1
|
Yu C, Delatycki M, Hussain SM, McNeil JJ, Lacaze P, Olynyk JK. Haemochromatosis Genotypes and Incident Dementia in a Prospective Study of Older Adults. Neurology 2025; 104:e213743. [PMID: 40440589 PMCID: PMC12123751 DOI: 10.1212/wnl.0000000000213743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/03/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Variants in the homeostatic iron regulator (HFE) gene are prevalent among individuals of European ancestry and have been linked to an increased risk of dementia. This study aimed to evaluate the effects of HFE p.Cys282Tyr and p.His63Asp variants on serum ferritin levels and the incidence of dementia in a cohort of initially healthy older adults. METHOD This prospective longitudinal study used data from the Aspirin in Reducing Events in the Elderly trial. Participants had no history of cardiovascular disease, dementia, or cognitive decline at enrollment. Genotyping for HFE p.Cys282Tyr and p.His63Asp variants was conducted using microarrays, and baseline serum ferritin concentrations were measured in peripheral blood samples. Dementia diagnoses were confirmed by an adjudication committee over a median follow-up of 6.4 years. Associations were evaluated using Cox proportional hazards models adjusted for related covariates. RESULTS The study included 12,174 unrelated, healthy participants of European ancestry aged 70 years or older, comprising 5,583 men (45.9%) and 6,591 women (54.1%). The median age was 73.7 years (interquartile range [IQR]: 71.6-76.9) for men and 73.9 years (IQR: 71.7-77.5) for women. Compared with the wild-type group, men with p.Cys282Tyr+/+ (p = 0.048) and p.Cys282Tyr+/p.His63Asp + genotypes (p < 0.001) had significantly higher baseline ferritin levels. Women with p.His63Asp+/+ (p = 0.015) and p.Cys282Tyr+/p.His63Asp+ (p < 0.001) genotypes also exhibited elevated ferritin levels. No significant association was observed between baseline serum ferritin levels and dementia risk. However, men with p.His63Asp+/+ genotype had a significantly higher risk of incident dementia (adjusted hazard ratio = 2.39, 95% CI 1.25-4.57, p = 0.009) compared with those without HFE variations. This association was not observed in women. DISCUSSION Among initially healthy older adults, HFE p.His63Asp homozygosity was associated with a higher risk of incident dementia in men but not women. These findings highlight a potential sex-specific genetic risk factor for dementia and warrant further research into the underlying mechanisms linking p.His63Asp and dementia.
Collapse
Affiliation(s)
- Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Martin Delatycki
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Service, The Royal Children's Hospital, Parkville, VIC, Australia
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sultana Monira Hussain
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - John James McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - John K Olynyk
- Curtin Medical School, Curtin University, Bentley, Australia; and
- Department of Gastroenterology, Fiona Stanley Hospital, Murdoch, Australia
| |
Collapse
|
2
|
Marshall Moscon S, Neely E, Proctor E, Connor J. A common variant in the iron regulatory gene (Hfe) alters the metabolic and transcriptional landscape in brain regions vulnerable to neurodegeneration. J Neurochem 2024; 168:3132-3153. [PMID: 39072788 DOI: 10.1111/jnc.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.
Collapse
Affiliation(s)
- Savannah Marshall Moscon
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Neely
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Elizabeth Proctor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Liu K, Yang J, Tang Y, Li Y, Hu Z, Hao X, Yi P, Yuan C. Bioassay-guided isolation of anti-leukemic steroids from Aglaia abbreviata by inducing apoptosis. Bioorg Chem 2024; 144:107147. [PMID: 38280357 DOI: 10.1016/j.bioorg.2024.107147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 μM and 19.58 ± 0.13 μM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 μM. An α,β-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.
Collapse
Affiliation(s)
- Keying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, People's Republic of China; Natural Products Research Center of Guizhou Province, Guiyang 550014, People's Republic of China.
| |
Collapse
|
4
|
Kim Y, Stahl MC, Huang X, Connor JR. H63D variant of the homeostatic iron regulator (HFE) gene alters α-synuclein expression, aggregation, and toxicity. J Neurochem 2020; 155:177-190. [PMID: 32574378 DOI: 10.1111/jnc.15107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Pathological features of Parkinson's disease include the formation of Lewy bodies containing α-synuclein and the accumulation of iron in the substantia nigra. Previous studies have suggested that iron accumulation contributes to the Parkinson's disease pathology through reactive oxygen species production and accelerated α-synuclein aggregation. This study examines the effects of commonly occurring H63D variant of the homeostatic iron regulatory (HFE) gene on α-synuclein pathology in cell culture and animal models. H63D HFE expression in SH-SY5Y cells lowered endogenous α-synuclein levels and significantly decreased pre-formed fibril-induced α-synuclein aggregation. H63D HFE cells were also protected from pre-formed fibril-induced apoptosis. Autophagic flux, a major pathway for α-synuclein clearance, was increased in H63D HFE cells. Expression of REDD1 was elevated and rapamycin treatment was unable to further induce autophagy, indicating mTORC1 inhibition as the main mechanism of autophagy induction. Moreover, siRNA knockdown of REDD1 in H63D HFE cells decreased autophagic flux and increased the sensitivity to PFF-mediated toxicity. While iron chelator (deferiprone) treatment rescued WT HFE cells from pre-formed fibril toxicity, it exacerbated or was unable to rescue H63D HFE cells. In the in vivo pre-formed fibril intracranial injection model, H67D Hfe (mouse homolog of the human H63D HFE variant) C57BL/6J × 129 mice showed less α-synuclein aggregation and less decline in motor function compared to WT Hfe. Collectively, this study suggests that H63D HFE variant modifies α-synuclein pathology through the induction of autophagy and has the potential to impact the pathogenesis and treatment response in Parkinson's disease.
Collapse
Affiliation(s)
- Yunsung Kim
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Mark C Stahl
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Xuemei Huang
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Translational Brain Research Center, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Translational Brain Research Center, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Wang ZT, Zhang C, Wang YJ, Dong Q, Tan L, Yu JT. Selective neuronal vulnerability in Alzheimer's disease. Ageing Res Rev 2020; 62:101114. [PMID: 32569730 DOI: 10.1016/j.arr.2020.101114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is defined by a deficiency in specific behavioural and/or cognitive domains, pointing to selective vulnerabilities of specific neurons from different brain regions. These vulnerabilities can be compared across neuron subgroups to identify the most vulnerable neuronal types, regions, and time points for further investigation. Thus, the relevant organizational frameworks for brain subgroups will hold great values for a clear understanding of the progression in AD. Presently, the neuronal vulnerability has yet urgently required to be elucidated as not yet been clearly defined. It is suggested that cell-autonomous and non-cell-autonomous mechanisms can affect the neuronal vulnerability to stressors, and in turn modulates AD progression. This review examines cell-autonomous and non-cell-autonomous mechanisms that contribute to the neuronal vulnerability. Collectively, the cell-autonomous mechanisms seem to be the primary drivers responsible for initiating specific stressor-related neuronal vulnerability with pathological changes in certain brain areas, which then utilize non-cell-autonomous mechanisms and result in subsequent progression of AD. In summary, this article has provided a new perspective on the preventative and therapeutic options for AD.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020; 75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Iron accumulation is a recurring pathological phenomenon in many neurological diseases including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and others. Iron is essential for normal development and functions of the brain; however, excess redox-active iron can also lead to oxidative damage and cell death. Especially for terminally differentiated cells like neurons, regulation of reactive oxygen species is critical for cell viability. As a result, cellular iron level is tightly regulated. Although iron accumulation related to neurological diseases has been well documented, the pathoetiological contributions of the homeostatic iron regulator (HFE), which controls cellular iron uptake, is less understood. Furthermore, a common HFE variant, H63D HFE, has been identified as a modifier of multiple neurological diseases. This review will discuss the roles of iron and HFE in the brain as well as their impact on various disease processes.
Collapse
Affiliation(s)
- Yunsung Kim
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA
| | - James R Connor
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA.
| |
Collapse
|
7
|
Song IY, Snyder AM, Kim Y, Neely EB, Wade QW, Connor JR. The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology 2020; 441:152525. [PMID: 32540480 DOI: 10.1016/j.tox.2020.152525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in gene and environment interactions in neurodegenerative diseases. The HFE (homeostatic iron regulator) gene variant (H63D) is highly prevalent in the population and has been investigated as a disease modifier in multiple neurodegenerative diseases. We have developed a mouse model to interrogate the impact of this gene variant in a model of paraquat toxicity. Using primary astrocytes, we found that the H67D-Hfe(equivalent of the human H63D variant) astrocytes are less vulnerable than the WT-Hfe astrocytes to paraquat-induced cell death, mitochondrial damage, and cellular senescence. We hypothesized that the Hfe variant-associated protection is a result of the activation of the Nrf2 antioxidant defense system and found a significant increase in Nrf2 levels after paraquat exposure in the H67D-Hfe astrocytes than the WT-Hfe astrocytes. Moreover, decreasing Nrf2 by molecular or pharmaceutical manipulation resulted in increased vulnerability to paraquat in the H67D-Hfe astrocytes. To further elucidate the role of Hfe variant genotype in neuroprotection mediated by astrocytes, we added media from the paraquat-treated astrocytes to differentiated SH-SY5Y neuroblastoma cells and found a significantly larger reduction in the viability when treated with WT-Hfe astrocyte media than the H67D-Hfe astrocyte media possibly due to higher secretion of IL-6 observed in the WT-Hfe astrocytes. To further explore the mechanism of Nrf2 protection, we measured NQO1, the Nrf2-mediated antioxidant, in primary astrocytes and found a significantly higher NQO1 level in the H67D-Hfe astrocytes. To consider the translational potential of our findings, we utilized the PPMI (Parkinson's Progression Markers Initiative) clinical database and found that, consistent with the mouse study, H63D-HFE carriers had a significantly higher NQO1 level in the CSF than the WT-HFE carriers. Consistent with our previous reports on H63D-HFE in disease, these data further suggest that HFE genotype in the human population impacts the antioxidant defense system and can therefore alter pathogenesis.
Collapse
Affiliation(s)
- Insung Y Song
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States.
| | - Amanda M Snyder
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Yunsung Kim
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Elizabeth B Neely
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Quinn W Wade
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - James R Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
8
|
Chiou B, Neely EB, Mcdevitt DS, Simpson IA, Connor JR. Transferrin and H-ferritin involvement in brain iron acquisition during postnatal development: impact of sex and genotype. J Neurochem 2020; 152:381-396. [PMID: 31339576 PMCID: PMC6980902 DOI: 10.1111/jnc.14834] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/06/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
Iron delivery to the developing brain is essential for energy and metabolic support needed for processes such as myelination and neuronal development. Iron deficiency, especially in the developing brain, can result in a number of long-term neurological deficits that persist into adulthood. There is considerable debate that excess access to iron during development may result in iron overload in the brain and subsequently predispose individuals to age-related neurodegenerative diseases. There is a significant gap in knowledge regarding how the brain acquires iron during development and how biological variables such as development, genetics, and sex impact brain iron status. In this study, we used a mouse model expressing a mutant form of the iron homeostatic regulator protein HFE, (Hfe H63D), the most common gene variant in Caucasians, to determine impact of the mutation on brain iron uptake. Iron uptake was assessed using 59 Fe bound to either transferrin or H-ferritin as the iron carrier proteins. We demonstrate that at postnatal day 22, mutant mice brains take up greater amounts of iron compared with wildtype. Moreover, we introduce H-ferritin as a key protein in brain iron transport during development and identify a sex and genotype effect demonstrating female mutant mice take up more iron by transferrin, whereas male mutant mice take up more iron from H-ferritin at PND22. Furthermore, we begin to elucidate the mechanism for uptake using immunohistochemistry to profile the regional distribution and temporal expression of transferrin receptor and T-cell immunoglobulin and mucin domain 2, the latter is the receptor for H-ferritin. These data demonstrate that sex and genotype have significant effects on iron uptake and that regional receptor expression may play a large role in the uptake patterns during development. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14731.
Collapse
Affiliation(s)
- Brian Chiou
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth B. Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Dillon S. Mcdevitt
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ian A. Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Lee SY, Walter V, Zhu J, Salzberg AC, Liu DJ, Connor JR. Impact of HFE variants and sex in lung cancer. PLoS One 2019; 14:e0226821. [PMID: 31856248 PMCID: PMC6922424 DOI: 10.1371/journal.pone.0226821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022] Open
Abstract
The homeostatic iron regulator protein HFE is involved in regulation of iron acquisition for cells. The prevalence of two common HFE gene variants (H63D, C282Y) has been studied in many cancer types; however, the impact of HFE variants, sex and HFE gene expression in lung cancer has not been studied. We determined the prevalence of HFE variants and their impact on cancer phenotypes in lung cancer cell lines, in lung cancer patient specimens, and using The Cancer Genome Atlas (TCGA) database. We found that seven out of ten human lung cancer cell lines carry the H63D or C282Y HFE variant. Analysis of lung cancer specimens from our institute (Penn State Hershey Medical Center) revealed a sex and genotype interaction risk for metastasis in lung adenocarcinoma (LUAD) patients; H63D HFE is associated with less metastasis in males compared to wild type (WT) HFE; however, females with the H63D HFE variant tend to develop more metastatic tumors than WT female patients. In the TCGA LUAD dataset, the H63D HFE variant was associated with poorer survival in females compared to females with WT HFE. The frequency of C282Y HFE is higher in female lung squamous cell carcinoma (LUSC) patients of TCGA than males, however the C282Y HFE variant did not impact the survival of LUSC patients. In the TCGA LUSC dataset, C282Y HFE patients (especially females) had poorer survival than WT HFE patients. HFE expression level was not affected by HFE genotype status and did not impact patient's survival, regardless of sex. In summary, these data suggest that there is a sexually dimorphic effect of HFE polymorphisms in the survival and metastatic disease in lung cancer.
Collapse
Affiliation(s)
- Sang Y. Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: ,
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Anna C. Salzberg
- Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Dajiang J. Liu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
10
|
Guldiken N, Hamesch K, Schuller SM, Aly M, Lindhauer C, Schneider CV, Fromme M, Trautwein C, Strnad P. Mild Iron Overload as Seen in Individuals Homozygous for the Alpha-1 Antitrypsin Pi*Z Variant Does Not Promote Liver Fibrogenesis in HFE Knockout Mice. Cells 2019; 8:cells8111415. [PMID: 31717526 PMCID: PMC6912453 DOI: 10.3390/cells8111415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of the homozygous 'Pi*Z' variant of alpha-1 antitrypsin (AAT) ('Pi*ZZ' genotype) predisposes to liver fibrosis development, but the role of iron metabolism in this process remains unknown. Therefore, we assessed iron metabolism and variants in the Homeostatic Iron Regulator gene (HFE) as the major cause of hereditary iron overload in a large cohort of Pi*ZZ subjects without liver comorbidities. The human cohort comprised of 409 Pi*ZZ individuals and 254 subjects without evidence of an AAT mutation who were recruited from ten European countries. All underwent a comprehensive work-up and transient elastography to determine liver stiffness measurements (LSM). The corresponding mouse models (Pi*Z overexpressors, HFE knockouts, and double transgenic [DTg] mice) were used to evaluate the impact of mild iron overload on Pi*Z-induced liver injury. Compared to Pi*Z non-carriers, Pi*ZZ individuals had elevated serum iron, transferrin saturation, and ferritin levels, but relevant iron overload was rare. All these parameters were higher in individuals with signs of significant liver fibrosis (LSM ≥ 7.1 kPa) compared to those without signs of significant liver fibrosis. HFE knockout and DTg mice displayed similar extent of iron overload and of fibrosis. Loss of HFE did not alter the extent of AAT accumulation. In Pi*ZZ individuals, presence of HFE mutations was not associated with more severe liver fibrosis. Taken together, Pi*ZZ individuals display minor alterations in serum iron parameters. Neither mild iron overload seen in these individuals nor the presence of HFE mutations (C282Y and H63D) constitute a major contributor to liver fibrosis development.
Collapse
Affiliation(s)
- Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
| | - Shari Malan Schuller
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Mahmoud Aly
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Carolin V. Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
- Correspondence: ; Tel.: +49-(241)-80-35324; Fax: +49-(241)-80-82455
| |
Collapse
|
11
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 2019; 33:2460-2471. [PMID: 30277817 PMCID: PMC6338660 DOI: 10.1096/fj.201801116rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Helal Alsulimani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Kuscuoglu D, Janciauskiene S, Hamesch K, Haybaeck J, Trautwein C, Strnad P. Liver - master and servant of serum proteome. J Hepatol 2018; 69:512-524. [PMID: 29709680 DOI: 10.1016/j.jhep.2018.04.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
Hepatocytes synthesise the majority of serum proteins. This production occurs in the endoplasmic reticulum (ER) and is adjusted by complex local and systemic regulatory mechanisms. Accordingly, serum levels of hepatocyte-made proteins constitute important biomarkers that reflect both systemic processes and the status of the liver. For example, C-reactive protein is an established marker of inflammatory reaction, whereas transferrin emerges as a liver stress marker and an attractive mortality predictor. The high protein flow through the ER poses a continuous challenge that is handled by a complex proteostatic network consisting of ER folding machinery, ER stress response, ER-associated degradation and autophagy. Various disorders disrupt this delicate balance and result in protein accumulation in the ER. These include chronic hepatitis B infection with overproduction of hepatitis B surface antigen or inherited alpha1-antitrypsin deficiency that give rise to ground glass hepatocytes and alpha1-antitrypsin aggregates, respectively. We review these ER storage disorders and their downstream consequences. The interaction between proteotoxic stress and other ER challenges such as lipotoxicity is also discussed. Collectively, this article aims to sharpen our view of liver hepatocytes as the central hubs of protein metabolism.
Collapse
Affiliation(s)
- Deniz Kuscuoglu
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; The Interdisciplinary Center for Clinical Research (IZKF), University Hospital Aachen, Aachen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, BREATH, German Center for Lung Research (DZL), Hannover, Germany
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; The Interdisciplinary Center for Clinical Research (IZKF), University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
14
|
Meadowcroft MD, Wang J, Purnell CJ, Peters DG, Eslinger PJ, Neely EB, Gill DJ, Vasavada M, Ali-Rahmani F, Yang QX, Connor JR. Reduced white matter MRI transverse relaxation rate in cognitively normal H63D-HFE human carriers and H67D-HFE mice. Brain Imaging Behav 2017; 10:1231-1242. [PMID: 26660104 DOI: 10.1007/s11682-015-9494-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation. However, it remains undetermined how these differences translate to human H63D carriers in regards to white matter (WM) integrity. To this endeavor, MRI transverse relaxation rate (R2) parametrics were employed to test the hypothesis that WM alterations are present in H63D human carriers and are recapitulated in the H67D mice. H63D carriers exhibit widespread reductions in brain R2 compared to non-carriers within white matter association fibers in the brain. Similar R2 decreases within white matter tracts were observed in the H67D mouse brain. Additionally, an exacerbation of age-related R2 decrease is found in the H67D animal model in white matter regions of interest. The decrease in R2 within white matter tracts of both species is speculated to be multifaceted. The R2 changes are hypothesized to be due to alterations in axonal biochemical tissue composition. The R2 changes observed in both the human-H63D and mouse-H67D data suggest that modified white matter myelination is occurring in subjects with HFE mutations, potentially increasing vulnerability to neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Department of Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Departments of Neurosurgery and Radiology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, H066 - The Center for NMR Research, 500 University Drive, Hershey, PA, 17033, USA.
| | - Jianli Wang
- Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Carson J Purnell
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Paul J Eslinger
- Department of Neurology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Elizabeth B Neely
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - David J Gill
- Department of Neurology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Megha Vasavada
- Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Fatima Ali-Rahmani
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
15
|
Kaczorowska-Hać B, Kaczor JJ. [Hfeprotein impact on iron metabolism]. DEVELOPMENTAL PERIOD MEDICINE 2017; 21. [PMID: 28796976 PMCID: PMC8522971 DOI: 10.34763/devperiodmed.20172102.8590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Hereditary hemochromatosis type 1 is an autosomal recessive disorder caused by HFE gene mutations, which is an iron homeostasis metabolism controlling co-factor. Adults with male predomination present with clinical symptoms derived by iron overload in organs. The phenotype expression is individual with an influence of individual and environmental factors. Despite the fact that HFE variants are widespread, its impact still remains unknown. The article reviews the literature considering the role of HFE gene mutations regarding its impact in children.
Collapse
Affiliation(s)
- Barbara Kaczorowska-Hać
- Zakład Terapii Zajęciowej Akademia Wychowania Fizycznego i Sportu wGdańsku, Polska,Barbara Kaczorowska-Hać Zakład Terapii Zajęciowej Akademia Wychowania Fizycznego i Sportu w Gdańsku ul. Kazimierza Górskiego 1, 80-336 Gdańsk tel. (48 58) 554-73-34, fax (48 58) 554-73-34
| | - Jan Jacek Kaczor
- Katedra Fizjoterapii Akademia Wychowania Fizycznego i Sportu wGdańsku, Polska
| |
Collapse
|
16
|
Joly P, Vignaud H, Di Martino J, Ruiz M, Garin R, Restier L, Belmalih A, Marchal C, Cullin C, Arveiler B, Fergelot P, Gitler AD, Lachaux A, Couthouis J, Bouchecareilh M. ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in Alpha 1-Antitrypsin Deficiency. PLoS One 2017; 12:e0179369. [PMID: 28617828 PMCID: PMC5472284 DOI: 10.1371/journal.pone.0179369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. METHODS We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. RESULTS Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. CONCLUSION This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis.
Collapse
Affiliation(s)
- Philippe Joly
- University Lyon - University Claude Bernard Lyon 1 - EA 7424 – Inter-university Laboratory of Human Movement Science, Villeurbanne, France
- Laboratoire de Biochimie et biologie moléculaire Grand-Est, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Hélène Vignaud
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Julie Di Martino
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| | - Mathias Ruiz
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Roman Garin
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Lioara Restier
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Abdelouahed Belmalih
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Christelle Marchal
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Christophe Cullin
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Benoit Arveiler
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Patricia Fergelot
- University Bordeaux, INSERM U1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM), Bordeaux, France
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alain Lachaux
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Lyon, Lyon, France
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marion Bouchecareilh
- CNRS, University Bordeaux, UMR5095 Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
- * E-mail:
| |
Collapse
|
17
|
Reuben A, Chung JW, Lapointe R, Santos MM. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:218-232. [PMID: 28474781 PMCID: PMC5569368 DOI: 10.1002/iid3.158] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Introduction Since its discovery, the hemochromatosis protein HFE has been primarily defined by its role in iron metabolism and homeostasis, and its involvement in the genetic disease termed hereditary hemochromatosis (HH). While HH patients are typically afflicted by dysregulated iron levels, many are also affected by several immune defects and increased incidence of autoimmune diseases that have thereby implicated HFE in the immune response. Growing evidence has supported an immunological role for HFE with recent studies describing HFE specifically as it relates to MHC I antigen presentation. Methods/Results Here, we present a comprehensive overview of the relationship between iron metabolism, HFE, and the immune system to better understand the origin and cause of immune defects in HH patients. We further describe the role of HFE in MHC I antigen presentation and its potential to impair autoimmune responses in homeostatic conditions, a mechanism which may be exploited by tumors to evade immune surveillance. Conclusion Overall, this increased understanding of the role of HFE in the immune response sets the stage for better treatment and management of HH and other iron‐related diseases, as well as of the immune defects related to this condition.
Collapse
Affiliation(s)
- Alexandre Reuben
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Jacqueline W Chung
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Réjean Lapointe
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Manuela M Santos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médicine, Université de Montréal, Montréal, Québec, Canada.,Institut du Cancer de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Shahbaaz M, Rahman S, Khan P, Kim J, Hassan MI. Classification and structural analyses of mutational landscapes in hemochromatosis factor E protein: A protein defective in the hereditary hemochromatosis. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Xu YY, Tang YH, Guo XP, Wang J, Yao P. HFE genetic variability and risk of alcoholic liver disease: A meta-analysis. ACTA ACUST UNITED AC 2016; 36:626-633. [PMID: 27752890 DOI: 10.1007/s11596-016-1637-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/15/2016] [Indexed: 12/30/2022]
Abstract
Studies examining the association of hemochromatosis (HFE) gene polymorphisms and susceptibility to alcoholic liver disease (ALD) yielded inconsistent results. Thus, we performed a metaanalysis to investigate whether the variations in HFE gene increase the risk of ALD. The studies published up to Feb. 2014 were identified by searching PubMed/MEDLINE, ISI Web of Science, EMBASE and China National Knowledge Infrastructure databases, which was complemented by screening the references of the retrieved studies. For all genotypes and alleles, the odds ratios (ORs) with 95% confidence intervals (CIs) according to the heterogeneity were pooled using fixed-effect model. Sixteen studies with 1933 cases and 9874 controls were included for this meta-analysis. C282Y/C282Y, C282Y/wild type, H63D/wild type and C282Y/H63D were found not to be associated with susceptibility to ALD, but increased risk of H63D/H63D (OR: 1.52, 95% CI: 1.05-2.22, P=0.029) was observed for ALD when compared to total control. Comparison of ALD patients with alcoholics without liver damage revealed a significant association of D allele, as well as a marginal association of H63D/wild type with ALD, while H63D/H63D was not significantly associated with ALD although increased value of OR was obtained. The presence of Y allele and other genotypes yielded insignificant findings when ALD patients were compared with alcoholics without liver damage. No evident publication bias or significant heterogeneity among studies was detected in this meta-analysis. In conclusion, our metaanalysis showed a marginal higher prevalence of H63D variant in ALD but did not support an increased risk of C282Y mutation.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Environment and Health of Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Han Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Environment and Health of Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ping Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Environment and Health of Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Environment and Health of Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Environment and Health of Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Su XW, Nandar W, Neely EB, Simmons Z, Connor JR. Statins accelerate disease progression and shorten survival in SOD1(G93A) mice. Muscle Nerve 2016; 54:284-91. [PMID: 26799243 DOI: 10.1002/mus.25048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION HMG-CoA reductase inhibitors (statins) and H63D HFE polymorphism may modify amyotrophic lateral sclerosis (ALS). We hypothesized that statins worsen phenotype in ALS mice, dependent on HFE genotype. METHODS Mice harboring SOD1(G93A) heterozygous for H67D Hfe (homologous to human H63D HFE) were administered simvastatin and/or coenzyme Q10, and were allowed to reach end stage. Disease progression was measured by grip strength. A separate group of animals was administered simvastatin and euthanized at the symptomatic 120-day time-point. Mitochondria from gastrocnemius muscle and lumbar spine were analyzed. RESULTS Simvastatin and H67D Hfe accelerated disease progression. Simvastatin decreased survival. Coenzyme Q10 did not rescue statin-induced effects. Statins did not alter mitochondrial protein levels. CONCLUSIONS Statins and Hfe genotype alter disease course in the ALS mouse model. Because the H63D HFE polymorphism is present in 30% of patients with ALS, studying disease progression in patients who receive statins, stratified for HFE genotype, may guide therapy. Muscle Nerve, 2016 Muscle Nerve 54: 284-291, 2016.
Collapse
Affiliation(s)
- Xiaowei W Su
- Department of Neurosurgery, Penn State College of Medicine, Mailcode H110, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| | - Wint Nandar
- Department of Neurosurgery, Penn State College of Medicine, Mailcode H110, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| | - Elizabeth B Neely
- Department of Neurosurgery, Penn State College of Medicine, Mailcode H110, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| | - Zachary Simmons
- Department of Neurology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Mailcode H110, 500 University Drive, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
21
|
Liu Y, Connor JR. From adaption to death: endoplasmic reticulum stress as a novel target of selective neurodegeneration? Neural Regen Res 2015; 10:1397-8. [PMID: 26604893 PMCID: PMC4625498 DOI: 10.4103/1673-5374.165227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yiting Liu
- Department of Neurology, University of Colorado at Denver, Anschutz Medical Campus, 12700 E 19thAvenue, Aurora, CO, USA
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University, M.S. Hershey Medical Center, 500 University Drive, Hershey, PA, USA
| |
Collapse
|
22
|
Iron metabolism and regulation by neutrophil gelatinase-associated lipocalin in cardiomyopathy. Clin Sci (Lond) 2015; 129:851-62. [PMID: 26318828 DOI: 10.1042/cs20150075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has recently become established as an important contributor to the pathophysiology of cardiovascular disease. Accordingly, it is now viewed as an attractive candidate as a biomarker for various disease states, and in particular has recently become regarded as one of the best diagnostic biomarkers available for acute kidney injury. Nevertheless, the precise physiological effects of NGAL on the heart and the significance of their alterations during the development of heart failure are only now beginning to be characterized. Furthermore, the mechanisms via which NGAL mediates its effects are unclear because there is no conventional receptor signalling pathway. Instead, previous work suggests that regulation of iron metabolism could represent an important mechanism of NGAL action, with wide-ranging consequences spanning metabolic and cardiovascular diseases to host defence against bacterial infection. In the present review, we summarize rapidly emerging evidence for the role of NGAL in regulating heart failure. In particular, we focus on iron transport as a mechanism of NGAL action and discuss this in the context of the existing strong associations between iron overload and iron deficiency with cardiomyopathy.
Collapse
|
23
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
24
|
Chang J, Kueon C, Kim J. Influence of lead on repetitive behavior and dopamine metabolism in a mouse model of iron overload. Toxicol Res 2015; 30:267-76. [PMID: 25584146 PMCID: PMC4289927 DOI: 10.5487/tr.2014.30.4.267] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
Exposures to lead (Pb) are associated with neurological problems including psychiatric disorders and impaired learning and memory. Pb can be absorbed by iron transporters, which are up-regulated in hereditary hemochromatosis, an iron overload disorder in which increased iron deposition in various parenchymal organs promote metal-induced oxidative damage. While dysfunction in HFE (High Fe) gene is the major cause of hemochromatosis, the transport and toxicity of Pb in Hfe-related hemochromatosis are largely unknown. To elucidate the relationship between HFE gene dysfunction and Pb absorption, H67D knock-in Hfe-mutant and wild-type mice were given drinking water containing Pb 1.6 mg/ml ad libitum for 6 weeks and examined for behavioral phenotypes using the nestlet-shredding and marble-burying tests. Latency to nestlet-shredding in Pb-treated wild-type mice was prolonged compared with non-exposed wild-types (p < 0.001), whereas Pb exposure did not alter shredding latency in Hfe-mutant mice. In the marble-burying test, Hfe-mutant mice showed an increased number of marbles buried compared with wild-type mice (p = 0.002), indicating more repetitive behavior upon Hfe mutation. Importantly, Pb-exposed wild-type mice buried more marbles than non-exposed wild-types, whereas the number of marbles buried by Hfe-mutant mice did not change whether or not exposed to Pb. These results suggest that Hfe mutation could normalize Pb-induced behavioral alteration. To explore the mechanism of repetitive behavior caused by Pb, western blot analysis was conducted for proteins involved in brain dopamine metabolism. The levels of tyrosine hydroxylase and dopamine transporter increased upon Pb exposure in both genotypes, whereas Hfe-mutant mice displayed down-regulation of the dopamine transporter and dopamine D1 receptor with D2 receptor elevated. Taken together, our data support the idea that both Pb exposure and Hfe mutation increase repetitive behavior in mice and further suggest that these behavioral changes could be associated with altered dopaminergic neurotransmission, providing a therapeutic basis for psychiatric disorders caused by Pb toxicity.
Collapse
Affiliation(s)
- JuOae Chang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Chojin Kueon
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
25
|
Määttä KM, Nikkari ST, Kunnas TA. Genetic variant coding for iron regulatory protein HFE contributes to hypertension, the TAMRISK study. Medicine (Baltimore) 2015; 94:e464. [PMID: 25634189 PMCID: PMC4602945 DOI: 10.1097/md.0000000000000464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Iron is essential for body homeostasis, but iron overload may lead to metabolic abnormalities and thus increase the risk for atherosclerosis and many other diseases. Major histocompatibility complex class I-like transmembrane protein (HFE) is involved in body iron metabolism. The gene coding for HFE has 3 well-known polymorphic sites of which H63D (rs1799945, C > G) has recently been associated with hypertension in a genome-wide association study (GWAS) study. In the present study, we wanted to clarify whether the genetic variant associates with hypertension in a Finnish cohort consisting of 50-year-old men and women. The study included 399 hypertensive cases and 751 controls from the Tampere adult population cardiovascular risk study (TAMRISK) cohort. Genotyping of polymorphisms was done by polymerase chain reaction using DNAs extracted from buccal swabs. We found that individuals with the mutated form of the H63D polymorphic site (G-allele) had a 1.4-fold risk (P = 0.037, 95% confidence interval [CI] 1.02-1.89) for hypertension at the age of 50 years compared with the CC genotype carriers. When obese subjects (body mass index > 30 kg/m²) were analyzed in their own group, the risk for hypertension was even stronger (odds ratio 4.15, P < 0.001, 95% CI 1.98-8.68). We also noticed that the blood pressure (BP) readings were higher in those with the minor G-allele when compared to ones having a normal genotype already at the age of 35 years. Means of systolic/diastolic BPs were 127/81 mm Hg for CC and 131/83 mm Hg for CG + GG groups (P < 0.001 for systolic and P = 0.005 for diastolic pressure). In conclusion, HFE genetic variant H63D was associated with essential hypertension in Finnish subjects from the TAMRISK cohort confirming a previous GWAS study. The effect of this SNP on BP was also confirmed from a longitudinal study.
Collapse
Affiliation(s)
- Kirsi M Määttä
- From the Department of Medical Biochemistry (KMM, STN, TAK), University of Tampere Medical School; and Fimlab Laboratories (STN), Tampere, Finland
| | | | | |
Collapse
|
26
|
Su XW, Clardy SL, Stephens HE, Simmons Z, Connor JR. Serum ferritin is elevated in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 2014; 16:102-7. [PMID: 25521651 DOI: 10.3109/21678421.2014.984723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our objective was to measure serum ferritin levels, which reflect iron metabolism, in ALS patients versus healthy and disease controls, and determine whether serum ferritin levels correlate with survival. We retrospectively analyzed data from 138 ALS patients, 152 healthy controls, and 82 disease controls. Gender, age, site of onset, and dates of symptom onset and death were recorded. Survival was defined as the time from symptom onset to death. Serum ferritin levels were measured using immunoassay. ANOVA and Pearson's correlation were used to compare ferritin levels between groups and test the association between ferritin levels and age and survival. Ferritin levels were categorized into high and low groups, and Kaplan-Meier analysis performed. Results showed that gender proportions differed between ALS patients versus healthy and disease controls, and gender affected serum ferritin levels. Ferritin comparisons were stratified for gender. In both males and females, ferritin levels were higher in ALS patients versus healthy and disease controls. However, ferritin levels were unrelated to survival in either gender, by tests of association or survival analysis. In conclusion, ALS patients have altered iron metabolism that is not simply due to the presence of neurological disease. Serum ferritin levels alone are not sufficient to predict survival.
Collapse
Affiliation(s)
- Xiaowei W Su
- Department of Neurosurgery, Penn State College of Medicine , Hershey, Pennsylvania , USA
| | | | | | | | | |
Collapse
|
27
|
Lee SY, Slagle-Webb B, Sheehan JM, Zhu J, Muscat JE, Glantz M, Connor JR. HFE polymorphisms affect survival of brain tumor patients. J Neurooncol 2014; 122:97-104. [PMID: 25491948 DOI: 10.1007/s11060-014-1681-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 01/15/2023]
Abstract
The HFE (high iron) protein plays a key role in the regulation of body iron. HFE polymorphisms (H63D and C282Y) are the common genetic variants in Caucasians. Based on frequency data, both HFE polymorphisms have been associated with increased risk in a number of cancers. The prevalence of the two major HFE polymorphisms in a human brain tumor patient populations and the impact of HFE polymorphisms on survival have not been studied. In the present study, there is no overall difference in survival by HFE genotype. However, male GBM patients with H63D HFE (H63D) have poorer overall survival than wild type HFE (WT) male GBM (p = 0.03). In GBM patients with the C282Y HFE polymorphism (C282Y), female patients have poorer survival than male patients (p = 0.05). In addition, female metastatic brain tumor patients with C282Y have shorter survival times post diagnosis than WT patients (p = 0.02) or male metastatic brain tumor patients with C282Y (p = 0.02). There is a tendency toward a lower proportion of H63D genotype in GBM patients than a non-tumor control group (p = 0.09) or other subtypes of brain tumors. In conclusion, our study suggests that HFE genotype impacts survival of brain tumor patients in a gender specific manner. We previously reported that glioma and neuroblastoma cell lines with HFE polymorphisms show greater resistance to chemo and radiotherapy. Taken together, these data suggest HFE genotype is an important consideration for evaluating and planning therapeutic strategies in brain tumor patients.
Collapse
Affiliation(s)
- Sang Y Lee
- Department of Neurosurgery, H110, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Penn State Hershey Cancer Institute, 500 University Drive (H110), Hershey, PA, 17033-0850, USA,
| | | | | | | | | | | | | |
Collapse
|
28
|
Weston C, Connor J. Evidence for the Influence of the Iron Regulatory MHC Class I Molecule HFE on Tumor Progression in Experimental Models and Clinical Populations. TRANSLATIONAL ONCOGENOMICS 2014; 6:1-12. [PMID: 25520556 PMCID: PMC4259395 DOI: 10.4137/tog.s19064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
Proteins involved in iron regulation are modifiers of cancer risk and progression. Of these, the HFE protein (high iron gene and its protein product) is of particular interest because of its interaction with both iron handling and immune function and the high rate of genetic polymorphisms resulting in a mutant protein. Clinical studies suggest that HFE polymorphisms increase the risk of certain cancers, but the inconsistent outcomes suggest a more nuanced effect, possibly interacting with other genetic or environmental factors. Some basic science research has been conducted to begin to understand the implications of variant HFE genotype on cancer, but the story is far from complete. In particular, putative mechanisms exist for HFE to affect tumor progression through its role in iron handling and its major histocompatibility complex class I structural features. In this review, the current understanding of the role of HFE in cancer is described and models for future directions are identified.
Collapse
Affiliation(s)
- Cody Weston
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
29
|
Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun 2014; 5:4926. [PMID: 25352340 PMCID: PMC4215164 DOI: 10.1038/ncomms5926] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/06/2014] [Indexed: 12/13/2022] Open
Abstract
Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10(-8)) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease.
Collapse
|
30
|
Nandar W, Neely EB, Simmons Z, Connor JR. H63D HFE genotype accelerates disease progression in animal models of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2413-26. [PMID: 25283820 DOI: 10.1016/j.bbadis.2014.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
H63D HFE is associated with iron dyshomeostasis and oxidative stress; each of which plays an important role in amyotrophic lateral sclerosis (ALS) pathogenesis. To examine the role of H63D HFE in ALS, we generated a double transgenic mouse line (SOD1/H67D) carrying the H67D HFE (homologue of human H63D) and SOD1(G93A) mutations. We found double transgenic mice have shorter survival and accelerated disease progression. We examined parameters in the lumbar spinal cord of double transgenic mice at 90days (presymptomatic), 110days (symptomatic) and end-stage. Transferrin receptor and L-ferritin expression, both indicators of iron status, were altered in double transgenic and SOD1 mice starting at 90days, indicating loss of iron homeostasis in these mice. However, double transgenic mice had higher L-ferritin expression than SOD1 mice. Double transgenic mice exhibited increased Iba-1 immunoreactivity and caspase-3 levels, indicating increased microglial activation which would be consistent with the higher L-ferritin levels. Although both SOD1 and double transgenic mice had increased GFAP expression, the magnitude of the increase was higher in double transgenic mice at 110days, suggesting increased gliosis in these mice. Increased hemeoxygenase-1 and decreased nuclear factor E2-related factor 2 levels in double transgenic mice strongly suggest the accelerated disease process could be associated with increased oxidative stress. There was no evidence of TAR-DNA-binding protein 43 mislocalization to the cytoplasm in double transgenic mice; however, there was evidence suggesting neurofilament disruption, which has been reported in ALS. Our findings indicate H63D HFE modifies ALS pathophysiology via pathways involving oxidative stress, gliosis and disruption of cellular functions.
Collapse
Affiliation(s)
- Wint Nandar
- Department of Neurosurgery, The Pennsylvania State University, M. S. Hershey Medical Center, Hershey, PA 17033, USA.
| | - Elizabeth B Neely
- Department of Neurosurgery, The Pennsylvania State University, M. S. Hershey Medical Center, Hershey, PA 17033, USA.
| | - Zachary Simmons
- Department of Neurology, The Pennsylvania State University, M. S. Hershey Medical Center, Hershey, PA 17033, USA.
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University, M. S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
31
|
Characterization of a novel anti-cancer compound for astrocytomas. PLoS One 2014; 9:e108166. [PMID: 25255031 PMCID: PMC4177861 DOI: 10.1371/journal.pone.0108166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
The standard chemotherapy for brain tumors is temozolomide (TMZ), however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu) nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT) but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.
Collapse
|
32
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
33
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
34
|
Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL. H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 2014; 35:1511.e1-12. [DOI: 10.1016/j.neurobiolaging.2013.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022]
|
35
|
Ali H, Urolagin S, Gurarslan Ö, Vihinen M. Performance of Protein Disorder Prediction Programs on Amino Acid Substitutions. Hum Mutat 2014; 35:794-804. [DOI: 10.1002/humu.22564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Heidi Ali
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
| | - Siddhaling Urolagin
- Department of Experimental Medical Science; Lund University; SE-22184 Lund Sweden
| | - Ömer Gurarslan
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
- Department of Experimental Medical Science; Lund University; SE-22184 Lund Sweden
- Tampere University Hospital; Tampere Finland
| |
Collapse
|
36
|
Reuben A, Phénix M, Santos MM, Lapointe R. The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation. Eur J Immunol 2014; 44:1604-14. [PMID: 24643698 DOI: 10.1002/eji.201343955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/21/2014] [Accepted: 02/11/2014] [Indexed: 11/05/2022]
Abstract
MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity.
Collapse
Affiliation(s)
- Alexandre Reuben
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Institut du cancer de Montréal, Montréal, Québec, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
37
|
Pal R, Monroe TO, Palmieri M, Sardiello M, Rodney GG. Rotenone induces neurotoxicity through Rac1-dependent activation of NADPH oxidase in SHSY-5Y cells. FEBS Lett 2013; 588:472-81. [PMID: 24374334 DOI: 10.1016/j.febslet.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases are attributed to impairment of the ubiquitin-proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Tanner O Monroe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Walker AK, Soo KY, Sundaramoorthy V, Parakh S, Ma Y, Farg MA, Wallace RH, Crouch PJ, Turner BJ, Horne MK, Atkin JD. ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation. PLoS One 2013; 8:e81170. [PMID: 24312274 PMCID: PMC3843686 DOI: 10.1371/journal.pone.0081170] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, TAR DNA binding protein 43 (TDP-43) accumulates in the cytoplasm of affected neurons and glia, where it associates with stress granules (SGs) and forms large inclusions. SGs form in response to cellular stress, including endoplasmic reticulum (ER) stress, which is induced in both familial and sporadic forms of ALS. Here we demonstrate that pharmacological induction of ER stress causes TDP-43 to accumulate in the cytoplasm, where TDP-43 also associates with SGs. Furthermore, treatment with salubrinal, an inhibitor of dephosphorylation of eukaryotic initiation factor 2-α, a key modulator of ER stress, potentiates ER stress-mediated SG formation. Inclusions of C-terminal fragment TDP-43, reminiscent of disease-pathology, form in close association with ER and Golgi compartments, further indicating the involvement of ER dysfunction in TDP-43-associated disease. Consistent with this notion, over-expression of ALS-linked mutant TDP-43, and to a lesser extent wildtype TDP-43, triggers several ER stress pathways in neuroblastoma cells. Similarly, we found an interaction between the ER chaperone protein disulphide isomerase and TDP-43 in transfected cell lysates and in the spinal cords of mutant A315T TDP-43 transgenic mice. This study provides evidence for ER stress as a pathogenic pathway in TDP-43-mediated disease.
Collapse
Affiliation(s)
- Adam K. Walker
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kai Y. Soo
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Vinod Sundaramoorthy
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Sonam Parakh
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Yi Ma
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Manal A. Farg
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Robyn H. Wallace
- Queensland Brain Institute and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter J. Crouch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J. Turner
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm K. Horne
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Saint Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Julie D. Atkin
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
39
|
Su XW, Lee SY, Mitchell RM, Stephens HE, Simmons Z, Connor JR. H63D HFE polymorphisms are associated with increased disease duration and decreased muscle superoxide dismutase-1 expression in amyotrophic lateral sclerosis patients. Muscle Nerve 2013; 48:242-6. [PMID: 23813494 DOI: 10.1002/mus.23740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Abstract
INTRODUCTION H63D HFE polymorphisms increase the risk of neurodegenerative disorders and, specifically, may increase amyotrophic lateral sclerosis (ALS) risk. Investigating the physiological alterations induced by H63D polymorphisms in ALS patients may elucidate mechanisms by which this genotype alters disease. METHODS Clinical measures and muscle biopsies were available from patients previously diagnosed with ALS who underwent HFE genotyping. Clinical outcomes and SOD1 protein expression were analyzed using standard statistical analyses. RESULTS ALS patients harboring H63D HFE (n = 16) had 28.1 months longer average disease duration and 39.3% lower muscle SOD1 protein than ALS patients with wild-type HFE (n = 22). CONCLUSIONS Combined with previous reports suggesting the H63D polymorphism is associated with ALS, these results support a model wherein the H63D polymorphism is involved in ALS by means of pathways involving SOD1 but may limit cellular damage in individuals who develop disease. The association between HFE genotype and disease duration has important implications for clinical care and treatment trials.
Collapse
Affiliation(s)
- Xiaowei W Su
- George M. Leader Family Laboratory, Department of Neurosurgery, The Pennsylvania State University College of Medicine, 500 University Drive-H110, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | |
Collapse
|
40
|
A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. Biochim Biophys Acta Mol Basis Dis 2013; 1832:729-41. [PMID: 23429074 DOI: 10.1016/j.bbadis.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 12/12/2022]
Abstract
Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases.
Collapse
|
41
|
Kotze MJ, van Rensburg SJ. Pathology supported genetic testing and treatment of cardiovascular disease in middle age for prevention of Alzheimer's disease. Metab Brain Dis 2012; 27:255-66. [PMID: 22552896 PMCID: PMC3429783 DOI: 10.1007/s11011-012-9296-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/15/2012] [Indexed: 11/30/2022]
Abstract
Chronic, multi-factorial conditions caused by a complex interaction between genetic and environmental risk factors frequently share common disease mechanisms, as evidenced by an overlap between genetic risk factors for cardiovascular disease (CVD) and Alzheimer's disease (AD). Single nucleotide polymorphisms (SNPs) in several genes including ApoE, MTHFR, HFE and FTO are known to increase the risk of both conditions. The E4 allele of the ApoE polymorphism is the most extensively studied risk factor for AD and increases the risk of coronary heart disease by approximately 40%. It furthermore displays differential therapeutic responses with use of cholesterol-lowering statins and acetylcholinesterase inhibitors, which may also be due to variation in the CYP2D6 gene in some patients. Disease expression may be triggered by gene-environment interaction causing conversion of minor metabolic abnormalities into major brain disease due to cumulative risk. A growing body of evidence supports the assessment and treatment of CVD risk factors in midlife as a preventable cause of cognitive decline, morbidity and mortality in old age. In this review, the concept of pathology supported genetic testing (PSGT) for CVD is described in this context. PSGT combines DNA testing with biochemical measurements to determine gene expression and to monitor response to treatment. The aim is to diagnose treatable disease subtypes of complex disorders, facilitate prevention of cumulative risk and formulate intervention strategies guided from the genetic background. CVD provides a model to address the lifestyle link in most chronic diseases with a genetic component. Similar preventative measures would apply for optimisation of heart and brain health.
Collapse
Affiliation(s)
- Maritha J. Kotze
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Stellenbosch, PO Box 19063 Tygerberg, 7505, South Africa
| | - Susan J. van Rensburg
- Division of Chemical Pathology, National Health Laboratory Service and University of Stellenbosch, Tygerberg Hospital, PO Box 19113 Tygerberg 7505, South Africa
| |
Collapse
|
42
|
Liu Y, Connor JR. Iron and ER stress in neurodegenerative disease. Biometals 2012; 25:837-45. [PMID: 22526559 DOI: 10.1007/s10534-012-9544-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/22/2012] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease is a condition in which subpopulations of neuronal cells of the brain and spinal cord are selectively lost. A common event in many neurodegenerative diseases is the increased level of endoplasmic reticulum (ER) stress caused by accumulation and deposits of inclusion bodies that contain abnormal aggregated proteins. However, the basis of how ER stress contributes to the selective neuronal vulnerability and degeneration remain elusive. Iron accumulation in the central nerve system is consistently present in many neurodegenerative diseases. In the past 5 years we have begun to show a relationship between polymorphisms in the HFE (high iron) gene and the risk of neurodegenerative disorders. Recent findings have suggested a connection between ER stress and iron metabolism and neurodegeneration. Here we review how the different levels of chronic ER stress contribute to the different fates of neurons, namely the adaptive response and neuronal death. And, we discuss the roles of iron and HFE genotype in selective neuronal vulnerability and degeneration through modifying the ER stress level.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Neurosurgery, M.S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|