1
|
Li Y, Coelho A, Li Z, Alsved M, Li Q, Xu R, Luo H, Liang D, Xu J, Nandakumar KS, Meng L, Löndahl J, Holmdahl R. The systemic lupus erythematosus-associated NCF1 90H allele synergizes with viral infection to cause mouse lupus but also limits virus spread. Nat Commun 2025; 16:1593. [PMID: 39939342 PMCID: PMC11822037 DOI: 10.1038/s41467-025-56857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
Studying how single nucleotide polymorphisms (SNPs) crosstalk with non-autologous factors to cause complex autoimmune diseases is challenging. An amino acid replacement in the neutrophil cytosolic factor 1 (NCF1-339/NCF1R90H) leading to lower reactive oxygen species induction has been reported as the major SNP for systemic lupus erythematosus (SLE). Here we show that infection with the murine norovirus (MNV) contributes to the induction of lupus in Ncf190H mice. Mutant NCF190H upregulates the IFN-α/JAK1/STAT1 pathway in macrophages and anti-MNV-antibody production. In parallel, the MNV infection of NCF190H mice upregulates Toll-like receptor 7 in macrophages, plasmacytoid dendritic cells and B220+ splenocytes, thereby promoting germinal center formation and lupus-associated autoantibodies production. These compounded effects lead to protection against MNV infection but also glomeruloneph ritis with proteinuria and lupus arthritis in the absence of chemical inducers such as pristane. Our data thus suggest that this SLE-associated SNP, NCF190H, synergizes with MNV infection to induce the development of mouse lupus.
Collapse
Grants
- The EU COSMIC Marie Curie grant (765158), the Swedish Research Council (2023-06482), Southern Medical University (SMU) grant (C1034211), the Natural Science Foundation of China (No.32070913, 82471830, W2431021), Vetenskapsrådet (VR) (2024-02575), NovoNordisk (NNF24OC0090035), Leo Foundation (LF-OC-22-001023), Cancer foundation (22 2350 Pj 01 H), and KAW (2019.0059).
- The KI Foundation for Virus Research (2023-00122), KI Foundation funds for rheumatology research (2023-02710)
- Science and Technology Major Project District-School Cooperation Outstanding Youth Fund (Shenzhen Nanshan District Health System (NSZD)(NSZD2023062)
Collapse
Affiliation(s)
- Yanpeng Li
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ana Coelho
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zhilei Li
- Clinical Pharmacy Division, Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Malin Alsved
- Division of Ergonomics and Aerosol Technology, Faculty of Engineering, Lund University, Lund, Sweden
| | - Qixing Li
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Xu
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Huqiao Luo
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dongxia Liang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital of Xi' an Jiaotong University (Xibei Hospital), Xi' an, China
| | - Jing Xu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liesu Meng
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital of Xi' an Jiaotong University (Xibei Hospital), Xi' an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Faculty of Engineering, Lund University, Lund, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital of Xi' an Jiaotong University (Xibei Hospital), Xi' an, China.
| |
Collapse
|
2
|
Goulielmos GN, Zervou MI, Eliopoulos E. Correspondence on 'NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus' by Linge et al. Ann Rheum Dis 2023; 82:e231. [PMID: 35039322 DOI: 10.1136/annrheumdis-2021-221871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Affiliation(s)
- George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Al Abyad D, Serfaty X, Lefrançois P, Arbault S, Baciou L, Dupré-Crochet S, Kouzayha A, Bizouarn T. Role of the phospholipid binding sites, PX of p47 phox and PB region of Rac1, in the formation of the phagocyte NADPH oxidase complex NOX2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184180. [PMID: 37245861 DOI: 10.1016/j.bbamem.2023.184180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.
Collapse
Affiliation(s)
- Dina Al Abyad
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France; Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Xavier Serfaty
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Pauline Lefrançois
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France
| | - Stephane Arbault
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Laura Baciou
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Achraf Kouzayha
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Tania Bizouarn
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France.
| |
Collapse
|
4
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
5
|
Ofori EA, Garcia-Senosiain A, Naghizadeh M, Kana IH, Dziegiel MH, Adu B, Singh S, Theisen M. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun Biol 2023; 6:743. [PMID: 37463969 PMCID: PMC10354059 DOI: 10.1038/s42003-023-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.
Collapse
Affiliation(s)
- Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank KI 2034, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Subhash Singh
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhang L, Wax J, Huang R, Petersen F, Yu X. Meta-Analysis and Systematic Review of the Association between a Hypoactive NCF1 Variant and Various Autoimmune Diseases. Antioxidants (Basel) 2022; 11:1589. [PMID: 36009308 PMCID: PMC9404811 DOI: 10.3390/antiox11081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic association studies have discovered the GTF2I-NCF1 intergenic region as a strong susceptibility locus for multiple autoimmune disorders, with the missense mutation NCF1 rs201802880 as the causal polymorphism. In this work, we aimed to perform a comprehensive meta-analysis of the association of the GTF2I-NCF1 locus with various autoimmune diseases and to provide a systemic review on potential mechanisms underlying the effect of the causal NCF1 risk variants. The frequencies of the two most extensively investigated polymorphisms within the locus, GTF2I rs117026326 and NCF1 rs201802880, vary remarkably across the world, with the highest frequencies in East Asian populations. Meta-analysis showed that the GTF2I-NCF1 locus is significantly associated with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, and neuromyelitis optica spectrum disorder. The causal NCF1 rs201802880 polymorphism leads to an amino acid substitution of p.Arg90His in the p47phox subunit of the phagocyte NADPH oxidase. The autoimmune disease risk His90 variant results in a reduced ROS production in phagocytes. Clinical and experimental evidence shows that the hypoactive His90 variant might contribute to the development of autoimmune disorders via multiple mechanisms, including impairing the clearance of apoptotic cells, regulating the mitochondria ROS-associated formation of neutrophil extracellular traps, promoting the activation and differentiation of autoreactive T cells, and enhancing type I IFN responses. In conclusion, the identification of the association of NCF1 with autoimmune disorders demonstrates that ROS is an essential regulator of immune tolerance and autoimmunity mediated disease manifestations.
Collapse
Affiliation(s)
- Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Renliang Huang
- Hainan Women and Children’s Medical Center, Haikou 571100, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
7
|
Paclet MH, Laurans S, Dupré-Crochet S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front Cell Dev Biol 2022; 10:945749. [PMID: 35912108 PMCID: PMC9329797 DOI: 10.3389/fcell.2022.945749] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS), produced by the phagocyte NADPH oxidase, NOX2, are involved in many leukocyte functions. An excessive or inappropriate ROS production can lead to oxidative stress and tissue damage. On the other hand, an absence of ROS production due to a lack of a functional NADPH oxidase is associated with recurrent infections as well as inflammation disorders. Thus, it is clear that the enzyme NADPH oxidase must be tightly regulated. The NOX2 complex bears both membrane and cytosolic subunits. The membrane subunits constitute the flavocytochrome b558, consisting of gp91phox (Nox2) and p22phox subunits. The cytosolic subunits form a complex in resting cells and are made of three subunits (p47phox, p40phox, p67phox). Upon leukocyte stimulation, the cytosolic subunits and the small GTPase Rac assemble with the flavocytochrome b558 in order to make a functional complex. Depending on the stimulus, the NADPH oxidase can assemble either at the phagosomal membrane or at the plasma membrane. Many studies have explored NOX2 activation; however, how this activation is sustained and regulated is still not completely clear. Here we review the multiple roles of NOX2 in neutrophil functions, with a focus on description of its components and their assembly mechanisms. We then explain the role of energy metabolism and phosphoinositides in regulating NADPH oxidase activity. In particular, we discuss: 1) the link between metabolic pathways and NOX2 activity regulation through neutrophil activation and the level of released ROS, and 2) the role of membrane phosphoinositides in controlling the duration of NOX2 activity.
Collapse
Affiliation(s)
- Marie-Hélène Paclet
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, T-RAIG, Grenoble, France
| | - Salomé Laurans
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, Orsay, France
- *Correspondence: Sophie Dupré-Crochet,
| |
Collapse
|
8
|
Meng Y, Ma J, Yao C, Ye Z, Ding H, Liu C, Li J, Li G, He Y, Li J, Yin Z, Wu L, Zhou H, Shen N. The NCF1 variant aggravates autoimmunity by facilitating the activation of plasmacytoid dendritic cells. J Clin Invest 2022; 132:153619. [PMID: 35788118 PMCID: PMC9374378 DOI: 10.1172/jci153619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a professional type I IFN producer that play critical roles in the pathogenesis of autoimmune diseases. However, both genetic regulation of the function of pDCs and their relationships with autoimmunity are largely undetermined. Here, we investigated the causality of the neutrophil cytosolic factor 1 (NCF1) missense variant, which is one of the most significant associated risk variants for lupus, and found that the substitution of arginine (R) for histidine (H) at position 90 in the NCF1 protein (NCF1 p.R90H) led to excessive activation of pDCs. A mechanism study demonstrated that p.R90H reduced the affinity of NCF1 for phospholipids, thereby impairing endosomal localization of NCF1. As NCF1 is a subunit of the NADPH oxidase 2 (NOX2) complex, this impairment led to an acidified endosomal pH and facilitated downstream TLR signaling. Consistently, the homozygous knockin mice manifested aggravated lupus progression in a pDC-dependent lupus model. More important, pharmaceutical intervention revealed that hydroxychloroquine (HCQ) could antagonize the detrimental function of NCF1 p.R90H in the lupus model and systemic lupus erythematosus samples, supporting the idea that NCF1 p.R90H could be identified as a genetic biomarker for HCQ application. Therefore, our study provides insights into the genetic control of pDC function and a paradigm for applying genetic variants to improve targeted therapy for autoimmune diseases.
Collapse
Affiliation(s)
- Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Liu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Shenzhen, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Ellson CD, Goretti Riça I, Kim JS, Huang YMM, Lim D, Mitra T, Hsu A, Wei EX, Barrett CD, Wahl M, Delbrück H, Heinemann U, Oschkinat H, Chang CEA, Yaffe MB. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434:167533. [DOI: 10.1016/j.jmb.2022.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
10
|
Linge CP, Bengtsson A. Response to: 'NCF1-339 polymorphism and systemic lupus erythematosus' by Joob and Wiwanitkit. Ann Rheum Dis 2021; 80:e195. [PMID: 31818804 DOI: 10.1136/annrheumdis-2019-216669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Carl Petrus Linge
- Department of Clinical Sciences, Section of Rheumatology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anders Bengtsson
- Department of Clinical Sciences, Section of Rheumatology, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
13
|
Song Z, Hudik E, Le Bars R, Roux B, Dang PMC, El Benna J, Nüsse O, Dupré-Crochet S. Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils. Biochem Pharmacol 2020; 178:114088. [PMID: 32531347 DOI: 10.1016/j.bcp.2020.114088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67phox, p47phox, and p40phox) and Rac with the membrane subunits (gp91phox and p22phox). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by β2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3Kβ, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67phox and p47phox from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47phox at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47phox from the plasma membrane may involve its PX domains that bind PI3K products.
Collapse
Affiliation(s)
- Zhimin Song
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Elodie Hudik
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Romain Le Bars
- Light microscopy core facility, Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Blandine Roux
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Pham My-Chan Dang
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Jamel El Benna
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France.
| |
Collapse
|
14
|
Linge P, Arve S, Olsson LM, Leonard D, Sjöwall C, Frodlund M, Gunnarsson I, Svenungsson E, Tydén H, Jönsen A, Kahn R, Johansson Å, Rönnblom L, Holmdahl R, Bengtsson A. NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus. Ann Rheum Dis 2020; 79:254-261. [PMID: 31704719 DOI: 10.1136/annrheumdis-2019-215820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES: A single nucleotide polymorphism in the NCF1 gene (NCF1-339, rs201802880), encoding NADPH oxidase type II subunit NCF1/p47phox, reducing production of reactive oxygen species (ROS) is strongly associated with the development of systemic lupus erythematosus (SLE). This study aimed at characterising NCF1-339 effects on neutrophil extracellular trap (NET) formation, type I interferon activity and antibody profile in patients with SLE. METHODS: Neutrophil NET-release pathways (n=31), serum interferon (n=141) and finally antibody profiles (n=305) were investigated in SLE subjects from Lund, genotyped for NCF1-339. Then, 1087 SLE subjects from the rheumatology departments of four Swedish SLE centres, genotyped for NCF1-339, were clinically characterised to validate these findings. RESULTS: Compared with patients with normal-ROS NCF1-339 genotypes, neutrophils from patients with SLE with low-ROS NCF1-339 genotypes displayed impaired NET formation (p<0.01) and increased dependence on mitochondrial ROS (p<0.05). Low-ROS patients also had increased frequency of high serum interferon activity (80% vs 21.4%, p<0.05) and positivity for anti-β2 glycoprotein I (p<0.01) and anticardiolipin antibodies (p<0.05) but were not associated with other antibodies. We confirmed an over-representation of having any antiphospholipid antibody, OR 1.40 (95% CI 1.01 to 1.95), anti-β2 glycoprotein I, OR 1.82 (95% CI 1.02 to 3.24) and the antiphospholipid syndrome (APS), OR 1.74 (95% CI 1.19 to 2.55) in all four cohorts (n=1087). CONCLUSIONS: The NCF1-339 SNP mediated decreased NADPH oxidase function, is associated with high interferon activity and impaired formation of NETs in SLE, allowing dependence on mitochondrial ROS. Unexpectedly, we revealed a striking connection between the ROS deficient NCF1-339 genotypes and the presence of phospholipid antibodies and APS.
Collapse
Affiliation(s)
- Petrus Linge
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Sabine Arve
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Lina M Olsson
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Christopher Sjöwall
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Martina Frodlund
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Helena Tydén
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Robin Kahn
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Skane, Sweden
- Wallenberg Center for Molecular Medicin, Lund University, Lund, Skane, Sweden
| | - Åsa Johansson
- Division for Hematology and Transfusion Medicine, Department of laboratory medicine, Lund University, Lund, Skane, Sweden
- Regional Laboratories Region Skane, Department of Clinical Immunology and Transfusion Medicine, Skanes universitetssjukhus Lund Labmedicin Skane, Lund, Skane, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Anders Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| |
Collapse
|
15
|
The NADPH Oxidase and the Phagosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:153-177. [DOI: 10.1007/978-3-030-40406-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 2019; 133:2130-2139. [PMID: 30898864 PMCID: PMC6524563 DOI: 10.1182/blood-2018-11-844563] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
17
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
18
|
Abstract
Assays based on ectopic expression of NOX NADPH oxidase subunits in heterologous mammalian cells are an important approach for investigating features of this family of enzymes. These model systems have been used to analyze the biosynthesis and functional domains of NOX enzyme components as well as their regulation and cellular activities. This chapter provides an overview of the basic principles and applications of heterologous whole cell assays in studying NOX NADPH oxidases.
Collapse
|
19
|
Zhong J, Olsson LM, Urbonaviciute V, Yang M, Bäckdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med 2018. [PMID: 29526808 DOI: 10.1016/j.freeradbiomed.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single nucleotide polymorphism in Ncf1 has been found with a major effect on chronic inflammatory autoimmune diseases in the rat with the surprising observation that a lower reactive oxygen response led to more severe diseases. This finding was subsequently reproduced in the mouse and the effect operates in many different murine diseases through different pathogenic pathways; like models for rheumatoid arthritis, encephalomyelitis, lupus, gout, psoriasis and psoriatic arthritis. The human gene is located in an unstable region with many variable sequence repetitions, which means it has not been included in any genome wide associated screens so far. However, identification of copy number variations and single nucleotide polymorphisms has now clearly shown that major autoimmune diseases are strongly associated with the Ncf1 locus. In systemic lupus erythematosus the associated Ncf1 polymorphism (leading to an amino acid substitution at position 90) is the strongest locus and is associated with a lower reactive oxidative burst response. In addition, more precise mapping analysis of polymorphism of other NOX2 genes reveals that these are also associated with autoimmunity. The identified genetic association shows the importance of redox control and that ROS regulate chronic inflammation instead of promoting it. The genetic identification of Ncf1 polymorphisms now opens for relevant studies of the regulatory mechanisms involved, effects that will have severe consequences in many different pathogenic pathways and understanding of the origin of autoimmune diseases.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lina M Olsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Min Yang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
20
|
Thomas DC. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med 2018; 125:44-52. [PMID: 29953922 DOI: 10.1016/j.freeradbiomed.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
The phagocyte NADPH oxidase is a multi subunit protein complex that generates reactive oxygen species at cell membranes and within phagosomes. It is essential for host defence as evidenced by the severe immunodeficiency syndrome caused by a loss of one of the subunits. This is known as chronic granulomatous disease (CGD). However, the phagocyte NADPH oxidase also has a key role to play in regulating immunity and it is notable that chronic granulomatous disease is also characterised by autoimmune and autoinflammatory manifestations. This is because reactive oxygen species play a role in regulating signalling through their ability to post-translationally modify amino acid residues such as cysteine and methionine. In this review, I will outline the major aspects of innate immunity that are regulated by the phagocyte NADPH oxidase, including control of transcription, autophagy, the inflammasome and type 1 interferon signalling.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge School of Clinical Medicine, Box 157 Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
21
|
Abstract
The balance between reactive oxygen species and reactive nitrogen species production by the host and stress response by fungi is a key axis of the host-pathogen interaction. This review will describe emerging themes in fungal pathogenesis underpinning this axis.
Collapse
Affiliation(s)
- Adilia Warris
- Medical Research Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
22
|
Olsson LM, Johansson ÅC, Gullstrand B, Jönsen A, Saevarsdottir S, Rönnblom L, Leonard D, Wetterö J, Sjöwall C, Svenungsson E, Gunnarsson I, Bengtsson AA, Holmdahl R. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis 2017; 76:1607-1613. [PMID: 28606963 DOI: 10.1136/annrheumdis-2017-211287] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/30/2017] [Accepted: 05/05/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Ncf1 polymorphisms leading to low production of reactive oxygen species (ROS) are strongly associated with autoimmune diseases in animal models. The human NCF1 gene is very complex with both functional and non-functional gene copies and genotyping requires assays specific for functional NCF1 genes. We aimed at investigating association and function of the missense single nucleotide polymorphism (SNP), rs201802880 (here denoted NCF1-339) in NCF1 with systemic lupus erythematosus (SLE). METHODS We genotyped the NCF1-339 SNP in 973 Swedish patients with SLE and 1301 controls, using nested PCR and pyrosequencing. ROS production and gene expression of type 1 interferon-regulated genes were measured in isolated cells from subjects with different NCF1-339 genotypes. RESULTS We found an increased frequency of the NCF1-339 T allele in patients with SLE, 11% compared with 4% in controls, OR 3.0, 95% CI 2.4 to 3.9, p=7.0×10-20. The NCF1-339 T allele reduced extracellular ROS production in neutrophils (p=0.004) and led to an increase expression of type 1 interferon-regulated genes. In addition, the NCF1-339 T allele was associated with a younger age at diagnosis of SLE; mean age 30.3 compared with 35.9, p=2.0×1-6. CONCLUSIONS These results clearly demonstrate that a genetically controlled reduced production of ROS increases the risk of developing SLE and confirm the hypothesis that ROS regulate chronic autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Lina M Olsson
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa C Johansson
- Division for Hematology and Transfusion Medicine and Division for Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Birgitta Gullstrand
- Rheumatology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Andreas Jönsen
- Rheumatology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Saedis Saevarsdottir
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Sweden
| | - Jonas Wetterö
- Department of Clinical and Experimental Medicine, Rheumatology/Division of Neuro and Inflammation Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Clinical and Experimental Medicine, Rheumatology/Division of Neuro and Inflammation Sciences, Linköping University, Linköping, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders A Bengtsson
- Rheumatology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
24
|
Jacob CO, Yu N, Yoo DG, Perez-Zapata LJ, Barbu EA, Kaplan MJ, Purmalek M, Pingel JT, Idol RA, Dinauer MC. Haploinsufficiency of NADPH Oxidase Subunit Neutrophil Cytosolic Factor 2 Is Sufficient to Accelerate Full-Blown Lupus in NZM 2328 Mice. Arthritis Rheumatol 2017; 69:1647-1660. [DOI: 10.1002/art.40141] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Chaim O. Jacob
- University of Southern California School of Medicine; Los Angeles
| | - Ning Yu
- University of Southern California School of Medicine; Los Angeles
| | - Dae-Goon Yoo
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | | | - Emilia Alina Barbu
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Mariana J. Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; Bethesda Maryland
| | - Monica Purmalek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH; Bethesda Maryland
| | - Jeanette T. Pingel
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Rachel A. Idol
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| | - Mary C. Dinauer
- Washington University School of Medicine in St. Louis; St. Louis Missouri
| |
Collapse
|
25
|
Zhao J, Ma J, Deng Y, Kelly JA, Kim K, Bang SY, Lee HS, Li QZ, Wakeland EK, Qiu R, Liu M, Guo J, Li Z, Tan W, Rasmussen A, Lessard CJ, Sivils KL, Hahn BH, Grossman JM, Kamen DL, Gilkeson GS, Bae SC, Gaffney PM, Shen N, Tsao BP. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 2017; 49:433-437. [PMID: 28135245 DOI: 10.1038/ng.3782] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component characterized by autoantibody production and a type I interferon signature. Here we report a missense variant (g.74779296G>A; p.Arg90His) in NCF1, encoding the p47phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by the Immunochip in the GTF2IRD1-GTF2I region at 7q11.23 with a complex genomic structure. We show that the p.Arg90His substitution, which is reported to cause reduced reactive oxygen species (ROS) production, predisposes to SLE (odds ratio (OR) = 3.47 in Asians (Pmeta = 3.1 × 10-104), OR = 2.61 in European Americans, OR = 2.02 in African Americans) and other autoimmune diseases, including primary Sjögren's syndrome (OR = 2.45 in Chinese, OR = 2.35 in European Americans) and rheumatoid arthritis (OR = 1.65 in Koreans). Additionally, decreased and increased copy numbers of NCF1 predispose to and protect against SLE, respectively. Our data highlight the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases.
Collapse
Affiliation(s)
- Jian Zhao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rong Qiu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Mengru Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Wenfeng Tan
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bevra H Hahn
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jennifer M Grossman
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Collaborative Innovation Center for Translational Medicine at Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Li XJ, Deng L, Brandt SL, Goodwin CB, Ma P, Yang Z, Mali RS, Liu Z, Kapur R, Serezani CH, Chan RJ. Role of p85α in neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget 2016; 7:23096-105. [PMID: 27049833 PMCID: PMC5029613 DOI: 10.18632/oncotarget.8500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Drug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS. Genetic knockout of p85α in mice caused decreased expression of catalytic subunits p110α, p110β, and p110δ, but did not change expression levels of the NADPH oxidase complex subunits p67phox, p47phox, and p40phox. When p85α, p55α, and p50α (all encoded by Pik3r1) were deleted, there was an increase in intracellular ROS with no change in phagocytosis in response to both Fcγ receptor and complement receptor stimulation. Furthermore, the increased intracellular ROS correlated with significantly improved neutrophil killing of both methicillin-susceptible and methicillin-resistant S. aureus. Our findings suggest inhibition of p85α as novel approach to improving the clearance of resistant pathogens.
Collapse
Affiliation(s)
- Xing Jun Li
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Lisa Deng
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | | | - Charles B. Goodwin
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| | - Peilin Ma
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhenyun Yang
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Raghu S. Mali
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
- Department of Microbiology & Immunology, Indianapolis, IN, USA
| | | | - Rebecca J. Chan
- Department of Pediatrics, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
- Department of Medical & Molecular Genetics, Indianapolis, IN, USA
| |
Collapse
|
27
|
Li XJ, Goodwin CB, Nabinger SC, Richine BM, Yang Z, Hanenberg H, Ohnishi H, Matozaki T, Feng GS, Chan RJ. Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst. J Biol Chem 2014; 290:3894-909. [PMID: 25538234 DOI: 10.1074/jbc.m114.614057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.
Collapse
Affiliation(s)
- Xing Jun Li
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and
| | - Charles B Goodwin
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sarah C Nabinger
- the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Briana M Richine
- the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhenyun Yang
- West Coast University, Los Angeles, California 91606
| | - Helmut Hanenberg
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, the Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hiroshi Ohnishi
- the Gunma University Graduate School of Health Sciences, Maebashi, Gunma 371-8514, Japan
| | - Takashi Matozaki
- the Kobe University Graduate School of Medicine, Chuo-Ku, Kobe 650-0017, Japan, and
| | - Gen-Sheng Feng
- the Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Rebecca J Chan
- From the Department of Pediatrics, the Herman B Wells Center for Pediatric Research, and the Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
28
|
Wang Q, Chu CH, Oyarzabal E, Jiang L, Chen SH, Wilson B, Qian L, Hong JS. Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases. Glia 2014; 62:2034-43. [PMID: 25043383 DOI: 10.1002/glia.22724] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 01/22/2023]
Abstract
Activation of microglial NADPH oxidase (NOX2) plays a critical role in mediating neuroinflammation, which is closely linked with the pathogenesis of a variety of neurodegenerative diseases, including Parkinson's disease (PD). The inhibition of NOX2-generated superoxide has become an effective strategy for developing disease-modifying therapies for PD. However, the lack of specific and potent NOX2 inhibitors has hampered the progress of this approach. Diphenyleneiodonium (DPI) is a widely used, long-acting NOX2 inhibitor. However, due to its non-specificity for NOX2 and high cytotoxicity at standard doses (µM), DPI has been precluded from human studies. In this study, using ultra-low doses of DPI, we aimed to: (1) investigate whether these problems could be circumvented and (2) determine whether ultra-low doses of DPI were able to preserve its utility as a potent NOX2 inhibitor. We found that DPI at subpicomolar concentrations (10(-14) and 10(-13) M) displays no toxicity in primary midbrain neuron-glia cultures. More importantly, we observed that subpicomolar DPI inhibited phorbol myristate acetate (PMA)-induced activation of NOX2. The same concentrations of DPI did not inhibit the activities of a series of flavoprotein-containing enzymes. Furthermore, potent neuroprotective efficacy was demonstrated in a post-treatment study. When subpicomolar DPI was added to neuron-glia cultures pretreated with lipopolysaccharide, 1-methyl-4-phenylpyridinium or rotenone, it potently protected the dopaminergic neurons. In summary, DPI's unique combination of high specificity toward NOX2, low cytotoxicity and potent neuroprotective efficacy in post-treatment regimens suggests that subpicomolar DPI may be an ideal candidate for further animal studies and potential clinical trials.
Collapse
Affiliation(s)
- Qingshan Wang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Faure MC, Sulpice JC, Delattre M, Lavielle M, Prigent M, Cuif MH, Melchior C, Tschirhart E, Nüße O, Dupré-Crochet S. The recruitment of p47(phox) and Rac2G12V at the phagosome is transient and phosphatidylserine dependent. Biol Cell 2013; 105:501-18. [PMID: 23870057 DOI: 10.1111/boc.201300010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/15/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION During phagocytosis, neutrophils internalise pathogens in a phagosome and produce reactive oxygen species (ROS) by the NADPH oxidase to kill the pathogen. The cytosolic NADPH oxidase subunits p40(phox), p47(phox), p67(phox) and Rac2 translocate to the phagosomal membrane to participate in enzyme activation. The kinetics of this recruitment and the underlying signalling pathways are only partially understood. Anionic phospholipids, phosphatidylserine (PS) and phosphoinositides (PPI) provide an important attachment site for numerous proteins, including several oxidase subunits. RESULTS We investigated the kinetics of p47(phox) and Rac2 phagosomal membrane recruitment. Both subunits are known to interact with anionic phospholipids; we therefore addressed the role of PS in this recruitment. Phagosomal accumulation of p47(phox) and Rac2 tagged with fluorescent proteins was analysed by videomicroscopy. We used the C2 domain of lactadherin (lactC2) that interacts strongly and specifically with PS to monitor intracellular PS localisation and to decrease PS accessibility. During phagocytosis of opsonised zymosan, p47(phox) and constitutively active Rac2G12V briefly translocated to the phagosomal membrane, whereas ROS production continued for a longer period. However, in the presence of lactC2, Rac2G12V recruitment was inhibited and the kinetics of p47(phox) recruitment and detachment were delayed. A reduced phagosomal ROS production was also observed during the first 7 min following the phagosome closure. CONCLUSIONS These results suggest that p47(phox) and Rac2 accumulate only transiently at the phagosome at the onset of NADPH activity and detach from the phagosome before the end of ROS production. Furthermore, lactC2, by masking PS, interfered with the phagosomal recruitment of p47(phox) and Rac2 and disturbed NADPH oxidase activity. Thus, PS appears as a modulator of NADPH oxidase activation.
Collapse
Affiliation(s)
- Marie Cécile Faure
- Univ. Paris-Sud, Orsay, F-91405, France; INSERM UMRS757, Orsay, F-91405, France; Life Sciences Research Unit, University of Luxembourg, Luxembourg, L-1511, Luxembourg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Augusto C. Montezano
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rhian M. Touyz
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
31
|
Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol 2013; 94:657-70. [PMID: 23610146 DOI: 10.1189/jlb.1012544] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the phagocytosis field, ROS production by the phagocyte NOX has been associated with pathogen killing for the last 50 years. Since the discovery of nonphagocyte NOX, numerous other roles for ROS production have been identified. Oxidative stress and ROS-mediated signaling have received much attention in recent years. Much lower concentrations of ROS may be required for signaling compared with microbial killing. Based on the discoveries in nonphagocytic cells, it became logical to look for ROS functions distinct from pathogen killing, even in phagocytes. ROS are now linked to various forms of cell death, to chemotaxis, and to numerous modifications of cellular processes, including the NOX itself. ROS functions are clearly concentration-dependent over a wide range of concentrations. How much is required for which function? Which species are required for how much time? Is ROS signaling only a side effect of bactericidal ROS production? One major obstacle to answer these questions is the difficulty of reliable quantitative ROS detection. Signal transduction often takes place on a subcellular scale over periods of seconds or minutes, so the detection methods need to provide appropriate time and space resolution. We present examples of local ROS production, decreased degradation, signaling events, and potentially ROS-sensitive functions. We attempt to illustrate the current limitations for quantitative spatiotemporal ROS detection and point out directions for ongoing development. Probes for localized ROS detection and for combined detection of ROS, together with protein localization or other cellular parameters, are constantly improved.
Collapse
|
32
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
33
|
Shao D, Liu J, Ni J, Wang Z, Shen Y, Zhou L, Huang Y, Wang J, Xue H, Zhang W, Lu L. Suppression of XBP1S mediates high glucose-induced oxidative stress and extracellular matrix synthesis in renal mesangial cell and kidney of diabetic rats. PLoS One 2013; 8:e56124. [PMID: 23457509 PMCID: PMC3573021 DOI: 10.1371/journal.pone.0056124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that endoplasmic reticulum (ER) stress was involved in multi pathological conditions, including diabetic nephropathy (DN). X-box binding protein 1(XBP1), as a key mediator of ER stress, has been proved having the capability of preventing oxidative stress. In this study, we investigated the effects of spliced XBP1 (XBP1S), the dominant active form of XBP1, on high glucose (HG)-induced reactive oxygen species (ROS) production and extracellular matrix (ECM) synthesis in cultured renal mesangial cells (MCs) and renal cortex of STZ-induced diabetic rats. Real time PCR and Western blot were used to evaluate the mRNA and protein levels respectively. Transfection of recombinant adenovirus vector carrying XBP1S gene (Ad-XBP1S) was used to upregulate XBP1S expression. XBP1S siRNA was used to knockdown XBP1S expression. ROS level was detected by dihydroethidium (DHE) fluorescent probe assay. The results showed that HG treatment significantly reduced XBP1S protein and mRNA level in the cultured MCs while no obvious change was observed in unspliced XBP1 (XBP1U). In the mean time, the ROS production, collagen IV and fibronectin expressions were increased. Diphenylene-chloride iodonium (DPI), a NADPH oxidase inhibtor, prevented HG-induced increases in ROS as well as collagen IV and fibronectin expressions. Transfection of Ad-XBP1S reversed HG-induced ROS production and ECM expressions. Knockdown intrinsic XBP1S expression induced increases in ROS production and ECM expressions. Supplementation of supreoxide reversed the inhibitory effect of Ad-XBP1S transfection on ECM synthesis. P47phox was increased in HG-treated MCs. Ad-XBP1S transfection reversed HG-induced p47phox increase while XBP1S knockdown upregulated p47phox expression. In the renal cortex of diabetic rats, the expression of XBP1S was reduced while p47phox, collagen IV and fibronectin expression were elevated. These results suggested that XBP1S pathway of ER stress was involved in HG-induced oxidative stress and ECM synthesis. A downstream target of XBP1S in regulating ROS formation might be NADPH oxidase.
Collapse
Affiliation(s)
- Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Wang
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
34
|
Madureira PA, Waisman DM. Annexin A2: the importance of being redox sensitive. Int J Mol Sci 2013; 14:3568-94. [PMID: 23434659 PMCID: PMC3588059 DOI: 10.3390/ijms14023568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.
Collapse
Affiliation(s)
- Patrícia A. Madureira
- Centre for Molecular and Structural Biomedicine, University of Algarve, Campus of Gambelas, Faro, 8005-139, Portugal; E-Mail:
| | - David M. Waisman
- Departments of Biochemistry & Molecular Biology and Pathology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-902-494-1803; Fax: +1-902-494-1355
| |
Collapse
|
35
|
Olsson LM, Nerstedt A, Lindqvist AK, Johansson SCM, Medstrand P, Olofsson P, Holmdahl R. Copy number variation of the gene NCF1 is associated with rheumatoid arthritis. Antioxid Redox Signal 2012; 16:71-8. [PMID: 21728841 DOI: 10.1089/ars.2011.4013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIMS The aim of this study was to investigate genetic variants in the gene neutrophil cytosolic factor 1 (NCF1) for association with rheumatoid arthritis (RA). In rodent models, a single-nucleotide polymorphism (SNP) in Ncf1 has been shown to be a major locus regulating severity of arthritis. Ncf1 encodes one of five subunits of the NADPH oxidase complex. In humans the genomic structure of NCF1 is complex, excluding it from genome-wide association screens and complicating genetic analysis. In addition to copy number variation of NCF1, there are also two nonfunctional pseudogenes, nearly identical in sequence to NCF1. We have characterized copy number variation and SNPs in NCF1, and investigated these variants for association with RA. RESULTS We find that RA patients are less likely to have an increased copy number of NCF1, 7.6%, compared with 11.6% in controls; p=0.037. We also show that the T-allele of NCF1-339 (rs13447) is expressed in NCF1 and significantly reduces reactive oxygen species production. INNOVATION This is the first finding of genetic association of NCF1 with RA. The detailed characterization of genetic variants in NCF1 also helps elucidate the complexity of the NCF1 gene. CONCLUSION These data suggest that an increased copy number of NCF1 can be protective against developing RA and add support to previous findings of a role of NCF1 and the phagocyte NADPH oxidase complex in RA pathogenesis.
Collapse
Affiliation(s)
- Lina M Olsson
- Medical Inflammation Research, Department of Experimental Medical Science, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A 2011; 109:E59-67. [PMID: 22203994 DOI: 10.1073/pnas.1113251108] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE), the prototypic systemic autoimmune disease, is a debilitating multisystem autoimmune disorder characterized by chronic inflammation and extensive immune dysregulation in multiple organ systems, resulting in significant morbidity and mortality. Here, we present a multidisciplinary approach resulting in the identification of neutrophil cytosolic factor 2 (NCF2) as an important risk factor for SLE and the detailed characterization of its causal variant. We show that NCF2 is strongly associated with increased SLE risk in two independent populations: childhood-onset SLE and adult-onset SLE. The association between NCF2 and SLE can be attributed to a single nonsynonymous coding mutation in exon 12, the effect of which is the substitution of histidine-389 with glutamine (H389Q) in the PB1 domain of the NCF2 protein, with glutamine being the risk allele. Computational modeling suggests that the NCF2 H389Q mutation reduces the binding efficiency of NCF2 with the guanine nucleotide exchange factor Vav1. The model predicts that NCF2/H389 residue interacts with Vav1 residues E509, N510, E556, and G559 in the ZF domain of Vav1. Furthermore, replacing H389 with Q results in 1.5 kcal/mol weaker binding. To examine the effect of the NCF2 H389Q mutation on NADPH oxidase function, site-specific mutations at the 389 position in NCF2 were tested. Results show that an H389Q mutation causes a twofold decrease in reactive oxygen species production induced by the activation of the Vav-dependent Fcγ receptor-elicited NADPH oxidase activity. Our study completes the chain of evidence from genetic association to specific molecular function.
Collapse
|
37
|
Abstract
Everything should be as simple as it can be, but not simpler. —Attributed to Albert Einstein (1)
Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observations from different laboratories.
Collapse
|
38
|
Absence of phagocyte NADPH oxidase 2 leads to severe inflammatory response in lungs of mice infected with Coccidioides. Microb Pathog 2011; 51:432-41. [PMID: 21896326 DOI: 10.1016/j.micpath.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 12/31/2022]
Abstract
Production of reactive oxygen species (ROS) resulting from phagocytic NADPH oxidase (NOX2) activity has been reported to contribute to host defense against numerous microbial pathogens. In this study we explored the role of NOX2 production in experimental coccidioidomycosis, a human respiratory disease caused by a soil-borne fungal pathogen. Activated and non-activated macrophages isolated from either NOX2(-/-) knock-out or wild type (WT) mice showed comparable ROS production and killing efficiency in vitro when infected with parasitic cells of Coccidioides. Both mouse strains also revealed similar fungal burden in their lungs and spleen at 7 and 11 days after intranasal challenge with Coccidioides spores, although the NOX2(-/-) mice died earlier than the WT strain. Immunization of the NOX2(-/-) and WT mice with a live, attenuated vaccine strain of Coccidioides also resulted in comparable reduction of the fungal burden in both lungs and spleen. These combined results initially suggested that NOX2 activity and ROS production are not essential for protection against Coccidioides infection. However, the reduced survival of non-vaccinated NOX2(-/-) mice correlated with high, sustained numbers of lung-infiltrated neutrophils on days 7 and 11 postchallenge, an expansion of the regulatory T cell population in infected lungs in the knock-out mice, and elevated concentrations of pro-inflammatory cytokines and chemokines in lung homogenates compared to infected WT mice. Although NOX2-derived ROS appeared to be dispensable for both innate and acquired immunity to pulmonary Coccidioides infection, evidence is presented that NOX2 production plays a role in limiting pathogenic inflammation in this murine model of coccidioidomycosis.
Collapse
|
39
|
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 2011; 90:271-84. [PMID: 21504950 DOI: 10.1189/jlb.0810457] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neutrophil is a key player in immunity, and its activities are essential for the resolution of infections. Neutrophil-pathogen interactions usually trigger a large arsenal of antimicrobial measures that leads to the highly efficient killing of pathogens. In neutrophils, the phagocytic process, including the formation and maturation of the phagosome, is in many respects very different from that in other phagocytes. Although the complex mechanisms that coordinate the membrane traffic, oxidative burst, and release of granule contents required for the microbicidal activities of neutrophils are not completely understood, it is evident that they are unique and differ from those in macrophages. Neutrophils exhibit more rapid rates of phagocytosis and higher intensity of oxidative respiratory response than do macrophages. The phagosome maturation pathway in macrophages, which is linked to the endocytic pathway, is replaced in neutrophils by the rapid delivery of preformed granules to nonacidic phagosomes. This review describes the plasticity and dynamics of the phagocytic process with a special focus on neutrophil phagosome maturation.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|