1
|
Sothers H, Hu X, Crossman DK, Si Y, Alexander MS, McDonald MLN, King PH, Lopez MA. Late-Stage Skeletal Muscle Transcriptome in Duchenne muscular dystrophy shows a BMP4-Induced Molecular Signature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590266. [PMID: 38712206 PMCID: PMC11071434 DOI: 10.1101/2024.04.19.590266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease due to loss-of-function mutations in the DYSTROPHIN gene. DMD-related skeletal muscle wasting is typified by an aberrant immune response involving upregulation of TGFβ family of cytokines. We previously demonstrated that bone morphogenetic protein 4 (BMP4) is increased in DMD and BMP4 stimulation induces a 20-fold upregulation of Smad8 transcription. However, the role of BMP4 in severely affected DMD skeletal muscle is unknown. We hypothesized that transcriptomic signatures in severely affected human DMD skeletal muscle are driven by BMP4 signaling. Transcriptomes from skeletal muscle biopsies of late-stage DMD vs. non-DMD controls and C2C12 muscle cells with or without BMP4 stimulation were generated by RNA-Seq and analyzed for single transcript differential expression as well as by Ingenuity Pathway Analysis and weighted gene co-expression network analyses. A total of 2,328 and 5,291 transcripts in the human muscle and C2C12 muscle cells, respectively, were differentially expressed. We identified an overlapping molecular signature of 1,027 genes dysregulated in DMD muscle that were induced in BMP4-stimulated C2C12 muscle cells. Highly upregulated DMD transcripts that overlapped with BMP4-stimulated C2C12 muscle cells included ADAMTS3, HCAR2, SERPING1, SMAD8 , and UNC13C. The DMD transcriptome was characterized by dysregulation of pathways involving immune function, extracellular matrix remodeling, and metabolic/mitochondrial function. In summary, we define a late-stage DMD skeletal muscle transcriptome that substantially overlaps with the BMP4-induced molecular signature in C2C12 muscle cells. This supports BMP4 as a disease-driving regulator of transcriptomic changes in late-stage DMD skeletal muscle and expands our understanding of the evolution of dystrophic signaling pathways and their associated gene networks that could be explored for therapeutic development.
Collapse
|
2
|
Wang G, Romero Y, Thevarajan I, Zolkiewska A. ADAM12 abrogation alters immune cell infiltration and improves response to checkpoint blockade therapy in the T11 murine model of triple-negative breast cancer. Oncoimmunology 2022; 12:2158006. [PMID: 36545255 PMCID: PMC9762783 DOI: 10.1080/2162402x.2022.2158006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunosuppressive tumor microenvironment (TME) impedes anti-tumor immune responses and contributes to immunotherapy resistance in triple-negative breast cancer (TNBC). ADAM12, a member of cell surface metalloproteases, is selectively upregulated in mesenchymal/claudin-low TNBCs, where its expression is largely restricted to tumor cells. The role of cancer cell-expressed ADAM12 in modulating the immune TME is not known. We show that Adam12 knockout in the T11 mouse syngeneic transplantation model of claudin-low TNBC leads to decreased numbers of tumor-infiltrating neutrophils (TINs)/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and increased numbers of tumor-infiltrating B cells and T cells. ADAM12 loss in cancer cells increases chemotaxis of B cells in vitro and this effect is eliminated by inhibition of CXCR4, a receptor for CXCL12, or anti-CXCL12 blocking antibody. Importantly, ADAM12 loss in T11 cancer cells sensitizes tumors to anti-PD1/anti-CTLA4 combination therapy, although the initial responsiveness is followed by acquired therapy resistance. Depletion of B cells in mice eliminates the improved response to immune checkpoint blockade of Adam12 knockout T11 tumors. Analysis of gene expression data for claudin-low TNBCs from the METABRIC patient cohort shows significant inverse correlations between ADAM12 and gene expression signatures of several anti-tumor immune cell populations, as well as a significant positive correlation between ADAM12 and gene expression signature of TINs/PMN-MDSCs. Collectively, these results implicate ADAM12 in immunosuppression within the TME in TNBC.
Collapse
Affiliation(s)
- Guanpeng Wang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA,CONTACT Anna Zolkiewska Department of Biochemistry and molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS66506, USA
| |
Collapse
|
3
|
Therapeutic effect of mesenchymal stem cells on histopathological, immunohistochemical, and molecular analysis in second-grade burn model. Stem Cell Res Ther 2021; 12:308. [PMID: 34051875 PMCID: PMC8164255 DOI: 10.1186/s13287-021-02365-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Deleterious cutaneous tissue damages could result from exposure to thermal trauma, which could be ameliorated structurally and functionally through therapy via the most multipotent progenitor bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to induce burns and examine the effect of BM-MSCs during a short and long period of therapy. Material and methods Ninety albino rats were divided into three groups: group I (control); group II (burn model), the animals were exposed to the preheated aluminum bar at 100°C for 15 s; and group III (the burned animals subcutaneously injected with BM-MSCs (2×106 cells/ ml)); they were clinically observed and sacrificed at different short and long time intervals, and skin samples were collected for histopathological and immunohistochemical examination and analysis of different wound healing mediators via quantitative polymerase chain reaction (qPCR). Results Subcutaneous injection of BM-MSCs resulted in the decrease of the wound contraction rate; the wound having a pinpoint appearance and regular arrangement of the epidermal layer with thin stratum corneum; decrease in the area percentages of ADAMs10 expression; significant downregulation of transforming growth factor-β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), metalloproteinase-9 (MMP-9), and microRNA-21; and marked upregulation of heat shock protein-90α (HSP-90α) especially in late stages. Conclusion BM-MSCs exhibited a powerful healing property through regulating the mediators of wound healing and restoring the normal skin structures, reducing the scar formation and the wound size.
Collapse
|
4
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
5
|
Naciri I, Laisné M, Ferry L, Bourmaud M, Gupta N, Di Carlo S, Huna A, Martin N, Peduto L, Bernard D, Kirsh O, Defossez PA. Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Res 2019; 47:3407-3421. [PMID: 30753595 PMCID: PMC6468300 DOI: 10.1093/nar/gkz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes—like testis- or placenta-specific genes—is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.
Collapse
Affiliation(s)
- Ikrame Naciri
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Marthe Laisné
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Laure Ferry
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Morgane Bourmaud
- INSERM U1132 and USPC Paris-Diderot, Hôpital Lariboisière, Paris, France
| | - Nikhil Gupta
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Selene Di Carlo
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Kirsh
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
6
|
Horita M, Nishida K, Hasei J, Furumatsu T, Sakurai M, Onodera Y, Fukuda K, Salter DM, Ozaki T. Involvement of ADAM12 in Chondrocyte Differentiation by Regulation of TGF-β1-Induced IGF-1 and RUNX-2 Expressions. Calcif Tissue Int 2019; 105:97-106. [PMID: 30993375 DOI: 10.1007/s00223-019-00549-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/10/2019] [Indexed: 01/28/2023]
Abstract
A disintegrin and metalloproteinase 12 (ADAM12) is known to be involved in chondrocyte proliferation and maturation; however, the mechanisms are not fully understood. In this study, expression and localization of ADAM12 during chondrocyte differentiation were examined in the mouse growth plate by immunohistochemistry. Adam12 expression during ATDC5 chondrogenic differentiation was examined by real-time PCR and compared with the expression pattern of type X collagen. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system was used to generate Adam12-knockout (KO) ATDC5 cells. Adam12-KO and Adam12 overexpressing cells were used for analyses of ADAM12 expression with or without TGF-β1 stimulation. ADAM12 was identified predominantly in chondrocytes of the proliferative zone in mouse growth plates by immunohistochemistry. Adam12 was upregulated prior to Col10a1 during chondrogenic differentiation in wild-type ATDC5 cells. In Adam12-KO ATDC5 cells, following initiation of chondrogenic differentiation, we observed a reduction in Igf-1 expression along with an upregulation of hypertrophy-associated Runx2, Col10a1, and type X collagen protein expressions. In ATDC5 wild-type cells, stimulation with TGF-β1 upregulated the expressions of Adam12 and Igf-1 and downregulated the expression of Runx2. In contrast, in Adam12-KO ATDC5 cells, these TGF-β1-induced changes were suppressed. Adam12 overexpression resulted in an upregulation of Igf-1 and downregulation of Runx2 expression in ATDC5 cells. The findings suggest that ADAM12 has important role in the regulation of chondrocyte differentiation, potentially by regulation of TGF-β1-dependent signaling and that targeting of ADAM12 may have a role in management of abnormal chondrocyte differentiation.
Collapse
Affiliation(s)
- Masahiro Horita
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Joe Hasei
- Department of Sports Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Miwa Sakurai
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Donald M Salter
- Centre for Genomic and Experimental Medicine, IGMM - University of Edinburgh, Edinburgh, UK
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
DeRycke MS, Larson MC, Nair AA, McDonnell SK, French AJ, Tillmans LS, Riska SM, Baheti S, Fogarty ZC, Larson NB, O’Brien DR, Cheville JC, Wang L, Schaid DJ, Thibodeau SN. An expanded variant list and assembly annotation identifies multiple novel coding and noncoding genes for prostate cancer risk using a normal prostate tissue eQTL data set. PLoS One 2019; 14:e0214588. [PMID: 30958860 PMCID: PMC6453468 DOI: 10.1371/journal.pone.0214588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/17/2019] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PrCa) is highly heritable; 284 variants have been identified to date that are associated with increased prostate cancer risk, yet few genes contributing to its development are known. Expression quantitative trait loci (eQTL) studies link variants with affected genes, helping to determine how these variants might regulate gene expression and may influence prostate cancer risk. In the current study, we performed eQTL analysis on 471 normal prostate epithelium samples and 249 PrCa-risk variants in 196 risk loci, utilizing RNA sequencing transcriptome data based on ENSEMBL gene definition and genome-wide variant data. We identified a total of 213 genes associated with known PrCa-risk variants, including 141 protein-coding genes, 16 lncRNAs, and 56 other non-coding RNA species with differential expression. Compared to our previous analysis, where RefSeq was used for gene annotation, we identified an additional 130 expressed genes associated with known PrCa-risk variants. We detected an eQTL signal for more than half (n = 102, 52%) of the 196 loci tested; 52 (51%) of which were a Group 1 signal, indicating high linkage disequilibrium (LD) between the peak eQTL variant and the PrCa-risk variant (r2>0.5) and may help explain how risk variants influence the development of prostate cancer.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Melissa C. Larson
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Asha A. Nair
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Shannon K. McDonnell
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Amy J. French
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Lori S. Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Shaun M. Riska
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Saurabh Baheti
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Zachary C. Fogarty
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Nicholas B. Larson
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Daniel R. O’Brien
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - John C. Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, SW, Rochester, Minnesota, United States of America
| |
Collapse
|
8
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
9
|
The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition. PLoS One 2015; 10:e0139179. [PMID: 26407179 PMCID: PMC4583281 DOI: 10.1371/journal.pone.0139179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022] Open
Abstract
The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT), a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A), we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways.
Collapse
|
10
|
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ, Zhou H. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4599-611. [PMID: 26316699 PMCID: PMC4541540 DOI: 10.2147/dddt.s85399] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Relaxin (RLX) can prevent cardiac fibrosis. We aimed to investigate the possible mechanism and signal transduction pathway of RLX inhibiting cardiac fibrosis. METHODS Isoproterenol (5 mg·kg(-1)·d(-1)) was used to establish the cardiac fibrosis model in rats, which were administered RLX. The cardiac function, related targets of cardiac fibrosis, and endothelial-mesenchymal transition (EndMT) were measured. Transforming growth factor β (TGF-β) was used to induce EndMT in human umbilical vein endothelial cells, which were pretreated with RLX, 200 ng·mL(-1), then with the inhibitor of Notch. Transwell cell migration was used to evaluate cell migration. CD31 and vimentin content was determined by immunofluorescence staining and Western blot analysis. Notch protein level was examined by Western blot analysis. RESULTS RLX improved cardiac function in rats with cardiac fibrosis; it reduced the content of collagen I and III, increased the microvascular density of the myocardium, and suppressed the EndMT in heart tissue. In vitro, RLX decreased the mobility of human umbilical vein endothelial cells induced by TGF-β, increased the expression of endothelial CD31, and decreased vimentin content. Compared to TGF-β and RLX co-culture alone, TGF-β + RLX + Notch inhibitor increased cell mobility and the EndMT, but decreased the levels of Notch-1, HES-1, and Jagged-1 proteins. CONCLUSION RLX may inhibit the cardiac fibrosis via EndMT by Notch-mediated signaling.
Collapse
Affiliation(s)
- X Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - X Chen
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - J J Cai
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - L Z Chen
- Department of Clinical Laboratory, Wenzhou Central Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Y S Gong
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - L X Wang
- Department of Respiratory Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Z Gao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - H Q Zhang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - W J Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - H Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
11
|
Remst DFG, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology (Oxford) 2015; 54:1954-63. [PMID: 26175472 DOI: 10.1093/rheumatology/kev228] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
Synovial fibrosis is often found in OA, contributing heavily to joint pain and joint stiffness, the main symptoms of OA. At this moment the underlying mechanism of OA-related synovial fibrosis is not known and there is no cure available. In this review we discuss factors that have been reported to be involved in synovial fibrosis. The aim of the study was to gain insight into how these factors contribute to the fibrotic process and to determine the best targets for therapy in synovial fibrosis. In this regard, the following factors are discussed: TGF-β, connective tissue growth factor, procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, tissue inhibitor of metalloproteinase 1, A disintegrin and metalloproteinase domain 12, urotensin-II, prostaglandin F2α and hyaluronan.
Collapse
Affiliation(s)
- Dennis F G Remst
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| | | | - Peter M van der Kraan
- Radboud University Medical Center, Experimental Rheumatology, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
13
|
Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nat Commun 2014; 4:2730. [PMID: 24220575 PMCID: PMC3868236 DOI: 10.1038/ncomms3730] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/09/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical tumour suppressors via a central GUGC core motif. We subsequently define mutations in microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the phosphoinositide 3-kinase, TGFβ and p53 pathways by the miR-17-19-130 superfamily members. AGO-CLIP permits the identification of miRNA target genes. Here, Hamilton et al. compile publicly available AGO-CLIP data and combine this information with miRNA analysis from The Cancer Genome Atlas, permitting the identification of an oncogenic miRNA superfamily that targets tumour suppressor genes.
Collapse
|
14
|
Chapalamadugu KC, VandeVoort CA, Settles ML, Robison BD, Murdoch GK. Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 2014; 9:e89096. [PMID: 24586524 PMCID: PMC3934879 DOI: 10.1371/journal.pone.0089096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA) affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta) on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight) of BPA during early (50–100±2 days post conception, dpc) or late (100±2 dpc – term), gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6) was down-regulated in the left ventricle, and ‘A Disintegrin and Metalloprotease 12’, long isoform (Adam12-l) was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyan C. Chapalamadugu
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Catherine A. VandeVoort
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Matthew L. Settles
- Department of Computer Science, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Gordon K. Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhou AX, El Hed A, Mercer F, Kozhaya L, Unutmaz D. The metalloprotease ADAM12 regulates the effector function of human Th17 cells. PLoS One 2013; 8:e81146. [PMID: 24363794 PMCID: PMC3867213 DOI: 10.1371/journal.pone.0081146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.
Collapse
Affiliation(s)
- Angela X. Zhou
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aimee El Hed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Frances Mercer
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Lina Kozhaya
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Derya Unutmaz
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1885-1896. [PMID: 24103556 DOI: 10.1016/j.ajpath.2013.08.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023]
Abstract
Fibrosis pathophysiology is critically regulated by Smad 2- and Smad 3-mediated transforming growth factor-β (TGF-β) signaling. Disintegrin metalloproteases (Adam) can manipulate the signaling environment, however, the role and regulation of ADAMs in renal fibrosis remain unclear. TGF-β stimulation of renal cells results in a significant up-regulation of Adams 10, 17, 12, and 19. The selective Smad2/3 inhibitor SB 525334 reversed these TGF-β-induced changes. In vivo, using ureteral obstruction to model renal fibrosis, we observed increased Adams gene expression that was blocked by oral administration of SB 525334. Similar increases in Adam gene expression also occurred in preclinical models of hypertension-induced renal damage and glomerulonephritis. miRNAs are a recently discovered second level of regulation of gene expression. Analysis of 3' untranslated regions of Adam12 and Adam19 mRNAs showed multiple binding sites for miR-29a, miR-29b, and miR-29c. We show that miR-29 family expression is decreased after unilateral ureter obstruction and this significant decrease in miR-29 family expression was observed consistently in preclinical models of renal dysfunction and correlated with an increase in Adam12 and Adam19 expression. Exogenous overexpression of the miR-29 family blocked TGF-β-mediated up-regulation of Adam12 and Adam19 gene expression. This study shows that Adams are involved in renal fibrosis and are regulated by canonical TGF-β signaling and miR-29. Therefore, both Adams and the miR-29 family represent therapeutic targets for renal fibrosis.
Collapse
|
17
|
ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins. Biochem J 2013; 452:97-109. [PMID: 23458101 DOI: 10.1042/bj20121558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.
Collapse
|
18
|
Lieber RL, Ward SR. Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol 2013; 305:C241-52. [PMID: 23761627 DOI: 10.1152/ajpcell.00173.2013] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury. The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied. Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway. This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts. A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties. Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle.
Collapse
Affiliation(s)
- Richard L Lieber
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, California 92093-0863, USA.
| | | |
Collapse
|
19
|
Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 2013; 8:e63896. [PMID: 23704950 PMCID: PMC3660557 DOI: 10.1371/journal.pone.0063896] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/07/2013] [Indexed: 01/12/2023] Open
Abstract
The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion, the results of the present study beside supporting the role of RLX in the field of cardiac fibrosis, provide novel experimental evidence on the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
20
|
Albrechtsen R, Kveiborg M, Stautz D, Vikeså J, Noer JB, Kotzsh A, Nielsen FC, Wewer U, Fröhlich C. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis, and increased tumor growth. J Cell Sci 2013; 126:4707-20. [DOI: 10.1242/jcs.129510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteases (MMPs), in particular MMP-2, -9, and -14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (A Disintegrin And Metalloproteases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here we showed a positive correlation between MMP-14 and ADAM12 expression in human breast cancer. We demonstrated that in 293-VnR and human breast cancer cells expressing ADAM12 at the cell surface, endogenous MMP-14 was recruited to the cell surface, resulting in its activation. Subsequent to this activation, gelatin degradation was stimulated and tumor-cell apoptosis was decreased, with reduced expression of the pro-apoptotic proteins BCL2L11 and BIK. The effect on gelatin degradation was abrogated by inhibition of the MMP-14 activity and appeared to be dependent on cell-surface αVβ3 integrin localization, but neither the catalytic activity of ADAM12 nor the cytoplasmic tail of ADAM12 were required. The significance of ADAM12-induced activation of MMP-14 was underscored by a reduction in MMP-14–mediated gelatin degradation and abolition of apoptosis-protective effects by specific monoclonal antibodies against ADAM12. Furthermore, orthotopic implantation of ADAM12-expressing MCF7 cells in nude mice produced tumors with increased levels of activated MMP-14 and confirmed that ADAM12 protects tumor cells against apoptosis, leading to increased tumor progression. In conclusion, our data suggest that a ternary protein complex composed of ADAM12, αVβ3 integrin, and MMP-14 at the tumor cell surface regulates MMP-14 functions. This interaction may point to a novel concept for the development of MMP-14–targeting drugs in treating cancer.
Collapse
|
21
|
Do EK, Kim YM, Heo SC, Kwon YW, Shin SH, Suh DS, Kim KH, Yoon MS, Kim JH. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth. Int J Biochem Cell Biol 2012; 44:2069-76. [PMID: 22903068 DOI: 10.1016/j.biocel.2012.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/13/2012] [Accepted: 08/05/2012] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3.
Collapse
Affiliation(s)
- Eun Kyoung Do
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 2012; 18:1262-70. [PMID: 22842476 DOI: 10.1038/nm.2848] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/26/2012] [Indexed: 01/07/2023]
Abstract
Profibrotic cells that develop upon injury generate permanent scar tissue and impair organ recovery, though their origin and fate are unclear. Here we show that transient expression of ADAM12 (a disintegrin and metalloprotease 12) identifies a distinct proinflammatory subset of platelet-derived growth factor receptor-α-positive stromal cells that are activated upon acute injury in the muscle and dermis. By inducible genetic fate mapping, we demonstrate in vivo that injury-induced ADAM12(+) cells are specific progenitors of a major fraction of collagen-overproducing cells generated during scarring, which are progressively eliminated during healing. Genetic ablation of ADAM12(+) cells, or knockdown of ADAM12, is sufficient to limit generation of profibrotic cells and interstitial collagen accumulation. ADAM12(+) cells induced upon injury are developmentally distinct from muscle and skin lineage cells and are derived from fetal ADAM12(+) cells programmed during vascular wall development. Thus, our data identify injury-activated profibrotic progenitors residing in the perivascular space that can be targeted through ADAM12 to limit tissue scarring.
Collapse
Affiliation(s)
- Sophie Dulauroy
- Institut Pasteur, Lymphoid Tissue Development Unit, Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (URA)1961, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Kim YM, Kim J, Heo SC, Shin SH, Do EK, Suh DS, Kim KH, Yoon MS, Lee TG, Kim JH. Proteomic identification of ADAM12 as a regulator for TGF-β1-induced differentiation of human mesenchymal stem cells to smooth muscle cells. PLoS One 2012; 7:e40820. [PMID: 22808268 PMCID: PMC3396647 DOI: 10.1371/journal.pone.0040820] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/13/2012] [Indexed: 12/02/2022] Open
Abstract
Background Transforming growth factor-β1 (TGF-β1) induces the differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle cells. Lipid rafts are cholesterol-rich microdomains in cell membranes that reportedly play a key role in receptor-mediated signal transduction and cellular responses. In order to clarify whether lipid rafts are involved in TGF-β1-induced differentiation of hASCs into smooth muscle cells, we analyzed the lipid raft proteome of hASCs. Methods and Results Pretreatment of hASCs with the lipid raft disruptor methyl-β-cyclodextrin abrogated TGF-β1-induced expression of α-smooth muscle actin, a smooth muscle cell marker, suggesting a pivotal role of lipid rafts in TGF-β1-induced differentiation of hASCs to smooth muscle cells. Sucrose density gradient centrifugation along with a shotgun proteomic strategy using liquid chromatography-tandem mass spectrometry identified 1002 individual proteins as the lipid raft proteome, and 242 of these were induced by TGF-β1 treatment. ADAM12, a disintegrin and metalloproteases family member, was identified as the most highly up-regulated protein in response to TGF-β1 treatment. TGF-β1 treatment of hASCs stimulated the production of both ADAM12 protein and mRNA. Silencing of endogenous ADAM12 expression using lentiviral small hairpin RNA or small interfering RNA abrogated the TGF-β1-induced differentiation of hASCs into smooth muscle cells. Conclusions These results suggest a pivotal role for lipid raft-associated ADAM12 in the TGF-β1-induced differentiation of hASCs into smooth muscle cells.
Collapse
Affiliation(s)
- Young Mi Kim
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jaeyoon Kim
- NovaCell Technology Inc., Pohang, Republic of Korea
| | - Soon Chul Heo
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sang Hun Shin
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Kyoung Do
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dong-Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Man-Soo Yoon
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | | | - Jae Ho Kim
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Taniguchi T, Asano Y, Akamata K, Aozasa N, Noda S, Takahashi T, Ichimura Y, Toyama T, Sumida H, Kuwano Y, Yanaba K, Tada Y, Sugaya M, Kadono T, Sato S. Serum levels of ADAM12-S: possible association with the initiation and progression of dermal fibrosis and interstitial lung disease in patients with systemic sclerosis. J Eur Acad Dermatol Venereol 2012; 27:747-53. [DOI: 10.1111/j.1468-3083.2012.04558.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Fröhlich C, Nehammer C, Albrechtsen R, Kronqvist P, Kveiborg M, Sehara-Fujisawa A, Mercurio AM, Wewer UM. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res 2011; 9:1449-61. [PMID: 21875931 DOI: 10.1158/1541-7786.mcr-11-0100] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of ADAM12 is low in most normal tissues but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In this study, we found that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 seems to be dispensable for its tumor-promoting effect. Interestingly, we show that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma, ADAM12 is almost exclusively located in tumor cells and, only rarely, seen in the tumor-associated stroma. We hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, on the basis of the fact that TGF-β1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-β1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12 synthesis, and growth of these cells in vivo induced more than 200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLU) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our hypothesis that tumor-associated stroma triggers ADAM12 expression.
Collapse
Affiliation(s)
- Camilla Fröhlich
- Department of Biomedical Sciences and Biotech Research & Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A. Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 2011; 286:21500-10. [PMID: 21518768 PMCID: PMC3122209 DOI: 10.1074/jbc.m110.207951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.
Collapse
Affiliation(s)
- Hui Li
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Emilia Solomon
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Sara Duhachek Muggy
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Danqiong Sun
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Anna Zolkiewska
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
27
|
Abstract
Hypertension is associated with vascular changes characterised by remodelling, endothelial dysfunction and hyperreactivity. Cellular processes underlying these perturbations include altered vascular smooth muscle cell growth and apoptosis, fibrosis, hypercontractility and calcification. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Many of these features occur with ageing, and the vascular phenotype in hypertension is considered a phenomenon of ‘premature vascular ageing’. Among the many factors involved in the hypertensive vascular phenotype, angiotensin II (Ang II) is especially important. Ang II, previously thought to be the sole effector of the renin–angiotensin system (RAS), is converted to smaller peptides [Ang III, Ang IV, Ang-(1-7)] that are biologically active in the vascular system. Another new component of the RAS is the (pro)renin receptor, which signals through Ang-II-independent mechanisms and might influence vascular function. Ang II mediates effects through complex signalling pathways on binding to its G-protein-coupled receptors (GPCRs) AT1R and AT2R. These receptors are regulated by the GPCR-interacting proteins ATRAP, ARAP1 and ATIP. AT1R activation induces effects through the phospholipase C pathway, mitogen-activated protein kinases, tyrosine kinases/phosphatases, RhoA/Rhokinase and NAD(P)H-oxidase-derived reactive oxygen species. Here we focus on recent developments and new research trends related to Ang II and the RAS and involvement in the hypertensive vascular phenotype.
Collapse
|
28
|
Metalloproteinases in hypertension and cardiac disease: differential expression and mutual regulation. ACTA ACUST UNITED AC 2011; 8:29-35. [PMID: 24976847 DOI: 10.1016/j.ddmod.2011.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arterial hypertension, a condition characterized by sustained elevated blood pressure, is associated with pathological cardiac remodeling (i.e. cardiac hypertrophy and fibrosis) and is a major risk factor for cardiac failure. These processes can be triggered by excess vasoconstrictive agonists, which induce metalloproteinase-dependent shedding of growth factors to transactivate growth factor receptors and initiate disease signaling. Here, we review emerging evidence that agonist-activated metalloproteinases exhibit different expression patterns and mutual transcriptional regulation during the development of hypertension and cardiac remodeling.
Collapse
|
29
|
Jahchan NS, Luo K. SnoN in mammalian development, function and diseases. Curr Opin Pharmacol 2010; 10:670-5. [PMID: 20822955 PMCID: PMC3123730 DOI: 10.1016/j.coph.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
SnoN (Ski-novel protein) was discovered as a nuclear proto-oncogene on the basis of its ability to induce transformation of chicken and quail embryonic fibroblasts. As a crucial negative regulator of transforming growth factor-β (TGF-β) signaling and also an activator of p53, it plays an important role in regulating cell proliferation, senescence, apoptosis, and differentiation. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed important functions of SnoN in normal epithelial development and tumorigenesis. Evidence suggests that SnoN has both pro-oncogenic and anti-oncogenic functions by modulating multiple signaling pathways. These studies suggest that SnoN may have broad functions in the development and homeostasis of embryonic and postnatal tissues.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | | |
Collapse
|