sophisticated methodology for intracellular drug delivery. Cell-penetrating peptides (CPPs), short peptides believed to enter cells by penetrating cell membranes, have attracted great interest in the hope of enhancing gene therapy, vaccine development and drug delivery. Nevertheless, to achieve an efficient intracellular delivery, further strategies to bypass the endocytotic pathway must be investigated. We report on a novel peptide molecule derived from glycoprotein gH of herpes simplex type I virus that is able to traverse the membrane bilayer and to transport a cargo into the cytoplasm with novel properties in comparison with existing CPPs. We use as cargo molecule quantum dots that do not significantly traverse the membrane bilayer on their own. FROM THE CLINICAL EDITOR Cell-penetrating peptides have recently attracted great interest in optimizing gene therapy, vaccine development and drug delivery. In this study, a peptide derived from glycoprotein gH of herpes simplex I is investigated from this standpoint.
Collapse
|
45
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|