1
|
Aboregela AM. Approaches based on natural products and miRNAs in pituitary adenomas: unveiling therapeutic intervention. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:69-88. [PMID: 39102032 DOI: 10.1007/s00210-024-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Pituitary adenomas (PAs) are tumors originating in the pituitary gland, a small gland located at the base of the brain. They are the most common type of pituitary tumor, affecting approximately 1 in 10 people over their lifetime. Common symptoms include headaches, vision problems, hormonal imbalances, and weight changes. Treatment options depend on the type and size of the adenoma and may consist of medication, surgery, radiation therapy, or a combination. PAs are typically benign and slow-growing, but they can cause significant health issues if left untreated. Proper diagnosis and management by an experienced multidisciplinary team is important for achieving the best outcomes. Natural compounds like celastrol, curcumin, quercetin, apigenin, resveratrol, epigallocatechin gallate (EGCG), and genistein have shown the ability to inhibit cell growth, promote cell death, and suppress hormone activity in pituitary tumor cells, suggesting their potential as alternative or complementary treatments for PAs. MicroRNAs (miRNAs) are a kind of tiny RNA molecules that do not code for proteins and have a vital function in controlling gene expression. These 21-23 nucleotide-long molecules regulate gene expression by binding to complementary sequences in mRNA molecules, leading to mRNA degradation. miRNAs participate in a wide range of biological activities, including apoptosis, metastasis, differentiation, and proliferation. The research indicates that miRNAs play a crucial role in the pathogenesis, therapeutic approaches, diagnosis, and prognosis of PAs. This review article will provide a comprehensive analysis of the current understanding of the efficacy of naturally derived anti-cancer agents in the treatment of PAs. Furthermore, the study provides a comprehensive assessment of the miRNAs in PAs, their role in the development of PAs, and their potential application in the treatment of the condition.
Collapse
Affiliation(s)
- Adel Mohamed Aboregela
- Anatomy Department, College of Medicine, University of Bisha, P.O Box 551, Bisha, 61922, Saudi Arabia.
| |
Collapse
|
2
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
3
|
Su D, Swearson S, Eliason S, Rice K, Amendt B. RNA Technology to Regenerate and Repair Alveolar Bone Defects. J Dent Res 2024; 103:622-630. [PMID: 38715225 PMCID: PMC11122091 DOI: 10.1177/00220345241242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.
Collapse
Affiliation(s)
- D. Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Swearson
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K.G. Rice
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - B.A. Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Alzahrani AS, Bin Nafisah A, Alswailem M, Alghamdi B, Alsaihati B, Aljafar H, Baz B, Alhindi H, Moria Y, Butt MI, Alkabbani AG, Alshaikh OM, Alnassar A, Bin Afeef A, AlQuraa R, Alsuhaibani R, Alhadlaq O, Abothenain F, Altwaijry YA. Germline Variants in Sporadic Pituitary Adenomas. J Endocr Soc 2024; 8:bvae085. [PMID: 38745824 PMCID: PMC11091836 DOI: 10.1210/jendso/bvae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 05/16/2024] Open
Abstract
Context Data on germline genetics of pituitary adenomas (PAs) using whole-exome sequencing (WES) are limited. Objective This study investigated the germline genetic variants in patients with PAs using WES. Methods We studied 134 consecutive functioning (80.6%) and nonfunctioning (19.4%) PAs in 61 female (45.5%) and 73 male patients (54.5%). Their median age was 34 years (range, 11-85 years) and 31 patients had microadenomas (23.0%) and 103 macroadenomas (77%). None of these patients had family history of PA or a known PA-associated syndrome. Peripheral blood DNA was isolated and whole-exome sequenced. We used American College of Medical Genetics and Genomics (ACMG) criteria and a number of in silico analysis tools to characterize genetic variant pathogenicity levels and focused on previously reported PA-associated genes. Results We identified 35 variants of unknown significance (VUS) in 17 PA-associated genes occurring in 40 patients (29.8%). Although designated VUS by the strict ACGM criteria, they are predicted to be pathogenic by in silico analyses and their extremely low frequencies in 1000 genome, gnomAD, and the Saudi Genome Project databases. Further analysis of these variants by the Alpha Missense analysis tool yielded 8 likely pathogenic variants in 9 patients in the following genes: AIP:c.767C>T (p.S256F), CDH23:c.906G>C (p.E302D), CDH23:c.1096G>A (p.A366T), DICER1:c.620C>T (p.A207V), MLH1:c.955G>A (p.E319K), MSH2:c.148G>A (p.A50T), SDHA:c.869T>C (p.L290P) and USP48 (2 patients): c.2233G>A (p.V745M). Conclusion This study suggests that about 6.7% of patients with apparently sporadic PAs carry likely pathogenic variants in PA-associated genes. These findings need further studies to confirm them.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Abdulghani Bin Nafisah
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Burair Alsaihati
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hussain Aljafar
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Batoul Baz
- Health and Wellness Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hindi Alhindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Muhammad Imran Butt
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | | | - Anhar Alnassar
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ahmed Bin Afeef
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Reem AlQuraa
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Alsuhaibani
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar Alhadlaq
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fayha Abothenain
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yasser A Altwaijry
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Rahimian N, Sheida A, Rajabi M, Heidari MM, Tobeiha M, Esfahani PV, Ahmadi Asouri S, Hamblin MR, Mohamadzadeh O, Motamedzadeh A, Khaksary Mahabady M. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma. Pathol Res Pract 2023; 248:154649. [PMID: 37453360 DOI: 10.1016/j.prp.2023.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Pituitary adenoma (PA) is the third most common primary intracranial tumor in terms of overall disease incidence. Although they are benign tumors, they can have a variety of clinical symptoms, but are mostly asymptomatic, which often leads to diagnosis at an advanced stage when surgical intervention is ineffective. Earlier identification of PA could reduce morbidity and allow better clinical management of the affected patients. Non-coding RNAs (ncRNAs) do not generally code for proteins, but can modulate biological processes at the post-transcriptional level through a variety of molecular mechanisms. An increased number of ncRNA expression profiles have been found in PAs. Therefore, understanding the expression patterns of different ncRNAs could be a promising method for developing non-invasive biomarkers. This review summarizes the expression patterns of dysregulated ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) involved in PA, which could one day serve as innovative biomarkers or therapeutic targets for the treatment of this neoplasia. We also discuss the potential molecular pathways by which the dysregulated ncRNAs could cause PA and affect its progression.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Rajabi
- Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Stambouli A, Cartault A, Petit IO, Evrard S, Mery E, Savagner F, Trudel S. DICER1 syndrome and embryonal rhabdomyosarcoma of the cervix: a case report and literature review. Front Pediatr 2023; 11:1150418. [PMID: 37215607 PMCID: PMC10196141 DOI: 10.3389/fped.2023.1150418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Embryonal rhabdomyosarcomas (ERMS) of the uterine cervix and corpus are rare pediatric tumors usually associated with a late age of onset and frequent somatic DICER1 mutation. It may also develop in the context of a familial predisposition such as DICER1 syndrome requiring specific medical care for children and young adults at risk for a broad range of tumors. Case presentation This is a case of a prepubescent 9-year-old girl who was presented to our department for metrorrhagias due to a vaginal cervical mass, initially classified as a müllerian endocervical polyp on negative myogenin immunostaining. The patient subsequently manifested growth retardation (-2DS) and learning disabilities leading to genetic explorations and the identification of a germline pathogenic DICER1 variant. The family history revealed thyroid diseases in the father, aunt and paternal grandmother before the age of 20. Conclusion Rare tumors such as cervical ERMS associated with a family history of thyroid disease during infancy could be related to DICER1 syndrome. Identifying at-risk relatives is challenging but necessary to detect early DICER1 spectrum tumors in young patients.
Collapse
Affiliation(s)
- Alexandre Stambouli
- Molecular Biology Department, Federative Institute of Biology, Toulouse, France
| | - Audrey Cartault
- Endocrinology Department, Children's Hospital of Toulouse, Toulouse, France
| | | | - Solene Evrard
- Pathology Department, IUCT, Institut Claudius Regaud, Toulouse, France
| | - Eliane Mery
- Pathology Department, IUCT, Institut Claudius Regaud, Toulouse, France
| | - Frederique Savagner
- Molecular Biology Department, Federative Institute of Biology, Toulouse, France
- Inserm UMR 1297, Toulouse, France
| | - Stephanie Trudel
- Molecular Biology Department, Federative Institute of Biology, Toulouse, France
- Inserm UMR 1291, CHU Purpan—BP, Toulouse, France
| |
Collapse
|
7
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Jiao Y, Hao L, Xia P, Cheng Y, Song J, Chen X, Wang Z, Ma Z, Zheng S, Chen T, Zhang Y, Yu H. Identification of Potential miRNA-mRNA Regulatory Network Associated with Pig Growth Performance in the Pituitaries of Bama Minipigs and Landrace Pigs. Animals (Basel) 2022; 12:3058. [PMID: 36359184 PMCID: PMC9657654 DOI: 10.3390/ani12213058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
Pig growth performance is one of the criteria for judging pork production and is influenced by genotype and external environmental factors such as feeding conditions. The growth performance of miniature pigs, such as Bama minipigs, differs considerably from that of the larger body size pigs, such as Landrace pigs, and can be regarded as good models in pig growth studies. In this research, we identified differentially expressed genes in the pituitary gland of Bama minipigs and Landrace pigs. Through the pathway enrichment analysis, we screened the growth-related pathways and the genes enriched in the pathways and established the protein-protein interaction network. The RNAHybrid algorithm was used to predict the interaction between differentially expressed microRNAs and differentially expressed mRNAs. Four regulatory pathways (Y-82-ULK1/CDKN1A, miR-4334-5p-STAT3/PIK3R1/RPS6KA3/CAB39L, miR-4331-SCR/BCL2L1, and miR-133a-3p-BCL2L1) were identified via quantitative real-time PCR to detect the expression and correlation of candidate miRNAs and mRNAs. In conclusion, we revealed potential miRNA-mRNA regulatory networks associated with pig growth performance in the pituitary glands of Bama minipigs and Landrace pigs, which may help to elucidate the underlying molecular mechanisms of growth differences in pigs of different body sizes.
Collapse
Affiliation(s)
- Yingying Jiao
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Peijun Xia
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Yunyun Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130061, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Ze Ma
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Ting Chen
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying Zhang
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun 130061, China
| |
Collapse
|
9
|
Xiong J, Zhang H, Wang Y, Cheng Y, Luo J, Chen T, Xi Q, Sun J, Zhang Y. Rno_circ_0001004 Acts as a miR-709 Molecular Sponge to Regulate the Growth Hormone Synthesis and Cell Proliferation. Int J Mol Sci 2022; 23:ijms23031413. [PMID: 35163336 PMCID: PMC8835962 DOI: 10.3390/ijms23031413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: As a novel type of non-coding RNA with a stable closed-loop structure, circular RNA (circRNA) can interact with microRNA (miRNA) and influence the expression of miRNA target genes. However, circRNA involved in pituitary growth hormone (GH) regulation is poorly understood. Our previous study revealed protein kinase C alpha (PRKCA) as the target gene of miR-709. Currently, the expression and function of rno_circRNA_0001004 in the rat pituitary gland is not clarified; (2) Methods: In this study, both bioinformatics analysis and dual-luciferase report assays showed a target relationship between rno_circRNA_0001004 and miR-709. Furthermore, the rno_circRNA_0001004 overexpression vector and si-circ_0001004 were constructed and transfected into GH3 cells; (3) Results: We found that rno_circRNA_0001004 expression was positively correlated with the PRKCA gene and GH expression levels, while it was negatively correlated with miR-709. In addition, overexpression of rno-circ_0001004 also promoted proliferation and relieved the inhibition of miR-709 in GH3 cells; (4) Conclusions: Our findings show that rno_circ_0001004 acts as a novel sponge for miR-709 to regulate GH synthesis and cell proliferation, and are the first case of discovery of the regulatory role of circRNA_0001004 in pituitary GH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiajie Sun
- Correspondence: (J.S.); (Y.Z.); Tel.: +86-139-2515-8841 (J.S.); +86-135-2780-3004 (Y.Z.)
| | - Yongliang Zhang
- Correspondence: (J.S.); (Y.Z.); Tel.: +86-139-2515-8841 (J.S.); +86-135-2780-3004 (Y.Z.)
| |
Collapse
|
10
|
Bando H, Urai S, Kanie K, Sasaki Y, Yamamoto M, Fukuoka H, Iguchi G, Camper SA. Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing. Front Endocrinol (Lausanne) 2022; 13:1008306. [PMID: 36237189 PMCID: PMC9551393 DOI: 10.3389/fendo.2022.1008306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
Combined pituitary hormone deficiency (CPHD) is not a rare disorder, with a frequency of approximately 1 case per 4,000 live births. However, in most cases, a genetic diagnosis is not available. Furthermore, the diagnosis is challenging because no clear correlation exists between the pituitary hormones affected and the gene(s) responsible for the disorder. Next-generation sequencing (NGS) has recently been widely used to identify novel genes that cause (or putatively cause) CPHD. This review outlines causative genes for CPHD that have been newly reported in recent years. Moreover, novel variants of known CPHD-related genes (POU1F1 and GH1 genes) that contribute to CPHD through unique mechanisms are also discussed in this review. From a clinical perspective, variants in some of the recently identified causative genes result in extra-pituitary phenotypes. Clinical research on the related symptoms and basic research on pituitary formation may help in inferring the causative gene(s) of CPHD. Future NGS analysis of a large number of CPHD cases may reveal new genes related to pituitary development. Clarifying the causative genes of CPHD may help to understand the process of pituitary development. We hope that future innovations will lead to the identification of genes responsible for CPHD and pituitary development.
Collapse
Affiliation(s)
- Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hironori Bando,
| | - Shin Urai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuriko Sasaki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
12
|
Xiong J, Zhang H, Zeng B, Liu J, Luo J, Chen T, Sun J, Xi Q, Zhang Y. An Exploration of Non-Coding RNAs in Extracellular Vesicles Delivered by Swine Anterior Pituitary. Front Genet 2021; 12:772753. [PMID: 34912377 PMCID: PMC8667663 DOI: 10.3389/fgene.2021.772753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles are lipid bilayer-delimited particles carrying proteins, lipids, and small RNAs. Previous studies have demonstrated that they had regulatory functions both physiologically and pathologically. However, information remains inadequate on extracellular vesicles from the anterior pituitary, a key endocrine organ in animals and humans. In this study, we separated and identified extracellular vesicles from the anterior pituitary of the Duroc swine model. Total RNA was extracted and RNA-seq was performed, followed by a comprehensive analysis of miRNAs, lncRNAs, and circRNAs. Resultantly, we obtained 416 miRNAs, 16,232 lncRNAs, and 495 circRNAs. Furthermore, GO and KEGG enrichment analysis showed that the ncRNAs in extracellular vesicles may participate in regulating intracellular signal transduction, cellular component organization or biogenesis, small molecule binding, and transferase activity. The cross-talk between them also suggested that they may play an important role in the signaling process and biological regulation. This is the first report of ncRNA data in the anterior pituitary extracellular vesicles from the duroc swine breed, which is a fundamental resource for exploring detailed functions of extracellular vesicles from the anterior pituitary.
Collapse
Affiliation(s)
- Jiali Xiong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haojie Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bin Zeng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 2021; 93:7-15. [PMID: 31914447 DOI: 10.1159/000504669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
14
|
LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M. MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 2021; 162:6009069. [PMID: 33248443 PMCID: PMC7774778 DOI: 10.1210/endocr/bqaa220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice. Here, we used conditional loss-of-function and gain-of-function mouse models to characterize the function of miR-7a2 in lactotroph cells. We found that pituitary miR-7a2 expression undergoes developmental and sex hormone-dependent regulation. Unexpectedly, the loss of mir-7a2 induces a premature increase in prolactin expression and lactotroph abundance during embryonic development, followed by a gradual loss of prolactin into adulthood. On the other hand, lactotroph development is delayed in mice overexpressing miR-7a2. This regulation of lactotroph function by miR-7a2 involves complementary mechanisms in multiple cell populations. In mouse pituitary and rat prolactinoma cells, miR-7a2 represses its target Raf1, which promotes prolactin gene expression. These findings shed light on the complex regulation of prolactin production and may have implications for the physiological and pathological mechanisms underlying hyperprolactinemia.
Collapse
Affiliation(s)
- Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Anaïs Nura Schad
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Mathias Treier
- Max Delbrück Zentrum für molekulare Medizin (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Germany
| | | | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
- Correspondence: Markus Stoffel, Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, HPL H36, Otto-Stern Weg 7, CH 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
The Relevance of MicroRNAs in the Pathogenesis and Prognosis of HCV-Disease: The Emergent Role of miR-17-92 in Cryoglobulinemic Vasculitis. Viruses 2020; 12:v12121364. [PMID: 33260407 PMCID: PMC7761224 DOI: 10.3390/v12121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health problem. HCV is a hepatotropic and lymphotropic virus that leads to hepatocellular carcinoma (HCC) and lymphoproliferative disorders such as cryoglobulinemic vasculitis (CV) and non-Hodgkin's lymphoma (NHL). The molecular mechanisms by which HCV induces these diseases are not fully understood. MicroRNAs (miRNAs) are small non-coding molecules that negatively regulate post-transcriptional gene expression by decreasing their target gene expression. We will attempt to summarize the current knowledge on the role of miRNAs in the HCV life cycle, HCV-related HCC, and lymphoproliferative disorders, focusing on both the functional effects of their deregulation as well as on their putative role as biomarkers, based on association analyses. We will also provide original new data regarding the miR 17-92 cluster in chronically infected HCV patients with and without lymphoproliferative disorders who underwent antiviral therapy. All of the cluster members were significantly upregulated in CV patients compared to patients without CV and significantly decreased in those who achieved vasculitis clinical remission after viral eradication. To conclude, miRNAs play an important role in HCV infection and related oncogenic processes, but their molecular pathways are not completely clear. In some cases, they may be potential therapeutic targets or non-invasive biomarkers of tumor progression.
Collapse
|
16
|
Eliason S, Sharp T, Sweat M, Sweat YY, Amendt BA. Ectodermal Organ Development Is Regulated by a microRNA-26b-Lef-1-Wnt Signaling Axis. Front Physiol 2020; 11:780. [PMID: 32760291 PMCID: PMC7372039 DOI: 10.3389/fphys.2020.00780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
The developmental role of Lef-1 in ectodermal organs has been characterized using Lef-1 murine knockout models. We generated a Lef-1 conditional over-expression (COEL) mouse to determine the role of Lef-1 expression in epithelial structures at later stages of development after endogenous expression switches to the mesenchyme. Lef-1 over expression (OE) in the oral epithelium creates a new dental epithelial stem cell niche that significantly increases incisor growth. These data indicate that Lef-1 expression is switched off in the dental epithelial at early stages to maintain the stem cell niche and regulate incisor growth. Bioinformatics analyses indicated that miR-26b expression increased coinciding with decreased Lef-1 expression in the dental epithelium. We generated a murine model over-expressing miR-26b that targets endogenous Lef-1 expression and Lef-1-related developmental mechanisms. miR-26b OE mice have ectodermal organ defects including a lack of incisors, molars, and hair similar to the Lef-1 null mice. miR-26b OE rescues the Lef-1 OE phenotype demonstrating a critical genetic and developmental role for miR-26b in the temporal and spatial expression of Lef-1 in epithelial tissues. Lef-1 expression regulates Wnt signaling and Wnt target genes as well as cell proliferation mechanisms, while miR-26b OE reduced the levels of Wnt target gene expression. The extra stem cell compartment in the COEL mice expressed Lef-1 suggesting that Lef-1 is a stem cell factor, which was absent in the miR-26b OE/COEL rescue mice. This is the first demonstration of a microRNA OE mouse model that has ectodermal organ defects. These findings demonstrate that the levels of Lef-1 are critical for development and establish a role for miR-26b in the regulation of ectodermal organ development through the control of Lef-1 expression and an endogenous stem cell niche.
Collapse
Affiliation(s)
- Steve Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, United States.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, United States
| | - Thad Sharp
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, United States.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, United States
| | - Mason Sweat
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, United States.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, United States
| | - Yan Y Sweat
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, United States.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, United States
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, United States.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, United States.,Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Ji J, Jin T, Lou A, Zhang R, Chen Y, Xiang S, Cui C, Yu L, Guan L. The effect of miR-10b on growth hormone in pituitary cells of Yanbian yellow cattle by somatostatin receptor 2. Anim Sci J 2020; 91:e13420. [PMID: 32618083 DOI: 10.1111/asj.13420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the effect of miR-10b on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. According to analysis of GH and somatostatin receptor 2 (SSTR2) mRNA and protein expression levels, we found that miR-10b targeted 3'UTR of SSTR2. Compared with the negative control (NC) group, GH mRNA transcription and protein expression in pituitary cells of Yanbian yellow cattle were significantly increased by adding miR-10b mimics (p < .01), while these were significantly decreased by adding miR-10b inhibitor (p < .05); compared with the NC group, SSTR2 mRNA transcription and protein expression were significantly inhibited by the addition of miR-10b mimics (p < .01), while these were significantly increased by the addition of miR-10b inhibitor compared with the iNC group (p < .05). This study suggested that miR-10b could regulate GH level by regulating SSTR2 gene expression in pituitary cells of Yanbian yellow cattle.
Collapse
Affiliation(s)
- Jiuxiu Ji
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Taihua Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Angang Lou
- Agriculture College, Yanbian University, Yanji, China
| | - Rui Zhang
- Agriculture College, Yanbian University, Yanji, China
| | - Yingying Chen
- Agriculture College, Yanbian University, Yanji, China
| | - Siyu Xiang
- Agriculture College, Yanbian University, Yanji, China
| | - Changyan Cui
- Agriculture College, Yanbian University, Yanji, China
| | - Longzheng Yu
- Agriculture College, Yanbian University, Yanji, China
| | - Lizeng Guan
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| |
Collapse
|
18
|
Ullah Y, Li C, Li X, Ni W, Yao R, Xu Y, Quan R, Li H, Zhang M, Liu L, Hu R, Guo T, Li Y, Wang X, Hu S. Identification and Profiling of Pituitary microRNAs of Sheep during Anestrus and Estrus Stages. Animals (Basel) 2020; 10:ani10030402. [PMID: 32121341 PMCID: PMC7142988 DOI: 10.3390/ani10030402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, molecules of 21 to 25 nucleotides in length, that regulate gene expression by binding to their target mRNA and play a significant role in animal development. The expression and role of miRNAs in regulating sheep estrus, however, remain elusive. Transcriptome analysis is helpful to understand the biological roles of miRNAs in the pituitary gland of sheep. A sheep's pituitary gland has a significant difference between estrus and anestrus states. Here, we investigate the expression profiles of sheep anterior pituitary microRNAs (miRNAs) in two states, estrus and anestrus, using Illumina HiSeq-technology. This study identified a total of 199 miRNAs and 25 differentially expressed miRNAs in the estrus and anestrus pituitary gland in sheep. Reverse transcription quantitative-PCR (RT-qPCR) analysis shows six differentially (p < 0.05) expressed miRNAs, that are miR-143, miR-199a, miR-181a, miR-200a, miR-218, and miR-221 in both estrus and anestrus states. miRNAs containing estrus-related terms and pathways regulation are enriched using enrichment analysis from gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, we also envisioned a miRNA-mRNA interaction network to understand the function of miRNAs involved in the pituitary gland regulatory network. In conclusion, miRNA expression profiles in sheep pituitary gland in the anestrus and estrus deliver a theoretical basis for the study of pituitary gland biology in sheep.
Collapse
Affiliation(s)
- Yaseen Ullah
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- Correspondence: (W.N.); (S.H.); Tel.: +86-18040835399 (W.N.); +86-18199688693 (S.H.)
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Yaxin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Xiaokui Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.U.); (C.L.); (X.L.); (R.Y.); (Y.X.); (R.Q.); (H.L.); (M.Z.); (L.L.); (R.H.); (T.G.); (Y.L.); (X.W.)
- Correspondence: (W.N.); (S.H.); Tel.: +86-18040835399 (W.N.); +86-18199688693 (S.H.)
| |
Collapse
|
19
|
Zhang H, Chen T, Xiong J, Hu B, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y. MiR-130a-3p Inhibits PRL Expression and Is Associated With Heat Stress-Induced PRL Reduction. Front Endocrinol (Lausanne) 2020; 11:92. [PMID: 32194503 PMCID: PMC7062671 DOI: 10.3389/fendo.2020.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (MiRNAs) play critical roles in the regulation of pituitary function. MiR-130a-3p has previously been found to be down-regulated in prolactinoma, but its roles in prolactin (PRL) regulation and the underlying mechanisms are still unclear. Heat stress has been shown to induce alteration of endocrine hormones and miRNAs expressions. However, there is limited information regarding the emerging roles of miRNAs in heat stress response. In this study, we transfected miR-130a-3p mimic into the pituitary adenoma cells (GH3 cells) to investigate the function of miR-130a-3p in regulating PRL. Our results showed that miR-130a-3p overexpression significantly decreased the PRL expression at both mRNA and protein levels. Subsequently, estrogen receptor α (ERα) was identified as a direct target of miR-130a-3p by bioinformatics prediction, luciferase reporter assay and western blotting assay. Furthermore, the inhibition of ERα caused by estrogen receptor antagonist significantly reduced the PRL expression. Overexpression of ERα rescued the suppressed expression of PRL caused by miR-130a-3p mimic. Besides, we also studied the effect of heat stress on PRL and miRNAs expressions. Interestingly, we found that heat stress reduced PRL and ERα expressions while it increased miR-130a-3p expression both in vitro and in vivo. Taken together, our results indicate that miR-130a-3p represses ERα by targeting its 3'UTR leading to a decrease in PRL expression, and miR-130a-3p is correlative with heat stress-induced PRL reduction, which provides a novel mechanism that miRNAs are involved in PRL regulation.
Collapse
Affiliation(s)
- Haojie Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Jiali Xiong
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Qingyang Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiajie Sun
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- Yongliang Zhang
| |
Collapse
|
20
|
Marrone A, Ciotti M, Rinaldi L, Adinolfi LE, Ghany M. Hepatitis B and C virus infection and risk of haematological malignancies. J Viral Hepat 2020; 27:4-12. [PMID: 31325404 DOI: 10.1111/jvh.13183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are classified as oncogenic human viruses. Chronic HBV and HCV infections are associated with higher risk of haematological malignancy development. Direct and indirect oncogenic mechanisms have been demonstrated for both HBV and HCV in several studies. HCV and overt/occult HBV infections in patients with oncohaematological disease constitute an impediment and a threat during immunosuppressive chemotherapy treatment. We review the HBV and HCV oncogenic mechanisms and the impact and the safety of antiviral treatment in patients with haematological malignancies.
Collapse
Affiliation(s)
- Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Ciotti
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marc Ghany
- Liver Diseases Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
21
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
22
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
23
|
Yu ZW, Gao W, Feng XY, Zhang JY, Guo HX, Wang CJ, Chen J, Hu JP, Ren WZ, Yuan B. Roles of differential expression of miR-543-5p in GH regulation in rat anterior pituitary cells and GH3 cells. PLoS One 2019; 14:e0222340. [PMID: 31509580 PMCID: PMC6738916 DOI: 10.1371/journal.pone.0222340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Growth hormone (GH) is an important hormone released by the pituitary gland that plays a key role in the growth and development of organisms. In our study, TargetScan analysis and the dual luciferase reporter assays were used to predict and screen for miRNAs that might act on the rat Gh1 gene, and we identified miR-543-5p. Then, the GH3 cell line and the primary rat pituitary cells were transfected with miRNA mimic, inhibitor, and siRNA. We detected the Gh1 gene expression and the GH secretion by real-time PCR and ELISAs, respectively, to verify the regulatory effect of miR-543-5p on GH secretion. The results showed that miR-543-5p can inhibit Gh1 mRNA expression and reduce GH secretion. MiR-543-5p inhibitor upregulated Gh1 mRNA expression and increased GH secretion compared with the negative control. In summary, miR-543-5p downregulates Gh1 expression, resulting in a decrease in GH synthesis and secretion, which demonstrates the important role of miRNAs in regulating GH and animal growth and development.
Collapse
Affiliation(s)
- Ze-Wen Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xin-Yao Feng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jin-Yu Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (BY); (W-ZR)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (BY); (W-ZR)
| |
Collapse
|
24
|
Li X, Li C, Wei J, Ni W, Xu Y, Yao R, Zhang M, Li H, Liu L, Dang H, Hazi W, Hu S. Comprehensive Expression Profiling Analysis of Pituitary Indicates that circRNA Participates in the Regulation of Sheep Estrus. Genes (Basel) 2019; 10:genes10020090. [PMID: 30696117 PMCID: PMC6409929 DOI: 10.3390/genes10020090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
The pituitary gland is the most important endocrine organ that mainly regulates animal estrus by controlling the hormones synthesis. There is a significant difference between the estrus state and anestrus state of sheep pituitary system. Here, we studied the circular RNA (circRNA) expression profiles of the anterior pituitary of estrus and anestrus sheep using RNA-seq technology. Through this study, we identified a total of 12,468 circRNAs and 9231 differentially expressed circRNAs in the estrus and anestrus pituitary system of sheep. We analyzed some differentially expressed circRNAs by reverse transcription quantitative-PCR (RT-qPCR), and some circRNAs were demonstrated using RNase-R+ resistance experiments. CircRNAs involving the regulation of estrus-related terms and pathways are enriched by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In addition, we also predicted partial microRNA-circRNA interaction network for circRNAs that regulate sheep estrus. Overall, this study explored a potential substantial role played by circRNAs involved in pituitary regulation on sheep estrus and proposed new questions for further study.
Collapse
Affiliation(s)
- Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Junchang Wei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Hanli Dang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wureli Hazi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
25
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
26
|
Abstract
A young woman carrying germline DICER1 mutation was discovered to have a pituitary microprolactinoma when she became amenorrhoic. The mutation was identified as a result of family screening following the early death of the patient’s daughter with ovarian cancer. The patient was in follow-up screening for thyroid disease, and investigations were initiated when she became amenorrhoic. MR scan revealed a 6 mm diameter pituitary microadenoma and raised prolactin. The prolactin was efficiently suppressed with low-dose cabergoline, and her menstrual cycles resumed. Dicer is an RNase enzyme, which is essential for processing small non-coding RNAs. These molecules play pleiotropic roles in regulating gene expression, by targeting mRNA sequences for degradation. DICER1 plays different roles depending on cell context, but is thought to be a functional tumour suppressor gene. Accordingly, germline mutation in one DICER1 allele is insufficient for oncogenesis, and a second hit on the other allele is required, as a result of postnatal somatic mutation. Loss of DICER1 is linked to multiple tumours, with prominent endocrine representation. Multinodular goitre is frequent, with increased risk of differentiated thyroid cancer. Rare, developmental pituitary tumours are reported, including pituitary blastoma, but not reports of functional pituitary adenomas. As DICER1 mutations are rare, case reports are the only means to identify new manifestations and to inform appropriate screening protocols.
Collapse
Affiliation(s)
- Ellena Cotton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK,Specialist Medicine, Manchester University Foundation Trust, Manchester, UK
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Li X, Li C, Ni W, Wang D, Hou X, Liu Z, Cao Y, Yao Y, Zhang X, Hu S. Identification and comparison of microRNAs in pituitary gland during prenatal and postnatal stages of sheep by deep sequencing. J Genet 2018. [DOI: 10.1007/s12041-018-0991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology 2018; 159:3287-3305. [PMID: 30085028 DOI: 10.1210/en.2018-00563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
The pituitary gland is a critical organ that is necessary for many physiological processes, including growth, reproduction, and stress response. The secretion of pituitary hormones from specific cell types regulates these essential processes. Pituitary hormone cell types arise from a common pool of pituitary progenitors, and mutations that disrupt the formation and differentiation of pituitary progenitors result in hypopituitarism. Canonical WNT signaling through CTNNB1 (β-catenin) is known to regulate the formation of the POU1F1 lineage of pituitary cell types. When β-catenin is deleted during the initial formation of the pituitary progenitors, Pou1f1 is not transcribed, which leads to the loss of the POU1F1 lineage. However, when β-catenin is deleted after lineage specification, there is no observable effect. Similarly, the generation of a β-catenin gain-of-function allele in early pituitary progenitors or stem cells results in the formation of craniopharyngiomas, whereas stimulating β-catenin in differentiated cell types has no effect. PROP1 is a pituitary-specific transcription factor, and the peak of PROP1 expression coincides with a critical time point in pituitary organogenesis-that is, after pituitary progenitor formation but before lineage specification. We used a Prop1-cre to conduct both loss- and gain-of-function studies on β-catenin during this critical time point. Our results demonstrate that pituitary progenitors remain sensitive to both loss and gain of β-catenin at this time point, and that either manipulation results in hypopituitarism.
Collapse
Affiliation(s)
- Julie L Youngblood
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Tanner F Coleman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
29
|
Li X, Li C, Ni W, Wang D, Hou X, Liu Z, Cao Y, Yao Y, Zhang X, Hu S. Identification and comparison of microRNAs in pituitary gland during prenatal and postnatal stages of sheep by deep sequencing. J Genet 2018; 97:965-975. [PMID: 30262709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short-chain RNA molecules of ~22 nucleotides in length and regulate gene expression at posttranscriptional levels by interacting with mRNAs. Although many miRNAs have been identified, the expression and function of miRNAs in the pituitary gland of sheep are still unclear. In this study, the identity and abundance of miRNAs were determined in the sheep pituitary gland of prenatal and postnatal stages. We showed that 107 miRNAs are significantly (P<0.05) differentially expressed in pituitary glands between the prenatal and postnatal stages, and 44 new miRNA candidates were found according to a series of filtration criteria. Reverse-transcription polymerase chain reaction (RT-PCR) and DNA sequencing analysis confirmed the presence of several miRNAs. Real-time RT-PCR analysis showed that sheep miRNAs were expressed in prenatal and postnatal pituitary glands. We found that miRNAs were involved in hormone synthesis, secretion and signalling pathway regulation by gene ontology (GO) and KEGG concentration analysis. Our study provides valuable resources for comprehensive investigation of miRNAs in the pituitary gland and biology of sheep.
Collapse
Affiliation(s)
- X Li
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, People's Republic of China. ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gareev IF, Beylerli OA. A STUDY OF THE ROLE OF MICRORNA IN PITUITARY ADENOMA. ADVANCES IN MOLECULAR ONCOLOGY 2018. [DOI: 10.17650/2313-805x-2018-5-2-8-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs are a new class of small non-coding RNAs, a length of 18–22 nucleotides that play a decisive role as posttranscriptional regulators of gene expression. Due to the large number of genes, regulated microRNAs, microRNAs are involved in many cellular processes. The study of the impairment of the expression of the target genes of microRNA, often associated with changes in important biological characteristics, provides a significant understanding of the role of microRNAs in oncogenesis. New evidence suggests that aberrant microRNA expression or dysregulation of endogenous microRNAs affects the onset and development of tumors, including adenomas of the pituitary gland. In this review, the significance of some microRNAs in the pathology of the pituitary adenoma will be assessed, as well as data on the study of microRNAs as therapeutic targets and new biomarkers.
Collapse
|
31
|
Age-Related Changes in MicroRNA in the Rat Pituitary and Potential Role in GH Regulation. Int J Mol Sci 2018; 19:ijms19072058. [PMID: 30011963 PMCID: PMC6073141 DOI: 10.3390/ijms19072058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
The growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis has recently been recognized as an important factor related to the longevity of many organisms. MicroRNAs (miRNAs or miRs) could also participate in diverse biological processes. However, the role of miRNAs in the decline of pituitary GH during the growth process remains unclear. To better characterize the effects of miRNAs on the pituitary, we used a miRNA microarray to investigate the miRNA profile in the rat pituitary from postnatal development throughout the growth process. Then, in vitro experiments were conducted to analyze the miRNAs' potential roles related to GH regulation. Taken together, the microarray results indicated that there were 22 miRNAs differentially expressed during pituitary development. The bioinformatics analysis suggested that the most differentially expressed miRNAs may participate in multiple pathways associated with the pituitary function. Furthermore, the in vitro findings demonstrated that miR-141-3p was involved in GH regulation.
Collapse
|
32
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
33
|
Han DX, Sun XL, Xu MQ, Chen CZ, Jiang H, Gao Y, Yuan B, Zhang JB. Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget 2018; 8:36553-36565. [PMID: 28402262 PMCID: PMC5482676 DOI: 10.18632/oncotarget.16615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 11/29/2022] Open
Abstract
Follicle-stimulating hormone (FSH) secreted by adenohypophyseal cells plays an important role in the regulation of reproduction, but whether microRNAs (miRNAs) regulate the secretion of FSH remains unclear. In the present study, we predicted and screened miRNAs that might act on the follicle-stimulating hormone beta-subunit (FSHb) gene of rats using the TargetScan program and luciferase reporter assays, and the results identified two miRNAs, miR-21-3p and miR-433. We then transfected these miRNAs into rat anterior adenohypophyseal cells and assessed the FSHb expression levels in and FSH secretion by the transfected cells through quantitative PCR and ELISA. The results showed that both miR-21-3p and miR-433 down-regulated the expression levels of FSHb and resulted in the decrease of the secretion of FSH compared with the control group, and treatment with miR-21-3p and miR-433 inhibitors up-regulated the expression levels of FSHb and resulted in the increase of the secretion of FSH. Taken together, our results indicate that miR-21-3p and miR-433 can down-regulate the expression of FSHb by directly targeting the FSHb 3′UTR in rat primary pituitary cells. Our findings provide evidence that miRNAs can regulate FSHb expression and further affect the secretion of FSH and might contribute to the use of miRNAs for the regulation of animal reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Ming-Qiang Xu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
34
|
Han DX, Xiao Y, Wang CJ, Jiang H, Gao Y, Yuan B, Zhang JB. Regulation of FSH expression by differentially expressed miR-186-5p in rat anterior adenohypophyseal cells. PLoS One 2018. [PMID: 29534107 PMCID: PMC5849326 DOI: 10.1371/journal.pone.0194300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicle-stimulating hormone (FSH) has key roles in animal reproduction, including spermatogenesis and ovarian maturation. Many factors influence FSH secretion. However, despite the broad functions of microRNAs (miRNAs) via the regulation of target genes, little is known about their roles in FSH secretion. Our previous results suggested that miR-186-5p targets the 3′ UTR of FSHb; therefore, we examined whether miR-186-5p could regulate FSH secretion in rat anterior adenohypophyseal cells. miR-186-5p was transfected into rat anterior pituitary cells. The expression of FSHb and the secretion of FSH were examined by RT-qPCR and ELISA. A miR-186-5p mimic decreased the expression of FSHb compared with expression in the control group and decreased FSH secretion. In contrast, both the mRNA levels and secretion of FSH increased in response to miR-186-5p inhibitors. Our results demonstrate that miR-186-5p regulates FSH secretion by directly targeting the FSHb 3′ UTR, providing additional functional evidence for the importance of miRNAs in the regulation of animal reproduction.
Collapse
Affiliation(s)
- Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yue Xiao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chang-Jiang Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
- * E-mail: (JBZ); (BY)
| |
Collapse
|
35
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
36
|
Darvasi O, Szabo PM, Nemeth K, Szabo K, Spisak S, Liko I, Czirjak S, Racz K, Igaz P, Patocs A, Butz H. Limitations of high throughput methods for miRNA expression profiles in non-functioning pituitary adenomas. Pathol Oncol Res 2017; 25:169-182. [PMID: 29043608 DOI: 10.1007/s12253-017-0330-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
Abstract
Microarray, RT-qPCR based arrays and next-generation-sequencing (NGS) are available high-throughput methods for miRNA profiling (miRNome). Analytical and biological performance of these methods were tested in identification of biologically relevant miRNAs in non-functioning pituitary adenomas (NFPA). miRNome of 4 normal pituitary (NP) and 8 NFPA samples was determined by these platforms and expression of 21 individual miRNAs was measured on 30 (20 NFPA and 10 NP) independent samples. Complex bioinformatics was used. 132 and 137 miRNAs were detected by all three platforms in NP and NFPA, respectively, of which 25 were differentially expressed (fold change > 2). The strongest correlation was observed between microarray and TaqMan-array, while the data obtained by NGS were the most discordant despite of various bioinformatics settings. As a technical validation we measured the expression of 21 selected miRNAs by individual RT-qPCR and we were able to validate 35.1%, 76.2% and 71.4% of the miRNAs revealed by SOLiD, TLDA and microarray result, respectively. We performed biological validation using an extended number of samples (20 NFPAs and 8 NPs). Technical and biological validation showed high correlation (p < 0.001; R = 0.96). Pathway and network analysis revealed several common pathways but no pathway showed the same activation score. Using the 25 platform-independent miRNAs developmental pathways were the top functional categories relevant for NFPA genesis. The difference among high-throughput platforms is of great importance and selection of screening method can influence experimental results. Validation by another platform is essential in order to avoid or to minimalize the platform specific errors.
Collapse
Affiliation(s)
- O Darvasi
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - P M Szabo
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - K Nemeth
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - K Szabo
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - S Spisak
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - I Liko
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - S Czirjak
- National Institute of Neurosurgery, Budapest, Hungary
| | - K Racz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - P Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - A Patocs
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Semmelweis University, Department of Laboratory Medicine, 46 Szentkirályi Str, Budapest, H-1088, Hungary
| | - Henriett Butz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
- Semmelweis University, Department of Laboratory Medicine, 46 Szentkirályi Str, Budapest, H-1088, Hungary.
| |
Collapse
|
37
|
Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β‐catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2017; 233:811-817. [DOI: 10.1002/jcp.25897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Farzad Rahmani
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Department of Modern Sciences and TechnologiesSchool of MedicineMashhad University of Medical SciencesMashhadIran
- Cancer Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Microanatomy Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
38
|
Ye RS, Li M, Li CY, Qi QE, Chen T, Cheng X, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Xi QY, Zhang YL. miR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction 2016; 153:341-349. [PMID: 27998941 DOI: 10.1530/rep-16-0373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
FSH plays an essential role in processes involved in human reproduction, including spermatogenesis and the ovarian cycle. While the transcriptional regulatory mechanisms underlying its synthesis and secretion have been extensively studied, little is known about its posttranscriptional regulation. A bioinformatics analysis from our group indicated that a microRNA (miRNA; miR-361-3p) could regulate FSH secretion by potentially targeting the FSHB subunit. Herein, we sought to confirm these findings by investigating the miR-361-3p-mediated regulation of FSH production in primary pig anterior pituitary cells. Gonadotropin-releasing hormone (GnRH) treatment resulted in an increase in FSHB synthesis at both the mRNA, protein/hormone level, along with a significant decrease in miR-361-3p and its precursor (pre-miR-361) levels in time- and dose-dependent manner. Using the Dual-Luciferase Assay, we confirmed that miR-361-3p directly targets FSHB. Additionally, overexpression of miR-361-3p using mimics significantly decreased the FSHB production at both the mRNA and protein levels, with a reduction in both protein synthesis and secretion. Conversely, both synthesis and secretion were significantly increased following miR-361-3p blockade. To confirm that miR-361-3p targets FSHB, we designed FSH-targeted siRNAs, and co-transfected anterior pituitary cells with both the siRNA and miR-361-3p inhibitors. Our results indicated that the siRNA blocked the miR-361-3p inhibitor-mediated upregulation of FSH, while no significant effect on non-target expression. Taken together, our results demonstrate that miR-361-3p negatively regulates FSH synthesis and secretion by targeting FSHB, which provides more functional evidence that a miRNA is involved in the direct regulation of FSH.
Collapse
Affiliation(s)
| | | | - Chao-Yun Li
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qi-En Qi
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao Cheng
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Song-Bo Wang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li-Na Wang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao-Tong Zhu
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Yan Jiang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian-Yun Xi
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong-Liang Zhang
- Chinese National Engineering Research Center for Breeding Swine IndustrySCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Abstract
MicroRNAs (miRNAs) are non-coding RNAs generated from endogenous hairpin-shaped transcripts that powerfully regulate gene expression at post-transcriptional level. Each miRNA is capable to regulate the expression levels of hundreds of transcripts and each mRNA may have more than one miRNA recognition sequence. There is emerging evidence that deregulation of miRNA expression leads to the alteration of pivotal physiological functions contributing to the development of diseases and neoplasms, including pituitary adenoma. This review is aimed at providing the up-to-date knowledge concerning deregulated miRNAs of pituitary tumors and their functions. In order to take stock, pituitary tumors have been sub-divided in different classes on the basis of tumor features (histotype, dimension, aggressiveness). The overview takes full consideration of the recent advances in miRNAs role as potential therapeutics and biomarkers.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Ettore Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Italy.
| |
Collapse
|
40
|
Oshida K, Vasani N, Waxman DJ, Corton JC. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event. PLoS One 2016; 11:e0148308. [PMID: 26959975 PMCID: PMC4784905 DOI: 10.1371/journal.pone.0148308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption of the GH hypothalamo-pituitary-liver axis controlling STAT5b activation can lead to metabolic dysregulation, steatosis, and liver cancer. Computational approaches were developed to identify factors that disrupt STAT5b function in a mouse liver gene expression compendium. A biomarker comprised of 144 STAT5b-dependent genes was derived using comparisons between wild-type male and wild-type female mice and between STAT5b-null and wild-type mice. Correlations between the STAT5b biomarker gene set and a test set comprised of expression datasets (biosets) with known effects on STAT5b function were evaluated using a rank-based test (the Running Fisher algorithm). Using a similarity p-value ≤ 10(-4), the test achieved a balanced accuracy of 99% and 97% for detection of STAT5b activation or STAT5b suppression, respectively. The STAT5b biomarker gene set was then used to identify factors that activate (masculinize) or suppress (feminize) STAT5b function in an annotated mouse liver and primary hepatocyte gene expression compendium of ~1,850 datasets. Disruption of GH-regulated STAT5b is a common phenomenon in liver in vivo, with 5% and 29% of the male datasets, and 11% and 13% of the female datasets, associated with masculinization or feminization, respectively. As expected, liver STAT5b activation/masculinization occurred at puberty and suppression/feminization occurred during aging and in mutant mice with defects in GH signaling. A total of 70 genes were identified that have effects on STAT5b activation in genetic models in which the gene was inactivated or overexpressed. Other factors that affected liver STAT5b function were shown to include fasting, caloric restriction and infections. Together, these findings identify diverse factors that perturb the hypothalamo-pituitary-liver GH axis and disrupt GH-dependent STAT5b activation in mouse liver.
Collapse
Affiliation(s)
- Keiyu Oshida
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - Naresh Vasani
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, United States of America
| | - J. Christopher Corton
- Integrated Systems Toxicology Division, NHEERL/ORD, US-EPA, Research Triangle Park, NC 27711, United States of America
| |
Collapse
|
41
|
A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent. Gene Ther 2016; 23:527-42. [PMID: 26934100 PMCID: PMC4891277 DOI: 10.1038/gt.2016.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Current tools for the inhibition of microRNA (miR) function are limited to modified antisense oligonucleotides, sponges and decoy RNA molecules and none have been used to understand miR function during development. CRISPR/Cas-mediated deletion of miR sequences within the genome requires multiple chromosomal deletions to remove all functional miR family members because of duplications. Here, we report a novel plasmid-based miR inhibitor system (PMIS) that expresses a new RNA molecule, which inhibits miR family members in cells and mice. The PMIS engineered RNA optimal secondary structure, flanking sequences and specific antisense miR oligonucleotide sequence bind the miR in a stable complex to inhibit miR activity. In cells, one PMIS can effectively inhibit miR family members that share the same seed sequence. The PMIS shows no off-target effects or toxicity and is highly specific for miRs sharing identical seed sequences. Transgenic mice expressing both PMIS-miR-17-18 and PMIS-miR-19-92 show similar phenotypes of miR-17-92-knockout mice. Interestingly, mice only expressing PMIS-miR-17-18 have developmental defects distinct from mice only expressing PMIS-miR-19-92 demonstrating usefulness of the PMIS system to dissect different functions of miRs within clusters. Different PMIS miR inhibitors can be linked together to knock down multiple miRs expressed from different chromosomes. Inhibition of the miR-17-92, miR-106a-363 and miR-106b-25 clusters reveals new mechanisms and developmental defects for these miRs. We report a new tool to dissect the role of miRs in development without genome editing, inhibit miR function in cells and as a potential new therapeutic reagent.
Collapse
|
42
|
Daude N, Lee I, Kim TK, Janus C, Glaves JP, Gapeshina H, Yang J, Sykes BD, Carlson GA, Hood LE, Westaway D. A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone. PLoS One 2016; 11:e0149410. [PMID: 26894278 PMCID: PMC4760942 DOI: 10.1371/journal.pone.0149410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery.
Collapse
Affiliation(s)
- Nathalie Daude
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Inyoul Lee
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - Taek-Kyun Kim
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32611, United States of America
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hristina Gapeshina
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - George A. Carlson
- Mclaughlin Research Institute, 1520 23rd Street South, Great Falls, MT, 59405, United States of America
| | - Leroy E. Hood
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - David Westaway
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Mclaughlin Research Institute, 1520 23rd Street South, Great Falls, MT, 59405, United States of America
- * E-mail:
| |
Collapse
|
43
|
Bose S, Ganguly S, Kumar S, Boockfor FR. A Pit-1 Binding Site Adjacent to E-box133 in the Rat PRL Promoter is Necessary for Pulsatile Gene Expression Activity. Neurochem Res 2016; 41:1390-400. [PMID: 26875730 DOI: 10.1007/s11064-016-1843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/16/2015] [Accepted: 01/22/2016] [Indexed: 02/03/2023]
Abstract
Recent evidence reveals that prolactin gene expression (PRL-GE) in mammotropes occurs in pulses, but the molecular process(es) underlying this phenomenon remains unclear. Earlier, we have identified an E-box (E-box133) in the rat PRL promoter that binds several circadian elements and is critical for this dynamic process. Preliminary analysis revealed a Pit-1 binding site (P2) located immediately adjacent to this E-box133 raising the possibility that some type of functional relationship may exist between these two promoter regions. In this study, using serum shocked GH3 cell culture system to synchronize PRL-GE activity, we determined that Pit-1 gene expression occurred in pulses with time phases similar to that for PRL. Interestingly, EMSA analysis not only confirmed Pit-1 binding to the P2 site, but also revealed an interaction with factor(s) binding to the adjacent E-box133 promoter element. Additionally, down-regulation of Pit-1 by siRNA reduced PRL levels during pulse periods. Thus, using multiple evidences, our results demonstrate clearly that the Pit-1 P2 site is necessary for PRL-GE elaboration. Furthermore, the proximity of this critical Pit-1 binding site (P2) and the E-box133 element coupled with the evidences of a site-to-site protein interactions suggest that the process of PRL-GE pulse activity might involve more dynamic and intricate cross-talks between promoter elements that may span some, or all, of the proximal region of the PRL promoter in driving its pulsatile expression.
Collapse
Affiliation(s)
- Sudeep Bose
- Amity Institute of Biotechnology, Amity University, Gautam Buddha Nagar, Sector-125, Noida, UP, 201313, India. .,Laboratory of Molecular Dynamics, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Surajit Ganguly
- Institute of Molecular Medicine, 254 Okhla Industrial Estate, Phase III, New Delhi, 110020, India
| | - Sachin Kumar
- Amity Institute of Biotechnology, Amity University, Gautam Buddha Nagar, Sector-125, Noida, UP, 201313, India
| | - Fredric R Boockfor
- Laboratory of Molecular Dynamics, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
44
|
Butz H, Kinga N, Racz K, Patocs A. Circulating miRNAs as biomarkers for endocrine disorders. J Endocrinol Invest 2016; 39:1-10. [PMID: 26015318 DOI: 10.1007/s40618-015-0316-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/16/2015] [Indexed: 12/14/2022]
Abstract
Specific, sensitive and non-invasive biomarkers are always needed in endocrine disorders. miRNAs are short, non-coding RNA molecules with well-known role in gene expression regulation. They are frequently dysregulated in metabolic and endocrine diseases. Recently it has been shown that they are secreted into biofluids by nearly all kind of cell types. As they can be taken up by other cells they may have a role in a new kind of paracrine, cell-to-cell communication. Circulating miRNAs are protected by RNA-binding proteins or microvesicles hence they can be attractive candidates as diagnostic or prognostic biomarkers. In this review, we summarize the characteristics of extracellular miRNA's and our knowledge about their origin and potential roles in endocrine and metabolic diseases. Discussions about the technical challenges occurring during identification and measurement of extracellular miRNAs and future perspectives about their roles are also highlighted.
Collapse
Affiliation(s)
- H Butz
- Hungarian Academy of Sciences and Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
- Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - N Kinga
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, 46 Szentkirályi Str., Budapest, 1088, Hungary
| | - K Racz
- Hungarian Academy of Sciences and Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, 46 Szentkirályi Str., Budapest, 1088, Hungary
| | - A Patocs
- Hungarian Academy of Sciences and Semmelweis University Molecular Medicine Research Group, Budapest, Hungary.
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, 46 Szentkirályi Str., Budapest, 1088, Hungary.
- Hungarian Academy of Sciences and Semmelweis University "Lendület" Hereditary Endocrine Tumors Research Group, Budapest, Hungary.
| |
Collapse
|
45
|
Yuan B, Yu WY, Dai LS, Gao Y, Ding Y, Yu XF, Chen J, Zhang JB. Expression of microRNA‑26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle. Mol Med Rep 2015; 12:5753-61. [PMID: 26252447 PMCID: PMC4581756 DOI: 10.3892/mmr.2015.4192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/22/2015] [Indexed: 01/11/2023] Open
Abstract
microRNAs (miRNAs/miRs) are a class of single-stranded non-coding RNA molecules of 19–24 nucleotides (nt) in length. They are widely expressed in animals, plants, bacteria and viruses. Via specific mRNA complementary pairing of target genes, miRNAs are able to regulate the expression of mRNA levels or inhibit protein translation following transcription. miRNA expression has a time- and space specificity, and it is involved in cell proliferation and differentiation, apoptosis, development, tumor metastasis occurrence and other biological processes. miR-26b is an miRNA of 22 nt and is important in the regulation of cellular processes. With the advancement of molecular biology techniques in recent years, there have been extensive investigations into miR-26b. Numerous studies have observed that miR-26b is involved in early embryonic development, cell proliferation regulation, pituitary hormone secretion and other physiological activities. miRNAs are associated with the function of propagation. The present study used reverse transcription quantitative polymerase chain reaction to detect the relative expression levels of miR-26b in the pituitary tissue of Yanbian cattle at different developmental stages. The 2−ΔΔCt method was used to calculate the relative gene expression levels. The miRNA target gene database TargetScan and RNA22 were used for prediction of the miR-26b target gene and selective recognition was also performed. The results demonstrated that miR-26b is expressed in the pituitary tissues of Yanbian cattle at 6 and 24 months of age. The relative expression levels of miR-26b in the pituitary tissues of 24-month-old Yanbian cattle were 2.41 times that of those in the six-month-old Yanbian cattle, demonstrating significant differences in the relative expression (P<0.01). The relative expression of the candidate target genes, EphA2 and miR-26b, exhibited the opposite expression pattern. The relative expression levels in the pituitary tissues of six-month-old Yanbian cattle were 3.34 times that of those in 24-month-old Yanbian cattle (P<0.01). There are miR-26b binding sites in the 3′-untranslated region (3′-UTR) of EphA2 in bovine, human, murine and other mammalian mRNAs, suggesting that the EphA2 gene may be a target gene of miR-26b. The results of a Luciferase reporter system assay revealed that miR-26b is able to suppress EphA2 expression at the transcription level. Following the site-directed mutagenesis of plasmid EphA2 3′-UTR pmirGLO-MUT- and miR-26b mimic-transfected HeLa cells, the dual-luciferase reporter gene assay revealed that there were three consecutive nucleotide mutations in the 3′-UTR, binding with the predicted seed region. This may have caused the miR-26b inhibition of luciferase activity to decrease from 60% in the wild-type to 26%, suggesting that miR-26b achieved its function via binding with the TACTTGAA sequence of the 3′-UTR in EphA2. In conclusion, the present study successfully assessed the expression pattern of miR-26b in the pituitary tissue of Yanbian cattle, and also confirmed that EphA2 was a target gene of miR-26b in Yanbian cattle in vitro. The present study provided the theoretical basis to further investigate the role of miR-26b in early embryonic development, pituitary hormone secretion and other reproductive functions.
Collapse
Affiliation(s)
- Bao Yuan
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Wang-Yang Yu
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Li-Sheng Dai
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Yu Ding
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xian-Feng Yu
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Jian Chen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Jia-Bao Zhang
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
46
|
Ye RS, Li M, Qi QE, Cheng X, Chen T, Li CY, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Xi QY, Zhang YL. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth. PLoS One 2015; 10:e0131987. [PMID: 26134288 PMCID: PMC4489742 DOI: 10.1371/journal.pone.0131987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA-DE mRNA target pairs (63.68-71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth.
Collapse
Affiliation(s)
- Rui-Song Ye
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Li
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-En Qi
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Cheng
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Chen
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Yun Li
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Song-Bo Wang
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Shu
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Na Wang
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Tong Zhu
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qing-Yan Jiang
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qian-Yun Xi
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- * E-mail: (YLZ); (QYX)
| | - Yong-Liang Zhang
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- * E-mail: (YLZ); (QYX)
| |
Collapse
|
47
|
Martinez-Barbera JP. Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma. Neuropathol Appl Neurobiol 2015; 41:721-32. [PMID: 25611703 PMCID: PMC4949713 DOI: 10.1111/nan.12226] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/16/2015] [Indexed: 01/05/2023]
Abstract
Adamantinomatous craniopharyngiomas (ACPs) are the most common pituitary tumours in children. Although histologically benign, these are clinically aggressive tumours, difficult to manage and associated with poor quality of life for the patients. Several human and mouse studies have provided unequivocal evidence that the over-activation of the WNT/β-catenin signalling pathway underlies the molecular aetiology of these tumours. Recently, research using genetically modified mouse models of human ACP have revealed a critical and unexpected non-cell autonomous role for pituitary stem cells in ACP tumourigenesis, which has expanded the cancer stem cell paradigm. As the result of this basic research, the pathogenesis of ACP is being unveiled, with promising implications for the development of novel treatments against these childhood neoplasms. These benign tumours may additionally represent a unique model to provide insights into the initial steps of oncogenesis.
Collapse
Affiliation(s)
- Juan Pedro Martinez-Barbera
- Birth Defects Research Centre, Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, UK
| |
Collapse
|
48
|
Qi QE, Xi QY, Ye RS, Chen T, Cheng X, Li CY, Zhu XT, Shu G, Wang LN, Jiang QY, Zhang YL. Alteration of the miRNA expression profile in male porcine anterior pituitary cells in response to GHRH and CST and analysis of the potential roles for miRNAs in regulating GH. Growth Horm IGF Res 2015; 25:66-74. [PMID: 25613666 DOI: 10.1016/j.ghir.2014.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Growth hormone releasing hormone (GHRH) is a major positive regulator of growth hormone (GH) in the anterior pituitary gland, while cortistatin's (CST) role is negative. miRNAs (microRNAs or miRs) are small RNA molecules modulating gene expression at the post-transcriptional level. However, little is known about the function of miRNAs in the regulation of GH synthesis and/or secretion. This study investigated potential functional miRNAs involved in GH secretion in the normal porcine pituitary. DESIGN Primary porcine anterior pituitary cells were cultivated and then treated with 10 nmol/L GHRH and 100 nmol/L CST, respectively. The effects of GHRH and CST on GH secretion were determined using RIA. miRNA microarrays were employed to analyze miRNA expression after treatment and then differentially expressed miRNAs were screened. Bioinformatics analysis was used to analyze the potential targets in growth hormone regulation of altered miRNAs. Furthermore, functional experiments were conducted to study the function of ssc-let-7c. RESULTS GHRH significantly promoted GH secretion, while CST suppressed GH secretion. 19 and 35 differentially expressed miRNAs were identified in response to GHRH and CST treatments respectively. Verification of 5 randomly selected miRNAs by quantitative real-time PCR (qRT-PCR) showed similar changes with microarray analysis. Target analysis showed that some miRNAs may be involved in GH secretion-related pathways. Importantly, ssc-let-7c was predicted to target GH1 and GHRHR mRNA 3'untranslated regions (3'UTRs), which was supported by luciferase reporter assay. Furthermore, functional experimental results showed that ssc-let-7c was involved in GH secretion regulation, and overexpression of ssc-let-7c inhibited GH secretion in porcine anterior pituitary cells. CONCLUSIONS GHRH and CST modulated porcine pituitary cell miRNA expression. Bioinformatics analysis revealed a complicated network among differentially expressed miRNAs, GH regulation-related genes and hormones. More interestingly, ssc-let-7c inhibited both GH1 and GHRHR mRNA 3'UTR reporter vectors' luciferase activity and overexpression of ssc-let-7c led to a decrease of GH secretion.
Collapse
Affiliation(s)
- Qi-En Qi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Qian-Yun Xi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Rui-Song Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Xiao Cheng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Chao-Yun Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Xiao-Tong Zhu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Gang Shu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Li-Na Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Qing-Yan Jiang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China
| | - Yong-Liang Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
49
|
Gao S, Moreno M, Eliason S, Cao H, Li X, Yu W, Bidlack FB, Margolis HC, Baldini A, Amendt BA. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Hum Mol Genet 2015; 24:2330-48. [PMID: 25556186 DOI: 10.1093/hmg/ddu750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.
Collapse
Affiliation(s)
- Shan Gao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Huojun Cao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiao Li
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | | | - Henry C Margolis
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA and
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and the Institute of Genetics and Biophysics CNR, Naples, Italy
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA,
| |
Collapse
|
50
|
Tarasov VA, Matishov DG, Shin EF, Boyko NV, Timoshkina NN, Makhotkin MA, Lomonosov AM, Kirpiy AA, Kit OI, Maximov AY. Coordinated aberrant expression of miRNAs in colon cancer. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|